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Abstract. We investigate the properties of a metric between two distributions, theEarth Mover’s Distance(EMD),
for content-based image retrieval. The EMD is based on the minimal cost that must be paid to transform one dis-
tribution into the other, in a precise sense, and was first proposed for certain vision problems by Peleg, Werman,
and Rom. For image retrieval, we combine this idea with a representation scheme for distributions that is based on
vector quantization. This combination leads to an image comparison framework that often accounts for perceptual
similarity better than other previously proposed methods. The EMD is based on a solution to the transportation
problem from linear optimization, for which efficient algorithms are available, and also allows naturally for partial
matching. It is more robust than histogram matching techniques, in that it can operate on variable-length represen-
tations of the distributions that avoid quantization and other binning problems typical of histograms. When used to
compare distributions with the same overall mass, the EMD is a true metric. In this paper we focus on applications
to color and texture, and we compare the retrieval performance of the EMD with that of other distances.
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1. Introduction

Multidimensional distributions are often used in com-
puter vision to describe and summarize different fea-
tures of an image. For example, the one-dimensional
distribution of image intensities describes the overall
brightness content of a gray-scale image, and a three-
dimensional distribution can play a similar role for
color images. The texture content of an image can be
described by a distribution of local signal energy over
frequency. These descriptors can be used in a variety
of applications including, for example, image retrieval.

It is often advantageous to ‘compress’ or otherwise
approximate an original distribution by another distri-
bution with a more compact description. This yields
important savings in storage and processing time, and
most importantly, as we will see, a certain perceptual
robustness to the matching. Multidimensional distri-
butions are usually compressed by partitioning the un-
derlying space into a fixed number of bins, usually of

a predefined size: the resulting quantized data struc-
ture is a histogram. However, even when the binning
is adaptive, based on the overall distribution of the fea-
tures of all the images in the database, often for specific
images only a small fraction of the bins in a histogram
contain significant information. For instance, when
considering color, a picture of a desert landscape con-
tains mostly blue pixels in the sky region and yellow-
brown pixels in the rest. A finely quantized histogram
in this case is highly inefficient. On the other hand,
a multitude of colors is a characterizing feature for a
picture of a carnival in Rio, and a coarsely quantized
histogram would be inadequate. In brief, because his-
tograms are fixed-size structures, they cannot achieve
a balance between expressiveness and efficiency.

In contrast, we proposevariable-size descriptions
of distributions. In oursignatures, as we call these
descriptions, the dominant clusters are extracted from
the original distribution using a clustering algorithm
such as vector quantization, and are used to form its
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compressed representation. A signature is a set of the
main clusters or modes of a distribution, each repre-
sented by a single point (the cluster center) in the un-
derlying space, together with a weight that denotes the
size of that cluster. Simple images have short signa-
tures, complex images have long ones. Of course, in
some applications, fixed-size histograms may still be
adequate, and can be considered as special cases of
signatures.

In addition to histograms and signatures which are
based on global or local tessellation of the space into
non-overlapping regions, there are other techniques to
describe non-parametric distributions. For example, in
kernel density estimation (Duda and Hart, 1973), each
data point is replaced by some kernel and the density
estimations is regarded as the superposition of all these
kernels. These techniques are out of the scope of this
paper.

Given two distributions, it is often useful to define a
quantitative measure of their dissimilarity, with the in-
tent of approximating perceptual dissimilarity as well
as possible. This is particularly important in image re-
trieval applications, but has fundamental implications
also for the understanding of texture discrimination and
color perception. Defining a distance between two dis-
tributions requires first a notion of distance between
the basic features that are aggregated into the distribu-
tions. We call this distance theground distance. For
instance, in the case of color, the ground distance mea-
sures dissimilarity between individual colors. Fortu-
nately, color ground distance has been carefully stud-
ied in the literature of psychophysics, and has led to
measures like the CIE-Lab color space (Wyszecki and
Stiles, 1982). To be sure, this space was designed based
on psychophysical experiments where colors were pre-
sented in pairs and on a neutral background. While this
limits the appropriateness of this space for the more
complex situations encountered in retrieval, we believe
that it is hard to do better than CIE-Lab without explic-
itly modelling the geometric layout of colors in images.
While RGB space has proven clearly inadequate in our
experiments, it is possible that other spaces, such as
HSV, may lead to performance similar to that obtained
with CIE-Lab.

In this paper, we address the problem of lifting these
distances from individual features to full distributions.
In other words, we want to define a consistent mea-
sure of distance, or dissimilarity, between two distri-
butions of mass in a space that is itself endowed with a
ground distance. For color, this means finding distances

between image color distributions. For texture, we
locally describe the texture content of a small neigh-
borhood in an image as distribution of energy in the
frequency domain. The “lifted” distance is a distance
between distributions of such local descriptors over the
entire images, regarded as distribution of textures.

Mathematically, it would be convenient if these dis-
tribution distances were true metrics, which would
lead to more efficient data structures and search al-
gorithms (Bozkaya and Ozsoyoglu, 1997; Clarkson,
1997). Practically, it is important that distances be-
tween distributions correlate with human perception.
In this paper we strive to achieve both goals. For the
first we have proof, for the second we show experi-
ments. We also would like these distances to allow
for partial matches when one distribution is compared
to a subset of the other. For partial matches, the dis-
tances we define are not metric. Concerning this point,
we refer to Tversky’s discussion (Tversky, 1977) of
the non-metric nature of perceptual distances. From
a practical point of view, our measure deals naturally
both with full, metric matches and with partial, non-
metric matches.

In this paper we capitalize on the oldtransportation
problem(Rachev, 1984; Hitchcock, 1941) from linear
optimization, which was first introduced into computer
vision by Peleg et al. (1989) to measure the distance
between two gray-scale images. For image retrieval,
we use this distance measure to compare two signatures
in color or texture space. As discussed in more detail in
the next section, this leads to very different computa-
tional properties, mainly because signatures rather than
pixels are compared to each other. We give the name
of Earth Mover’s Distance(EMD), suggested by Stolfi
(1994), to this metric in this new context. The trans-
portation problem is to find the minimal cost that must
be paid to transform one distribution into the other. The
EMD is based on a solution to the transportation prob-
lem for which efficient algorithms are available, and
it has many desirable properties for image retrieval, as
we will see. It is also more robust in comparison to
other histogram matching techniques, in that it suffers
from no arbitrary quantization problems due to rigid
binning, and it tolerates well some amount of defor-
mations that shift features in the feature space. This
robustness results in increased precision for image re-
trieval. It allows for partial matching, and hence natu-
rally supports partial image retrieval queries. It can be
applied to signatures with different sizes, which leads
to better storage utilization. When used to compare
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distributions that have the same overall mass, the EMD
is a true metric.

In this paper we focus on applications of the EMD
to color and texture images. In the next section, we
introduce histograms and survey some of the existing
measures of dissimilarity and their drawbacks. Then,
in Sections 3 and 4, we introduce the concepts of a
signature and of the Earth Mover’s Distance (EMD),
which we apply to color and texture in Section 5. We
compare the results of image retrieval using the EMD
with those obtained with other metrics, and demon-
strate the unique properties of the EMD for texture-
based retrieval. Section 6 concludes with a summary
and plans for future work.

2. Previous Work

Image retrieval systems usually represent image fea-
tures by multi-dimensional histograms. For exam-
ple, the color content of an image is defined by the
distribution of its pixels in some color space (Swain
and Ballard, 1991; Hafner et al., 1995; Belongie
et al., 1998). Texture features are commonly defined
by energy distributions in the spatial frequency do-
main (Farrokhnia and Jain, 1991; Big¨un and Buf, 1994;
Manjunath and Ma, 1996). Image databases are in-
dexed by histograms of these distributions, and those
images that have the closest histograms to that spec-
ified in the query are retrieved. For such a search, a
measure of dissimilarity between histograms must be
defined. In this section we formally define histograms,
and discuss some of the most common histogram dis-
similarity measures that are used for image retrieval. In
Section 4 we define the EMD. In addition to histograms,
this distance is well defined also for signatures, defined
in Section 3. In Section 5 we also compare the EMD
with the other methods surveyed below.

A histogram {hi} is a mapping from a set of
d-dimensional integer vectorsi to the set of nonneg-
ative reals. These vectors typically represent bins (or
their centers) in a fixed partitioning of the relevant re-
gion of the underlying feature space, and the associ-
ated reals are a measure of the mass of the distribution
that falls into the corresponding bin. For instance, in
a grey-level histogram,d is equal to one, the set of
possible grey values is split intoN intervals, andhi

is the number of pixels in an image that have a grey
value in the interval indexed byi (a scalar in this case).
The fixed partitioning of the feature space does not
have to be regular. If the distribution of features of all

the images is knowna priori, adaptive binning can be
used.

Several measures have been proposed for the dissim-
ilarity between two histogramsH = {hi}andK = {ki}.
We divide them into two categories. Thebin-by-bin
dissimilarity measures only compare contents of cor-
responding histogram bins, that is, they comparehi

and ki for all i, but not hi and kj for i 6= j . The
cross-binmeasures also contain terms that compare
non-corresponding bins. To this end, cross-bin dis-
tances make use of theground distance dij , defined as
the distance between the representative features for bin
i and binj . Predictably, bin-by-bin measures are more
sensitive to the position of bin boundaries.

2.1. Bin-By-Bin Dissimilarity Measures

In this category only pairs of bins in the two histograms
that have the same index are matched. The dissimilarity
between two histograms is a combination of all the
pairwise comparisons. A ground distance is used by
these measures only implicitly and in an extreme form:
features that fall into the same bin are close enough to
each other to be considered the same, and those that
do not are too far apart to be considered similar. In
this sense, bin-by-bin measures imply a binary ground
distance with a threshold depending on bin size.

Minkowski-Form Distance:

dLr (H, K ) =
(∑

i

|hi − ki |r
)1/r

.

TheL1 distance is often used for computing dissim-
ilarity between color images (Swain and Ballard,
1991). Other common usages areL2 and L∞. In
Stricker and Orengo (1995) it was shown that for
image retrieval theL1 distance results in many
false negatives because neighboring bins are not
considered.

Histogram Intersection:

d∩(H, K ) = 1−
∑

i min(hi, ki)∑
i ki

.

The histogram intersection (Swain and Ballard,
1991) is attractive because of its ability to handle
partial matches when the areas of the two histograms
(the sum over all the bins) are different. It is shown in
Swain and Ballard (1991) that when the areas of the
two histograms are equal, the histogram intersection
is equivalent to the (normalized)L1 distance.
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Kullback-Leibler Divergence and Jeffrey Divergence:
The Kullback-Leibler (K-L) divergence (Kullback,
1968) is defined as follows:

dKL(H, K ) =
∑

i

hi log
hi

ki
.

From the information theory point of view, the
K-L divergence has the property that it measures
how inefficient on average it would be to code one
histogram using the other as the code-book (Cover
and Thomas, 1991). However, the K-L divergence
is non-symmetric and is sensitive to histogram bin-
ning. The empirically derived Jeffrey divergence is
a modification of the K-L divergence that is numer-
ically stable, symmetric and robust with respect to
noise and the size of histogram bins (Puzicha et al.,
1997). It is defined as:

dJ(H, K ) =
∑

i

(
hi log

hi

mi
+ ki log

ki

mi

)
,

wheremi = hi+ki
2 .

χ2 Statistics:

dχ2(H, K ) =
∑

i

(hi −mi)
2

mi
,

where againmi = hi+ki
2 . This distance measures how

unlikely it is that one distribution was drawn from
the population represented by the other.

Figure 1. Examples where theL1 distance (as a representative of bin-by-bin dissimilarity measures) and the quadratic-form distance do not
match perceptual dissimilarity. Assuming that histograms have unit mass, (a)dL1(h1, k1) = 2, dL1(h2, k2) = 1. (b) dA(h1, k1) = 0.1429,
dA(h3, k3) = 0.0893. Perceptual dissimilarity is based on correspondence between bins in the two histograms. Figures (c) and (d) show the
desired correspondences for (a) and (b) respectively.

These dissimilarity definitions can be appropriate in
different areas. For example, the Kullback-Leibler di-
vergence is justified by information theory and theχ2

statistics by statistics. However, these measures do
not necessarily match perceptual similarity well. Their
major drawback is that they account only for the cor-
respondence between bins with the same index, and
do not use information across bins. This problem is
illustrated in Fig. 1(a) which shows two pairs of one-
dimensional gray-scale histograms. For instance, the
L1 distance between the two histograms on the left is
larger than theL1 distance between the two histograms
on the right, in contrast to perceptual dissimilarity. The
desired distance should be based on correspondences
between bins in the two histograms and on the ground
distance between them as shown in part (c) of the figure.

Another drawback of bin-by-bin dissimilarity mea-
sures is their sensitivity to bin size. A binning that is
too coarse will not have sufficient discriminative power,
while a binning that is too fine will place similar fea-
tures in different bins which will never be matched.
On the other hand, cross-bin dissimilarity measures,
described next, always yield better results with smaller
bins.

2.2. Cross-Bin Dissimilarity Measures

When a ground distance that matches perceptual dis-
similarity is available for single features, incorporating
this information results in perceptually more meaning-
ful dissimilarity measures.
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Quadratic-form distance: this distance was suggested
in Niblack et al. (1993) for color based retrieval:

dA(H, K ) =
√
(h− k)TA(h− k) ,

whereh and k are vectors that list all the entries
in H andK . Cross-bin information is incorporated
via a similarity matrixA = [aij ] whereaij denote
similarity between binsi and j . Here i and j are
sequential (scalar) indices into the bins.

For our experiments, we followed the recom-
mendation in Niblack et al. (1993) and used
aij =1− dij/dmax wheredij is the ground distance
between binsi and j of the histogram, anddmax =
max(dij ). Although in general the quadratic-form is
not a metric, it can be shown that with this choice of
A the quadratic-form is indeed a metric.

The quadratic-form distance does not enforce a
one-to-one correspondence between mass elements
in the two histograms: The same mass in a given
bin of the first histogram is simultaneously made to
correspond to masses contained in different bins of
the other histogram. This is illustrated in Fig. 1(b)
where the quadratic-form distance between the two
histograms on the left is larger than the distance be-
tween the two histograms on the right. Again, this
is clearly at odds with perceptual dissimilarity. The
desired distance here should be based on the corre-
spondences shown in part (d) of the figure.

Similar conclusions were obtained in Stricker and
Orengo (1995) where it was shown that using the
quadratic-form distance in image retrieval results
in false positives, because it tends to overestimate
the mutual similarity of color distributions without
a pronounced mode.

Match distance:

dM(H, K ) =
∑

i

|ĥi − k̂i | ,

whereĥi =
∑

j≤i h j is the cumulative histogram of
{hi }, and similarly for{ki }.

The match distance (Shen and Wong, 1983;
Werman et al., 1985) between two one-dimensional
histograms is defined as theL1 distance between
their corresponding cumulative histograms. For one-
dimensional histograms with equal areas, this dis-
tance is a special case of the EMD which we present
in Section 4 with the important differences that the
match distance cannot handle partial matches, or
handle other ground distances. The match distance

does not extend to higher dimensions because the
relation j ≤ i is not a total ordering in more than
one dimension, and the resulting arbitrariness causes
problems.

Kolmogorov-Smirnov distance:

dKS(H, K ) = max
i
(|ĥi − k̂i |).

Again, ĥi andk̂i are cumulative histograms.
The Kolmogorov-Smirnov distance is a common

statistical measure for unbinned distributions. Simi-
larly to the match distance, it is defined only for one
dimension.

2.3. Parameter-Based Dissimilarity Measures

These methods first compute a small set of parame-
ters from the histograms, either explicitly or implic-
itly, and then compare these parameters. For instance,
in Stricker and Orengo (1995) the distance between
distributions is computed as the sum of the weighted
distances of the distributions’ first three moments. In
Das et al. (1997), only the peaks of color histograms
are used for color image retrieval. In Liu and Picard
(1996), textures are compared based on measures of
their periodicity, directionality, and randomness, while
in Manjunath and Ma (1996) texture distances are de-
fined by comparing their means and standard deviations
in a weighted-L1 sense.

Additional dissimilarity measures for image retrieval
are evaluated and compared in Smith (1997) and
Puzicha et al. (1997).

3. Histograms vs Signatures

In Section 2 we defined a histogram as deriving from
a fixed partitioning of the domain of a distribution. Of
course, even if bin sizes are fixed, they can be different
in different parts of the underlying feature space. Even
so, however, for some images often only a small frac-
tion of the bins contain significant information, while
most others are hardly populated. A finely quantized
histogram is highly inefficient in this case. On the
other hand, for images that contain a large amount of
information, a coarsely quantized histogram would be
inadequate. In brief, because histograms are fixed-size
structures, they cannot achieve a good balance between
expressiveness and efficiency.

A signature{sj = (m j , wm j )}, on the other hand,
represents a set of feature clusters. Each cluster is
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represented by its mean (or mode)m j , and by the
fractionwm j of pixels that belong to that cluster. The
integer subscriptj ranges from one to a value that
varies with the complexity of the particular image.
While j is simply an integer, the representativem j is a
d-dimensional vector. In general, vector quantization
algorithms (Nasrabad and King, 1988) can be used for
the clustering, as long as they are applied on every
image independently, and they adjust the number of
clusters to the complexities of the individual images.
For image retrieval, where the number of images is
large, we derived a fast clustering algorithm described
in Section 5.1.

Since the definition of cluster is open, a histogram
{hi} can be viewed as a signature{sj = (m j , wm j )} in
which the vectorsi index a set of clusters defined by a
fixed a priori partitioning of the underlying space. If
vector i maps to clusterj , the pointm j is the central
value in bini of the histogram, andw j is equal tohi .

We show in Section 5.1 that representing the con-
tent of an image database by signatures leads to better
results for queries than with histograms. This is the
case even when the signatures contain on the average
significantly less information than the histograms. By
“information” here we refer to the minimal number of
bits needed to store the signatures and the histograms.

4. The Earth Mover’s Distance

The ground distance between two single perceptual
features can often be found by psychophysical exper-
iments. For example, perceptual color spaces were
devised in which the Euclidean distance between two
single colors approximately matches human perception
of their difference. This becomes more complicated
when sets of features, rather than single colors, are be-
ing compared. In Section 2 we showed the problems
caused by dissimilarity measures that do not handle
correspondences between different bins in the two his-
tograms. This correspondence is key to a perceptually
natural definition of the distances between sets of fea-
tures. This observation led to distance measures based
on bipartite graph matching (Peleg et al., 1989; Zikan,
1990), defined as the minimum cost of matching ele-
ments between the two histograms.

In Peleg et al. (1989) the distance between two gray-
scale images is computed as follows: every pixel is
represented byn “pebbles” wheren is an integer repre-
senting the gray level of that pixel. After normalizing
the two images to have the same number of pebbles,

the distance between them is computed as the minimum
cost of matching the pebbles between the two images.
The cost of matching two single pebbles is based on
their distance in the image plane. In this section we
adapt this idea to produce theEarth Mover’s Distance
(EMD), a useful metric between signatures for image
retrieval in different feature spaces. The main differ-
ences between the two approaches are that we solve
the transportation problem in contrast to the match-
ing problem. This significantly increases the efficiency
due to the ability to cluster pixels in the feature space
and to transport together large chunks of “mass”, and
leads to implementations that are fast enough for on-
line image retrieval systems. In addition, as we show,
our formulation allows for partial matches, which are
important for image retrieval applications. Finally, in-
stead of computing image distances based on the cost
of moving pixels in the image space, we are computing
the distances in other feature spaces where the ground
distances can be perceptually better defined.

Intuitively, given two distributions, one can be seen
as a mass of earth properly spread in space, the other as
a collection of holes in that same space. Then, the EMD
measures the least amount of work needed to fill the
holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of ground distance.

Computing the EMD is based on a solution to the
well-knowntransportation problem(Hitchcock, 1941)
a.k.a. the Monge-Kantorovich problem which goes
back to 1781 when it was first introduced by Monge
(Rachev, 1984) Suppose that severalsuppliers, each
with a given amount of goods, are required to supply
severalconsumers, each with a given limited capacity.
For each supplier-consumer pair, the cost of transport-
ing a single unit of goods is given. The transportation
problem is then to find a least-expensive flow of goods
from the suppliers to the consumers that satisfies the
consumers’ demand. Signature matching can be natu-
rally cast as a transportation problem by defining one
signature as the supplier and the other as the consumer,
and by setting the cost for a supplier-consumer pair to
equal the ground distance between an element in the
first signature and an element in the second. Intuitively,
the solution is then the minimum amount of “work” re-
quired to transform one signature into the other.

This can be formalized as the following linear pro-
gramming problem: Let P={(p1, wp1), . . . , (pm,

wpm)} be the first signature withm clusters, wherepi

is the cluster representative andwpi is the weight of
the cluster;Q = {(q1, wq1), . . . , (qn, wqn)} the second
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signature withn clusters; andD = [dij ] the ground dis-
tance matrix wheredij is the ground distance between
clusterspi andq j .

We want to find a flowF = [ fij ], with fij the flow
betweenpi andq j , that minimizes the overall cost

WORK(P, Q,F) =
m∑

i=1

n∑
j=1

dij fij ,

subject to the following constraints:

fij ≥ 0 1≤ i ≤ m, 1≤ j ≤ n (1)
n∑

j=1

fij ≤ wpi 1≤ i ≤ m (2)

m∑
i=1

fij ≤ wq j 1≤ j ≤ n (3)

m∑
i=1

n∑
j=1

fij = min

(
m∑

i=1

wpi ,

n∑
j=1

wq j

)
, (4)

Constraint (1) allows moving “supplies” fromP to Q
and not vice versa. Constraint (2) limits the amount
of supplies that can be sent by the clusters inP to
their weights. Constraint (3) limits the clusters inQ
to receive no more supplies than their weights; and
constraint (4) forces to move the maximum amount of
supplies possible. We call this amount thetotal flow.
Once the transportation problem is solved, and we have
found the optimal flowF, the earth mover’s distance is
defined as the resulting work normalized by the total
flow:

EMD(P, Q) =
∑m

i=1

∑n
j=1 dij fij∑m

i=1

∑n
j=1 fij

,

The normalization factor is the total weight of the
smaller signature, because of constraint (4). This factor
is needed when the two signatures have different total
weight, in order to avoid favoring smaller signatures.
In general, the ground distancedij can be any distance
and will be chosen according to the problem at hand.
Examples are given in Section 5.

Thus, the EMD naturally extends the notion of a
distance between single elements to that of a distance
between sets, or distributions, of elements. The advan-
tages of the EMD over previous definitions of distribu-
tion distances should now be apparent. First, the EMD
applies to signatures, which subsume histograms as

shown in Section 3. The greater compactness and flex-
ibility of signatures is in itself an advantage, and having
a distance measure that can handle these variable-size
structures is important. Second, the cost of moving
“earth” reflects the notion of nearness properly, without
the quantization problems of most current measures.
Even for histograms, in fact, items from neighbor-
ing bins now contribute similar costs, as appropriate.
Third, the EMD allows for partial matches in a very
natural way. This is important, for instance, in order
to deal with occlusions and clutter in image retrieval
applications, and when matching only parts of an im-
age. Fourth, if the ground distance is a metric and the
total weights of two signatures are equal, the EMD is
a true metric, which allows endowing image spaces
with a metric structure. A proof of this is given in
Appendix A.

Of course, it is important that the EMD can be com-
puted efficiently, especially if it is used for image re-
trieval systems where a quick response is required.
Fortunately, efficient algorithms for the transportation
problem are available. We used the transportation-
simplex method (Hillier and Lieberman, 1990), a
streamlined simplex algorithm that exploits the special
structure of the transportation problem. A good ini-
tial basic feasible solution can drastically decrease the
number of iterations needed. We compute the initial
basic feasible solution by Russell’s method (Russell,
1969).

A theoretical analysis of the computational com-
plexity of the transportation simplex is hard, since it
is based on the simplex algorithm which can have, in
general, an exponential worst case (Klee and Minty,
1972). However, in practice, because of the special
structure in our case and the good initial solution, the
performance is much better. We empirically measure
the time-performance of our EMD implementation by
generating random signatures of sizes that range from
1 to 100. For each size we generate 100 pairs of ran-
dom signatures and record the average CPU time for
computing the EMD between the pairs. The results are
shown in Fig. 2. This experiment was done on a SGI
Indigo 2 with a 195 MHz CPU.

Other efficient methods to solve the transportation
problem include interior-point algorithms (Karmarkar,
1984) which have polynomial time complexity, and
by formalizing the transportation as the uncapacitated
minimum cost network flow problem (Ahuja et al.,
1993), it can be solved in our case of bipartite graph in
O(n3 logn), wheren is the number of clusters in the



106 Rubner, Tomasi and Guibas

Figure 2. A log-log plot of the average computation time for random signatures as a function of signature size.

signatures (This bound assumes that the two signatures
have the same size, and that the precision of the cal-
culations is fixed and can be considered as a constant.)
This is similar to the time complexity of our algorithm
as can be inferred from the plot in Fig. 2.

Retrieval speed can be increased if lower bounds to
the EMD can be computed at a low expense. These
bounds can significantly reduce the number of EMDs
that actually need to be computed by prefiltering the
database and ignoring images that are too far from
the query. An easy-to-compute lower bound for the

Figure 3. A log-log plot of the number of EMDs as a function of the number of images retrieved. The database contains 20,000 images.

EMD between signatures with equal total weights is
the distance between their centers of mass, as long as
the ground distance is induced by a norm. A proof
of this is given in appendix B, along with the defini-
tion of norm-induced distance. Using this lower bound
in our color-based image retrieval system significantly
reduced the number of EMD computations. Figure 3
shows the average number of EMD computations per
query as a function of the number of images retrieved.
This graph was generated by averaging over 200 ran-
dom queries on an image database with 20,000 images
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using the color-based image retrieval system described
in Section 5.1. The fewer the images that are returned
by a query, the fewer the EMDs that need to be com-
pared thanks to our lower bound, which guarantees that
no image is missed as a result of the saving in compu-
tation.

A computational advantage of signatures over
histograms is that distributions defined in high-
dimensional feature spaces can be matched more effi-
ciently. This is because the only computational factor
is the number of significant clusters in the distribu-
tions and not the dimension of the underlying space,
although sometimes the two correlate. The EMD is
also robust to the clustering algorithm that is used to
find the significant clusters. If a cluster in some sig-
nature is split into smaller fragments, the EMD will
consider them as similar.

While the EMD works very well on signatures, it
should not, in general, be applied to histograms. Small
histogram invalidate the ground distance as the bin cen-
ters are rather far, while computing the EMD on large
histograms can be very slow.

5. Examples

In this section we show a few examples of application
of the earth mover’s distance in the areas of color and
texture analysis. Because of how the human vision
system is built, color lives naturally in a three dimen-
sional space. Color distributions, then, can describe
the color contents of entire images. A color example is
given in Section 5.1. Combining the color of the pixels
together with their position in the image leads to a dis-
tance that considers the layout similarity together with
the color similarity of the images. This is discussed in
Section 5.2.

For texture, the situation is more complex. A tex-
ture can be described locally as a mixture of two-
dimensional sinusoidal signals at different scales and
orientations. Thus, the responses of a bank of filters,
centered at a pixel, can be seen as a distribution of sig-
nal energy and phase in the frequency domain, which is
the space of all two-dimensional sinusoidal signals. In
keeping with most of the literature on texture, we ignore
phase information. At a higher level, the texture con-
tent of a full image that might contain multiple textures
can be seen as a distribution of such two-dimensional
distributions. Defining a ground distance between the
local representations of texture leads to an EMD
between images of textures. Examples of distance

computations between images with multiple textures
are given in Section 5.3.

For both color and texture our ground distance is

dij = 1− e−α‖pi−q j ‖, (5)

where‖·‖ is an appropriateL p-norm which we choose
differently for color and texture, andα distinguishes be-
tween “close” and “far” distances in the feature space.
We used

α = ‖[σ1 . . . σdim]T‖,

whereσi is the standard deviation of thei -th dimension
components of the features from the overall distribution
of all images in the database.dim is the number of
dimensions in the feature space.

This ground distance has the property that for large
distances it saturates to 1. This limits the effect that
few, very different, features can have on the distance
between overall similar distributions. As we show in
appendix C this ground distance is metric and therefore
the resulting EMD is metric for signatures of equal
weights.

5.1. Color Distributions

To compute of the earth mover’s distance between color
images, we first convert the distribution of pixel colors
to the CIE-Lab color space (Wyszecki and Stiles, 1982)
which was expressly designed so that short Euclidean
distances correlate strongly with human color discrim-
ination performance, albeit for pairs of colors on a neu-
tral background (recall the discussion of this point in
the introduction). TheL2-norm is therefore a natural
choice for the ground distance in Eq. (5).

We performed our color-based retrieval on a collec-
tion of 20,000 color images from the Corel Stock Photo
Library. To compute the signature of a color image, we
first slightly smooth each band of the image’s RGB
representation in order to reduce possible color quan-
tization and dithering artifacts. We then transform the
image into the CIE-Lab color space using D65 as the
reference white (Poynton, 1996). At this point each
image implies a distribution of points in the three-
dimensional CIE-Lab color space where a point cor-
responds to a pixel in the image. We coalesce this
distribution into clusters of similar colors (25 units in
any of theL ,a, baxes). Because of the large number of
images to be processed in typical database applications,
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clustering must be performed efficiently. To this end,
we devised a novel two-stage algorithm based on ak-d
tree (Bentley, 1975) where the splitting rule is to simply
divide an interval into two equal sub-intervals. In the
first phase, approximate clusters are found by excessive
subdivisions stopping when the cells become smaller
than the allowed cluster size. Since by this method clus-
ters might be split over few cells, we use a second phase
in order to recombine them. This is done by perform-
ing anotherk-d tree clustering of the cluster centroids
from the first phase, after shifting the space coordi-
nates by one half of the minimal allowed cell size (25
units). Each new cluster contributes a pair(p, wp) to
the signature representation of the image wherep is
the average color of the cluster, and the corresponding
weightwp is the fraction of image pixels that are in
that cluster. At this point, we remove clusters with in-
significant weights (less than 0.1%). In our database,
the average signature has 8.8 clusters, which leads to
typical query times of a few seconds.

The difficulty of establishing ground truth makes it
hard to evaluate the performance of an image retrieval
system. To evaluate the precision of a query, all the im-
ages which are perceived to have similar color content
to the query should be taken into account. Evaluat-
ing the performance of retrieval systems is beyond the
scope of this paper, as our goal is rather to compare the
EMD to the other dissimilarity measures described in
Section 2. For that purpose we conducted two sets of

Figure 4. Precision vs. recall for color distributions. The database consists of 1504 samples, divided into 94 classes of 16 similar samples.
All dissimilarity measures use histograms with 128 bins, except for the EMD which was applied also to signatures that have only 8 clusters.

experiments where we created common ground truths
on which we measured the performance of the different
methods.

In our first experiment, we randomly chose 94 im-
ages from our database. We used the same number
of images as in the texture case (see Section 5.3), so
that we can compare the results in both cases. From
each image we created disjoint sets of randomly sam-
pled pixels and considered these sets as belonging to
the same class. While for large sets of pixels within a
class the color distributions of their pixels will be very
similar, for small sets the variations are larger, mim-
icking the situation in image retrieval where images of
moderatesimilarity to the query have to be identified.
We used a set size of 8 pixels, and obtained for each
image 16 disjoint sets of random samples, resulting in
a ground truth data set of 1504 samples with 94 dif-
ferent classes, one class per image. We represented
every sample in this database by a histogram with 128
bins which were adapted to the overall distribution in
the database. To construct the histograms, we first ran
a k-means algorithm on the combined distribution of
all the samples in the database, resulting in the opti-
mal 128 prototypes. Each pixel in every set was then
assigned to the bin represented by the closest proto-
type. Now we used each of the 1504 samples as our
query, asking all dissimilarity measures to retrieve and
rank the most similar samples in the database. We av-
eraged the results of all the 1504 queries. Figure 4
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shows the precision (retrieved and relevant/total re-
trieved) vs. recall (retrieved and relevant/total rele-
vant). We also display in the graph the result of ap-
plying the EMD on signatures. Unlike the histograms
that had 128 bins, the signatures had only 8 clusters.
The EMD performs best even with the much smaller
representation.

The second set of experiments was conducted on
our full 20,000 image database. Unlike the first ex-
periment were we used adaptive histograms, here we
use histograms with regular binning. This is typical to
image retrieval systems, where due to the large num-
ber of images, a specific image cannot take advantage
of such adaptive histograms. Also, all the images are
usually not available when the database is created. We
run this experiment twice, once on color histograms
with coarse binning, and once with fine binning. For
the coarse binning, we divided the CIE-Lab color space
into fixed-size bins of size 25× 25× 25. This quan-
tized the color space into 4 bins in theL channel and 8
bins in both thea and theb channels, for a total of 256
bins. However, most of these bins are always empty
due to the fact that valid RGB colors can map only to a
subset of this CIE-Lab space. In fact, only 130 bins can
have non-zero values. Our histograms then have 130
bins. After thresholding away bins with insignificant
weights (less than 0.1%), the average histogram has
15.3 non-zero bins. Notice that the amount of informa-
tion contained in the signatures (8.8 clusters in average)
is comparable to that contained in the histograms. For
the fine binning, we divided the CIE-Lab color space
into fixed-size bins of size 12.5× 12.5× 12.5. This
resulted in a total of 2048 bins of which only 719 can
possibly have non zero values. Over our 20,000-image
database the average fine histogram has 39 non-zero
bins. Clearly, the amount of information in the aver-
age signature is now much smaller than that in these
finer histograms. Again, we see that even with less in-
formation, signatures result in better retrieval precision
than histograms.

For the EMD and the Quadratic Form, instead of
using the ground distance that we used for the previ-
ous experiment (Eq. (5)), we simply use the Euclidean
distance in the CIE-Lab color space. In addition to be-
ing faster to compute, we found that for real images,
the Euclidean distance leads to better recall which is
most important for retrieval system. Being induced by
a norm, using the Euclidean distance also allows us
to use the lower bound described in Section 4 which
significantly reduces the computation needed.

Our goal in this experiment was to compare the dif-
ferent dissimilarity measures on images that are per-
ceived as having similar color content. To do so, we
looked for sets of images with high correlation between
the semantic meaning of the images and their color dis-
tribution. For the first set, we identified all the images
of red cars in the database (75 images) and marked them
as relevant. From this set we chose the ten images that
are shown in Fig. 5(a). In these ten images the red car
had a Green/Gray background, was relatively big and
not obscured by the background (for example, using
an image with a small red car in front of a sunset is
likely to return images of sunsets rather that images of
red cars). We performed ten queries using a different
“good” car every time, and averaged the number of rel-
evant images for the different dissimilarity measures
as a function of the number of images. An example
of such a query is shown in Fig. 6. The color con-
tent of the leftmost image of a red car was used as the
query, and the eight images with the most similar color
contents were returned and displayed in order of in-
creasing distance for different histogram dissimilarity
measures. For the second set, we similarly identified
157 images of brown horses in green fields. Again 10
“good” images of horses (Fig. 5(b)) were used for the
query.

The results of these experiments are shown in Figs. 7
and 8. For the cars, the average number of relevant im-
ages for the different dissimilarity measures as a func-
tion of the number of images retrieved is shown in
Fig. 7(a) and 7(b) for the coarse and fine histograms
respectively. The EMD that was computed on the his-
tograms outperformed the other histogram-based meth-
ods, and the EMD that was computed on the signatures
performed best. Here, instead of a precision vs. recall
graph, we only show the precision of the queries as our
goal is to compare the different measures and not to
evaluate the performance of a specific retrieval system.
The colors of the cars are very similar in all the relevant
images while the colors of the backgrounds have more
variation. Although other images that do not have cars
in them might match the color contents of the query
images better, we still expect some of the cars to be
retrieved when a large number of images is returned by
the system.

For the horses, both the colors of the objects and
the colors of the backgrounds are similar for all the
relevant images. Figure 8 shows the results for the
coarse and fine histograms respectively. Here again the
EMD that was computed on the signatures performed
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Figure 5. (a) Ten images of red cars used for the retrieval results in Fig. 7. (b) Ten images of horses used for the retrieval results in Fig. 8(c, d):
The six best matches without position information (c) and with position information (d) when using the leftmost image of a skier as the query.

best. Among the histogram-based methods, in the ex-
periment that used the coarse histograms, both the
Jeffrey divergence and theχ2 statistics outperformed
the EMD that was computed on the histograms. In the

experiment that used the fine histograms, the EMD
outperformed all the other measures. This can be
explained by the fact that, for coarser histograms, the
ground distance is computed between more distant bin
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Figure 6. The eight closest images to the leftmost image of a red car. The queries were processed by a color-based image retrieval system
using different histogram dissimilarity measures. (a)L1 distance. (b) Jeffrey divergence. (c)χ2 statistics. (d) Quadratic-form distance. (e)
EMD.

centers, and therefore becomes less meaningful. We
recall that only small Euclidean distances in CIE-Lab
space are perceptually meaningful. On the other hand,
bin-by-bin distances break down as the histograms get
finer, because similar features are split among different
bins.

5.2. Joint Distribution of Color and Position

In many cases, global color distributions that ignore
the actual positions of the colors in the image are not
sufficient for good retrieval. For example, consider the
following two color images: In the first, there are blue
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(a)

(b)

Figure 7. The average number of relevant images, for the different dissimilarity measures, that were returned by using the ten car images in
Fig. 5(a) as the queries for the coarse histograms (a) and fine (b) histograms. The results obtained by using signatures is also shown in the two
graphs for reference.

skieson topof a green field, while in the other there is
a blue lakebelowgreen tree-tops. Although the color
distributions might be very similar, the position of the
colors in the image is very different and may have to be
taken into account by the query. This can be achieved
by modifying the color distance in Section 5.1 as fol-
lows: Instead of using the three-dimensional CIE-Lab
color space, we use a five-dimensional space whose
first three dimensions are the CIE-Lab color space, and
the other two are the(x, y) position of each pixel. We
normalize the image coordinates to be in the range of 0
to 100, and use the same clustering algorithm as used in

Section 5.1. The average signature size in our 20,000
image database is now 18.5.

The ground distance is now defined as

[(1L)2+ (1a)2+ (1b)2+ λ((1x)2+ (1y)2)]
1
2 .

The parameterλ defines the importance of the color po-
sitions relative to the color values. Figure 5 (c, d) shows
the effect of position information where the leftmost
image of a skier was used as the query. Part (c) shows
the 6 best matches when position information was
ignored (λ = 0). Part (d) uses position information
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(a)

(b)

Figure 8. The average number of relevant images, for the different dissimilarity measures, that were returned by using the ten horse images in
Fig. 5(b) as the queries for the coarse histograms (a) and fine (b) histograms. The results obtained by using signatures is also shown in the two
graphs for reference.

(λ= 0.5). Exact color matches are somewhat compro-
mised in order to get more similar positional layouts.

5.3. Texture

While color is a purely pointwise property of images,
texture involves a notion of spatial extent: a single point
has no texture. If texture is defined in the frequency
domain, the texture information of a point in the image
is carried by the frequency content of a neighborhood
of it. Gabor functions are commonly used in texture
analysis to capture this information (Bovik et al., 1990;
Farrokhnia and Jain, 1991; Manjunath and Ma, 1996)

because they are optimally localized in both the spatial
and frequency domains (Gabor, 1946). There is also
strong evidence that simple cells in the primary visual
cortex can be modeled by Gabor functions tuned to
detect different orientations and scales on a log-polar
grid (Daugman, 1988).

In this paper we used a similar dictionary of Gabor
filter as the one derived in Manjunath and Ma (1996)
with four scales and six orientations. Applying these
Gabor filters to an image results for every image pixel
in a four by six array of numbers which can be seen
also as a 24 dimensional vector. In order to treat all the
Gabor responses from the different scales in a similar
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Figure 9. (a) Texture patch from the Brodatz album (Brodatz, 1966). (b) Average over all texture features. The Gabor filter bank consists of
four scales and six orientations. (c) The texture signature.

way, we need to appropriately normalize the vector.
Unlike (Manjunath and Ma, 1996), who normalizes
each feature in the vector by the standard deviation
of the respective feature over the entire database, we
normalize the feature based on the radial frequencyf
of the corresponding Gabor filter. This follows (Field,
1987) where it is shown that the magnitude of the power
spectrum of natural images falls of as 1/ f . With this
normalization, similar amounts of energy will be cap-
tured on average by all filters of all scales. In principle,
a normalization that is based on the standard deviations
requires the knowledge of the entire database and will
overemphasize features that are dominated by noise.
The normalized texture vector is ourtexture feature.

Figure 10. Precision vs. recall for texture distributions. The database consists of 1504 samples, divided into 94 classes of 16 similar samples.
All dissimilarity measures use histograms with 128 bins, except for the EMD which uses also signatures with 8 clusters.

Figure 9 shows an example of a texture feature. Part
(b) shows the spatial average of each of the 24 filter re-
sponses over the image in part (a) of the figure. Darker
squares represent stronger responses. Notice the two
strong responses that correspond to the texture’s verti-
cal and horizontal components at an intermediate scale.

The texture content of an entire image is repre-
sented by a distribution of texture features. In gen-
eral, this distribution will be simple for images of one
uniform texture, and more complex for images with
multiple textures such as natural images. To make the
representation more compact, we find the dominant
clusters in the 24 dimensional space. This is done using
the same clustering algorithm described in Section 5.1.
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Figure 11. Partial texture query. The query was 20% of the texture in part (a) and 80% “don’t care”. (b) The 21 best matches: the 16 patches
from the same texture (only the first and last ones are shown), followed by all the compositions that contain some part of the queried texture.

Figure 12. Another partial query. The query now contains 10% of each of the two patches in part (a) and 80% “don’t care”. (b) The two best
matches are the two compositions that contain the textures in the query, followed by the patches that contain only one of the queried textures.
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The resulting set of cluster centers together with the
cluster weights is thetexture signature. An example
of a texture signature with four clusters is shown in
Fig. 9(c) together with the clusters weights.

In order to compare the different dissimilarity mea-
sures for texture, we selected 94 Brodatz album
(Brodatz, 1966) by visual inspection. (We excluded

Figure 13. Looking for zebras. (a) An image of a zebra and a block of zebra stripes extracted from it. (b) The twelve best matches to a query
asking for images with at least 10% of the texture in (a). The large numbers in the thumbnail captions are indices into Corel CDs. The first three
digits (“130” in this case) refer to the same set of 100 images.

the textures d25, d30-d31, d39-d45, d48, d59, d61,
d88-d89, d91, d94, d97 due to missing micro–pattern
properties. That is, those textures are excluded where
the texture property is lost when considering small im-
age blocks.) We divided each of the textures into 4
by 4 non-overlapping patches. Every patch is 128 by
128 pixels. Similarly to the color case, the database
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contains 1504 texture patches with 94 different classes,
each with 16 patches. We used each of the patches in
the database as a query, and averaged the results over
all the patches. The results of the different dissimilarity
measures are shown in Fig. 10. Again, we use glob-
ally adapted histograms with 128 bins. For the EMD
we use signatures with 8 clusters. We use the ground
distance as in Eq. (5), with theL1-norm, so that the

Figure 14. Looking for cheetahs. (a) The query. (b) The twelve best matches with at least 10% of the query texture. The last four images are
leopards and jaguars which have similar texture as cheetahs. However, cheetahs come first.

different responses from the different Gabor filters are
added together.

An important advantage of the EMD over other mea-
sures for texture similarity is its ability to handle im-
ages that contain more than one texture without first
segmenting the images as needed when using other
measures. Using the EMD for partial matches can find
images that contain specific textures. Figure 11 shows
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Figure 15. Looking for leopards and jaguars. (a) The query. (b) The twelve best matches with at least 10% of the query texture. All but the
sixth image are leopards and jaguars (which are hard to tell apart). The sixth image is of cheetahs.

an example of a partial query. Here we added images
with compositions of textures to our texture database.
The query was 20% of the texture in part (a) and
80% “don’t care”. The best matches are shown in part
(b) with the 16 patches from the same texture at the
beginning followed by all the compositions that con-
tain some part of the queried texture. We emphasize
again that no segmentation was performed.

Figure l2 demonstrates a partial query with more
than one texture.

In the next experiment we created a database of 500
gray scale images of animals from the Corel Stock
Photo Library. This library consists of 20,000 images
organized into sets of 100 images each. We created our
database using the following sets: 123000 (Backyard
Wildlife), 134000 (Cheetahs, Leopards and Jaguars),
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130000 (African Specialty Animals), 173000 (Alaskan
Wildlife), 66000 (Barnyard Animals). Images are 768
by 512 pixels. We preprocessed the images by the
usual clustering procedure, and obtained an average
signature size of 32 clusters. Since most of the queries
consist of a single, or a few textures, their signatures
are significantly smaller and the EMD computation is
more efficient.

Figure 13(a) shows an example of a query that used
a rectangular patch from an image of a zebra. We
asked for images with at least 20% of this texture. The
12 best matches are shown in part (b) ranked by their
similarity to the query. The 16 best matches were all
images of zebras. The database contains a total of 34
images of zebras. Notice the various backgrounds in
the retrieved images. They were ignored by the query
because of the EMD’s ability to handle partial queries.
Notice also that in some of the retrieved images there
are a few small zebras, which only when combined
together provide a significant amount of “zebra tex-
ture”. Methods based on segmentation are likely to
have problem with such images.

Next we searched for images of cheetahs. The
database has 33 images of cheetahs, and 64 more im-
ages of leopards and jaguars that have similar texture
as cheetahs. Figure 14 shows the query and the best
matches. The first eight images are indeed cheetahs.
The next four matches are images of leopards and
jaguars.

To check if our method can distinguish between
different wild cats, we looked for images of jaguars.
Figure 15 shows the query results. From the best twelve
matches, eleven are jaguars and leopards which are
almost indistinguishable. Only the sixth match was an
image of a cheetah.

6. Conclusions

The earth mover’s distance is a general and flexible
metric and has desirable properties for image retrieval.
It allows for partial matches, and it can be applied to
variable-length representations of distributions. Lower
bounds are readily available for it, and it can be com-
puted efficiently, when the signatures are not too large.
The EMD should be applied to signatures, not to global
histograms, as histograms with few bins will invalidate
the ground distances, while EMDs on histograms with
many bins will be slow to compute. Because of these
advantages, we believe that the EMD can be of use
both for understanding distributions related to vision

problems, as exemplified by our case studies with color
and texture, and as a building block of image retrieval
systems.

Our analysis of texture similarity in particular has
brought forth a number of interesting open problems.
For instance, how can the distance between two sig-
natures be computed if either of them is allowed to
undergo a transformation from a predefined group at
no cost? An answer to this question would lead to a
more direct approach to the issue of invariance when
comparing textures or other features.

Finally, it would be interesting to apply the earth
mover’s distance to other vision problems such as clas-
sification and recognition based on other types of visual
cues. In addition, we surmise that the EMD may be a
useful metric also for problems outside the realm of
computer vision.

Appendix A. Metric Proof

In this appendix we prove that when the signatures
have equal weights and the ground distanced(·, ·) is
metric, the EMD is a true metric. Non-negativity and
symmetry hold trivially in all cases, so we only need to
prove that the triangle inequality holds. Without loss
of generality we assume here that the total sum of the
flows is 1. Let{ fij } be the optimal flow fromP to Q
and{gij } be the optimal flow fromQ to R. Consider the
flow P 7→ Q 7→ R. We now show how to construct
a feasible flow fromP to R that represents no more
work than that of moving mass optimally fromP to R
throughQ. Since the EMD is the least possible amount
of feasible work, this construction proves the triangle
inequality.

The largest weight that moves as one unit frompi to
q j and fromq j to r k defines a flow which we callbijk

wherei , j andk correspond topi , q j andr k respec-
tively. Clearly

∑
k bijk = fij , the flow fromP to Q, and∑

i bijk = gij , the flow fromQ to R. We define

hik
4=
∑

j

bijk

to be a flow frompi to r k. This flow is a feasible one
because it satisfies the constraints (1)–(4) in Section 4.
Constraint (1) holds since by constructionbijk > 0.
Constraints (2) and (3) hold because∑

k

hik =
∑
j,k

bijk =
∑

j

fij = wpi ,
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and ∑
i

hik =
∑
i, j

bijk =
∑

j

gjk = wr k ,

and constraint (4) holds because the signatures have
equal weights. Since EMD(P, R) is the minimal flow
from P to R, andhik is some legal flow fromP to R,

EMD (P, R) ≤
∑
i,k

hikd (pi , r k)

=
∑
i, j,k

bijkd (pi , r k) ≤
∑
i, j,k

bijkd (pi , q j )

+
∑
i, j,k

bijkd (q j , r k) (d(·, ·) is metric)

=
∑
i, j

fij d (pi , q j )+
∑
j,k

gjkd (q j , r k)

= EMD (P, Q)+ EMD (Q, R).

B. Lower Bound Proof

Here we show that when the ground distance is in-
duced by the norm‖·‖, the distance between the cen-
troids of two signatures is a lower bound on the EMD
between them. Letpi and q j be the coordinates of
clusteri in the first signature, and clusterj in the sec-
ond signature respectively. Then, using the notation of
Eqs. (1)–(4),

m∑
i=1

n∑
j=1

dij fij =
m∑

i=1

n∑
j=1

‖pi − q j ‖ fij

=
m∑

i=1

n∑
j=1

‖ fij (pi − q j )‖ ( fij ≥ 0)

≥
∥∥∥∥∥ m∑

i=1

n∑
j=1

fij (pi − q j )

∥∥∥∥∥
=
∥∥∥∥∥ m∑

i=1

(
n∑

j=1

fij

)
pi

−
n∑

j=1

(
m∑

i=1

fij

)
q j

∥∥∥∥∥
=
∥∥∥∥∥ m∑

i=1

wpi pi −
n∑

j=1

wq j q j

∥∥∥∥∥
= ‖P̄ − Q̄‖,

where P̄ and Q̄ are the centers of mass ofP and Q
respectively.

C. Proof that ρ (x, y) = 1− e−α‖x−y‖ is Metric

Here we show that the ground distance that we use in
Section 5 is indeed a metric. Clearly positive definite-
ness and symmetry hold given thatα ≥ 0. We now
prove that also the triangle inequality holds.

Given that‖x − y‖ + ‖y − z‖ ≥ ‖x − z‖, we can
write

0 ≤ ρ(x, y)ρ(y, z)

= (1− e−α‖x−y‖) (1− e−α‖y−z‖)
= 1− e−α‖x−y‖ − e−α‖y−z‖ + e−α(‖x−y‖+‖y−z‖)

≤ 1− e−α‖x−y‖ − e−α‖y−z‖ + e−α(‖x−z‖)

= (1− e−α‖x−y‖)+ (1− e−α‖y−z‖)
− (1− e−α(‖x−z‖))
= ρ(x, y)+ ρ(y, z)− ρ(x, z) ,

and hence,ρ(x, y)+ ρ(y, z) ≥ ρ(x, z).
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