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Key points

® Weather effects cause detectors to work poorly
® We can collect weathered data
® OR unweather using regression procedures
® OR we can train on artificially weathered data

® [ighting also causes methods to work poorly
® we can relight images (hard!)



How weather affects images



Scattering

® Fundamental mechanism of light/matter interactions

® Visually important for

® slightly translucent materials (skin, milk, marble, etc.)
® participating media



Participating media

® for example,

® smoke,
wet air (mist, fog)
rain

dusty air
® air at long scales

® [ight leaves/enters a ray travelling through space
® |eaves because it 1s scattered out
® enters because it 1s scattered in

® New visual effects



Light hits a small box of material

Scattering material

o Forward scattered
Incoming light (what we’re accustomed to)

= >

Scattered
out of view



Airlight as a scattering effect
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Absorption

Box of material

Eye ray Eye ray

I(T) -

A
°

Want 1(0)
(at start of eye ray)

dt

® [gnore in-scattering
® only account for forward scattering

® Assume there is a source at t=T
® of intensity I(T)
® what do we see at t=0?



Cross sectional area of “slab” is E
Contains particles, radius r, density rho

Too few to overlap when projected

% light absorbed = (area of projected particles)/
(area of slab)

This 1s:

(pEAs)mr?
E

= o(s)As

1(0) = I(T)e™ Jo ot

Eyeis at0 Intensity at T



From Lynch and Livingstone, Color and Light in Nature






This sort of thing affects detectors, etc.

® Fairly clear (more later)
® What to do:

® Train detectors on real weather images
® hard - collect and mark them up; rich collection of effects
® mostly, this won’t work out
® Remove weather effects, then apply detector
® (Q: Remove how?
® Simple physics
® Regression (next)
® Take training images, synthesize weather on top
® (: How?
® complicated mixture of physics and advanced regression tricks



Paired data

® (Collect data on good days, bad days
® along the same routes, w/ GPS
® use dynamic programming, GPS to compute alignment at the image level

® Now label

® annotator labels bad image round 1
® compares to good image; fixes labelling round 2

(a) Input image [ (b) Stage 1 annotation (draft) (c) Corresponding image I’ (d) Stage 2 annotation (GT) (e) Invalid mask J
Figure 2. Illustration of annotation protocol for ACDC. The color coding of the semantic classes matches Fig. 1. All annotations in (b),
(d) and (e) pertain to the input image [/ in (a). A white color in (b) and (d) denotes unlabeled pixels.

Sakaridis et al, 21
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Removing haze by physical reasoning

Airlight color at p

}

I(p) = J(p) xT(p) + Alp) x (1 -T(p))
Image color at p T

Surface radiance color at p

Absorption term, exponential in depth, at p

® (Consequences

® Brightness is a depth cue
® Reasoning about airlight color yields dehazed image



Airlight yields a depth cue

® Assume that airlight is dominant

® (i.e. most of light arriving at camera is airlight)
® then you can recover depth from a single image

® Disadvantages
® requires significant fog (but not too much) or large scales



Nayar and Narasimhan, 1999

(b)




Model

Airlight color - same at all points

!
I(p)=J(p) xT(p)+ A(p) x (1 =T(p))

A

Observed T

Shading x albedo

Independent of shading

® With work, this yields
® neighboring pixels with same albedo yield
® constraints on shading and T
® assume shading and T independent
® ecstimate A to yield “most independent” shading and T
® result: J(p)



Figure 1: Dehazing based on a single input image and the corresponding depth estimate.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



Improved estimation by cleaner model

Fig. 1. Old Town of Lviv. Input image on the left, our result on the right.

Fattal, 08 - note depth map AND dehaze; note also slightly odd colors



This sort of thing affects detectors, etc.

® Fairly clear (more later)
® What to do:

® Train detectors on real weather images
® hard - collect and mark them up; rich collection of effects
® mostly, this won’t work out
® Remove weather effects, then apply detector
® (Q: Remove how?
® Simple physics
® Regression
® Take training images, synthesize weather on top
® (: How?
® complicated mixture of physics and advanced regression tricks



Image regression

Take an image, predict something “like” an i1mage
® Underlying technology is straightforward, significant tricks

Cases

® train with real paired data eg (image, foggy version of image)

® train with fake paired data eg (image, simulated foggy version of image)
® train with unpaired data; important, we’ll ignore

Motivating problems
® image -> depth

® also, image pair -> optic flow; low res image-> high res image
® image -> foggy image; image -> rainy image

Mechanics sketched yesterday



Paired datasets

Obtain pairs (hazy image, clear image)
Real data:

® Take photos outdoors; introduce fog; repeat
e NH-HAZE
® https://data.vision.ee.ethz.ch/cvl/ntire20/nh-haze/

Synthesized data:
® Fake fog model on real image
® Foggy cityscapes
® https://people.ce.ethz.ch/~csakarid/SFSU_synthetic/
® Render synthetic images fog/no-fog
e RESIDE
® https://arxiv.org/pdf/1712.04143.pdf




Fig. 11. The haze-free images and depth maps restored by DehazeNet

Cai et al 16 (DeHazeNet)



Single 1mage dehazing

i 13.35 15.45 16.37 14,50 19.42 ~

- 16.70 16.76 15.97 14.23 19.86 o0
‘;UN*}. ‘ : ;
- 15.42 11.28 17.64
(a) HAZY (b) DCP [15] (c) AOD-Net [20] (d) GRID-Net [24] (e) FFA-Net [26] (f) OURS (g) GT

Figure 6. Qualitative comparisons with different state-of-the-art dehazing methods for indoor synthesis hazy images. The top two rows are
from SOTS, the third row is from TestA dataset and the bottom three rows are from MiddleBury dehazing dataset. The numbers below
image are PSNR (dB) value of each image.

Shen et al 19
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Side topic - Adversarial losses

® [ssue:
® we are making pictures that should have a strong structure
® cg - it should be “like” a true image
® but we don’t know how to write a loss that imposes that structure

® Strategy:
® build a classifier that tries to tell the difference between
® true examples
® cxamples we made
® use that classifier as a loss



Generative
Adversarial
Network

e

X

real-world
image

OR

discriminator

X — (:'(Z;)

generator

N —p —

code vector

Grosse slides



@ Let D denote the discriminator’s predicted probability of being data

e Discriminator’s cost function: cross-entropy loss for task of classifying
real vs. fake images

JIp = Exp[—log D(x)] + E;[— log(1 — D(G(2)))]

Notice: we want the discriminator to make a 1 for real data, O for fake data
@ One possible cost function for the generator: the opposite of the

discriminator's

Je =—Jb
= const + K, [log(1 — D(G(z)))]

@ This is called the minimax formulation, since the generator and

discriminator are playing a zero-sum game against each other:
Solution (if exists, which is uncertain; and if mg X ml;n Jo
can be found, ditto) is known as a saddle point.
It has strong properties, but not much worth

talking about, as we don’t know if it is there or
whether we have found it. Grosse slides



Quote from the original paper on GANs:

"The generative model can be thought of as analogous to a
team of counterfeiters, trying to produce fake currency and
use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to
improve their methods until the counterfeits are
indistinguishable from the genuine articles."

-Goodfellow et. al., "Generative Adversarial Networks" (2014)

Thakar slides



Important, general 1ssue

If either generator or discriminator “wins” -> problem

Discriminator “wins”’

® it may not be able to tell the generator how to fix examples
® discriminators classify, rather than supply gradient

Generator “wins”
® likely the discriminator is too stupid to be useful

Very little theory to guide on this point



Updating the discriminator:

D(x)

update the discriminator
T weights using backprop

on the classification objective

X OR x=0G(z)

real-world 1
image generator

t

| Z \ code vector

—_ - R --

Grosse slides



Updating the generator:

D(x)
backprop the derivatives,
but don't modify the
f discriminator weights
flip the sign
of the derivatives

update the generator
f weights using backprop

Grosse slides



One must be careful about losses...

@ We introduced the minimax cost function for the generator:
Je = Ez[log(1 — D(G(z)))]

@ One problem with this is saturation.

@ Recall from our lecture on classification: when the prediction is really
wrong,

o “Logistic 4+ squared error’ gets a weak gradient signal
o “Logistic + cross-entropy” gets a strong gradient signal

@ Here, if the generated sample is really bad, the discriminator’'s
prediction is close to 0, and the generator's cost is flat.

Grosse slides



One must be careful about losses...

e Original minimax cost: modified
cost
Jc = E,[log(1 — D(G(2)))]

e Modified generator cost:

minimax
J6 = Ez[—log D(G(2))] cost
@ This fixes the saturation problem. 4o 02 o4 06 08 10
s
DI(G(z))
(how well it fooled
the discriminator)

Grosse slides



Alternative losses

e Hinge:
® Discriminator makes D(im)
® want
® real images -> -1
® fake ->1

® Discriminator loss: Z max((), 1 — yzD(Iz))

fakes and real

® where y_i=-1 for real, y_i=1 for fake

> D(IL)

fakes

® (Generator loss:
°



.

DCP EPDN FD-GAN (ours)

Figure 5: Visual comparisons on real-world hazy images. Our model can generate more natural and visual pleasing dehazed
results with less color distortion. Please see the details in red rectangles. Zoom in for best view.

Dong et al 21 - Use an adversarial loss




More complicated weather effects



Light hits a small box of material

Scattering material

o Forward scattered
Incoming light (what we’re accustomed to)

= >

Scattered
out of view



A ray passing through scattering material

In scattering
from other elements

o Forward scattered
Incoming light (what we’re accustomed to)

> >

Scattered
out of view



More 1nteresting...

Cross sectional area of “slab” is E

Ce e Contains particles, radius r, density tho
® Intensity is “created along the

ray” Too few to overlap when projected
® by (say) airlight

® Model - the particles glow with Light out = Light in -

intensity C(x) L%ght absorbed+
Light generated
As
° Light generated: C x (area fraction
p of proj. particles)
E ° <
(@) © . .
50 which 1s

I(O):/O c(x(s))o(s)e™ Jo olwdugy



Raindrop scatter

Raindrop

=

Source

Detector



Backscatter

® Refraction in drops causes backscatter of headlight light
® makes driving in rain at night harder

® Neat trick

® (Tamburo et al 14)
® Do not illuminate raindrops by
® having headlights that are highly steerable (multiple micro mirrors)
® very fast exposure with usual illumination identifies raindrops
® too fast for driver to resolve
® now direct light between drops



s

e Qe :.0

o Sese*e
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Fig.7. A: Our headlight has unprecedented resolution over space and time so that
beams of light may be sent in between the falling snow. Illustration adapted from [11].
B: Artificial snowflakes brightly illuminated by standard headlight. C: Our system
avoids illuminating snowflakes making them much less visible.

Tamburo et al 14



Rain has multiple interesting effects

Blur from wet air Puddles

Color shifts Streaks

These are often quite strongly coupled to scene geometry



Rain - phenomena

Drops move fast, and so create motion blur (streaks)

i

Drop @
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(a) Short exposure time (1 ms)  (b) Normal exposure time (30 ms) (a) Average irradiance at a pixel (b) Intensity at a pixel

Figure 9. (I) Raindrops and motion-blur. An image of a scene taken in rain with (a) a short exposure time of 1 ms and (b) with typical exposure
time of a camera (30 ms). (II) The intensities produced by motion-blurred raindrops. II (a) The average irradiance at the pixel due to the raindrop
is E, and that due to the background scene is Ej. Note that E, > Ej. The drop projects onto a pixel for time T < 1.18 ms, which is far less than
the typical exposure time T of a camera. (b) Intensities of a pixel in three frames. A drop stays over the pixel in only a single frame and produces a
positive intensity fluctuation of unit frame width.

Garg and Nayar 07



Rain - phenomena

Shallow free space - individual rain streaks
Deep free space - more bulk, fog-like effects

I
I i
tro :
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————— e ——— — - -
I SR
. Sl
-
. | ‘_ dq d, depth
(a) input real photo (b) rain visibility & depth

Figure 1: (a) An example real photo that demonstrates the
scene visibility variation with depth, and the presence of
rain streaks and fog; and (b) a plot of rain streak intensity
(t,-) against scene depth (d) based on the model in [13].

Hu et al 19



Rain mangles detection



Original Rain augmented (PBR)

5\‘! -.'» 10“' Qq"
(0. 97’ 1,00.74900 .0¢g, §3 0, 9<o 99.00 ). 9%, 7% 0,99.99:00
¥ - ' - 1 p

~ \ 1\" -
B < 94) 71.00.99.00 199, 3 0 97) 99,00

14

11".
7oa -” 0, 0)73 76

m-

Clear weather ' Moderate rain ' Heavy rain Shower rain
(50 mnvhr) (100 mmvhr) (200 mm/hr)

Fig. 11 Object detection on PBR rain augmentation of KITTIL From left to right, the original image (clear) and three PBR augmentations with
varying rainfall rates. Images are cropped for visualization.

Tremblay et al 20




Simulating rain - 1ssues

® Near field:;

® drops are bright, discrete, likely ballistic motion
® how bright?
® where?
® how moving?
® Jikely airis “wet”
® 50 some fogging, depending on depth

e Far field:
® fog like effects

® So we need to know
® depth, environment map, falling drops, camera movement



Simulating rain

Particles —J»  Projection

simulator [11] +

Camera
q

ego motions

lllumination > Rain streak ‘Warg
estimation photometry ‘ HH ﬂ
+ Streak db [20]
: ’ Fog-like > Rainfall
, rain attenuation compositing

-
7

Clear images
1
]

Depth
estimation —-
[24 25]

Depth maps

Rainy images

Fig. 2 Physics-Based Rendering for rain augmentation. We use par-
ticles simulation together with depth and illumination estimation to

render arbitrarily controlled rainfall on clear images.
Tremblay et al 20



® Trick:

Simulating rain

® rain causes color effects, specular effects etc.
® (CycleGAN is good at this, but bad at streaks
® Physics based simulation is bad at this but good at streaks

iy

ﬁ

Clear images

CycleGAN

e .~

i —>

Rain translations

Physic-based
rain augmentation

[fig. 2]

»ﬁ

Rainy images

Fig. 5 GAN+PBR rain-augmentation architecture. In this hybrid
approach, clear images are first translated into rain with CycleGAN [* ]
and subsequently augmented with rain streaks with our PBR pipeline

(see fig. 2).

Tremblay et al

20



GAN+PBR
100mm/hr

R = 8
m -
A
2%
<=
HN

Other physnc-based rain rendering

q. )-‘]

Tremblay et al 20 rainl00H [74] ra1n800 [79] did-MDN [/#]
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Clear weather

Moderate rain
(50 mm/hr)
three GAN+PBR images.

(100 mmv/hr)

Shower rain
(200 mmvhr)

Heavy rain
Fig. 15 Object detection on our GAN+PBR augmented nuScenes. From left to right, the original image (clear), the GAN augmented image and

Tremblay et al 20



Fog and rain affect LIDAR



time t

Fog and Lidar: Lidar

distance d
\

>

About 800-1000 nm
wavelength (longer than red)

Wikipedia



Raindrop scatter

Raindrop

=

Source

Detector



Fog scattering

FOG

Source

Detector



What the sensor sees...

No fog

1

Extreme fog

/\Q\ g




(a)

Fig. 5: Static targets and adverse weather experiments at JARI’s weather chamber: (a) configuration of the different scenarios,
(b) and (c) measurement, (e) to (g) sample adverse weather scenes, (d) setting up ground truth.

Carballo, 20



(a) VLS-128 (b) HDL-64S2 (c) HDL-32E

Carballo, 20




Fig. 9: “Rain pillars” as detected by a LiDAR.

® (ualitative effects
lost returns

fog torus

early returns

rain pillars

noise

Carballo, 20



Radar 1s unaffected

Bad Weather Depth Estimation Camera Image
121 —. GT
- Radar
€101 — Lidar -
£
g 8
©
3
© 6]
£
w
W 4-
2.

4 6 8 10 12
GT depth (m)

Figure 16: Performance comparison of different sensors in the pres-
ence of adverse conditions. The left plot shows the depth estimation
performance of Radar and LiDAR for an object directly in front of the
sensor in the presence of fog. The right figure shows the camera image
for the experiment.

Bansal et al 20



Lighting affects methods, too



Normal (omnimap, current best normal est)




What to do?

® Maybe:
® generate multiple lightings of the same image
® analogy with rain
® force method to produce same result for each

® (Q: How to generate multiple lightings of the same image?



Hijacking knowledge

® StyleGAN?2 is a network that

® accepts random vectors
® produces very convincing face images (and some others; churches, etc)
® s trained by adversarial procedures

® This process can be “inverted”
® GAN-inversion: given face, what random number made it?

® Pretrained models like StyleGAN2 “know” a lot

® cstablished literature around the idea that StyleGAN?2 outputs are faces
® pretty much whatever you do to the input



Relighting synthetic scenes

® Significant literature based on “inverse graphics”
® [mpute: geometry, albedo, luminaires; change luminaires; render
® Zhengqin Li thesis, 2022
® But this involves CGI,
® which we don’t trust and
® may not be available

e StyleGAN Judo

® Secarch latent space of a generative model to find directions that
® change image
® don’t change computed albedo
® for free, resurfacing
® change image
® don’t change shading



LLuminaire aware

Bhattad et al, 23



Luminaire aware

Bhattad et al, 23



Real Images

® Problem:
® who cares about normals/depth/albedo of generated images?

® Idea
® apply GAN inversion to real image
® then fiddle with lighting
e THIS DOESN”T WORK

® GAN inversion doesn’t actually get you the image you started with



Make 1t so - inversion

Bhattad et al, 23



Make it so: Flawless Inversion

LSUN Bedroom CelebA-HQ Faces

Method MSE LPIPS MSE LPIPS
ALAE 0.330 0.65 0.150 0.32
IDInvert 0.113 0.41 0.061 0.22
Psp 0.099 0.34 0.034 0.16
GHFeat (CVPR 2022) 0.068 NA 0.046 NA
Padinv (ECCV 2022) 0.054 0.21 0.021 0.10
StyleGAN2 Optim 0.17 0.42 0.020 0.009
Make it So — Simple (ours) 0.002 0.05 NA NA
Make it So — Final (ours) 0.002 0.03 NA NA

Bhattad et al, 23



Bhattad et al, 23



Bhattad et al, 23



Invert

Bhattad et al, 23



Relights

Bhattad et al, 23



Key points

® Weather effects cause detectors to work poorly
® We can collect weathered data
® OR unweather using regression procedures
® OR we can train on artificially weathered data

® [ighting also causes methods to work poorly
® we can relight images (hard!)



