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Sensors, Localization and Control

• -1:  Intro - who I am, UIUC, what we’re going to do

• 0: Big tools of vision


• geometry; discrimination ; regression

• Simple visual control


• Google streetview; various learning paradigms;

• why imitation learning is hard; Dagger


• I: Sensor review

• Cameras; LIDAR; timed cameras; GPS


• II: Localization

• simple 2D, 3D registration by matching; features for matching

• matching in paired cameras; F, E matrices; odometry



• David Forsyth

• Marr prize, 1993; 2 ex students with 

Marr prizes; IEEE Tech. 
Achievement, Fellow; ACM Fellow; 
EIC IEEE TPAMI


• Derek Hoiem

• best paper, CVPR 2006; ACM 

Doctoral Dissertation honorable 
mention; Sloan Fellow;PAMI-TC 
Young Researcher


• Lana Lazebnik

• Microsoft Faculty Fellow; Sloan 

Fellow; Koenderink Prize (2016)


• Alex Schwing

• Visual learning, segmentation and 

GAN models

Vision group at Illinois

• Saurabh Gupta

• Linking visual sensing to 

motion


• Liangyan Gui

• Understanding human 

movement


• Shenlong Wang

• Simulation and sensing 

for autonomous vehicles


• Yuxiong Wang

• Learning to detect and 

classify with very little data




Well-known ex-students:

Lana Lazebnik (UIUC)


Tamara Berg (UNC)

Pinar Duygulu (Hacettepe U.)


Ian Endres

Ali Farhadi (UW)


Varsha Hedau

Nazli Ikizler (Hacettepe U.)


Brett Jones

Kevin Karsch

Zicheng Liao


Deva Ramanan (CMU)

Raj Sodhi


Gang Wang (now Alibaba)

Amin Sadeghi 


Zicheng Liao (Zhejiang U.)

Vision group

 1

Forsyth
Applied M

achine Learning

Computer Science

9 7 8 3 0 3 0 1 8 1 1 3 0

ISBN 978-3-030-18113-0

David Forsyth

Applied Machine Learning

Applied 
Machine 
Learning

David Forsyth

Machine learning methods are now an important tool for scientists, researchers, engineers 
and students in a wide range of areas. ! is book is written for people who want to adopt and 
use the main tools of machine learning, but aren’t necessarily going to want to be machine 
learning researchers. Intended for students in " nal year undergraduate or " rst year graduate 
computer science programs in machine learning, this textbook is a machine learning toolkit. 
Applied Machine Learning covers many topics for people who want to use machine learning 
processes to get things done, with a strong emphasis on using existing tools and packages, 
rather than writing one’s own code.

A companion to the author’s Probability and Statistics for Computer Science, this book picks 
up where the earlier book le#  o$  (but also supplies a summary of probability that the reader 
can use).

 • Emphasizing the usefulness of standard machinery from applied statistics, this 
textbook gives an overview of the major applied areas in learning

 • Covers the ideas in machine learning that everyone going to use learning tools should 
know, whatever their chosen specialty or career.

 • Broad coverage of the area ensures enough to get the reader started, and to realize that 
it’s worth knowing more in-depth knowledge of the topic.

 • Practical approach emphasizes using existing tools and packages quickly, with enough 
pragmatic material on deep networks to get the learner started without needing to 
study other material.
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• UIUC has autonomous vehicles class 

• WITH ACTUAL VEHICLE!

Class project: brake for pedestrian
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• But

• This is increasingly expensive

• It is surprisingly fragile

• It is routine 

Other features
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• Vision in general is flourishing

• Greatest strengths


• using data to construct effective, highly polished features

• increasingly focused on discrimination and regression for huge datasets

• a money game

• vast flood of “important” papers


• What should academic vision do?

• Join a crew


• works for some; boring; narrowing

• Contrarianism


• do stuff industry can’t or won’t do

• low and no data learning

Computer Vision Today
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Big ideas in vision: Geometry

Parametric transformation
Observations

Model

Registration
Multiple view geometry



Registration

• Extremely general recipe

• 2D to 2D; 3D to 3D; 3D to 2D; etc

• Representations


• as points

• as primitives

• etc


• Fantastically useful

Parametric transformation
Observations

Model



Multiple view geometry

• Q: What can we impute from 

• 2 or more views


• A: Lots

• Motion of the camera

• How things are moving in the image

• 3D structure 
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Big ideas in vision: Discrimination

• Use some procedure to attach a label to

• an image; some images; video; range data; lidar data; etc, etc


• “Label” can be very loosely interpreted

• “Procedure” could be


• learned

• hand-tuned

• determined by physics; the problem; etc



Image classification

.

.

.

Cat
Dog

Car

Some neural stu!;
di!erentiable wrt
parameters, inputImage



Key ideas

• Goal:

• Adjust classifier so that it accurately classifies *UNSEEN* data


• Procedure:

• Adjust so that it


• classifies training data well

• generalizes 


• regularization term, either explicit or implicit


• Evaluation:

• Use held out data to check accuracy on *UNSEEN* data



Classification or detection

• Classification:

• there is an X in this image


• what


• Detection:

• there is an X HERE in this image


• what AND where


• Key issues

• how to specify where

• relationship between what and where


• efficiency, etc

• evaluation


• surprisingly fiddly



Is there a f



It can be hard to find things









You may not know the right label







Exploiting registration and classification

• Use a classifier to tell:

• how far to the next intersection?

• what is it like?

• is there a bike lane?

• etc.



Road layout maps

• Potential cues

• streetview

• openmaps 

•



Partially supervised cues

• Open Street Maps (OSM)

•

Seff+Xiao



Seff+Xiao



Partially supervised cues

• Google street view

•

Seff+Xiao



Labelling - I

• Match panoramas to roads

• panorama center location, orientation is known

• (essentially) project to plane 

• thresholded nearest neighbor to road center polyline


• thresholding removes panoramas inside buildings, etc.

• some noise 


• under bridges, etc.


• Annotations

• Intersections

• Drivable heading

• Heading angle

• Bike lane

• Speed limit, wrong way, etc.



Seff+Xiao
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At this point

• I can tell from an image whether

• I’m pointing in the right direction

• going the right way

• facing an intersection

• available turns, etc.

• what and where street signs are

• …


• Can I build a reliable controller?



BIG GOOD QUESTIONS

• Mashup of openmaps and street view

• it could predict drivable directions, steering directions, lanes, signs, etc.


• Q:  WHY IS THIS NOT DRIVING AROUND NOW?

• A: (pretty obviously) because it doesn’t work


• Q: WHY NOT?

• A: interesting



Imitation learning

• Approaches

• Imitation learning:


• Train a policy that does “the same thing” as an expert



Abbeel slides



Abbeel slidesThis is usually discounted by gamma



Questions

• Known environment, rewards

• Assume 


• we know T(s, a, s’), R(s, a, s’)

• What should our policy be?


• do math


• Unknown environment, rewards

• What should our policy be?


• act and adjust policy to improve rewards


• Unknown environment, rewards, but access to expert

• What should our policy be?


• (a1) do what the expert does

• (a2) figure out the experts reward function, and maximize that

Imitation learning

Inverse reinforcement learning

Reinforcement learning

Solving MDPs



As you get further off the path, the probability 

of making an error grows, cause the classifier


thinks this state is rare

Fragkiadaki, ND
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Fragkiadaki, ND
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Big ideas in vision: Regression

Regressor
Image
(video;
depth map;
point cloud;
lidar; etc)

Image;
video;
depth map;
point cloud;
lidar; etc)



Why regression?

• It’s useful

• Depth map from a single image

• Ground map from aerial image

• Modified/improved image from image

• etc.



Key ideas

• Goal:

• Adjust regressor so that it accurately predicts for *UNSEEN* input


• Procedure:

• Adjust so that it


• predicts for well for training data 

• generalizes 


• regularization term, either explicit or implicit


• Evaluation:

• Use held out data to check accuracy on *UNSEEN* data



Key questions for this part

• Generally: produce representations that improve control

• by interpreting sensor output


• Today:

• Where am I?


• registration and building simple maps


• How have I moved?

• visual odometry

• (SLAM mentioned, but omitted as requiring filtering)
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Sensors
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Camera basics

• Perspective

• Lenses

• Extrinsics and intrinsics

• Calibration



Pinhole cameras

• Abstract camera model - box with a small hole in it 

• Pinhole cameras work in practice





Perspective effects



Lenses

• Pinholes admit very little light

• and only work because they are small



Lenses

• Pinholes admit very little light

• and only work because they are small


• Lens system

• Collect much more light

• Ensure camera behaves like a pinhole camera


• roughly!



Possibly annoying lens phenomena

• Spherical aberration

• Lens is not a perfect thin lens, and point is defocused


• Chromatic aberration

• Light at different wavelengths follows different paths; hence, some 

wavelengths are defocussed

• Machines: coat the lens

• Humans: live with it 


• Scattering at the lens surface

• Light in lens system reflects off surfaces

• Machines: coat the lens, interior

• Humans: live with it (scattering phenomena are visible in the human eye)


• Geometric phenomena (Barrel distortion, etc.)



Geometric distortions in lenses





The camera matrix - II

• Turn previous expression into HC’s

• HC’s for 3D point are (X,Y,Z,T)

• HC’s for point in image are (U,V,W)



Camera intrinsics



Camera calibration

• Issues:

• what are intrinsic parameters of the camera?

• what is the camera matrix? (intrinsic+extrinsic)


• General strategy:

• view calibration object; identify image points in image

• obtain camera matrix by minimizing error

• obtain intrinsic parameters from camera matrix



Lidar

About 800-1000 nm 

wavelength (longer than red)

Wikipedia



Fog

Rain

Very

bright

light

Carballo, 20



Gated cameras

From sensors unlimited website



Bijelic et al 20

Very like lidar, just at much longer wavelengths

-> Bigger antennas for transmit/receive


-> reduced spatial resolution

-> antennas often less efficient
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Point set registration



Issues

• Where am I?

• Simplest: register observations and motion to a map


• correspondence and robustness


• Build a map

• Register observations to one another


• global consistency


• Incorporating motion models

• Registration should benefit from knowledge of motion


• Filtering



Simplest case

• Registration with known correspondence

• No motion model

• 3D observations of known beacons at known 3D locations


• beacons y_i; observations x_i

• (for generality) weights w_i


• Problem:

• choose rotation R, translation t to minimize


• THIS CAN BE DONE IN CLOSED FORM!

C(R, t) =
X

i

wi (Rxi + t� yi)
T (Rxi + t� yi)



So far

• Given two sets of points 

• with known correspondences

• weights


• We can find optimal rotation, translation to register

• easily

• in closed form


• We now know where we are

• for (say) x_i 3D measurements, y_i beacons


• Missing:

• what happens if we *don’t* have correspondences?

• robustness



ICP = Iterated closest points

• What if we *don’t* have correspondences?

• Idea:


• Repeat until convergence:

• each x corresponds to “closest” y

• register


• Big simple idea, lots of variants

• What is “closest”?

• What if you have lots of points?



Robustness is a serious problem



Robustness is a serious problem



Key issue:

• Squaring a large number produces a huge number


• A few wildly mismatch points can throw off R, t


• Fixes:

• remove matches with “large” distances


• actually, quite good

• but what happens if new such pairs emerge?


• apply an M-estimator

• deals with new pairs



Localization

• We can now robustly register a point set to a point set

• This is localization


• Look at LIDAR

• register to map

• I know where I am


• Q:

• how to make the map?


• registration + bundle adjustment

• how to incorporate movement estimates and model uncertainty?


• important; huge literature (filtering); but out of scope 



Bundle adjustment

• The problem:

• Register B to A, C to B, D to C 


• -> then you know D->A, but it isn’t very good…

A

B

C

D

Q:  Why not C->A?



Bundle adjustment

• Loop closure problems

• Why is this happening?

A

B
C

D

TB!A

TC!B

TD!C

TD!A = TB!A � TC!B � TD!C

But this isn’t the one that minimizes the D, A overlap errors!



Strategies

• (Pretty much always)

• Fix one set of points

• Register in sequence


• usually defined by (say) time

• Now fix the resulting estimates


• these are a start point



Pairs of cameras



What happens in two views

3 degrees of freedom

2 measurements
2 measurements



All of Camera Geometry

• From the picture

• two views of a point give four measurements of three DOF

• this means 


• correspondence is constrained

• if we have enough points and enough pix we can recover


• points

• cameras



The Epipoles

Camera 1
Camera 2

Epipole

Epipole
Focal point

Focal point



Constraints on correspondence

Camera 1
Camera 2



Constraints on CSP -II

Camera 1
Camera 2



Constraints on CSP - III

Camera 1
Camera 2



Camera 1
Camera 2

Constraints on CSP - III

Epipolar line



Constraints on CSP - IV

Epipolar lines - these

intersect at the epipole,


by construction

Camera 1
Camera 2



Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?



The Fundamental Matrix 

• Easy closed form expression exists

• in terms of rot, trans between cameras, intrinsics

• following slides


• Can be fit a pair of images using feature correspondences

• 8 point algorithm 

• robustness is an important issue


• understood - standard procedures

p1
TFp2 = 0



Torr, 96



Torr, 96



What to match



Image neighborhoods

• We want to find patches that are “worth representing”

• to match from image to image

• to represent textures

• to represent objects


• Requirements

• Covariant to translation, rotation, scale


• i.e. if the image is translated, rotated, scaled, so are the neighborhoods

• important to ensure that the representation of the patch is stable


• Localizable in translation, rotation, scale

• we can estimate the position, orientation and size of the patch

• and get the answer about right


• Methods exist for richer sets of requirements



Learning to detect and describe keypoints

• You should be able to learn all this

• keypoints are stable under rotation, translation, scale (homographies)

• descriptions are stable under rotation, translation, scale (homographies)

DeTone et al, 18



DeTone et al, 18



Visual Odometry with Single Camera



Epipoles (resp. epipolar lines)

• Informative

Epipole and epipolar lines in camera 1 - where is camera 2?



Odometry from two camera geometry

• Idea:

• use calibrated camera

• move; track some points


• in reading slides

• compute essential matrix (calibrated fundamental matrix) to get


• rotation

• translation up to scale


• Options:

• fix scale later

• use (say) wheel measurements + Kalman filter to fix

• use stereo



RECALL: The Fundamental Matrix 

• Can be fit a pair of images using feature correspondences

• 8 point algorithm 

• robustness is an important issue

• we’ll do this

p1
TFp2 = 0

F = kC�T
L RSC�1

R

If we know these

we can recover info about R, T from F



VO example; Bloesch et al 2015

https://www.youtube.com/watch?v=ZMAISVy-6ao



Correspondence yields 3D configuration

Camera 1
Camera 2



Luche Bridge, Ministry of Land, Transport, and Infrastructure, Japan

Reconstruct: Inspect aging infrastructure

Derek Hoiem
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Reconstruct: Align reality to plans for construction 
management

Derek Hoiem



Filtering

• We may have more than one cue to our movement

• visual odometry

• inertial sensor

• acceleration constraints

• control inputs

• vehicle dynamics


• Filtering

• Combine these cues to come up with best posterior estimate of


• camera motion (odometry)

• features (SLAM)


• SLAM=simultaneous localization and mapping



SLAM example from Scaramuzza

https://www.youtube.com/watch?v=XpuRpKHp_Bk


