Logistic regression:

- Nice, useful model binary classifier

Model

\[
\log \frac{P(1|x)}{P(-1|x)} = w^T x
\]

So

\[
P(1|x) = \frac{e^{w^T x}}{1 + e^{w^T x}}
\]

We can fit with maximum likelihood

\[
L(w) = \sum_{i \in \text{examples}} \log P(y_i| x_i)
\]
This is equiv to minimizing -ve log-likelihood:

\[w = \arg \min_w - \sum_i \log P(y_i | x_i) \]

\[= \arg \min_w - \sum_i \left[\frac{(y_i + 1) w^t x_i}{2} - \log(1 + e^{w^t x_i}) \right] \]

Now regard

\[\log(1 + e^{w^t x_i}) - \frac{(y_i + 1) w^t x_i}{2} \]

as a loss.

Value of example

Score = \(w^t x_i \)

\[\mathcal{L}(y_i, u_i) \]

\[\text{exponential loss} \]
looks a lot like hinge loss:

So we can think of L_i as minimizing a loss function. How? \(\nabla = 0 \), Newton.

\[
\nabla w L_e = \sum_i \left[\frac{w x_i}{1 + e^{w x_i}} - \frac{(y_i+1) x_i}{2} \right]
\]

\[
H w L_e = \sum_i \frac{e^{w x_i}}{(1 + e^{w x_i})^2} \cdot x_i x_i^T
\]
Notice:

- examples where w^x_i has large abs values have little effect on H.
- For these others, H looks like a covariance

- what if features are correlated?
 - H has small eigenvalues
 - ests of w will be unreliable in these dirs.
 - Should manifest as large w

\Rightarrow Regularize.
Solve

argmin \| x \| \text{ s.t. } L_w(w, \text{examples}) + \lambda \| w \|_w \leq ?

Some norm
Stochastic gradient descent

Many learning problems look like

\[\arg \min_w L(w, x; y) + \lambda \|w\| \]

\[\uparrow \]

loss on examples

eg. SVM.

loss is \[\sum_i \text{hinge loss}(w, \text{example } i) \]

eg. logistic regression

loss is \[\sum_i \text{exp loss} \]
In these cases, two important obs.

1) We don't so much care about

\[E = \sum_{\text{examples}} L(w, \text{example}_i) \text{ as about} \]

\[\sum_{\text{everything}} L(w, \text{example}_i) = \int \text{ for true loss} \]

This means that the min of the optimization problem \(w^* \) may not be best \(w \) (which is \(w^{opt} \))

\[w^{opt} = \arg\min J \]

\[w^* = \arg\min E \]

\[\Rightarrow \text{error incurred by exact optimization} \]

\[\Rightarrow \text{This means inexact opt might be OK.} \]
2) Exact optimization could be hugely expensive

(millions of examples, millions of feats)

Idea: Pick example (feature) at random, compute gradient for that alone, take small step.

STOCHASTIC GRADIENT DESCENT

. How far?

- Steplengths \(S_i \) should have property

 - \(S_N^{\frac{R}{N}} \to 0 \), \(N \to \infty \)
 - \(\sum_{i=1}^{R} S_i \to \infty \), \(R \to \infty \)

(ie. path must be infinitely long, but steps must become infinitely small)
Logistic regression with ℓ_2 norm

\[\min_w \sum_i \left[L_e(w, y, x) + \frac{\lambda}{N} \| w \|_2^2 \right] = E + R \]

for each step UAR, choose I examples, say x_{k_i}

\[g^{(n)} = \left[\frac{x_k}{1 + e^{x_i w^{(n-1)} x_k}} - \left(\frac{y_k + 1}{2} \right) x_k \right] \]

\[w^{(n+1)} = w^{(n)} + \delta_i \cdot g^{(n)} \]

Notice, because we choose UAR,

\[E(g^{(n)}) = \nabla_w [E + R] \]
typically, step lengths look like

\[s_i = \frac{1}{i^c} \]

(this satisfies constraints).

We get (with work)

\[\frac{1}{(w_t - w^*)^2} \]

grows linearly in \(t \)

i.e. early steps really help, late steps don't do much.

Notice: algorithm is on-line
What about SVM?

\[\sum \left[l_h(w, x_i, y_i) + \frac{1}{N} \omega^2 \right] \]

which isn't differentiable.

\[l_h = \max(0, 1 - y_i(w^T x_i + b)) \]

\[l_h, y_i = 1 \]

However, this is convex.

We invoke the sub-gradient
Consider the graph of a function

\((x_1, x_2, x_3, \ldots, x_n, f(x_1, x_n))\)

This is a **surface**.

- Assume \(f \) is differentiable
 - Surface has a **normal**

\[
N = k \left(-\frac{\partial f}{\partial x_1}, -\frac{\partial f}{\partial x_2}, \ldots, +1 \right)
= k \left(-\nabla f, +1 \right)
\]

eg: curve in the plane is graph of \(f(u, v) \) of 1 var

Notice we can read gradient off normal
Now, if the function is not differentiable, we can come up with a normal cone.

- Notice, if needs to be convex so we know what inferior is for this construction.

\[\text{Normal cone} \]

\[\text{Graph of } f = \text{of two vars} \]
read off gradient corresp to any element of normal cone
this is subgradient (\nabla)
moving backward along subgradient will guarantee descent for small enough step
Subgradient of diff. fn = gradient

\[
\nabla_{w} L_{h}(w) = \begin{cases}
0 & \text{if } L_{h}(w) = 0 \\
-y_{i} x_{i} & \text{otherwise}
\end{cases}
\]
So stochastic subgradient descent is

\[
\begin{cases}
 \text{choose } k\text{'th example at random} \\
 \text{if right, } w^{(n+1)} = w^{(n)} - \frac{\lambda \delta_i}{2N} \\
 \text{if wrong, } w^{(n+1)} = w^{(n)} + 8i \left[-y_i x_i \cdot \frac{\lambda w^{(n)}}{2N} \right]
\end{cases}
\]

This is amazingly effective.
L1 regularization

\[\|w\|_1 = \sum_i |w_i| \]
\[\|w\|_2 = \sum_i w_i^2 \]

Notice: in L2 norm, small \(w_i\) have little effect hence, not much advantage in trying to Zero; in L1 norm, effect of small \(w_i\) is substantial; they tend to go to Zero, resulting in sparsity (desirable)
\[\min_{\mathbf{w}} \sum_{i} h_{e}(\mathbf{w}, y_{i}, x_{i}) + \lambda \| \mathbf{w} \|, \]

- not differentiable
- subgradient unlikely to enforce sparsity

alternative (equivalent)

\[\min_{\mathbf{w}} \sum_{i} h_{e}(\mathbf{w}, y_{i}, x_{i}) + \sum_{e} h_{e}. \]

\[-h_{k} \leq w_{k} \leq h_{k} \]

(Notice this is a box problem; solve with interior point method; excellent version due to Koh et al.)