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Abstract—Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper, we focus on the

recent technique proposed by Wainwright et al. [33]—tree-reweighted max-product message passing (TRW). It was inspired by the

problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound—it may actually go

down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential tree-reweighted

message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which

characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves

weak tree agreement. Finally, we show that, our algorithm requires half as much memory as traditional message passing approaches.

Experimental results demonstrate that on certain synthetic and real problems, our algorithm outperforms both the ordinary belief

propagation and tree-reweighted algorithm in [33]. In addition, on stereo problems with Potts interactions, we obtain a lower energy than

graph cuts.

Index Terms—Energy minimization, graph algorithms, message passing, belief propagation, early vision, Markov random fields,

stereo.

Ç

1 INTRODUCTION

MANY early vision problems can be naturally formu-
lated in terms of energy minimization, where the

energy function has the following form:

Eðx j �Þ ¼ �const þ
X
s2V

�sðxsÞ þ
X
ðs;tÞ2E

�stðxs; xtÞ: ð1Þ

Set V usually corresponds to pixels, xs denotes the label of
pixel s 2 V which must belong to some finite set. For motion
or stereo, the labels are disparities, while, for image
restoration, they represent intensities. � defines parameters
of the energy: �sð�Þ is a unary data penalty function and
�stð�; �Þ is a pairwise interaction potential. This energy is
often derived in the context of Markov Random Fields [8]: A
minimum of E corresponds to a maximum a posteriori (MAP)
labeling x.

In general, minimizing E is an NP-hard problem, so
researchers have focused on approximate minimization
algorithms. The two most well-known techniques are graph
cuts and belief propagation. The former one was introduced
in the 1990s [3], [9], [10], [15] and showed a major improve-
ment over previously used simulated annealing [8]. To our
knowledge, graph cuts are currently considered to be the
most accurate minimization algorithm for energy functions
arising in many vision applications, e.g., stereo [3], [14], image
restoration [3], image segmentation [2], texture synthesis [19].
In fact, for some functions, it finds a global minimum.

However, graph cuts can be applied only to a limited
class of energy functions [3], [10], [15]. If a function falls

outside this class, then one has to use other techniques such
as max-product belief propagation (BP) [6], [22], [27], [35].
BP can be applied to any function of the form as in (1), but it
has some drawbacks. First, it usually finds a solution with
higher energy than graph cuts (in cases when graph cuts
can be applied) [28]. Second, BP does not always con-
verge—it often goes into a loop.

1.1 Tree-Reweighted Message Passing

Recently, Wainwright et al. [33] introduced a new algorithm
for energy minimization called max-product tree-reweighted
message passing (TRW). We believe that it may become a
serious rival to both graph cuts and BP. As can BP, TRW can
be applied to any function of the form as in (1). In addition,
in this paper, we show that, for stereo problems with Potts
interactions TRW obtains a lower energy than both graph
cuts and BP. The improvement over graph cuts is marginal
and probably would not be a factor for the stereo
problem—both algorithms find solutions whose energy is
very close to the global minimum. However, it shows the
potential of TRW; the difference may become significant for
more difficult functions.

Wainwright et al. [33] gave two versions of the
TRW algorithm which differ in the schedule of passing
messages. These algorithms were inspired by the idea of
maximizing a concave lower bound on the energy and have
the following property: If their fixed point satisfies a certain
condition (“tree agreement”), then it is guaranteed to give a
MAP solution (i.e., a global minimum of the energy).

However, TRW algorithms in [33] cannot be viewed as
algorithms for direct maximization of the bound. Indeed, in
our experiments, we observed that sometimes they decrease
it. Also, the algorithms do not always converge; when it
happens, the value of the bound often goes into a loop.

Our main contribution is as follows: We show how to
modify TRW algorithms so that the value of the bound is
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guaranteed not to decrease. Thus, we are guaranteed to find
at least a “local” maximum of the bound. The word “local”
is in quotes since, for concave functions, all local maxima
are global if the standard metric space topology is used.
Here, we use a weaker topology: Our maxima are local with
respect to the TRW algorithms. We formulate the weak tree
agreement condition (WTA) which gives a precise character-
ization of such maxima. We prove that our algorithm has a
subsequence converging to a vector satisfying WTA.

An interesting question is whether WTA always gives a
global maximum of the bound. We show that this is not the
case by providing a counterexample. Note that this is
different from sum-product tree-reweighted message passing
[31]: In the latter case, a fixed point of TRW is guaranteed to
be the global maximum of the lower bound on the negative
log partition function.

TRW algorithms require some choice of trees covering the
graph. If the trees have a special structure (namely, chains
which are monotonic with respect to some ordering on the
graph—see Section 3.4), then our algorithm reduces to the
message-passing algorithm of Wainwright et al. [33], but with
a significant distinction: We update messages in a specific
sequential order rather than in parallel. In the context of
ordinary BP, it was observed experimentally that sequential
updates are superior to parallel updates [28], although
convergence is still not guaranteed. We give a theoretical
justification of sequential updates in the case of tree-
reweighted algorithms.

Our sequential schedule has an additional advantage: We
show that it can be implemented using half as much space as
traditional message passing approaches. A similar observa-
tion was made in [6] for bipartite graphs and parallel schedule
of updating messages. Our technique can be applied to any
graph and is a strict generalization of that in [6].

1.2 Other Related Work

Tree-reweighted message passing is closely related to a
certain linear programming (LP) relaxation of the energy
function (described in more detail in Section 2.3). This
relaxation has been widely studied in the literature in
different contexts. Schlesinger [24] applied it to energy
functions of the form 1 whose pairwise terms encode hard
constraints: �stð�; �Þ 2 f0;þ1g. Koster et al. [17] formulated
this LP relaxation for arbitrary functions Eðx j �Þ (in their
terminology, the problem is called partial constraint satisfac-
tion). Chekuri et al. [4] used the formulation for functions
with metric pairwise terms; they proved certain perfor-
mance guarantees, e.g., two-approximation bound for the
Potts energy. (Their work extended the approach of
Kleinberg and Tardos [11]). Wainwright et al. [33] studied
this LP formulation in the context of the TRW algorithm for
general energy functions of the form 1. Recently, Komoda-
kis and Tziritas [16] showed that graph cuts (or, more
precisely, the expansion move method in [3]) have close
links with this LP. Thus, the LP relaxation in [4], [17], [24],
[33] plays a very important role in the theory of MRF
optimization algorithms.

Several authors developed specialized techniques that try
to solve this linear program. Koval and Schlesinger [18], [25]
showed how to find a subgradient direction assuming that a
certain arc consistency condition is violated. (A description of
their augmenting DAG algorithm can be found in [34]).
Another algorithm with the same stopping criterion

(namely, arc consistency) is max-sum diffusion.1 Note that,
after some transformations, arc consistency can be shown to
be equivalent to the WTA condition formulated in this
paper. Thus, the augmenting DAG, max-sum diffusion, and
TRW algorithms have similar stopping criteria. In particu-
lar, neither technique is guaranteed to solve the LP
relaxation exactly, as our counterexample shows. (Another
counterexample due to Schlesinger is given in [34]).

1.3 Outline

The paper is organized as follows: In Section 2, we
introduce our notation and review some results from [33],
in particular, the lower bound on the energy function via
convex combination of trees and the duality result. In
Section 3, we present our new tree-reweighted algorithm
(TRW-S), as well as its analysis. We recommend using a
special case of the algorithm, namely, TRW-S with mono-
tonic chains. A reader who wants to implement this
technique can skip Sections 2 and 3 (except for the first
three paragraphs of Section 2) and go directly to Section 4.
This section gives a summary of the algorithm. Experi-
mental results are described in Section 5. Finally, we give
conclusions in Section 6.

2 NOTATION AND BACKGROUND

In this paper, we closely follow the notation used in [33].
However, instead of maximizing posterior probability, we
minimize an energy function. Therefore, we replace “min”
with “max,” “inf” with “sup,” and vice versa.

Let G ¼ ðV; EÞ be an undirected graph with the set of
vertices V and the set of edges E. For each s 2 V, let xs be a
variable taking values in some discrete space X s. By
concatenating the variables at each node, we obtain a
vector x with n ¼ jVj elements. This vector takes values in
the space X ¼ X 1 � X2 � . . .� Xn. Unless noted otherwise,
symbols s and t will denote nodes in V, ðs; tÞ is an edge in E,
and j and k are values in X s and X t, respectively.

As stated in the previous section, our goal is minimizing
the function Eðx j �Þ (1) defined by parameter �. This
parameter is specified by constant term �const, unary terms
�sðjÞ, and pairwise terms �stðj; kÞ. It is convenient to denote
the last two terms as �s;j and �st;jk, respectively. Then, � can
be viewed as a vector � ¼ f�� j � 2 Ig 2 IRd, where the
index set I is

I ¼ fconstg [ fðs; jÞg [ fðst; jkÞg:

Note that ðst; jkÞ � ðts; kjÞ, so �st;jk and �ts;kj are the same
element. We will use notation �s to denote a vector of size jX sj
and �st to denote a vector of size jX s � X tj.

It is convenient to express Eðx j �Þ as the Euclidean
product of two vectors depending on � and x. Of course, we
cannot write it as h�;xi since�andxbelong to different spaces.
However, we can introduce mapping �� : X ! IRd so that

Eðx j �Þ ¼ h�; ��ðxÞi ¼
X
�2I

����ðxÞ:

Mapping ��, called the canonical overcomplete representation
[30], [32], consists of the following functions �� : X ! IR:
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1. The max-sum diffusion algorithm was developed independently by
Kovalevsky and Koval in 1975 and by B. Flach in 1998. Neither of the works
was published. We learned about this method from [34].



�constðxÞ ¼ 1;

�s;jðxÞ ¼ ½xs ¼ j�;
�st;jkðxÞ ¼ ½xs ¼ j; xt ¼ k�;

where ½�� is one if its argument is true and zero otherwise.
Let us introduce another notation which we will use

extensively throughout the paper. Functions �;�s;j;�st;jk :

IRd ! IR give information about the minimum values of the

energy under different constraints:

�ð�Þ ¼ minx2X Eðx j �Þ
�s;jð�Þ ¼ minx2X ;xs¼j Eðx j �Þ
�st;jkð�Þ ¼ minx2X ;xs¼j;xt¼k Eðx j �Þ:

Values �s;jð�Þ and �st;jkð�Þ are called min-marginals for node s

and edge ðs; tÞ, respectively.

2.1 Max-Product Belief Propagation

The key subroutine of tree-reweighted message passing

algorithms is max-product belief propagation (BP) of Pearl

[22]. BP is an algorithm for approximate minimization of

energy Eðx j ��Þ as in (1); it is exact if the graph is a tree.2

Let us review how BP works. It maintains a message

Mst ¼ fMst;k j k 2 X tg for each directed edge ðs! tÞ 2 E
which is a vector with jX tj components. We denote M ¼
fMstg to be the vector of all messages.

The basic operation of BP is passing a message from node s

to node t for directed edge ðs! tÞ 2 E. It consists of

updating vector Mst as follows:

Mst;k :¼ min
j2X s

��s;j þ
X

ðu!sÞ2E;u6¼t
Mus;j

0
@

1
Aþ ��st;jk

8<
:

9=
;þ constt;

where constt is a constant independent of k.3 We will say

that a message for directed edge ðs! tÞ is valid if this

update does not change Mst (or change it by a constant

independent of k). The BP algorithm keeps passing

messages for edges in some order until convergence, i.e.,

until all messages are valid.
If the graph contains loops, then, in general, convergence

is not guaranteed. In this paper, however, BP is applied

only to tree-structured subgraphs. In this case, only two

passes are needed to achieve convergence: inward (sending

messages from leaves to a root) and outward (sending

messages from the root to leaves). Note that any node can

serve as a root.

2.2 Reparameterization

If two parameter vectors � and �� define the same energy

function (i.e., Eðx j �Þ ¼ Eðx j ��Þ for all x 2 X ) then � is

called a reparameterization of �� [5], [25], [26], [30], [32] (in [25]

this notion was called equivalent transformations). We will

write this as � � ��. Note that this condition does not

necessarily imply that � ¼ �� since there are various linear

relations among potential functions ��. Indeed, any

message vector M ¼ fMstg defines reparameterization � ¼
��½M� of the original parameter vector �� as follows:

�t ¼ ��t þ
P
ðs!tÞ2EMst;

�st;jk ¼ ��st;jk �Mst;k �Mts;j;
�const ¼ ��const:

We prove in Appendix B that the opposite is also true: Any
reparameterization � of vector �� can be expressed via
messages, up to a constant parameter vector.4

Reparameterization provides an alternative way of im-
plementing BP algorithm. As discussed in Section 2.1,
standard BP stores the original parameter vector �� and
messagesM. Alternatively, we can store the reparameteriza-
tion � ¼ ��½M�, in which case, the vectors �� and M are not
needed. It turns out that sending a message from node s to
node t is equivalent to reparameterizing vectors �t and �st for
node t and edge ðs; tÞ, respectively [32]. It can also be shown
[32] that a message for directed edge ðs! tÞ is valid iff

min
j2X s
f�s;j þ �st;jkg ¼ constst 8 k 2 X t: ð2Þ

If this condition holds, then sending a message from s to t

does not change �st and �t (or change them by a constant
independent of j or k). We say that � is in a normal form if all
messages are valid.

For a tree-structured graph, values �s;j and �st;jk for
vector � in a normal form have a particularly simple
interpretation [32]—they correspond to min-marginals (up
to a constant):

�s;jð�Þ ¼ �s;j þ consts; ð3aÞ
�st;jkð�Þ ¼ f�s;j þ �st;jk þ �t;kg þ constst: ð3bÞ

2.2.1 Canonical Normal Form

We will say that vector � is in a canonical normal form if, in
addition to (2), it satisfies the following conditions for all
nodes and edges:

minj �s;j ¼ 0;
minj;k f�s;j þ �st;jk þ �t;kg ¼ 0:

Any vector � in a normal form can be reparameterized into
a canonical normal form by subtracting a constant from
vectors �s and �st and adding the same constant to �const.
Canonical normal form is quite useful because constants in
(2) and (3) can be written down explicitly (see Appendix A).

2.3 Linear Programming Relaxation

In general, the problem of minimizing energy of form 1 is
NP-hard. Therefore, researchers have focused on approx-
imation algorithms. One of the approaches [4], [17], [24],
[33] uses a linear programming (LP) relaxation technique.
Let us define the following constraint set:

LOCALðGÞ ¼ � 2 IRd
þ

�const ¼ 1P
j2X s �s;j ¼ 1P
j2X s �st;jk ¼ �t;k

������
8<
:

9=
;:
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2. From now on, we will use notation �� for the original energy function
rather than �. The reason for this will be clear in the next section.

3. Throughout the paper, we use notation constt or constst to denote
constants independent of k or j. These constants may be different in
different equations.

4. We have recently learned that a proof of this fact was given by
Schlesinger in his lectures (NTUU “KPI,” Kiev). To our knowledge, this
proof was not published.



It is easy to check that, for any configuration x 2 X , solution
vector ��ðxÞ belongs to this set. Therefore, the following
minimization problem yields a lower bound on �ð��Þ:

min
�2LOCALðGÞ

h��; �i: ð4Þ

As shown in [4], this relaxation has several interesting
properties. Here, we mention just one. Suppose that energy
function Eðx j �Þ has Potts interaction terms and parameter
vector � is nonnegative. Then, by solving this minimization
problem and by using randomized technique proposed in
[11], we obtain configuration x such that the expected value
of Eðx j �Þ is at most twice the optimal value of the energy.

Unfortunately, general linear programming algorithms
such as interior point methods are rather slow, and
currently, solving (4) is not computationally feasible for
large vision problems such as stereo. Specialized techniques
exploiting the structure of the problem were developed in
[18] and in [33]. Both approaches try to solve a dual to (4).
First, a lower bound on the energy Eðx j �Þ is formulated
(i.e., a function of dual variables which is always smaller
than or equal to the minimum of E). The goal then becomes
to maximize this bound. In this paper, we will follow the
approach in [33] in which the lower bound is formulated via
a convex combination of trees. This approach is described in
the next section.

2.4 Convex Combination of Trees

First, we need to introduce some notation. Let T be a
collection of trees in graph G and �T , T 2 T , be some
distribution on T . Throughout the paper, we assume that
each tree has a nonzero probability and each edge in E is
covered by at least one tree. For a given tree T ¼ ðVT ; ET Þ,
we define a set

IT ¼ fconstg [ fðs; jÞjs 2 VTg [ fðst; jkÞjðs; tÞ 2 ETg

corresponding to those indexes associated with vertices and
edges in the tree.

To each tree T 2 T , we associate an energy parameter �T

that must respect the structure of T . More precisely, the
parameter �T must belong to the following linear constraint
set:

AT ¼ f�T 2 IRdj�T� ¼ 0 8 � 2 InITg:

By concatenating all of the tree vectors, we form a larger
vector �� ¼ f�T jT 2 T g, which is an element of IRd�jT j.
Vector �� must belong to the constraint set

A ¼ f�� 2 IRd�jT j j�T 2 AT for all T 2 T g:
Consider function ��� : A ! IR, defined as follows:

���ð��Þ ¼
X
T

�T�ð�T Þ ¼
X
T

�T min
x2X
h�T ; ��ðxÞi:

Wainwright et al. [33] show that, if
P

T �
T �T ¼ ��, then ���ð��Þ

is a lower bound on the optimal value of the energy for
vector �� (this follows from Jensen’s inequality). To get the
tightest bound, we can consider the following maximization
problem:

max
��2A;
P

T
�T �T¼��

���ð��Þ: ð5Þ

��� is a concave function of ��; moreover, the constraints of
(5) are linear in ��. The following theorem, proven in [33],
characterizes the dual to (5).5

Theorem 1. Minimization problem (4) is the Lagrangian dual to
maximization problem (5). Strong duality holds, so their
optimal values coincide.

A surprising consequence of this theorem is that the
optimal value of (5) does not depend on the choice of trees
and their probabilities (as long as each edge is covered with
nonzero probability).

3 NEW TREE-REWEIGHTED MESSAGE PASSING

ALGORITHM

In the previous section, we introduced our notation and
described previous work. Now, we can concentrate on our
contributions.

We start by modifying maximization problem (5). This
problem inspired two algorithms in [33]—tree-reweighted
message passing with edge-based updates (TRW-E) and
with tree-based updates (TRW-T). However, neither algo-
rithm maintains constraint

P
T �

T �T ¼ �� of (5). Indeed, they
perform reparameterizations of the original parameter
vector, so this equality may become violated.6 Let us
replace it with the constraint

P
T �

T �T � ��. Thus, we are
now interested in the following maximization problem:

max
��2A;
P

T
�T �T���

���ð��Þ: ð6Þ

The following lemma justifies this formulation.

Lemma 3.1. The optimal value of (6) equals the optimal value
of (5).

Proof. See Appendix C. The proof involves showing that
any reparameterization can be expressed via messages.tu
As shown in [33], the TRW-E and TRW-T algorithms

maintain the constraint of (6). Unfortunately, they do not
guarantee that the objective function ��� monotonically
increases—in our experiments, we have observed that some-
times it goes down. In fact, when the algorithms failed to
converge, the value of ���ð��Þ often had gone into a loop. Next,
we design a new algorithm with the property that ��� never
decreases.

Our algorithm is shown in Fig. 1. It iterates between two
steps: 1) reparameterizing vectors �T and 2) averaging
element ! 2 V [ E. The goal of the reparameterization step is
to make sure that the algorithm satisfies the min-marginal
property:

. In the beginning of the averaging operation for element !,
components of vectors �T corresponding to ! should give
correct min-marginals for trees T 2 T ! (3).

This property will turn out to be crucial in the analysis of
the algorithm.

Note that the TRW-E and TRW-T algorithms can also be
formulated as combinations of the reparameterization and
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5. Wainwright et al. [33] formulated this theorem for the case when trees
in T are spanning. However, their proof never uses this assumption. In this
paper, we do not assume that trees are spanning.

6. Note that Lemmas 5 and 11 in [33] seem to contain a mistake. Lemma 11,
for example, says that the TRW-T algorithm maintains the propertyP

T �
T �T ¼ ��. However, the proof does not take into the account reparame-

terization step.



averaging operations.7 However, they update vectors �T in
parallel, while we do it sequentially. Therefore, we call our
algorithm “sequential tree-reweighted message passing”
(TRW-S).

Reparameterization Step 1(a) can be implemented in many
different ways. One possibility is to convert vectors �T to
normal forms by running the ordinary max-product BP.
However, this would be very expensive if the trees are large.
A more efficient technique is discussed in Section 3.4.

3.1 Weak Tree Agreement

The algorithm in Fig. 1 does not specify what the stopping
criterion is. In this section, we address this issue by giving the
weak tree agreement condition (WTA). Later, we will show that
it characterizes local maxima of the algorithm with respect to
function ���. More precisely, we will prove that the algorithm
has a subsequence converging to a vector satisfying the WTA
condition. Moreover, if a vector satisfies this condition, then
the algorithm will not make any progress, i.e., it will not
increase function ���.

In order to define the WTA condition, it is convenient to
introduce some notation. Let OPTT ð�T Þ be the set of
optimal configurations for parameter �T . Let OPT ð��Þ be
the collection fOPTT ð�T Þ j T 2 T g of the sets of optimal
configurations for vectors �T . It belongs to the set ð2XÞjT j ¼
2X � . . .� 2X (jT j times). For two collections S; eS 2 ð2XÞjT j,
we will write S � eS if ST � eST for every tree T .

Consider some collection of sets of configurations
S ¼ fSTg 2 ð2XÞjT j. We say that S is consistent if it satisfies
the following three conditions:

1. For every tree T , set ST is nonempty.
2. If node s is contained in trees T and T 0, then, for every

configuration x 2 ST , there exists configuration x0 2
ST

0
which agrees with x on node s, i.e., xs ¼ x0s.

3. If edge ðs; tÞ is contained in trees T and T 0, then, for
every configuration x 2 ST , there exists configuration
x0 2 ST

0
which agrees with x on nodes s and t, i.e.,

xs ¼ x0s, xt ¼ x0t.
Now, we can define the WTA condition.

Definition 3.2. Vector �� ¼ f�Tg 2 A is said to satisfy the weak
tree agreement condition if there exists collection S �
OPT ð��Þ which is consistent.

Note that it can be viewed as a generalization of the tree

agreement condition introduced in [33]: Vectors satisfying
the tree agreement also satisfy WTA condition.

Also, note that the WTA condition is different from the
fixed point condition of TRW algorithms. The latter means that
any step of the algorithm does not change vector ��. This, in
turn, implies that all vectors �T are in a normal form and
�T! ¼ �T

0
! for every element ! 2 V [ E and for every pair of

treesT; T 0 2 T !. It is easy to see that every fixed point of TRW
satisfies the WTA condition, but not the other way around.

3.2 Analysis of the Algorithm: Main Theorems

First, we show that similarly to TRW-T algorithm, TRW-S
maintains the constraint of (6).

Lemma 3.3. The TRW-S algorithm performs reparameterization

of the original parameter vector ��, i.e., it maintains the

property
P

T �
T �T � ��.

Proof. By definition, Step 1(a) performs reparameterizations
of tree vectors �T and, thus, reparameterizations of the
sum

P
T �

T �T . Checking that Step 1(b) is a reparameter-
ization is simple algebra. tu
Next, we analyze the behavior of objective function ���

during the algorithm. To be specific, we assume, for the
rest of this section, that, after reparameterization
Step 1(a), we have minj f�Ts;jg ¼ 0 (if ! ¼ s is a node)
or minj;k f�Ts;j þ �Tst;jk þ �Tt;kg ¼ 0 (if ! ¼ ðs; tÞ is an edge).
This assumption is not essential, however; the behavior
of the algorithm will be the same for any other
normalization.
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Fig. 1. The sequential tree-reweighted algorithm (TRW-S). �s is the node appearance probability, i.e., the probability that a tree chosen randomly

under � contains node s. Similarly, �st is the edge appearance probability.

7. The TRW-T algorithm iterates between two phases: 1) running max-
product BP for all trees and 2) performing averaging operation for all nodes
and edges. TRW-E is similar, except that, in phase 1, it performs one parallel
message update operation for all trees. In general, the TRW-E and TRW-T
algorithms do not satisfy the min-marginal property.



Theorem 3.4. 1) After any number of steps, functions � and ��� do
not decrease. 2) If vector �� does not satisfy the WTA condition,
then, after a finite number of iterations, function ��� will
increase. 3) If vector �� satisfies the WTA condition with
collection S, then, after any number of steps, it will still satisfy
WTA with the same collection S. Function ��� will not change.

A proof of this theorem is given in the next section.
As an immediate consequence of Theorem 3.4, Part 1, we

get the following result:

Corollary 3.5. If vector �� maximizes (6), then �� satisfies the
WTA condition.

Unfortunately, the converse is not necessarily true, as the
example in Appendix D demonstrates.

Finally, we give the convergence theorem. A proof is
given in the next section.

Theorem 3.6. Let f��ðiÞgi be an infinite sequence of vectors
obtained by applying Step 1 of the TRW-S algorithm. Let
fe��ðiÞgi be the reparameterization of this sequence obtained by
reparameterizing vectors ��ðiÞ into the canonical normal form.
Then, there is a subsequence fe��ðiðmÞÞgm such that

1. it converges to some vector ��� 2 A,
2. sequence f���ðe��ðiÞÞgi converges to ���ð���Þ, and
3. vector ��� satisfies WTA condition.

Note that, since the algorithm does not specify exactly
how we reparameterize vectors ��ðiÞ, we cannot claim that
sequence f��ðiÞgi always contains a converging subsequence.
As a counterexample, we could choose f��ðiÞgi so that it is
not bounded. Reparameterization fe��ðiÞgi in the theorem was
chosen only to make sure that it is bounded.

3.3 Analysis of the Algorithm: Proofs

In this section, we prove Theorems 3.4 and 3.6. The most
important property of the algorithm, namely, Theorem 3.4,
Part 1 (nondecreasing lower bound) is proven in the
beginning of the next section. This proof is instrumental for
understanding the structure of the algorithm. Other parts of
the proof are more technical; the reader may want to skip
them and go to Section 3.4.

3.3.1 Proof of Theorem 3.4

All quantities used in the theorem are defined using
functions Eð� j �T Þ. By definition, reparameterization
Step 1(a) does not change these functions. Therefore, we
do not need to consider these steps, so we only need to
analyze the averaging Step 1(b). The following lemma
shows the effect of the averaging operation on functions �.

Lemma 3.7. Suppose that the averaging operation for element !

transforms vectors �T to vectors e�T .

. If ! ¼ s is a node, then �s;jðe�T Þ ¼ �ð�T Þ þ e�s;j for
every tree T 2 T s.

. If ! ¼ ðs; tÞ is an edge, then �st;jkðe�T Þ ¼ �ð�T Þ þe�s;j þ e�st;jk þ e�t;k for every tree T 2 T st.
Proof. We consider only the case when ! ¼ s is a node. The

second case is very similar.
Because of our normalization assumption, we have

�ð�T Þ ¼ min
j2X s

�s;jð�T Þ ¼ min
j2X s
f�Ts;jg þ consts ¼ consts;

where consts is the constant in (3a). Plugging this into
(3a), we get �s;jð�T Þ ¼ �ð�T Þ þ �Ts;j.

Vectors �T and e�T agree on all nodes and edges other
than node s. Thus, they have the same optimal configura-
tion xj under the constraint xjs ¼ j. We can write

�s;jðe�T Þ ¼ Eðxj j e�T Þ ¼ Eðxj j �T Þ � �Ts;j þ e�Ts;j
¼ �s;jð�T Þ � �Ts;j þ e�Ts;j ¼ �ð�T Þ þ e�Ts;j:

ut

Parts 1) and 3) of Theorem 3.4 are immediate con-
sequences of this lemma. Indeed, for the node averaging
operation, for example, we can write

�ðe�T Þ ¼ min
j2X s

�s;jðe�T Þ ¼ �ð�T Þ þmin
j2X s
fe�Ts;jg: ð7Þ

We have �Ts 	 0; inspecting the update rule of Step 1(b),

we conclude that e�Ts 	 0 as well. Therefore, the minimum

on the RHS is nonnegative, so �ðe�T Þ 	 �ð�T Þ andP
T �

T�ðe�T Þ 	PT �
T�ð�T Þ. This proves Part 1).

Let us prove Part 3). Suppose that �� satisfies WTA with

collection S ¼ fSTg. We need to prove that S � OPT ðe��Þ. We

can ignore trees T 0 that do not contain node s since vector �T
0

and set OPT ð�T 0 Þ do not change. Let us pick a tree T 2 T s.
Consider a configuration x 2 S and let j ¼ xs. Since S is

consistent, foreverytreeT 0 2 T s thereexistsaconfigurationx0

with x0s ¼ j that is optimal for �T
0
. This implies that �T

0
s;j ¼ 0

for every T 0 2 T s. Therefore, we have e�Ts;j ¼ 0.
One consequence of this fact is that the minimum in

(7) is zero, so �ðe�T Þ ¼ �ð�T Þ. Also, it means that
Eðx j e�Þ ¼ �ðe�T Þ, i.e., x is an optimal configuration for
vector e�T : x 2 OPTT ðe�T Þ. Part 3) is proven.

To prove Part 2), we need the following lemma.

Lemma 3.8. Suppose that a complete pass of Step 1 transforms

vector �� to vector e�� and ���ð��Þ ¼ ���ðe��Þ. Then, OPT ðe��Þ does

not acquire new configurations, i.e., OPT ðe��Þ � OPT ð��Þ. If, in

addition, OPT ð��Þ is not consistent, then it will shrink, i.e., the

inclusion OPT ðe��Þ 
 OPT ð��Þ is strict.

Proof. First, we show that, if ��� stays the same during a single

step, thenOPT ð��Þ cannot acquire any new configurations,

i.e., OPT ðe��Þ � OPT ð��Þ. Again, consider the averaging

operation for node s and consider a tree T containing this

node. Suppose that x 2 OPT ðe�T Þ and let j ¼ xs. Condition

���ðe��Þ ¼ ���ð��Þ implies that �ðe�T Þ ¼ �ð�T Þ since all values

in the sum ���ð��Þ ¼
P

T �
T�ð�T Þ do not decrease. There-

fore, the minimum in (7) is zero, so e�Ts;j ¼ 0. This could only

have happened if �T
0

s;j ¼ 0 for all treesT 0 2 T s, which means

that x was an optimal configuration for vector �T . We

prove that OPT ðe��Þ � OPT ð��Þ.
Now, suppose that OPT ð��Þ is not consistent and a

complete pass of Step 1 does not change the value of
function ���. It means that, in the beginning of Step 1, the
consistency condition for collection OPT ð��Þ is violated
for some element (either a node or an edge). Consider the
moment when the algorithm reaches this element. If
collection OPT ð��Þ has already shrunk by that time, then
we do not have to prove anything—the lemma holds. Let
us assume that OPT ð��Þ stays the same. Thus, the
consistency condition is still violated for this element.

KOLMOGOROV: CONVERGENT TREE-REWEIGHTED MESSAGE PASSING FOR ENERGY MINIMIZATION 1573



Below, we consider only the case when this element is a

node s, the situation for an edge can be analyzed similarly.

Thus, we assume that there exist trees T and T 0 containing

the node and configuration x with xs ¼ j such that x is an

optimal configuration for vector �T (so �Ts;j ¼ 0) but there

exists no configuration x0 with x0s ¼ jwhich is optimal for

�T
0

(so, �T
0

s;j > 0). This implies that e�Ts > 0, therefore,

configuration x is no longer optimal for e�T . Thus, collection

OPT ðe��Þ has shrunk. The lemma is proven. tu
We now proceed with the proof of Theorem 3.4, Part 2. Let

��0; ��1; ��2; . . . be the sequence of vectors obtained from one

another by applying a complete pass of Step 1 (where ��0 ¼ ��).
Suppose that function ��� stays the same after any number of

steps: ���ð��0Þ ¼ ���ð��1Þ ¼ ���ð��2Þ ¼ . . . . Let us show that ��

satisfies the WTA condition.
By Lemma 3.8, we have OPT ð��Þ � OPT ð��1Þ � OPT ð��2Þ

� . . . . Since OPT ð��Þ is finite, it cannot shrink indefinitely,
therefore, after a finite number of iterations (let us say, n),
OPT ð��nÞ will become consistent. We have OPT ð��nÞ �
OPT ð��Þ so, by definition, vector �� satisfies the WTA
condition. Theorem 3.4 is proven.

3.3.2 Proof of Theorem 3.6

To simplify notation, we assume that sequence f��ðiÞgi is
already in the canonical normal form, so e��ðiÞ ¼ ��ðiÞ.
Appendix E proves that the sequence f��ðiÞgi is bounded;
therefore, the existence of the converging subsequence
follows from the Bolzano-Weierstrass theorem. Part 2)
follows from the facts that sequence f���ð��ðiÞÞgi is
nondecreasing and ��� is continuous. We now prove
that, for every converging subsequence f��ðiðmÞÞgm, the
limit ��� satisfies the WTA condition.

Suppose that this is not true. Let us apply the TRW-S
algorithm to vector ���. Theorem 3.4, Part 2 says that, after
a finite number of steps (let us say, n), we obtain a
configuration e��� such that ���ðe���Þ > ���ð���Þ.

Let � : A ! A be a mapping defined as follows: We take
vector �� and apply n steps of the TRW-S algorithm. Each
step is a continuous mapping A ! A, therefore, � is
continuous as well. Thus,

f�ð��ðiðmÞÞÞg �!m!1 �ð���Þ ¼ e���:
Function ��� is also continuous, so

f���ð�ð��ðiðmÞÞÞÞg �!
m!1

���ðe���Þ:
Thus, there exists index m such that ���ð�ð��ðiðmÞÞÞÞ 	
���ð���Þ þ �, where � ¼ 1

2 ð���ðe���Þ � ���ð���ÞÞ > 0. Note that
�ð��ðiðmÞÞÞ ¼ ��ðnþiðmÞÞ. Using Theorem 3.4, Part 2, we get
that ���ð��ðiÞÞ 	 ���ð���Þ þ � for every index i 	 nþ iðmÞ,
which contradicts Part 2) of the convergence theorem.

3.4 TRW-S Algorithm for a Graph with Monotonic
Chains

In this section, we focus on Step 1(a)—reparameterizing
vector �T . Recall that its goal is to make sure that the
algorithm satisfies the min-marginal property.

For simplicity, consider the case when ! ¼ s is a node. In
general, a complete inward pass of the ordinary max-product
BP is needed for treesT 2 T s—sending messages from leaves

to node swhich we treat as a root.8 However, this would make
the algorithm very inefficient if the trees are large. Fortu-
nately, a complete inward pass is not always necessary.

The key idea is that the averaging operation does not
invalidate certain messages in trees T as Proposition 3.9
below shows. In other words, if a message was valid before
the operation, then it remains valid after the operation.9

Therefore, we can “reuse” some of the messages passed in
previous steps, i.e., not pass them again.10

Proposition 3.9 The averaging operation for element ! 2 V [ E
does not invalidate messages in trees T 2T ! oriented toward !.

Proof. Consider edge ðs! tÞ oriented toward ! in tree T .
The averaging operation can affect only the endpoint
vector �Tt . However, condition (2) of a valid message
involves vectors �Ts and �Tst, but not �Tt . tu
To exploit this property fully, we need to choose trees

and the order of averaging operations in a particular way.
Specifically, we require trees to be chains which are
monotonic with respect to some ordering on the graph.

Definition 3.10. Graph G and chains T 2 T are said to be
monotonic if there exists an ordering of nodes iðuÞ, u 2 V,
such that each chain T satisfies the following property: If
uT1 ; . . . ; uTnðT Þ are the consecutive nodes in the chain, then
the sequence iðuT1 Þ; . . . ; iðuTnðT ÞÞ is monotonic.

As an example, we could choose T to be the set of edges; it is
easy to see that they are monotonic for any ordering of
nodes. However, it might be advantageous to choose longer
trees since the information might propagate faster through
the graph.

The algorithm for a graph with monotonic chains is
shown in Fig. 2. Its properties are summarized by the
following lemma.

Lemma 3.11. Starting with the second pass, the following

properties hold during Step 1 for node s:

1. For each edge ðu; vÞ 2 E with iðuÞ < iðvÞ and
iðuÞ < iðsÞ, messages ðu! vÞ in trees T 2 T uv are
valid. This property also holds for node u ¼ s in the
end of Step 1(b).

2. For each edge ðu; vÞ 2 E with iðsÞ < iðuÞ < iðvÞ,
messages ðv! uÞ in trees T 2 T uv are valid. This
property also holds for node u ¼ s in the beginning
and in the end of Step 1(a).

In addition, Property 1 holds during the first pass of the
algorithm.

Proof. We will use induction. The base of induction is
straightforward—right after initialization, the set of
messages considered in the lemma is empty.

We need to consider the following cases:

. Assuming that the lemma holds in the beginning of
Step 1(a), prove that it holds in the end of Step 1(a).
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8. Note that the outward pass (sending messages from the root to leaves)
is not needed. It would convert vectors �T to normal forms, but would not
change vectors �Ts .

9. Recall that our algorithm is message-free. As discussed in Section 2.2,
the phrase “message is valid for directed edge ðs! tÞ in tree T” means that
(2) holds (or that sending a message from node s to node t would not
modify �Tst;jk and �Tt;k except for a constant independent of j or k).

10. The idea of reusing messages in junction trees was used in the context
of iterative proportional fitting [29] and Rao-Blackwellized sampling [21].



. Assuming that the lemma holds in the beginning of
Step 1(b), prove that it holds in the end of Step 1(b).

. Assuming that the lemma holds in the end of
Step 1(b) for node s, prove that it holds in the
beginning of Step 1(a) for the next node s0 with
iðs0Þ ¼ iðsÞ þ 1.

. Assuming that the lemma holds in the end of
Step 1(b) for the last node, prove that it holds in
the beginning of Step 1(a) if the order of nodes is
reversed.

The last two cases are straightforward—they do not
involve any reparameterization and the set of messages
considered in the postcondition is the same as or smaller
than the set of messages in the precondition. The first
two cases follow from Proposition 3.9 and the fact that,
after passing a message from node s to node t in tree
T 2 T st, message ðs! tÞ in this tree becomes valid. tu
The lemma implies that starting with the second pass, all

messages in trees T 2 T ! oriented toward element ! 2
V [ E are valid in the beginning of the averaging operation
for element !. Therefore, passing messages from leaves to !
would not change parameters �T (except for constants), so
the algorithm satisfies the min-marginal property. Note that
this property may not hold during the first pass of the
algorithm; however, we can treat this pass as a part of
initialization. Then, the algorithm in Fig. 2 becomes a
special case of the algorithm in Fig. 1.

3.4.1 Efficient Implementation

The algorithm in Fig. 2 requires OðjT sj � jX sjÞ storage for
node s and OðjT stj � jX sj � jX tjÞ storage for edge ðs; tÞ.
However, we can reduce it to OðjX sjÞ and OðjX sj þ jX tjÞ,
respectively, using two ideas.11 First, it can be seen that the
algorithm maintains the following equalities: �Ts ¼ �T

0

s for
T; T 0 2 T s and �Tst ¼ �T

0
st for T; T 0 2 T st (assuming that they

hold after initialization). Second, vectors �T can be stored
using messages Mst ¼ fMst;k j k 2 X tg for directed edges
ðs! tÞ 2 E according to the following formulas:12

�Tt ¼
1

�t
��t þ

X
ðs;tÞ2E

Mst

0
@

1
A

�Tst;jk ¼
1

�st
��st;jk �Mst;k �Mts;j

� �
:

The resulting algorithm is shown in Fig. 3. (We introduced

notation 	st ¼ �st=�s for directed edge ðs! tÞ 2 E.)

4 SUMMARY OF TRW-S ALGORITHM

In the previous section, we described several versions of
TRW-S algorithm. For a practical implementation, we
recommend using the technique in Fig. 3. We now summarize
various algorithmic details.

The input to the algorithm is an energy function

specified by parameter vector ��. The method works by

passing messages; for each directed edge ðs! tÞ 2 E, there

is message Mst which is a vector with jX tj components.

Before running the algorithm, we need to make the

following choices:

. Select ordering of nodes ið�Þ (i.e., mapping of nodes
in V onto the set f1; 2; . . . ; jVjg).

. Select chains T 2 T which are monotonic with
respect to ið�Þ (see Definition 3.10). Each edge must
be covered by at least one chain.

. Choose probability distribution � over chains T 2 T
such that �T > 0,

P
T �

T ¼ 1.

These choices define coefficients 	st in Fig. 3 in the
following way: 	st ¼ �st=�s, where �st and �s are edge and
node appearance probabilities, respectively. In other words,
	st is the probability that a tree chosen randomly under �
contains edge ðs; tÞ given that it contains s.

An important property of our algorithm is that it
requires half as much memory compared to traditional
BP. Indeed, the latter needs to store messages in both
directions for each edge, while we can store only messages
oriented toward current node s (or, more precisely, messages
that are valid according to Lemma 3.11). The reverse
messages are not needed since we update them before they
are used. The same space in memory can be used for storing
either message Mst or Mts. The exact moment when Mts gets
replaced with Mst is when edge ðs; tÞ is processed during
Step 1 for node s.
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11. We assume that the storage required for vectors ��st is negligible. This
holds for many energy functions used in practice, e.g., for functions with
Potts terms.

12. Note that messages Mst that we use here are slightly different from
messages M

½13�
st used in [13], [33]. The relationship between the two is as

follows: Mst ¼ �stM ½13�
st . We decided to scale the messages because it

simplified some of the equations.

Fig. 2. The TRW-S algorithm for a graph with monotonic chains.



This observation can also be applied to traditional BP
with the same schedule of passing messages—we just need
to set 	st ¼ 1. The fact that the memory requirements of BP
can be reduced by half was first observed in [6]. However,
they considered only bipartite graphs and their goal was to
simulate the parallel schedule of updating messages. We
show that the amount of memory needed can be reduced
for any graph. In fact, we give a strict generalization of the
technique in [6]. Indeed, the schedule used in [6] is a special
case of our sequential schedule if we choose the ordering of
nodes such that any node in the first set of a bipartite
graphs is before any node in the second set.

Note that, for many important choices of terms ��st, the
message update in Step 1 can be done very efficiently in time
jX tj using distance transforms [6]. Then, the complexity of
one pass of our algorithm isOðjEj �KÞ, whereK ¼ maxs jX sj.

We conclude this section with the discussion of various
implementational details.

4.1 Choice of Node Ordering and Monotonic Chains

Automatic selection of node ordering for an arbitrary graph
is an interesting open question which is not addressed in
this paper. Intuitively, good ordering should allow long
monotonic chains. We tested two types of graphs: 2D grids
with four or eight neighborhood system and complete
graphs. We used a natural row-major order for the former.
Note that, for complete graphs, all orderings are equivalent.

Given an ordering, we constructed monotonic chains in a
greedy manner as follows: We select a monotonic chain such
that it is not possible to extend it, i.e., for the first node s, there
are no edges ðu; sÞ with iðuÞ < iðsÞ and, for the last node t,
there are no edges ðt; vÞwith iðvÞ > iðtÞ. After that, we remove
corresponding edges from the graph and repeat the proce-
dure until no edges are left. Thus, we ensure that each edge is
covered by exactly one tree. All trees are assigned the uniform
probability.

Although this method can produce different sets of trees
depending on what chains we choose, the behavior of the
TRW-S algorithm is specified uniquely (assuming that the
order of nodes is fixed). Indeed, the algorithm depends only

on coefficients 	st ¼ �st=�s for edges ðs! tÞ. It can be seen
that the number of trees containing node s is

ns ¼ maxfjðu; sÞ 2 E : iðuÞ < iðsÞj; jðs; vÞ 2 E : iðvÞ > iðsÞjg:

Therefore, we have 	st ¼ 1=ns.

4.2 Stopping Criterion

A conservative way of checking whether the WTA condition
has been achieved follows from the definition in Section 3.1:
Keep adding minimum configurations to the set S until either
S becomes consistent or no more configurations can be
added. This, however, may be expensive. As a practical
alternative, we suggest the following heuristic criterion
inspired by Theorem 3.4, Part 2: We stop if the value of the
lower boundEbound has not increased (within some precision)
during, say, the last 10 iterations. It is worth noting that, even
if WTA has been achieved and the lower bound does not
change anymore, the messages may still keep changing as
well as configuration x computed from the messages.

One could also imagine other stopping criteria, e.g.,
fixing the number of iterations. Different criteria will lead to
different tradeoffs between speed and accuracy.

4.3 Choosing Solution

An important question is how to construct solution x given
reparameterization b� ¼PT �

T �T . A possible approach is to
choose label xs for node s that minimizes b�sðxsÞ. However, it
is often the case that the minimum is not unique within the
precision of floating-point numbers. This is not suprising.
Indeed, ifallnodeshaveauniqueminimum,thenitmeansthat
we found the optimal solution, as shown in [33]. In general, we
cannot expect this since minimizing energy 1 is NP-hard.

Thus, it is essential how we treat nodes with multiple
minima. We used the following technique: We assign labels to
nodes in some order iðsÞ (which, in fact, was the same as in
TRW-S algorithm). For node s, we choose label xs that
minimizes b�sðxsÞþPiðuÞ<iðsÞ

b�usðxu; xsÞ, where the sum is over
edges ðu; sÞ 2 E. In terms of messages, this is equivalent to
minimizing ��sðxsÞþ

P
iðuÞ<iðsÞ

��usðxu; xsÞ þ
P

iðvÞ>iðsÞMvsðxsÞ.
This scheme alleviates the problem of multiple minima, but
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Fig. 3. Efficient implementation of the algorithm in Fig. 2 using messages. For a description of ordering ið�Þ and coefficients 	st, see Section 4. In the

end of Step 1, value Ebound gives a lower bound on the energy Eðx j ��Þ. This value cannot decrease with time.



does not solve it completely. Many nodes may still be
assigned essentially at random (more precisely, the solution
is determined by numerical errors).13

5 EXPERIMENTAL RESULTS

We have compared four algorithms: ordinary max-product
BP and three tree-reweighted algorithms (TRW-E, TRW-T,
TRW-S). The trees and their probabilities have been chosen
as described in the previous section.

For the TRW-E and TRW-T algorithms, we also used
damping parameter 	 2 ð0; 1�; as reported in [33], the
algorithms converge if sufficiently damped. For each
problem described below, we chose 	 as follows: We tried
values 0.1, 0.2, ..., 0.9, 1 and determined the average energy
after 30 iterations. (The averaging was performed over the
different instances of the same problem.) Then, we picked the
value with the smallest energy. If the optimal value was
	 ¼ 0:1, we kept halving it until the energy started increasing.
Note that damping was necessary for TRW-T algorithm,
otherwise it always diverged. As for TRW-E algorithm, this
was necessary only in some of the cases.

For the ordinary max-product BP algorithm, we imple-
mented the same sequential schedule of updating messages
as for TRW-S algorithm. We experimented with the parallel
update scheme and found that it was much slower.

5.1 Synthetic Problems

We tested the algorithms on two types of graphs: grids 30� 30

with four-neighborhood system and complete graphs with

50 nodes. Moreover, in each case, we tested the Ising model

with attractive potentials and with mixed potentials. Single-

node potentials were generated as independent Gaussians:
��s;0; ��s;1 � Nð0; 1Þ. Pairwise potentials were set as follows:
��st;00 ¼ ��st;11 ¼ 0, ��st;01 ¼ ��st;10 ¼ 
st, where 
st was generated

as jN ð0; �2Þj for attractive potentials and asNð0; �2Þ for mixed

potentials. Parameter �determines the strength of potentials;

we used values� 2 f 1ffiffi
d
p ; 2ffiffi

d
p ; 3ffiffi

d
p g, whered is the degree of nodes

(d ¼ 4 for the grid and d ¼ 49 for the complete graph). We

tested the algorithms on 100 sample problems.
As a measure of performance we used two quantities: the

value of the lower bound and the energy of current solution
(except for the BP algorithm, where we can determine only
one of these quantities). Note that the former is a lower
bound on the optimal value of the energy and the latter is
an upper bound. We plot these quantities as functions of the
number of iterations (i.e., the number of passed messages
divided by the number of directed edges in the graph). We
report only the average values over 100 samples.

Note that, for functions of binary variables, TRW com-
putes that same solution as maxflow algorithm [12]. In
particular, for attractive potentials, TRW is guaranteed to find
a global minimum, while, for mixed potentials, it finds part of
an optimal solution. It should also be noted that, in both cases,
maxflow would be significantly faster. The goal of this section
is to compare different message passing techniques.

5.1.1 Attractive Potentials

The results for attractive potentials are shown in Figs. 4a and
4b. Note that, in this case, the global minimum can be found
in polynomial time using the maxflow algorithm. In all cases,
TRW-S outperforms TRW-E and TRW-T. It also outperforms
BP since it converges to the global minimum of the energy,
while BP does not. However, in the case of the grid graph, the
TRW-S algorithm is slower in the beginning than BP.

5.1.2 Mixed Potentials

The results for this case are shown in Figs. 4c and 4d. The
situation is very different from the case of attractive
potentials. In all cases, BP outperforms TRW algorithms.
We believe that this indicates that LP relaxation (4) is not
tight in this case.

5.2 Real Problems

5.2.1 Binary Segmentation

First, we tested the algorithms on the energy function
arising in the method of Boykov and Jolly [2]. This is a
function with binary labels where unary data terms come
from user-provided hard constraints and learned back-
ground and foreground color models and pairwise terms
come from image gradients. A regular grid graph with
eight-neighborhood system is used. Hard (background)
constraints may exist only at the grid boundary; they
correspond to a rectangle dragged around the object.

We used 49 different instances with the average size
1:07� 105 nodes. Energy plots are shown in Fig. 5. The
average running time for the TRW-S algorithm was 0.067 secs
per iteration on a Pentium IV 2.8 GHz processor. For
comparison, maxflow algorithm in [1] took 0.114 secs (on
average). This shows that, for this problem, maxflow
significantly outperforms message passing algorithms.

5.2.2 Stereo Matching

We have tested the algorithms on the energy function
arising in the stereo matching problem with Potts interac-
tions [3]. The input is two images taken from different
viewpoints and the goal is to find a disparity for every pixel
in the left image. We used the four data sets from
[23]—Tsukuba, Map, Sawtooth, and Venus. Fig. 5 shows
the energy plots and Fig. 6 shows disparity maps for one of
the data sets (Tsukuba).

In addition to message passing techniques, we included
the results of the expansion move method of Boykov et al.
[3], which is referred to as BVZ. (Recall that it is based on
the maxflow algorithm.) Note that the horizontal axis for
BVZ denotes time; to match it to the number of messages
used for other techniques, we used the timing of TRW-S
algorithm. Thus, the correspondence between BVZ and
other message passing algorithms (TRW-E, TRW-T, BP) is
only approximate.14 Each point in Fig. 5 corresponds to
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13. This technique can be motivated by the following observation: If a
reparameterization satisfies WTA condition and the set of nodes with
multiple minima consists of disjoint chains which are monotonic with
respect to the ordering used, then the procedure will find a global minimum
(see [20]).

14. In our implementation, one iteration of TRW-E and TRW-T is much
slower than TRW-S. One reason is that we have not optimized TRW-E and
TRW-T, but there are also objective reasons; for example, TRW-E and TRW-T
require at least twice as much memory as TRW-S. On the other hand, in our
implementation, one iteration of BP is slightly faster and needs less memory
than TRW-S since we use integers for BP and double precision numbers for
TRW-S. We also informally tested single precision numbers for TRW-S; then
the value of the lower bound becomes very inaccurate, but the value of
energy gets worse only slightly.
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Fig. 4. Synthetic problems. Horizontal axis: number of iterations. Vertical axis, upper curves: average value of the energy Eðx j ��Þ. Vertical axis,

lower curves for TRW algorithms: average value of ���ð��Þ. Columns 1-3: different strengths of the interaction potential (� ¼ 1ffiffi
d
p ; 2ffiffi

d
p ; 3ffiffi

d
p Þ. (a) Grid graph

30� 30, attractive potentials. (b) Complete graph with 50 nodes, attractive potentials. (c) Grid graph 30� 30, mixed potentials. (d) Complete graph

with 50 nodes, mixed potentials.



one iteration of the BVZ algorithm and the last point
indicates that BVZ has converged.

TRW-S clearly outperforms other message passing

techniques. Compared to BVZ, it is slower in the beginning,

but eventually finds lower energy, as shown below:

Column “TRW-S time” shows the time per one iteration on a
Pentium IV 3.2 GHz processor. The column “accuracy”
reflects the value of the minimum energy found. For TRW-S,

it is defined as Emin�EboundEbound
� 100%, whereEmin andEbound are the

best values of energy and lower bound, respectively, found

during 512 iterations. For BVZ, the accuracy is defined

similarly, only Emin is now the value of the energy at

convergence.

6 DISCUSSION AND CONCLUSIONS

We have developed a new algorithm which can be viewed

as a method for direct maximization of objective function ���

subject to the constraint of (6). We gave a precise

characterization of local maxima of this function with

respect to TRW-S algorithm. We showed that the algorithm

is guaranteed to have a subsequence converging to such a

maximum.
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Fig. 5. Results on real problems. For description of BVZ, see text. (a) Binary image segmentation [2] (average over 50 instances), (b), (c), (d), and
(e) Stereo (Tsukuba, Map, Sawtooth, and Venus).

Fig. 6. (a) Result of BP after convergence. (b) Result of TRW-S after 100 iterations. The result of BVZ is visually indistinguishable from the latter.



As with all tree-reweighted algorithms, our method is
not guaranteed to find a global maximum. Nevertheless,

experimental results suggest that this is not an issue for
certain synthetic and real problems. For the stereo matching

problem, we were able to obtain slightly lower energy than
the expansion move algorithm [3], which is considered to be
the most accurate energy minimization technique for such

problems. On real vision problems that we have tested,
TRW-S outperforms both the TRW algorithms in [33] and

the ordinary max-product BP.

It should be noted that TRW-S (and TRW algorithms in

general) have some limitations. First, they do not work well

when LP relaxation (4) is not tight. Second, TRW algorithms

are slower than maxflow-based techniques (in cases when

such techniques can be applied). However, one advantage

of message-passing techniques over maxflow-based techni-

ques is that the former are easily parallelizable; one could

imagine GPU or hardware implementations. We also

believe that TRW-S could be a winner for problems which,

on one hand, are sufficiently “easy” in the sense that LP

relaxation (4) is tight, but, on the other, do not have a

“structured” set of labels so that maxflow-based techniques

cannot be applied. It is interesting, for example, to test the

problem of super resolution [7].

In our experiments, we noticed that TRW-S algorithm

would always converge to a fixed point of TRW, although

such convergence would usually take much longer than

achieving a weak tree agreement. However, we have not

been able to prove this general convergence. On the other

hand, achieving convergence may not be necessary since

running the algorithm after obtaining WTA will not

improve the lower bound on the energy.

APPENDIX A

PROPERTIES OF A CANONICAL NORMAL FORM

Lemma 6.1. Suppose that vector � is in a canonical normal form.

Then:

. Constant constst in (2) is zero:

min
j2X s
f�s;j þ �st;jkg ¼ 0 8 k 2 X t: ð8Þ

. For a tree-structured graph, (3) for min-marginals can
be rewritten as

�ð�Þ ¼ �const; ð9aÞ
�s;jð�Þ ¼ �const þ �s;j; ð9bÞ

�st;jkð�Þ ¼ �const þ f�s;j þ �st;jk þ �t;kg: ð9cÞ

Proof. The fact that constant constst in (2) is zero can be
derived as follows: Let us add �t;k to this equation:

min
j2X s
f�s;j þ �st;jk þ �t;kg ¼ �t;k þ constst 8 k 2 X t:

Now, take the minimum over k 2 X t. By the definition of a
canonical normal form, we get zero on the LHS and constst
on the RHS, i.e., 0 ¼ constst. The first property is proven.

Now, assume that the graph is a tree. Let x� be an
optimal configuration for vector � (then,Eðx� j �Þ ¼ �ð�Þ).
For a fixed node s 2 V, the minimum of �sðjÞ among j 2 X s

is achieved at j ¼ x�s (due to (3a)). By the definition of a
canonical normal form, the value of this minimum is zero.
Thus, �sðx�sÞ ¼ 0. Using the same reasoning for edge
ðs; tÞ 2 E, we get that �sðx�sÞ þ �stðx�s; x�t Þ þ �tðx�t Þ ¼ 0,
which implies that �stðx�s; x�t Þ ¼ 0. Therefore,

�ð�Þ ¼ �const þ
X
s2V

�sðx�sÞ þ
X
ðs;tÞ2E

�stðx�s; x�t Þ ¼ �const:

Now, for node s 2 V, let us plug j ¼ x�s into (3a).
The LHS is �ð�Þ and the RHS is consts. Therefore,
consts ¼ �ð�Þ ¼ �const. Similarly, we can derive that
constst ¼ �ð�Þ ¼ �const in (3b). The second property is
proven. tu

APPENDIX B

REPARAMETERIZATION AND MESSAGES

As discussed in Section 2.2, any message vector defines a
reparameterization. We now show that the converse is also
true: Any reparameterization can be described via messages,
up to a constant parameter vector.

Definition 6.2. Vector e� 2 IRd is called a constant parameter
vector if, for each node s 2 V, j 2 X s, and for each edge
ðs; tÞ 2 E, ðj; kÞ 2 X s � X t, values e�s;j and e�st;jk are constants
independent of j,k.

Lemma 6.3. Suppose that �2 � �1 (i.e., �2 is a reparameterization
of �1). Then, there exists message vector M and constant
parameter vector e� such that �2 ¼ �1½M� þ e� and e� � 0.

Proof. The following properties will be quite useful in the

proof:
ðP1Þ For any vectors �, �0, and M, there holds

ð�þ �0Þ½M� ¼ �½M� þ �0 ¼ �þ �0½M�.
ðP2Þ For any vectors �, M, and M 0, there holds

�½M þM 0� ¼ �½M�½M 0�.
In addition, we will need the following proposition.

Proposition 6.4. For any edge ðs; tÞ 2 E and variables j; j0 2 X s,
k; k0 2 X t

�1
st;jk þ �1

st;j0k0 � �1
st;jk0 � �1

st;j0k ¼ �2
st;jk þ �2

st;j0k0 � �2
st;jk0 � �2

st;j0k:

Proof. Let xjk;xjk
0
;xj

0k;xj
0k0 2 X be four configurations such

that they agree on all nodes other than s and t and

xjks ¼ j; x
jk
t ¼ k xjk

0

s ¼ j; x
jk0

t ¼ k0;

xj
0k
s ¼ j0; x

j0k
t ¼ k xj

0k0

s ¼ j0; x
j0k0

t ¼ k0:

We can write

Eðxjk j �1Þ þ Eðxj0k0 j �1Þ � Eðxjk0 j �1Þ �Eðxj0k j �1Þ
¼ �1

st;jk þ �1
st;j0k0 � �1

st;jk0 � �1
st;j0k

—it is easy to see that all other terms cancel each other.
We can write a similar expression for vector �2. Since
�1 � �2, the expressions on the LHS are equal. Therefore,
the expressions on the RHS are equal as well, which
gives us the desired result. tu
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We now proceed with the proof of the lemma. Let
� ¼ �1 � �2. As shown in [32], there exists a message
vectorM such that e� ¼ �½M� is a fixed point of max-product
BP. We have

�1½M� ¼ �2 þ ð�1 � �2Þ½M� ¼ �2 þ �½M� ¼ �2 � ð�e�Þ:
Also, �1 � �2 implies that e� � � � 0. Thus, we can prove
Lemma 6.3 by proving that e� is a constant parameter
vector.

We can convert e� to a canonical normal form b� by
adding a constant parameter vector. We will prove
that b� ¼ 0.

Consider an edge ðs; tÞ 2 E. Since b� is a reparameter-
ization of a constant function, by Proposition 6.4, we have

b�st;jk þ b�st;j0k0 � b�st;jk0 � b�st;j0k ¼ 0 ð10Þ
for all variables j; j0 2 X s, k; k

0 2 X t. Condition (8) for a
canonical normal form yields the following formulas:

min
j2X s
fb�s;j þ b�st;jkg ¼ 0 8 k 2 X t; ð11aÞ

min
k2X t
fb�t;k þ b�st;jkg ¼ 0 8 j 2 X t: ð11bÞ

Let us prove that b�st;jk 
 0 for every ðj; kÞ 2 X s � X t.
Let j0 and k0 be the variables that minimize (11a) and
(11b), respectively; then b�s;j0 þ b�st;j0k ¼ b�t;k0 þ b�st;jk0 ¼ 0.
Using (10), we get

b�st;jk ¼ b�st;j0k þ b�st;jk0 � b�st;j0k0 ¼ �b�s;j0 � b�t;k0 � b�st;j0k0 :
The expression on the RHS is nonpositive by the
definition of a canonical normal form.

Now, let us prove that b�st;jk ¼ 0 for every ðj; kÞ 2
X s � X t. Let j� and k� be the variables that minimizeb�s;j0 over j0 and b�t;k0 over k0, respectively; thenb�s;j� ¼ b�t;k� ¼ 0. Using (11a) for k and k� and (11b) for
j, we conclude that b�st;j�k 	 0, b�st;j�k� 	 0 and b�st;jk� 	 0.
Therefore, b�st;j�k ¼ b�st;j�k� ¼ b�st;jk� ¼ 0. Finally,

b�st;jk ¼ b�st;j�k þ b�st;jk� � b�st;j�k� ¼ 0:

The fact that b�st ¼ 0 for all edges tells us that nodes
are independent. We also know that Eðx j b�Þ is zero for
any configuration x. By considering configurations
which agree on all nodes except node s, we conclude
that b�s;j ¼ consts for any j 2 X s. This constant must be
zero since b� is in a canonical form.

We have shown that b�s ¼ 0 for all nodes s and thatb�st ¼ 0 for all edges ðs; tÞ, i.e., that b�s is a constant
parameter vector. Lemma 6.3 is proven. tu

APPENDIX C

PROOF OF LEMMA 3.1
Let us prove the following lemma first.

Lemma 6.5. If �1 � �2, then, for any vector � 2 LOCALðGÞ,
there holds h�1; �i ¼ h�2; �i.

Proof. By Lemma 6.3 in Appendix B, there exists message
vector M and constant parameter vector e� such that
�2 ¼ �1½M� þ e�. We will show that h�1½M�; �i ¼ h�1; �i and
he�; �i ¼ 0 for any � 2 LOCALðGÞ.

Case 1. Since �1½M� ¼ �1 þ 0½M�, it suffices to show

that h0½M�; �i ¼ 0. Moreover, due to Property P2 in

Appendix B, it is enough to prove this for vectors M with

a single nonzero element. Let Mst;k be this element. Then,

the only nonzero elements of � ¼ 0½M� are �t;k ¼Mst;k

and �st;jk ¼ �Mst;k for all j 2 X s. We can write

h0½M�; �i ¼ �t;k � �t;k þ
X
j

�st;jk � �st;jk

¼ ð�t;k �
X
j

�st;jkÞ �Mst;k ¼ 0

since � 2 LOCALðGÞ.
Case 2. e� is a constant parameter vector, so e�s;j ¼ cs

and e�st;jk ¼ cst, where cs and cst are constants indepen-
dent of j, k. We can write

he�; �i ¼ e�const þX
s2V

X
j

e�s;j � �s;j þ X
ðs;tÞ2E

X
j;k

e�st;jk � �st;jk
¼ e�const þX

s2V
cs

�X
j

�s;j

�
þ
X
ðs;tÞ2E

cst

�X
j;k

�st;jk

�

¼ e�const þX
s2V

cs þ
X
ðs;tÞ2E

cst;

so it is a constant independent of � . Plugging � ¼ �ðxÞ for

some configuration x 2 X , we conclude that this constant

is zero. tu
Now, we can prove Lemma 3.1. Let ��� be a vector

maximizing problem (5). Clearly, it satisfies constraints of

(6). Now, consider another vector �� 2 A such that b� ¼P
T �

T �T is a reparameterization of ��. We can write

���ð��Þ 
 max
��2A;

P
T
�T �T¼b����ð��Þ

¼ min
�2LOCALðGÞ

hb�; �i ¼ min
�2LOCALðGÞ

h��; �i ¼ ���ð���Þ;

where the first and the third equaility follow from Theo-

rem 2.1 and the second equality follows from Lemma 3.1.

Therefore, ��� maximizes (6).

APPENDIX D

LOCAL MAXIMA OF TRW-S ALGORITHM

As we proved, any vector �� that maximizes (6) must

satisfy the WTA condition. Here, we show the converse

is not necessarily true. We give an example of vectors ��

and e�� such that they both satisfy the WTA condition andP
T �

T e�T �PT �
T �T , but ���ðe��Þ 6¼ ���ð��Þ.

The graph with two trees is shown in Fig. 7. Vectors

�� ¼ f�1; �2g and e�� ¼ fe�1; e�2g are given as follows: All

single-node potentials are zero: �Ts;j ¼ e�Ts;j ¼ 0. The con-

stant terms are �Tconst ¼ 0, e�Tconst ¼ 0:5. Other elements of

vectors �1 and �2 are given by
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�1
ab ¼

2 0

0 2

� 	
�1
bd ¼

0 2 2

2 0 0

� 	
�1
de ¼

2 0

0 2

2 0

2
64

3
75

�1
eg ¼

0 2

2 0

� 	
�2
ac ¼

2 0

0 2

� 	
�2
cd ¼

2 0 0

0 2 2

� 	

�2
df ¼

2 0

2 0

0 2

2
64

3
75 �2

fg ¼
2 0

0 2

� 	

and elements of vectors e�1 and e�2—by

e�1
ab ¼

3 0

0 1

� 	 e�1
bd ¼

0 1 1

3 0 0

� 	 e�1
de ¼

0 0

0 4

0 0

2
64

3
75

e�1
eg ¼

0 4

0 0

� 	 e�2
ac ¼

1 0

0 3

� 	 e�2
cd ¼

3 0 0

0 1 1

� 	

e�2
df ¼

0 0

0 0

0 4

2
64

3
75 e�2

fg ¼
4 0

0 0

� 	
:

Condition
P

T �
T e�T �PT �

T �T can be checked using the
definition of reparameterization. It is easy to see that all tree
vectors are in a canonical normal form and WTA condition
is satisfied for both �� ande��. However, we have ���ð��Þ ¼ 0
and ���ðe��Þ ¼ 0:5.

This example applies not only to TRW-S, but also to
TRW-E and TRW-T algorithms. Indeed, it is not difficult to
see that vector �� is a fixed point of TRW algorithms.

Note that, in the example above, one of the nodes has
three possible states. This is not accidental: If all nodes have
binary states, then the WTA condition always yields a
global maximum of the lower bound, as our paper,
Kolmogorov and Wainwright, shows [12].

APPENDIX E

PROOF OF THEOREM 3.6

We now show that vectors �� 2 f��ðiÞgi are bounded (assuming
that they are in the canonical normal form). We will do it in
three steps: First, we show that elements �Tconst are bounded,
then we show that, for each node s 2 VT , vectors �Ts are
bounded, and, finally, we show that, for each edge ðs; tÞ 2 ET ,
vectors �Tst are bounded.

Case 1. According to Theorem 3.4, Part 1, terms �ð�T Þ
are nondecreasing. By Lemma 6.1, we have �Tconst ¼ �ð�T Þ.
This shows that �Tconst are bounded from below. The
following inequality then implies that they are also
bounded from above:X

T

�T �Tconst ¼
X
T

�T�ð�T Þ 
 �ð��Þ:

Case 2. Consider node s 2 V and variable j 2 X s. By
definition of the canonical normal form, elements �Ts;j are
bounded from below. To prove that they are bounded from
above, we derive an inequality similar to the previous one.

We use function �s;j for this purpose. It is a minimum of
a finite number of linear functions and, thus, is concave.
Applying Jensen’s inequality yieldsX

T

�T
�
�Tconst þ �Ts;j

�
¼
X
T

�T�s;jð�T Þ 
 �s;j

�X
T

�T �T
�
¼ �s;jð��Þ:

We already showed that �Tconst are bounded, so this implies
that �Ts;j are bounded from above.

Case 3. Consider an edge ðs; tÞ 2 V and variables
ðj; kÞ 2 X s � X t. By definition of the canonical normal
form, �Ts;j þ �Tst;jk þ �Tt;k 	 0. It implies that �Tst;jk is bounded
from below since �Ts;j and �Tt;k are bounded. The proof
that it is bounded from above is completely analogous to
the previous case; we just need to use function �st;jk.
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