Interior Pout methods
problem:

$$
\begin{array}{ll}
\min & f \\
\text { St } & g_{i}^{(x)} \leqslant 0 \\
\text { som }
\end{array}
$$

(assume there is some x st $g_{i}(x)\left(0, H_{l}\right)$
strategy: we wish to avoid the bound arg because progress on the boundary may be slow. H's have to take large Steps, because the active constraints might change. If we overstep to produce an infeasible pt., projecting back could be tough.
Introduce a penalty barmier

$$
\left.\phi(x)=-\sum_{i=1}^{m}\left(\frac{b}{t}\right) \log ^{\left(-\frac{b_{i}}{i}(x)\right.}\right)
$$

As long as $f_{i}(x)<0$, this is fruite. at $f_{i}(x)=0$, the ∞
for $f_{i}(x)$ very negative (i.e. for from boom vary) this is small.
now win $f(x)+\frac{1}{t} \cdot \varphi(x)$
(multiply through by t)
So:
$\min t f(x)+\varphi(x)$.
write $x^{*}(t)=\underset{x}{\operatorname{argmim}} t f(x)+\varphi(x)$

This is called the central path large $t: x^{*}(t)$ way in interior Small t could be at bomidary

Notice

1) f convex, g_{i} convex means $t f+\varphi$ is convex.
2) usual to have linear equalities as well

$$
x^{*}(t)=\operatorname{migimin} \quad t f+\varphi
$$

st. $\quad A x=b$
3) at $x^{*}(t)$, we must have

$$
\begin{aligned}
& \text { - } A x^{*}=6 \quad \text { (because, this is } \\
& \text { a min, } \\
& g_{i}\left(x^{*}\right)<0 \quad \\
& t \nabla f\left(x^{*}\right)+\nabla \varphi\left(x^{*}\right) \quad+\nu^{\top} A=0
\end{aligned}
$$

Which gives

$$
\begin{aligned}
& \text { rich gives } \\
& t \nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \frac{-1}{g_{i}\left(x^{*}\right)} \nabla g_{i}\left(x^{*}\right)+V^{\top} A=0
\end{aligned}
$$

4) there are $\lambda^{*}, \nu^{*} \leftarrow$ donal feasible corresponding to x^{*} write $\lambda_{i}^{*}=\frac{-1}{\operatorname{tg} g_{i}\left(x^{*}\right)}$
this is the.
wite $V^{*}=\frac{V}{t}$
then rewrite optimality as

$$
\nabla f+\sum_{i} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)+\nu^{* \pi} A=0
$$

bat this is conation for a Lagrangianso x^{*}

$$
\begin{aligned}
& \text { 恢 wiminults } \\
& f_{*}+\sum_{i}^{*} \dot{\lambda}_{i}^{*} g_{i}+\nu^{\top}(A x-b)
\end{aligned}
$$

for λ^{*}, v^{*}

$$
\begin{aligned}
& \text { or } \lambda^{*}, v^{*} \\
& \Rightarrow \lambda^{*}, \nu^{*} \text { is fual-feasible. } \\
&
\end{aligned}
$$

This is important, because we have that the Jul $g(\lambda, v)$ is finite at λ^{*}, v^{*}

We can evaluate the Dual at λ^{*}, v^{n} (6)

$$
\begin{aligned}
& g\left(\lambda^{*}, v^{*}\right)=\operatorname{int} L\left(x, \lambda^{*}, v^{*}\right) \\
&=\underset{x}{\mathcal{L}\left(x^{*}, \lambda_{1}^{*}, \nu^{*}\right)} \\
&=f+\underbrace{\sum_{i}^{[}\left[\frac{-1}{\operatorname{tg}\left(\left(x^{*}\right)\right.}\right]}_{-m / t} g_{i}\left(x^{*}\right)+\nu^{*}\left[A x^{*}-b\right] \\
& 0
\end{aligned}
$$

This is a lower bound on sola
$f\left(x^{*}\right)$ is upper bound
So its trapped in a range $\left[f\left(x^{*}\right)^{*}-m / t^{\prime} f\left(x^{*}\right]\right.$
we have
min $t f(x)+\phi(x)$
st $A x=b$
$K K T:$

$$
\begin{gathered}
A x=b \\
g_{i}(x) \leqslant 0 \\
\lambda_{i} \geqslant 0 \\
\nabla f+\sum_{i} \lambda_{i} \nabla g_{i}+\nu^{\top} A=0 \\
\frac{-\lambda_{i} g_{i}(x)=1 / t}{4} \text { from 2efu of } \lambda^{*}
\end{gathered}
$$

Notice that these look like.
KKT for original problem, with a change in the complementarity lond.
Alg: Start with feasible $x, t^{0}>0$,
if $\frac{M}{t}<\varepsilon$ quit else $t=\mu t$.

$$
x=x^{*}
$$

$$
\begin{aligned}
& \mu>1 . \Sigma>0 \\
& x^{*}=\operatorname{argmin} \quad E f+\varphi \\
& \text { st } A x=6 \\
& \text { (ALl?) }
\end{aligned}
$$

What about SDP?
consider

$$
\phi(x)=-\log \left[\begin{array}{r}
\operatorname{det}(* x)] \\
\\
\text { eigenvalues }
\end{array}\right.
$$

1) X has alt' large eigenvalues $\rightarrow \phi$ is positive, small
2) $\operatorname{det} x \rightarrow+0 \Rightarrow+\infty$
grabuents:

$$
\frac{\text { raduents: }}{\frac{\partial}{\partial x_{i j}}(\log \operatorname{det} x)}=\frac{1}{\operatorname{det}(x)}\left[\text { coetf of } x_{i j} \text { in jet }\right]
$$

Sometimes wort ten.

$$
\begin{aligned}
& \text { wartele. } \\
& \frac{\partial}{\partial x}(\log \operatorname{det} x)=x^{-1}
\end{aligned}
$$

Primal- Anal methods
recall that a path following method solver $K K T$

$$
\begin{aligned}
A x & =6 \\
g_{i}(x) & \leqslant 0 \\
\lambda_{i} & \geqslant 0 \\
\nabla f & +\sum_{i} \lambda_{i} \nabla g_{i}+\gamma^{\top} A=0 \\
& -\lambda_{i} f_{i}(x)=1 / t
\end{aligned}
$$

But we solved for x^{*} for gwent, then recovered λ^{*}, v^{*}.

- we could instead view $K K T$ as a $\frac{\text { system }}{t}$ of equs in λ, ν, x for given t, solve, make t alter, etc. bigger
how to solve?
a) theyre nonlmear, even it inequality constraints are Linear

$$
-\lambda_{i} f_{i}(x)=1 / t
$$

Nasty complementarity cord.
6). See this as rootfinting.
tint

$$
G\left(u^{*}\right)=0
$$

$u^{(n)}$: then

$$
G\left(u^{(u)}+\Delta u\right) \approx G\left(u^{(u)}\right)+J_{G} \cdot \Delta u
$$

so $J_{G} \Delta u=-G$.

Our system

$$
\begin{aligned}
& \nabla f+\lambda^{\top} J_{g}+\nu^{\top} A \\
& -\operatorname{diag}(\lambda) \cdot g \quad-\frac{1}{t} \cdot 1 \\
& A x-b \\
& \text { It this is } 0 \text { residual } \\
& \text { are is } 0, \lambda_{1} v \\
& \text { centering } \\
& \text { residual } \\
& \text { primal résitual }
\end{aligned}
$$

* Centering residual expresses whether point is on central path primal residual is x feasible r_{d}
r_{c}
r_{p}

Newton's method gives:

$$
\frac{\text { Newton's method gees: }}{\left.\left[\begin{array}{ccc}
H_{f}+\sum_{i} \lambda_{i} H_{g_{i}} & J_{g} & A \\
-\operatorname{diag}(\lambda) \cdot J_{g} & -\operatorname{diag}(g) & 0 \\
A & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta \lambda \\
\Delta \nu
\end{array}\right]=\begin{array}{l}
-r_{d} \\
-r_{c} \\
-r_{p}
\end{array}\right]}
$$

But how good is the point? we Don't necessarily have either primal feasible x of Dual feasible λ, ν - so we cant get Duality gap. Instead, work with surrogate Duality gap:

- assume x is primal feasible then primal has value $f(x)$.
- assume λ, v ave dual feasible, Dual has value

$$
f(x)+\lambda^{\top} g
$$

So gap is primal - 子ual

$$
\eta=-\lambda^{\top} g
$$

(Notice here whine assuming $g \times 0$,)

$$
\lambda \geqslant 0
$$

notice also that this is related to complementarity

$$
-\lambda_{i} g_{i}=\frac{1}{t}
$$

So $\hat{\eta}=\frac{M}{t} \quad$ OR $\quad t=\frac{m}{\hat{\eta}}$

Algorithm:
Start with fusible $x \quad(g(x)<0)$

$$
\begin{array}{ll}
n & \lambda>0 \\
& \mu>1 \\
& \varepsilon_{f}>0 \\
& \varepsilon>0
\end{array}
$$

Hevate

$$
t=\frac{\mu m}{\hat{\eta}}
$$

- get hiesearch dir by hear alg on system line search; find $S>0$ above

$$
\begin{array}{r}
x \\
x \\
\lambda \\
\nu
\end{array} \rightarrow \begin{array}{r}
\Delta x \\
\lambda \\
\nu
\end{array}+\begin{array}{r}
\Delta \lambda \\
\Delta \nu
\end{array}
$$

- until $\operatorname{lr}_{f=2}\left\|_{\text {teas }},\right\| r_{d} \| \leqslant \varepsilon_{\text {fleas }}, \hat{\eta}<\varepsilon$.
line search:
- look for $s\left(\begin{array}{l}\Delta x \\ \Delta \Delta \\ \Delta v\end{array}\right)$ that gets smallest value of norm of residual
- ensure $\lambda>0, ~ g(x)<0$
strategy
- find Gurgest $s=s^{*}$ that give $s \lambda>0$ now search back by

$$
s^{(n+1)}=\beta s^{(n)} \quad 0<\beta<1
$$

looking for sufficient improvement in residual

