Matchings:

\(G = (V, E) \) undirected

A **matching** is a set of **disjoint** edges

An **augmenting path** for a matching

* \(M \) is a path with
 * odd length
 * first, last vert not covered by \(M \)
 * alternate edges in \(M \)

Examples:

\[\begin{array}{c}
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
\end{array} \]

\[\begin{array}{c}
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
\end{array} \]

\[\begin{array}{c}
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
\end{array} \]
Define symmetric difference Δ by

$$A \Delta B = (A - B) \cup (B - A)$$

$= \{ \text{everything in one, but not both} \}$

If P is an M-augmenting path,

then $M' = M \Delta E_P$

is a matching with $|M'| = |M| + 1$

Thus: $G = (V,E)$ a graph, M a matching. Then either M is a

matching of max size, or there exists an M-augmenting path.
Proof:

If \(M \) is a max-size matching, cannot have \(M \)-augmenting \(P \) because \(M \cup \text{EDP} \) would be bigger than \(M \).

If \(M' \) is a matching, larger than \(M \), consider

\(G' = (V, M' \cup M) \)

This has max degree 2.

So each component is a path (perhaps length 0) or a circuit.

\(|M'| > |M|\) so one component must have more \(M' \) edges than \(M \) edges. This is an \(M \)-augmenting path. \(\square \)
Maximum size bipartite matching

G = (V, E), bipartite

M matching

Input

Output: M', such that |M'| > |M|

Alg:
- G has color classes U, W.
- D_M is directed.
 - vertices are vertices of G
 - edges are edges of G
 e ∈ M, e goes W → U
 e ∉ M, e goes U → W
- U_M is elements in U not covered by M
 \[W_M \]
- find a directed path from U_m to W_m in D_m
- this is M augmenting, so gives a matching larger than M.

Weighted bipartite matching.
(Hungarian alg.)
- let each edge has a weight $w(e)$
- we have $G = (V,E)$, color classes U, W; $w : E \to \mathbb{Q}$

Method
- start with $M = \emptyset$
- construct D_m, directed by
- orienting each edge in M to go $W \to U$, with length $= w(e)$
- all others go $U \to W$, length $= -w(e)$
Write U_m for u verts not covered by M

$W_m \leftarrow W$

- find shortest $U_m - W_m$ path (if it exists), say P

Form $M \rightarrow M \uplus EP$

and iterate.

Stop when no P can be found.

Thus: call a matching extreme if it has max weight among all size $|M|$ matchings. Each M found by this method is extreme.
Proof: (Induction)

1. True for $M = \emptyset$

2. Suppose M is extreme, P and M' from matching alg. show M' is extreme.

4. $|N| > |M|$, so $M \cup N$ has a component Q that is M-augmenting.

5. P is shortest such, so $\ell(P) \leq \ell(Q)$

6. $N \triangle Q$ is a matching, $|N \triangle Q| = |M|

7. \Rightarrow Why

8. but M is extreme, so $w(M) > w(N \triangle Q)$

9. \Rightarrow Why

10. $w(N) = w(N \triangle Q) - \ell(Q) \leq w(M) - \ell(P) = w(M')$

11. So M' is extreme

\square
linearly independent rows of A and W' gives a maximum-size set of linearly independent columns of A. Then the $U' \times W'$ submatrix of A is nonsingular, hence of nonzero determinant. It implies (by the definition of determinant) that G has a matching covering $U' \cup W'$.

(Related work includes Perfect and Pym [1966], Pym [1967], Brualdi [1965a,1971b], and Mirsky [1969].)

16.7. Further results and notes

16.7a. Complexity survey for cardinality bipartite matching

Complexity survey for cardinality bipartite matching ($*$ indicates an asymptotically best bound in the table):

\[O(nm) \quad \text{König [1931], Kuhn [1955b]} \]

\[O(\sqrt{n}m) \quad \text{Hopcroft and Karp [1971,1973], Karzanov [1973a]} \]

\[* O(n^{1.5}) \quad \text{Ibarra and Moran [1981]} \]

\[O(n^{1.5} \frac{m}{\log n}) \quad \text{Alt, Blum, Mehlhorn, and Paul [1991]} \]

\[* O(\sqrt{n}m \log_2 (n^{2}/m)) \quad \text{Feder and Motwani [1991,1995]} \]

Here \(\omega \) is any real such that any two \(n \times n \) matrices can be multiplied by \(O(n^\omega) \) arithmetic operations (e.g. \(\omega = 2.376 \)).

Goldberg and Kennedy [1997] described a bipartite matching algorithm based on the push-relabel method, of complexity \(O(\sqrt{n}m \log_2 (n^{2}/m)) \). Balinski and Gonsalez [1991] gave an alternative \(O(nm) \) bipartite matching algorithm (not using augmenting paths).

16.7b. Finding perfect matchings in regular bipartite graphs

By König's matching theorem, each \(k \)-regular bipartite graph has a perfect matching (if \(k \geq 1 \)). One can use the regularity also to find quickly a perfect matching. This will be used in Chapter 20 on bipartite edge-colouring.

First we show the following result of Cole and Hopcroft [1982] (which will not be used any further in this book):

Theorem 16.9. A perfect matching in a regular bipartite graph can be found in \(O(m \log n) \) time.

Proof. We first describe an \(O(m \log n) \)-time algorithm for the following problem:

\begin{equation}
(16.9) \quad \text{given: a \(k \)-regular bipartite graph } G = (V,E) \text{ with } k \geq 2, \text{ find: a nonempty proper subset } F \text{ of } E \text{ with } (V,F) \text{ regular.}
\end{equation}
Further notes

17.5. Further results and notes

Complexity survey for maximum-weight bipartite matching (as indicated in the table).