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® matching in paired cameras; F, E matrices; odometry
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® UIUC has autonomous vehicles class
e WITH ACTUAL VEHICLE!

Class project: brake for pedestrian
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® But
® This is increasingly expensive
® [t is surprisingly fragile
® [t is routine



Computer Vision Today

® Vision in general 1s flourishing
® (Greatest strengths
® using data to construct effective, highly polished features
® increasingly focused on discrimination and regression for huge datasets
® amoney game
® vast flood of “important” papers

® What should academic vision do?
® Join a crew
® works for some; boring; narrowing
® (Contrarianism
® do stuff industry can’t or won’t do
® Jow and no data learning
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Big 1deas in vision: Geometry

Observations

Parametric transformation

=

Registration

Ve AN
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Multiple view geometry




Registration

Observations
Parametric transformation

>

e Extremely general recipe
e 2D to2D; 3D to 3D; 3D to 2D; etc
® Representations
® as points
® as primitives
® ctc

® Fantastically useful



Multiple view geometry

® (: What can we impute from
\ ® ) Or more Views
® A:Lots

® Motion of the camera
® How things are moving in the image
® 13D structure
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Big 1deas 1n vision: Discrimination

Use some procedure to attach a label to

® an image; some images; video; range data; lidar data; etc, etc
“Label” can be very loosely interpreted
“Procedure” could be

® Jearned

® hand-tuned
® determined by physics; the problem; etc



Image classification

/

Image

/

Some neural stuff;
differentiable wrt
parameters, input

Cat
Dog

Car




Key 1deas

® (Goal:

® Adjust classifier so that it accurately classifies *UNSEEN* data

® Procedure:

® Adjust so that it
® classifies training data well
® oeneralizes
® regularization term, either explicit or implicit

® Evaluation:
® Use held out data to check accuracy on *UNSEEN* data



Classification or detection

® (lassification:

® there is an X in this image
® what

® Detection:

® there is an X HERE in this image
® what AND where

e Key issues
® how to specify where
® relationship between what and where
® cfficiency, etc
® ecvaluation
® surprisingly fiddly






It can be hard to find things
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You may not know the right label









Exploiting registration and classification

® Use a classifier to tell:
® how far to the next intersection?
what is it like?
1s there a bike lane?
etc.

Pred = 18.5 m



Road layout maps

® Potential cues
® streetview
® openmaps
[ J



Partially supervised cues

® (Open Street Maps (OSM)

Map data: OpenStreetMap is an open-source mapping
project covering over 21 million miles of road. Unlike pro-
prietary maps, the underlying road coordinates and metadata
are freely available for download. Accuracy and overlap with
Google Maps is very high, though some inevitable noise is
present as information is contributed by individual volunteers
or automatically extracted from users’ GPS trajectories. For
example, roads in smaller cities may lack detailed annota-
tions (e.g., the number of lanes may be unmarked). These
inconsistencies result in varying-sized subsets of the data
being applicable for different attributes.

Seff+Xiao



L- Produce Pro

Fig. 3. Intersection detection heatmap. Images are cropped from test set
GSV panoramas in the direction of travel indicated by the black arrow. The
probabilities of “approaching” an intersection output by the trained ConvNet
are overlaid on the road. (The images are from the ground level road, not
the bridge.)

Seff+Xiao



Partially supervised cues

® (Google street view

Image collection: Google Street View contains panoramic
images of street scenes covering 5 million miles of road
across 3,000 cities. Each panorama has a corresponding
metadata file storing the panorama’s unique “pano_id”, geo-
graphic location, azimuth orientation, and the pano_ids of ad-
jacent panoramas. Beginning from an initial seed panorama,
we collect street view i1mages by running a bread-first
search, downloading each image and its associated metadata
along the way. Thus far, our dataset contains one million
GSV panoramas from the San Francisco Bay Area. GSV
panoramas can be downloaded at several different resolutions
(marked as “zoom levels™). Finding the higher zoom levels

Seff+Xiao unnecessary for our purposes, we elected to download at a

zoom level of 1, where each panorama has a size of 832x416
pixels.



Labelling - I

® Match panoramas to roads
® panorama center location, orientation is known
® (essentially) project to plane
® thresholded nearest neighbor to road center polyline
® thresholding removes panoramas inside buildings, etc.
® some noise
® under bridges, etc.

® Annotations
® [ntersections
Drivable heading
Heading angle
Bike lane
Speed limit, wrong way, etc.



Pred =0.1 m Pred =229 m
True=19m True=19.2 m True =224 m

Fig. 4. Distance to intersection estimation. For images within 30 m of true
intersections, our model 1s trained to estimate the distance from the host car
to the center of the intersection across a variety of road types.

Seff+Xiao



Seff+Xiao

Fig. 5. Intersection topology is one of several attributes our model learns
to infer from an input GSV panorama. The blue circles on the Google
Maps extracts to the left show the locations of the input panoramas. The
pie charts display the probabilities output by the trained ConvNet of each
heading angle being on a driveable path (see Figure 3 for colormap legend).



p(driveable) = 0.002 p(driveable) =0.714 p(driveable) = 0.998

Fig. 6. Driveable headings. A ConvNet is trained to distinguish between
non-drivable headings (left) and drivable headings aligned with the road
(right). The ConvNet weakly classifies the middle example as drivable
because the host car’s heading is facing the alleyway between the buildings.

Seff+Xiao



I
| |
Pred =-52.7° Pred =-18.3° Pred = 31.6°
True = -49.1° True =-20.5° True = 32.7°

Seff+Xiao

Fig. 7. Heading angle regression. The network learns to predict the
relative angle between the street and host vehicle heading given a single
image cropped from a GSV panorama. Below each GSV image, the graphic
visualizes the ground truth heading angle.



p(bike lane) = 0.043 p(bike lane) = 0.604 p(bike lane) = 0.988

Fig. 8. The ConvNet learns to detect bike lanes adjacent to the vehicle.
The GSV i1mages are arranged from left to right in increasing order of
probability output by the ConvNet of a bike lane being present (ground
truth labels from left to right are negative, negative, positive). The middle
example contains a taxi lane, resulting in a weak false positive.

Seff+Xiao



Pred = 26.1 mph Pred = 30.0 mph Pred = 54.3 mph
True = 30 mph True = 50 mph True = 50 mph

Fig. 9. Speed limit regression. The network learns to predict speed limits
given a GSV 1mage of road scene. The model significantly underestimates
the speed limit in the middle example as this type of two-way road with a
single lane in each direction would generally not have a speed limit as high
as 50 mph.

Seff+Xiao



p(one-way) = 0.207 p(one-way) = 0.226 p(one-way) = 0.848

Fig. 10. One-way vs. two-way road classification. The probability output
by the ConvNet of each GSV scene being on a one-way road is shown.
From left to right the ground truth labels are two-way, two-way, and one-
way. The image on the left is correctly classified as two-way despite the
absence of the signature double yellow lines.

Seff+Xiao



p(wrong way) =0.555 p(wrong way) =0.042  p(wrong way) =0.729

Fig. 11. Wrong way detection. The probability output by the ConvNet of
each GSV 1mage facing the wrong way on the road is displayed. From left
to right the ground truth labels are wrong way, right way, and right way. For
two-way roads with no lane markings (left), this is an especially difficult
problem as it amounts to estimating the horizontal position of the host car.
The problem can also be quite ill-defined if there are no context clues as is
the case with the rightmost image.

Seff+Xiao



Pred =2 Pred =2 Pred.=3
True =1 True =2 True =2

Fig. 12. Number of lanes estimation. The predicted and true number
of lanes for three roads are displayed along with the corresponding GSV
images. For streets without clearly visible lane markings (left), this 1is
especially challenging. Although the ground truth for the rightmost image
1s two lanes, there is a third lane that merges just ahead.

Seff+Xiao



At this point

® [ can tell from an image whether
® [’m pointing in the right direction
going the right way
facing an intersection
available turns, etc.
what and where street signs are

® (Can I build a reliable controller?



BIG GOOD QUESTIONS

® Mashup of openmaps and street view
® it could predict drivable directions, steering directions, lanes, signs, etc.

e Q: WHY IS THIS NOT DRIVING AROUND NOW?

® A: (pretty obviously) because it doesn’t work

® Q: WHY NOT?

® A:interesting



Imitation learning

® Approaches
® [Imitation learning:
® Train a policy that does “the same thing” as an expert

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

eVt

Real Road Image Simulated Road Image

30x32 Video
Input Retina

simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989



Markov Decision Process

action
a,

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides



Markov Decision Process (S, A, T, R, H)

ﬁ
D

Agent

state r,_eward action
s.. i (),

Given

' 5. | Environment ]“—

= S: set of states

= A: set of actions

= T:SxAxSx{0,l,..,H 2 [0l1], T(sas)=P(S., =s|s, =s, a,=a)

= R SxAxSx{0,1,....,H} >R R(sas’) =reward for (S,, =5, S,=s, a, =a)
= H: horizon over which the agent will act

Goal:

= Find7 :Sx{0, I, ..., H} > A that maximizes expected sum of rewards, i.e.,

H
7" = arg max E[Z Ri(Si, Ay, Sit)|m]
w
t=0

This is usually discounted by gamma T Abbeel slides



Questions

® Known environment, rewards
® Assume
® we know T(s,a,s’),R(s, a, s’) Solving MDPs
® What should our policy be?
® do math
® Unknown environment, rewards Reinforcement learning
® What should our policy be?
® act and adjust policy to improve rewards
® Unknown environment, rewards, but access to expert
® What should our policy be?
® (al) do what the expert does Imitation learning
® (a2) figure out the experts reward function, and maximize that
Inverse reinforcement learning



Compounding Errors

L

-—-** As you get further off the path, the probability
/ S~ of making an error grows, cause the classifier

thinks this state is rare

error at time t with probability

E[Total errors] = &(T + (T-1) + (T-2) + ...+ 1) & T2

Fragkiadaki, ND

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



Data Distribution Mismatch!

P~ (075) 7é Pro (Ot)

Expert trajectory
Learned Policy

—
\o.‘.'.‘.'-'-".""ﬂ- e, "
. -.'0"\“ — \...'o
No data on / "

how to recover = i ("-.‘I

Fragkiadaki, ND



Demonstration Augmentation: NVIDIA 2016

Rt:co@ed
@ Mfei?r:r‘vgle | Adjust for shift Desired steering command
and rotation
Network
: - . steering
[Center camera }—; R;:;dg:‘atsjg::‘ > CNN —vcommand (—)l
f
Back propagation | | Error - .
ey il el Additional, left and right
cameras with automatic
E grant-truth labels to
- recover from mistakes
J i

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...",

Fragki%&hleiENEeaming for Self-Driving Cars , Bojarski et al. 2016



DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train We(ut|0t) from human data 'Dﬂ* — {01,U1, ...,ON,UN}

A run 7T6>(”U)t|0t) to get dataset Dﬂ = {01, OM}

3| Ask human to label D,. with actions U¢

4. Aggregate: D« < D« UD,

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

- repeatedly query the expert

Fragkladakl s NIA Reduction of Imitation Learning and Structured Predictior
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Big 1deas 1n vision: Regression

Image

(video;
>
depth map;

point cloud;

lidar; etc)

Regressor

Image;
video;
- depth map;
point cloud;
lidar; etc)




Why regression?

® [t’s useful

® Depth map from a single image
Ground map from aerial image
Modified/improved image from image
etc.



Key 1deas

® (Goal:

® Adjust regressor so that it accurately predicts for *UNSEEN* input

® Procedure:

® Adjust so that it
® predicts for well for training data
® oeneralizes
® regularization term, either explicit or implicit

® Evaluation:
® Use held out data to check accuracy on *UNSEEN* data



Key questions for this part

® Generally: produce representations that improve control
® by interpreting sensor output

® Today:
® Where am I?
® registration and building simple maps

® How have I moved?
® visual odometry
® (SLAM mentioned, but omitted as requiring filtering)
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Sensors
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Camera basics

Perspective

Lenses

Extrinsics and intrinsics
Calibration



Pinhole cameras

® Abstract camera model - box with a small hole in 1t
® Pinhole cameras work in practice




focal point

N

ot

ot
o

(£X/Z, £Y/Z, )

camera center
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Perspective etfects

2.1.2 Perspective Effects

Perspective projection has a number of important properties, summarized as:
e lines project to lines;
e more distant objects are smaller;
e lines that are parallel in 3D meet in the image;
e planes have horizons;

e planes image as half-planes.



I.enses

® Pinholes admit very little light

® and only work because they are small




I_enses

® Pinholes admit very little light

® and only work because they are small

® [ ens system
® (ollect much more light
® FEnsure camera behaves like a pinhole camera
® roughly!

Pinhole




Possibly annoying lens phenomena

Spherical aberration
® [ens is not a perfect thin lens, and point is defocused

Chromatic aberration

® [ight at different wavelengths follows different paths; hence, some
wavelengths are defocussed

® Machines: coat the lens

® Humans: live with it

Scattering at the lens surface

® [ight in lens system reflects off surfaces
® Machines: coat the lens, interior
® Humans: live with it (scattering phenomena are visible in the human eye)

Geometric phenomena (Barrel distortion, etc.)



Geometric distortions in lenses

Neutral grid Barrel distortion Pincushion distortion

FIGURE 2.6: On the left a neutral grid observed in a non-distorting lens (and viewed
frontally to prevent any perspective distortion). Center shows the same grid, viewed
in a lens that produces barrel distortion. Right, the same grid, now viewed in a
lens that produces pincushion distortion.



(u, v, w)

FIGURE 2.7: A perspective camera (in its own coordinate system, given by X, Y
and Z azes) views a point in world coordinates (given by (u,v,w) in the UVW
coordinate system) and reports the position of points in ST coordinates. We must
model the mapping from (u,v,w) to (s,t), which consists of a transformation from
the UVW coordinate system to the XY Z coordinate system followed by a perspective
projection followed by a transformation to the ST coordinate system.



The camera matrix - I

® Turn previous expression into HC’s
® HC'’s for 3D point are (X,Y,Z,T)
® HC'’s for point in image are (U,V,W)

Transformation

mapping image

plane coords to
pixel coords

Transformation
mapping world
coords to camera
coords




Camera 1ntrinsics
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Camera calibration

® [ssues:
® what are intrinsic parameters of the camera?
® what is the camera matrix? (intrinsic+eXxtrinsic)
® General strategy:
® view calibration object; identify image points in image
® obtain camera matrix by minimizing error
® obtain intrinsic parameters from camera matrix



time t

Lidar

distance d
\

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia



(a) VLS-128 (b) HDL-64S2 (c) HDL-32E

Carballo, 20




Gated cameras

From sensors unlimited website



Very like lidar, just at much longer wavelengths
-> Bigger antennas for transmit/receive
-> reduced spatial resolution

-> antennas often less efficient \

Gated Camera RGB Camera BEV Lidar Intensity Radar

Bijelic et al 20
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Point set registration



Issues

Where am 1?
® Simplest: register observations and motion to a map

® correspondence and robustness
Build a map
® Register observations to one another
® global consistency
Incorporating motion models

® Registration should benefit from knowledge of motion
® Filtering



Simplest case

® Registration with known correspondence
® No motion model
® 3D observations of known beacons at known 3D locations
® beacons y_i; observations x_1
® (for generality) weights w_i

® Problem:
® choose rotation R, translation t to minimize

C(R,t) =) w;(Rx;+t—yi) (Bx; +t—yi)

e THIS CAN BE DONE IN CLOSED FORM!



So far

Given two sets of points

® with known correspondences

® weights

We can find optimal rotation, translation to register
® casily

® in closed form

We now know where we are

® for (say) x_i 3D measurements, y_i beacons
Missing:

® what happens if we *don’t* have correspondences?
® robustness



ICP = Iterated closest points

What if we *don’t* have correspondences?
Idea:

® Repeat until convergence:
® cach x corresponds to “closest” y
® register
Big simple idea, lots of variants
® What is “closest™?
® What if you have lots of points?



Robustness 1s a serious problem
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FIGURE 10.6: On the left, a synthetic dataset with one independent and one ez-
planatory variable, with the regression line plotted. Notice the line is close to the
data points, and its predictions seem likely to be reliable. On the right, the result of
adding a single outlying datapoint to that dataset. The regression line has changed
significantly, because the regression line tries to minimize the sum of squared verti-
cal distances between the data points and the line. Because the outlying datapoint is
far from the line, the squared vertical distance to this point is enormous. The line
has moved to reduce this distance, at the cost of making the other points further

from the line.



Robustness 1s a serious problem
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FIGURE 10.7: On the left, weight regressed against height for the bodyfat dataset.
The line doesn’t describe the data particularly well, because it has been strongly
affected by a few data points (filled-in markers). On the right, a scatter plot of the
residual against the value predicted by the regression. This doesn’t look like noise,
which is a sign of trouble.



Key 1ssue:

® Squaring a large number produces a huge number
® A few wildly mismatch points can throw off R, t

® Fixes:
® remove matches with “large” distances
® actually, quite good
® but what happens if new such pairs emerge?
® apply an M-estimator
® deals with new pairs



I.ocalization

® We can now robustly register a point set to a point set
® This is localization
® [ook at LIDAR
® register to map
® [ know where I am
o Q:
® how to make the map?
® registration + bundle adjustment
® how to incorporate movement estimates and model uncertainty?
® important; huge literature (filtering); but out of scope



Bundle adjustment

® The problem:
® RegisterBtoA,CtoB,DtoC
® -> then you know D->A, but it isn’t very good...

A

Q: Why not C->A? l




Bundle adjustment

® [oop closure problems
® Why is this happening? TC—> B

TB—>A

Toa=TpsaoTopoTp_c

But this isn’t the one that minimizes the D, A overlap errors!

TD—>C’



Strategies

® (Pretty much always)
® Fix one set of points
® Register in sequence
® usually defined by (say) time
® Now fix the resulting estimates
® these are a start point



Pairs of cameras



What happens in two views

3 degrees of freedom

2 measuremem’s
2 measurements




All of Camera Geometry

® From the picture
® two views of a point give four measurements of three DOF
® this means
® correspondence is constrained
® if we have enough points and enough pix we can recover
® points
® cameras



The Epipoles

Camera 2
Camera 1

Epipole >§ .
. S Focal point
Focal point =
\ Epipole




Constraints on correspondence

Camera 2
Camera 1
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Constraints on CSP -I1

Camera 2
Camera 1
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Constraints on CSP - 111

Camera 2
Camera 1




Constraints on CSP - 111

Epipolar line

Camera 2
Camera 1




Constraints on CSP - 1V

by construction

Camera 1

Epipolar lines - these
intersect at the epipole,

Camera 2



Epipoles (resp. epipolar lines)

® Informative

Epipole and epipolar lines in camera 1 - where is camera 27



The Fundamental Matrix

p1’ Fpz =0

® FEasy closed form expression exists

® in terms of rot, trans between cameras, intrinsics
® following slides

® (Can be fit a pair of images using feature correspondences
® & point algorithm
® robustness is an important issue
® understood - standard procedures
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(c)
Fig. 18. In (a) (b) two consecutive images of a buggy rotating on a turntable. (b) has 167 matches superimposed on the second image. (c) (d)

show two epipolar geometries generated by two distinct fundamental matrices, 139 correspondences are consistent with the fundamental matrix
in (a), 131 are consistent with the fundamental matrix in (b) yet the two epipolar geometries obviously differ.

Torr, 96



What to match



Image neighborhoods

® We want to find patches that are “worth representing”
® to match from image to image
® to represent textures
® to represent objects

® Requirements
e (Covariant to translation, rotation, scale
® j.c.if the image is translated, rotated, scaled, so are the neighborhoods
® important to ensure that the representation of the patch is stable
® [ ocalizable in translation, rotation, scale
® we can estimate the position, orientation and size of the patch
® and get the answer about right

® Methods exist for richer sets of requirements



Learning to detect and describe keypoints

® You should be able to learn all this

® keypoints are stable under rotation, translation, scale (homographies)
® descriptions are stable under rotation, translation, scale (homographies)

FOIntL

Image Pair SuperPoint Network Correspondence

r-—— """ -"=-"=—-"—="

Interest Points

Wﬁﬁ

Descriptors-|

b e e e e e e e = —

Figure 1. SuperPoint for Geometric Correspondences. We
present a fully-convolutional neural network that computes SIFT-
like 2D interest point locations and descriptors in a single forward
pass and runs at 70 FPS on 480 x 640 images with a Titan X GPU. DeTone et al , 18



Figure 8. Qualitative Results on HPatches. The green lines show correct correspondences. SuperPoint tends to produce more dense and
correct matches compared to LIFT, SIFT and ORB. While ORB has the highest average repeatability, the detections cluster together and
generally do not result in more matches or more accurate homography estimates (see 4). Row 4: Failure case of SuperPoint and LIFT due
to extreme in-plane rotation not seen in the training examples. See Appendix D for additional homography estimation example pairs.

DeTone et al, 18




Visual Odometry with Single Camera



Epipoles (resp. epipolar lines)

® Informative

Epipole and epipolar lines in camera 1 - where is camera 27



Odometry from two camera geometry

® Idea:

® use calibrated camera

® move; track some points
® in reading slides

® compute essential matrix (calibrated fundamental matrix) to get
® rotation
® translation up to scale

® Options:

® fix scale later

® use (say) wheel measurements + Kalman filter to fix

® use stereo



RECALL: The Fundamental Matrix

p1’ Fpz =0
® (Can be fit a pair of images using feature correspondences

® 8 point algorithm
® robustness 1s an important issue

F =kC; " RSC,"

If we know these

we can recover info about R, T from F



VO example; Bloesch et al 2015

https://www.youtube.com/watch?v=ZMAIS Vy-6ao



Correspondence yields 3D configuration

Camera 2
Camera 1
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Filtering

® We may have more than one cue to our movement
visual odometry

inertial sensor

acceleration constraints

control inputs

vehicle dynamics

e Filtering
® (Combine these cues to come up with best posterior estimate of
® camera motion (odometry)
® features (SLAM)
® SLAM=simultaneous localization and mapping



SLAM example from Scaramuzza

https://www.youtube.com/watch?v=XpuRpKHp_Bk



