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CHAPTER 5. CONJUGATE GRADIENT METHOUD>

of %. Because of the relation (5.9), however, the ith coordinate direction in X-space o
sponds to the direction pi in x-space. Hence, the coordinate search strategy applied tod
equivalent to the conjugate direction algorithm (5.6), (5.7). We conclude, as in Theorem?:
that the conjugate direction algorithm terminates in at most n steps.

Returning to Figure 5.1, we note another interesting property: When the Hessian
trix is diagonal, each coordinate minimization correctly determines one of the compon!
of the solution x*. In other words, after k one-dimensional minimizations, the qua
has been minimized on the subspace spanned by ey, €2, ..., €- The following theol
proves this important result for the general case in which the Hessian of the quadratic is
necessarily diagonal. (Here and later, we use the notation span{po, P1, - -» pi) to d
the set of all linear combinations of the vectors po, Pis - - -» Pk-) In proving the result we
make use of the following expression, which is easily verified from the relations (5.4)

(5.6):

ris1 = 'k + 2k ApPk-

Theorem 5.2 (Expanding Subspace Minimization).
Let xo € R" be any starting point and suppose that the sequence {x} is generated

conjugate direction algorithm (5.6 ), (5.7). Then

fTpi=0, fori=01,....k=1

and x; is the minimizer of ¢(x) = IxTAx — bT x over the set
{x | x = xo + span{po, P1, -+ +» Pr—1})- (

PROOF. We begin by showing that a point X minimizes ¢ over the set (5.12) if and
ifr(®7pi =0, foreachi =0,1,..., k — 1. Let us define h(c) = ¢(xo + dopo +*

Ok—1Pk—1), Where o = (005 O = =29 ok—1)T . Since h(o) is a strictly convex quadratic,

a unique minimizer o* that satisfies

dh(a*) _

0, §=0,1,. .k~ 1L
80','

By the chain rule, this equation implies that
Vo(xo+0d Po+ -+ + Op_1Pe-1)' Pi =0,

By recalling the definition (5.3), we have for the minimizer X = Xo + g Po + o'mt
o}, px—1 on the set (5.12) that ()" pi = 0, as claimed.

We now use induction to show that x; satisfies (5.11). For the case k = 1,
from the fact that x; = Xo + ®oPo minimizes ¢ along po that rIT po = 0. Letusn
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nduction hypothesis, namely, that rkT_lp,- =0fori =0,1,...,k— 2. By (5.10), we

Iy = re—1 + Qk—1Apk-1,

PkT-l"k = PkT_lrk—l o ak—lPkT_lAPk—l =0,

he definition (5.7) of ax—1. Meanwhile, for the other vectors p;,i =0,1,...,k—2,we

plre = plr- + a1 p] Api—1 =0,

e plri—1 = 0 because of the induction hypothesis and pI Api—1 = 0 because of
gacy of the vectors p;. We have shown that rkTp,- =0, fori =0,1,...,k—1,sothe
of is complete. O
 The fact that the current residual 7 is orthogonal to all previous search directions, as
ressed in (5.11), is a property that will be used extensively in this chapter.

The discussion so far has been general, in that it applies to a conjugate direction
hod (5.6), (5.7) based on any choice of the conjugate direction set {po, P1s - --» Pn—1}-
re are many ways to choose the set of conjugate directions. For instance, the eigen-
Ofs Uy, s, ..., Uy of A are mutually orthogonal as well as conjugate with respect to
o these could be used as the vectors {po, p1, ..., Pn—1}. For large-scale applications,
ever, computation of the complete set of eigenvectors requires an excessive amount of
sutation. An alternative approach is to modify the Gram-Schmidt orthogonalization
ess to produce a set of conjugate directions rather than a set of orthogonal directions.
s modification is easy to produce, since the properties of conjugacy and orthogonality
closely related in spirit.) However, the Gram—Schmidt approach is also expensive, since

ires us to store the entire direction set.

PROPERTIES OF THE CONJUGATE GRADIENT METHOD

The conjugate gradient method is a conjugate direction method with a very special

erty: In generating its set of conjugate vectors, it can compute a new vector p; by
only the previous vector py_;. It does not need to know all the previous elements

..., Pi—2 of the conjugate set; py is automatically conjugate to these vectors. This

kable property implies that the method requires little storage and computation.

In the conjugate gradient method, each direction py is chosen to be a linear combi-
10fthe negative residual —r; (which, by (5.3), is the steepest descent direction for the

107
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function ¢) and the previous direction py_;. We write

Pk = =Tk + BrPr-1, (s

where the scalar By is to be determined by the requirement that p;_; and p; mu
conjugate with respect to A. By premultiplying (5.13) by pr_, A and imposing the cond
pl_, Api = 0, we find that

r 13- Api—1
A pTag
Pr—14Pk-1
We choose the first search direction py to be the steepest descent direction at the initial
Xo. As in the general conjugate direction method, we perform successive one-dimensi
minimizations along each of the search directions. We have thus specified a com
algorithm, which we express formally as follows:

Algorithm 5.1 (CG-Preliminary Version).

Given xo;
Setry < Axg — b, po < —ro,k < 0;
while r; # 0
T
r
oy — — : P
Pr APk
Xk41 < X + O Pk
Piaf < Abpii'~ b;
T
; if Apk
Br+1 < -kH——;
Pi AP
Pk+1 < —Tkt1 + Bir1 P
k<—k+1;
end (while)

This version is useful for studying the essential properties of the conjugate gra
method, but we present a more efficient version later. We show first that the dire
D0, P1s -+ -» Pn— are indeed conjugate, which by Theorem 5.1 implies termination!
steps. The theorem below establishes this property and two other important propes
First, the residuals ; are mutually orthogonal. Second, each search direction p; and res
ry is contained in the Krylov subspace of degree k for ro, defined as

K:(ro; k) "léf span{ro, Aro, Gty Akro}.
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2 5030

Suppose that the k th iterate generated by the conjugate gradient method is not the solution
x*, The following four properties hold:

rgry =0, _ fori=0,1,....k—1, (5.16)

span{ro, ry, ..., r¢} = span{ry, Arg, ..., A*ro}, (5.17)
span{po, p1, ..., px} = span{rg, Ary, ..., A*r}, (5.18)
PiApi=0, fori=0,1,....,k—1. (5.19)

ore, the sequence {x;} converges to x* in at most n steps.

i

1 The proofis by induction. The expressions (5.17) and (5.18) hold trivially fork = 0,
(5.19) holds by construction for k = 1. Assuming now that these three expressions are
rsome k (the induction hypothesis), we show that they continue to hold for k + 1.
To prove (5.17), we show first that the set on the left-hand side is contained in the set
right-hand side. Because of the induction hypothesis, we have from (5.17) and (5.18)

1y € span{ry, Aro, ..., A"ro}, Pk € span{ry, Ary, ..., A"ro},

y multiplying the second of these expressions by A, we obtain

Apy € span{Ary, ..., A¥'r). (5.20)
lying (5.10), we find that
Tk+1 € spanfry, Ary, ..., A¥r).

ibining this expression with the induction hypothesis for (5.17), we conclude that
span{ro, ry, ..., rk, res1} C spanfrg, Ary, .. ., A"“ro}.

that the reverse inclusion holds as well, we use the induction hypothesis on (5.18)
ce that

Ak+lro = A(Akro) € span{Apo, Apl, s Apk}

y(5.10) we have Ap; = (riyy — ri)/e fori =0, 1,. .., k, it follows that

k+1
A*ry € span{rg, 1y, ..., rig).
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By combining this expression with the induction hypothesis for (5.17), we find that
span{ro, Ary, ..., A*re} C spanfro, r, . .., re, resr ).

Therefore, the relation (5.17) continues to hold when k is replaced by k + 1, as claim :

We show that (5.18) continues to hold when  is replaced by k + 1 by the foll
argument:

span{po, p1, ..., Pk, Pk+1}

= span{po, p1, ..., Pk k1) by (5.14e)

= span({ry, Ary, ..., A*rg, res1} by induction hypothesis for (5.18)
= span{rg, 1, ..., Ik, 'ks1} by (5.17)

= span{rg, Ary, ..., A¥'r} by (5.17) for k + 1.

Next, we prove the conjugacy condition (5.19) with k replaced by k + 1. By multi
(5.14e) by Ap;,i = 0,1, ..., k, we obtain

PiniApi = =1l Api + B pl Ap;.
By the definition (5.14d) of B, the right-hand-side of (5.21) vanishes when i = k.
i < k — 1 we need to collect a number of observations. Note first that our ind

hypothesis for (5.19) implies that the directions p, P1, - .., Pk are conjugate, so we
apply Theorem 5.2 to deduce that

réapi =0,  fori=0,1,..., k.

Second, by repeatedly applying (5.18), we find that fori = 0,1, ...,k — 1, the folloy
inclusion holds:

AP,’ €A SPan{’os Aro, ey Airo} = span{Aro, Azro, 5 ey Ai+'r0}
C span{py, p1, ..., Pi+1}-

By combining (5.22) and (5.23), we deduce that
reaAp =0, © fori=0,1,..., k=1,

so the first term in the right-hand-side of (5.21) vanishes for i = 0,1,...,k -1,
cause of the induction hypothesis for (5.19), the second term vanishes as well,
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udethat pf,, Api = 0,i =0, 1,..., k. Hence, the induction argument holds for (5.19)

the direction set generated by the conjugate gradient method is indeed

]t follows that
the algorithm terminates in at most

jugate direction set, SO Theorem 5.1 tells us that
fions.

Finally, we prove (5.16) by a noninductive ar
gate, we have from (5.11) that rkTpi —30foralls =205
...n— 1. By rearranging (5.14e), we find that

gument. Because the direction set is
.,k—1land any k =

pi = —ri + Bipi-1

..k — 1. We conclude that rir; = 0 for all
— 0, by definition of
Od

at r; € span{pi, pi—} foralli = 1, 5%
...k — 1. To complete the proof, we note that r ro = —7{ Po

Algorithm 5.1 and by (5.11).

The proof of this theorem relies on the fact that the first direction po is the steep-
escent direction —ro; in fact, the result does not hold for other choices of po. Since
radients r; are mutually orthogonal, the term “conjugate gradient method” is ac-
v a misnomer. It is the search directions, not the gradients, that are conjugate with

ect t0 A.

APRACTICAL FORM OF THE CONJUGATE GRADIENT METHOD

nomical form of the conjugate gradient method by

" We can derive a slightly more eco
3. First, we can use (5.14¢) and (5.11) to replace the

g the results of Theorems 5.2 and 5.
nula (5.14a) for o by

r[rk
o = —17—_
Py APk

ond, we have from (5.10) that axApx = Ti+1 — Tk> SO by applying (5.14e) and (5.11)

: again we can simplify the formula for Bi+1 to

¢
Ti17k+1

k+1 =
ﬂ+ rkTrk

ising these formulae together with (5.10), we obtain the following standard form of the

jugate gradient method.
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Algorithm 5.2 (CG).
Given xp;
Setry < Axy — b, Po < —ro, k < 0;
while r; # 0

rin

PkTAPk'
Xk4+1 < Xg + o pi;

o <

Tkt1 < 1k + apApy;

rkT+1rk+1,

Bry1 < S ey
rk Ik

Pk+1 < —Tig1 + Brt1Pi;
k<~ k+1;

end (while)

At any given point in Algorithm 5.2 we never need to know the Vectors x, 7,4
p for more than the last two iterations. Accordingly, implementations of this algorit
overwrite old values of these vectors to save on storage. The major computational taskst
performed at each step are computation of the matrix—vector product Apy, calculatio
the inner products p,‘T (Apy) and r,‘T +17k+1> and calculation of three vector sums. Their
product and vector sum operations can be performed in a small multiple of n floating-po
operations, while the cost of the matrix—vector product is, of course, dependent on
problem. The CG method is recommended only for large problems; otherwise, Gau
elimination or other factorization algorithms such as the singular value decomposition
to be preferred, since they are less sensitive to rounding errors. For large problems, the
method has the advantage that it does not alter the coefficient matrix and (in contras
factorization techniques) does not produce fill in the arrays holding the matrix. Another

property is that the CG method sometimes approaches the solution quickly, as we dis
next.

RATE OF CONVERGENCE

We have seen that in exact arithmetic the conjugate gradient method will termina
the solution in at most n iterations. What is more remarkable is that when the distrib
of the eigenvalues of A has certain favorable features, the algorithm will identify the solut
in many fewer than n iterations. To explain this property, we begin by viewing the expan
subspace minimization property proved in Theorem 5.2 in a slightly different way, usin
to show that Algorithm 5.2 is optimal in a certain important sense.



