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Abstract

In this paper we introduce two new methods for solving
binary quadratic problems. While spectral relaxation meth-
ods have been the workhorse subroutine for a wide variety
of computer vision problems - segmentation, clustering, im-
age restoration to name a few - it has recently been chal-
lenged by semidefinite programming (SDP) relaxations. In
fact, it can be shown that SDP relaxations produce better
lower bounds than spectral relaxations on binary problems
with a quadratic objective function. On the other hand, the
computational complexity for SDP increases rapidly as the
number of decision variables grows making them inappli-
cable to large scale problems.

Our methods combine the merits of both spectral and
SDP relaxations - better (lower) bounds than traditional
spectral methods and considerably faster execution times
than SDP. The first method is based on spectral subgradi-
ents and can be applied to large scale SDPs with binary
decision variables and the second one is based on the trust
region problem. Both algorithms have been applied to sev-
eral large scale vision problems with good performance. 1

1. Introduction
Spectral relaxation methods can be applied to a wide

variety of problems in computer vision. They have been
developed to provide solutions to, e.g., image restoration,
motion segmentation, partitioning, figure-ground segmen-
tation, clustering, subgraph matching [8, 13]. In partic-
ular, large scale problems that can be formulated with a
binary quadratic objective function are handled efficiently
with several thousands of decision variables.

More recently, semidefinite programming (SDP) relax-
ations have also been applied to the same type of computer
vision problems, e.g., [6, 15, 12]. It can be shown that such

1This work has been funded by the EC’s 6th FP SMErobotTM(no.
011838), the Swedish Research Council (no. 2004-4579), SSF programme
VISCOS II, and by the Swedish Road Administration and by Vinnova in
the project ’Automatisk Bildbehandling och Trafikstudier’.

relaxations produce better estimates than spectral methods.
However, as the number of variables grows, the execution
times of the semidefinite programs increase rapidly. In prac-
tice, one is limited to a few hundred decision variables.

Spectral and SDP relaxation methods can be regarded as
two points on an axis of increasing relaxation performance.
We introduce two alternative methods that lie somewhere in
between these two relaxations. Unlike standard SDP solvers
that suffer from bad time complexity, they can still handle
large scale problems. The two methods are based on a sub-
gradient optimization scheme. We show good performance
on a number of experimental problems. Our main contribu-
tions are:

• An efficient algorithm for solving binary SDP prob-
lems with quadratic objective function based on sub-
gradient optimization is developed. In addition, we
show how to incorporate linear constraints in the same
program.

• The trust region subproblem is introduced and we
modify it to in order to be applicable to binary
quadratic problems with a linear term in the objective
function.

Many of the application problems mentioned above are
known to be NP-hard, so in practice they cannot be solved
optimally. Thus one is forced to rely on approximate meth-
ods which results in sub-optimal solutions. Certain energy
(or objective) functionals may be solved in polynomial time,
for example, submodular functionals using graph cuts [7],
but this is not the topic of the present paper.

In [5], an alternative (and independent) method is de-
rived which is also based on subgradients, called the spec-
tral bundle method. Our subgradient method differs from
[5] in that it is simpler (just look for an ascent direction)
and we have found empirically on the experimental prob-
lems (see Section 5) that our method performs equally well
(or better). An in-depth comparison of the two alternatives
is, however, beyond the scope of this paper.
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2. Background
In this paper we study different ways to find approximate

solutions of the following binary quadratic problem:

z = inf yT Ay + bT y, y ∈ {−1, 1}n (1)

where A is an n×n (possibly indefinite) matrix. A common
approach for approximating this highly nonconvex problem
is to solve the relaxed problem:

zsp = inf
||x||2=n+1

xT Lx (2)

where

x =
(

y
yn+1

)
, L =

(
A 1

2b
1
2bT 0

)
.

Solving (2) amounts to finding the eigenvector correspond-
ing to the algebraically smallest eigenvalue of L. Therefore
we will refer to this problem as the spectral relaxation of
(1). The benefits of using this formulation is that eigen-
value problems of this type are well studied and there exist
solvers that are able to efficiently exploit sparsity, resulting
in fast execution times. A significant weakness of this for-
mulation is that the constraints y ∈ {−1, 1}n and yn+1 = 1
are relaxed to ||x||2 = n + 1, which usually results in poor
approximations.

Now let us turn our attention to bounds obtained through
semidefinite programming. Using Lagrange multipliers
σ = [σ1, . . . ,σn+1 ]T for each binary constraint x2

i −1 = 0,
one obtains the following relaxation of (1)

sup
σ

inf
x

xT (L + diag(σ))x − eTσ. (3)

Here e is an (n + 1)-vector of ones. The inner minimiza-
tion is finite valued if and only if (L + diag(σ)) is positive
semidefinite, that is, L + diag(σ) $ 0. This gives the fol-
lowing equivalent relaxation:

zd = inf
σ

eTσ, L + diag(σ) $ 0. (4)

We will denote this problem the dual semidefinite problem
since it is dual to the following problem (see [3, 6]):

zp = inf
X!0

tr(LX), diag(X) = I, (5)

where X denotes a (n+1)× (n+1) matrix. Consequently
we will call this problem the primal semidefinite program.
Since the dual problems (4) and (5) are convex, there is in
general no duality gap. In [6], the proposed method is to
solve (5) and use randomized hyperplanes (see [4]) to de-
termine an approximate solution to (1). This method has
a number of advantages. Most significantly, using a result
from [4] one can derive bounds on the expected value of

the relaxed solution. It is demonstrated that the approach
works well on a number of computer vision problems. On
the other hand, solving this relaxation is computationally
expensive. Note that the number of variables is O(n2) for
the primal problem (5) while the original problem (1) only
has n variables.

3. A Spectral Subgradient Method

In this section we present a new method for solving the
binary quadratic problem (1). Instead of using semidefinite
programming we propose to solve the (relaxed) problem

zsg = sup
σ

inf
||x||2=n+1

xT (L + diag(σ))x − eTσ, (6)

with steepest ascent. At a first glance it looks as though
the optimum value of this problem is higher than that of (3)
since we have restricted the set of feasible x. However it is
shown in [9] that (3), (5) and (6) are in fact all equivalent.
The reason for adding the norm condition to (6) is that for a
fixed σ we can solve the inner minimization by finding the
smallest eigenvalue. Let

L(x,σ) = xT (L + diag(σ))x − eTσ (7)

f(σ) = inf
||x||2=n+1

L(x,σ). (8)

Since f is a pointwise infimum of functions linear in σ it is
easy to see that f is a concave function. Hence our problem
is a concave maximization problem. Equivalently, f can be
written as

f(σ) = (n + 1)λmin(L + diag(σ)) − eTσ. (9)

Here λmin denotes the smallest eigenvalue. It is widely
known that the eigenvalues are analytic (and thereby dif-
ferentiable) functions everywhere except where they cross.
In order to be able to use a steepest ascent method we need
to consider subgradients as eigenvalues will cross during the
optimization. Recall the definition of a subgradient [1].

Definition 1. If f : Rn+1 %→ R is concave, then ξ ∈ Rn+1

is a subgradient to f at σ0 if

f(σ) ≤ f(σ0) + ξT (σ − σ0), ∀σ ∈ Rn+1. (10)

One can show that if a function is differentiable then the
gradient is the only vector satisfying (10). We will denote
the set of all subgradients at a point σ0 by ∂f(σ0). From
(10) it is easy to see that this set is convex and if 0 ∈ ∂f(σ0)
then σ0 is a global maximum. Next we show how to calcu-
late the subgradients of our problem. Let x̄2 be the vector
containing the entries of x̄ squared. Then we have:

Lemma 1. If x̄ is an eigenvector corresponding to the min-
imal eigenvalue of L + diag(σ̄) with norm ||x̄||2 = n + 1
then ξ = x̄2 − e is a subgradient of f at σ̄.



Proof. If x̄ is an eigenvector corresponding to the minimal
eigenvalue of L + diag(σ̄) then x̄ solves

inf
||x||2=n+1

L(x, σ̄). (11)

Assume that x̃ solves

inf
||x||2=n+1

L(x, σ̃) (12)

then

f(σ̃) = x̃T (L + diag(σ̃))x̃ − eT σ̃

≤ x̄T (L + diag(σ̃))x̄ − eT σ̃

= f(σ̄) + x̄T diag(σ̃ − σ̄)x̄ − eT (σ̃ − σ̄)

= f(σ̄) +
∑

i

(σ̃i − σ̄i)(x̄2
i − 1)

= f(σ̄) + ξT (σ̃ − σ̄).

The inequality comes from the fact that x̃ solves (12).

The result above is actually a special case of a more gen-
eral result given in [1] (Theorem 6.3.4). Next we state three
corollaries obtained from [1] (Theorems 6.3.7, 6.3.6 and
6.3.11). The first one gives a characterization of all sub-
gradients.

Corollary 1. Let E(σ̄) be the set of all eigenvectors with
norm (n + 1)2 corresponding to the minimal eigenvalue of
L + diag(σ̄). Then the set of all subgradients of f at σ̄ is
given by

∂f(σ̄) = convhull({x2 − e; x ∈ E(σ̄)}). (13)

We do not give the proof here but note that the inclusion
∂f(σ̄) ⊇ convhull({x2 − e; x ∈ E(σ̄)}) is obvious by
Lemma 1 and the fact that ∂f(σ̄) is a convex set.

Corollary 2. Let E(σ̄) be the set of all eigenvectors with
norm (n + 1)2 corresponding to the minimal eigenvalue of
L + diag(σ̄). Then

f ′(σ̄, d) = inf
ξ∈∂f(σ̄)

dT ξ = inf
x∈E(σ̄)

dT (x2 − e). (14)

Here f ′(σ̄, d) is the directional derivative in the direction
d or formally

f ′(σ̄, d) = lim
t→0+

f(σ̄ + td) − f(σ̄)
t

. (15)

The first equality is proven in [1]. The second equality fol-
lows from Corollary 1 and the fact that the objective func-
tion dT ξ is linear in ξ. For a linear (concave) function the
optimum is always attained in an extreme point. From [1]
we also obtain the following

Corollary 3. The direction d of steepest ascent at σ0 is
given by

d =
{

0 if ξ = 0
ξ

||ξ|| if ξ *= 0 (16)

where ξ ∈ ∂f(σ0) is the subgradient with smallest norm.

3.1. Implementation

The basic idea is to find an ascending direction and then
to solve an approximation of f(σ) along this direction.

3.1.1 Finding ascent directions

The first step is to find an ascending direction. We use
Corollary 1 to find a good direction. A vector x ∈ E(σ̄)
can be written

x =
∑

i

λixi,
∑

i

λ2
i = 1, (17)

where {xi} is an orthogonal base of the eigenspace corre-
sponding to the smallest eigenvalue (with ||xi||2 = n + 1).
For the full subgradient set we need to calculate x2 − e for
all possible values of λ in (17). In practice, we are led to
an approximation and empirically we have found that it is
enough to pick the vectors x2

i − e and use the convex en-
velope of these vectors as our approximation. Let S be our
approximating set. To determine the best direction, the vec-
tor of minimum norm in S needs to be found. The search
can be written as

inf
ξ∈S

||ξ||2 = inf ||
∑

k

µkx2
k − e||2,

∑

k

µk = 1, µk ≥ 0,

(18)
which is a convex quadratic program in µk that can be
solved efficiently. To test if an ascending direction d is actu-
ally obtained, we use Corollary 2 to calculate the directional
derivative. In fact we can solve the optimization problem
(14) efficiently by using the parameterization (17), which
results in

inf dT

(
(
∑

i

λixi)2 − e

)
,

∑

i

λ2
i = 1. (19)

This is a quadratic function in λ with a norm constraint
which can be solved by calculating eigenvalues. If d is not
an ascent direction then we add more vectors to the set S
to improve the approximation. In this way we either find
an ascending direction or we find that zero is a subgradient,
meaning that we have reached the global maximum.

3.1.2 Approximating f along a direction

The next step is to find an approximation f̃ of the objective
function along a direction. We do this by restricting the set
of feasible x to a set X consisting of a few of the eigenvec-
tors corresponding to the lowest eigenvalues of L+diag(σ).
The intuition behind this choice for X is that if the eigen-
value λi is distinct then x2

i − e is in fact the gradient of the
function

(n + 1)λi(L + diag(σ)) − eTσ, (20)

where λi(·) is the ith smallest eigenvalue as a function of a
matrix. The expression

fi(t) = xT
i (L + diag(σ̄ + td))xi − eT (σ̄ + td) (21)



is then a Taylor expansion around σ̄ in the direction d. The
function f1 approximates f well in neighborhood around
t = 0 if the smallest eigenvalue do not cross any other
eigenvalue. If it does then one can expect that there is some
i such that min(f0(σ), fi(σ)) is a good approximation. This
gives us a function f̄ of the type

f̄(σ) = inf
xi∈X

xT
i (L+ diag(σ̄+ td))xi − eT (σ̄+ td). (22)

To optimize this function we can solve the linear program

maxt,f f
f ≤ xT

i (L + diag(σ̄ + td))xi − eT (σ̄ + td)
∀xi ∈ X, t < tmax.

(23)

The parameter tmax is used to express the interval for which
the approximation is valid. The program gives a value for t
and thereby a new σ̃ = σ̄ + td. In general, the new σ gives
a higher value when evaluating f at σ̃. However if the ap-
proximation is not good enough, one needs to improve the
approximating function. This can be accomplished by mak-
ing a new Taylor expansion around the point σ̃ and add these
terms to our approximation and repeat the process. Figure
1 shows two examples of the approximating function.
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Figure 1. Two approximations of the objective function along as-
cent directions. The dashed line is the true objective function and
the solid line is the approximation.

4. The Trust Region Problem

An interesting relaxation is obtained if we drop the con-
straints that yi ∈ {−1, 1} and only require that the last vari-
able satisfies yn+1 = 1. We then obtain a problem similar
to the trust region problem:

ztr = inf
||y||2=n

yT Ay + bT y. (24)

We propose to use this relaxation instead of the spectral re-
laxation (2). Since the objective function is the same as for
the spectral relaxation with yn+1 = 1 it is obvious that

zsp ≤ ztr (25)

holds. Equality will only occur if the solution to zsp hap-
pens to have ±1 as its last component. This is generally
not the case. In fact, empirically we have found that the
last component is often farther away from ±1 than the rest

of the components. So by enforcing the constraint, that is,
solving (24) often yields much better solutions.

The trust region problem have been studied extensively
in the optimization literature. A remarkable fact is that this
is a nonconvex problem with no duality gap (see [3]). We
could solve it with the same type of subgradient algorithm
as developed in the previous section, however, there already
exist efficient large scale solvers. It is well-know that y is a
global minimizer if there exists λ ∈ R such that

(A − λI)y = − 1
2b (26)

||y||2 = n (27)

(A − λI) $ 0. (28)

Here (26), (27) are the KKT conditions for stationarity,
while (28) determines the global minimizer (see [10],[11]
and references therein). It can be solved using semidefinite
programming [10], however, the LSTRS-algorithm devel-
oped in [11] is more efficient. An implementation is a pub-
licly available from the authors of [11] upon request. The
algorithm solves

inf
||y||2≤n

yT Ay + bT y. (29)

This is a slightly different problem than our formulation of
the trust region problem. However it is easy to see that by
adding k(n − yT y) for sufficiently large k the obtained so-
lution will satisfy ||y||2 = n. LSTRS works by solving a
parametrised eigenvalue problem. It searches for an α such
that the eigenvalue problem

(
A b/2

bT /2 α

) (
y
1

)
= λmin

(
y
1

)
(30)

or equivalently

(A − λminI)y = −1
2
b

α− λmin = −1
2
bT y (31)

has a solution. Finding this α is done by determining a λ
such that φ′(λ) = n, where φ is defined by

φ(λ) =
1
4
bT (A − λI)†b = −1

2
bT y. (32)

It can be shown that λ gives a solution to (31). φ is a ra-
tional function with poles at the eigenvalues of A and can
therefore be expensive to compute. Instead rational interpo-
lation is used to efficiently determine λ. For further details
see [11].

5. Experiments

In this section we evaluate the performance of our meth-
ods for a few different applications that can be solved as



binary quadratic problems. The algorithms are compared
with spectral relaxations using Matlab’s sparse eigenvalue
solver, SDP relaxations using SeDuMi [14] and the spectral
bundle algorithm developed by Helmberg [5]. Our spec-
tral subgradient algorithm is implemented in Matlab and the
trust region algorithm is based on LSTRS [11] (also Mat-
lab). Note that our implementations consist of simple mat-
lab scripts while the other software has implementations in
c (and often highly optimized for speed).

5.1. Binary Restoration
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Figure 2. Computed solutions for the signal problem with n =
400. (a) Original signal, (b) signal + noise, (c) solution obtained
using spectral relaxations, (d) trust region, (e) subgradient algo-
rithm and (f) dual semidefinite program.

As a test problem (which can be solved exactly by other
means), we first consider the problem of separating a sig-
nal from noise. The signal {xi}, i = 1, ..., n is assumed to
take the values ±1. Normally distributed noise with mean
0 and variation 0.6 is then added to obtain a noisy signal
{si}, i = 1, ..., n. Figure 2 (a) and (b) graphs the origi-
nal signal and the noisy signal respectively for n = 400.
A strategy to recover the original signal is to minimize the
following objective function:
∑

i

(xi − si)2 + µ
∑

i

∑

j∈N(i)

(xi − xj)2, xi ∈ {−1, 1}.

(33)
Here N(i) means a neighborhood of i, in this case {i −
1, i + 1}. By adding the (homogenization) variable xn+1,
the problem can be transformed to the same form as in (6).
Table 1 shows the execution times and Table 2 displays
the obtained estimates for different n. For the subgradi-
ent method, 10 iterations were run and in each iteration, the
15 smallest eigenvectors were computed for the approxima-
tion set S in (18). Note in particular the growth rate of the
execution times for the SDP. Figure 2 (b) - (d) shows the
computed signals for the different methods when n = 400.
The results for other values of n have similar appearance.

The spectral relaxations behave (reasonably) well for this
problem as the estimated last xn+1 happens to be close to
±1.

n Spectral Trust region Subgradient SDP
100 0.33 0.60 4.21 3.81
200 0.30 0.62 6.25 13.4
400 0.32 0.68 6.70 180
600 0.33 0.80 10.7 637
800 0.49 1.40 10.1 2365

1000 0.37 1.85 15.2 4830

Table 1. Execution times in seconds for the signal problem.

n Spectral Trust region Subgradient SDP
100 24.3 31.6 40.6 53.1
200 27.4 40.5 53.5 76.1
400 74.9 88.4 139 174
600 134 164 240 309
800 169 207 282 373

1000 178 229 322 439

Table 2. Objective values of the relaxations. A higher value means
a better lower bound for the (unknown) optimal value.

Next we consider a similar problem as above, which was
also a test problem in [6]. We want to restore the map of Ice-
land given in Figure 3. The objective function is the same

Figure 3. Map of Iceland corrupted by noise.

as in (33), except that the neighborhood of a pixel is defined
to be all its four neighboring pixels. The size of the image is
78× 104, which yields a program with 78 · 104+1 = 8113
variables. Recall that the semidefinite primal program will
contain 81132 = 65820769 variables and therefore we have
not been able to compute a solution with SeDuMi. In [6], a
different SDP solver was used and the execution time was
64885s. Instead we compare with the spectral bundle al-
gorithm [5]. Table 3 gives the execution times and the ob-

Method Time (s) Lower bound
Spectral 0.48 -1920

Trust region 2.69 -1760
Subgradient, 10 iter. 74.6 -453

Bundle, 5 iter. 150.4 -493

Table 3. Execution times and objective values of the computed
lower bounds for the Iceland image.
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Figure 4. Top row: relaxed soutions. Middle: threshholded solutions. Bottom: histogram of the estimated pixel values. (a),(e),(i): spectral
method, (b),(f),(j): trust region, (c),(g),(k): subgradient, 10 iterations, (d),(h),(l): Helmberg’s bundle method, 5 iterations.

jective values of the estimations. Figure 4 shows the re-
sulting restorations for the different methods. For the sub-
gradient algorithm, the 4 smallest eigenvalues were used in
(18). Even though the spectral relaxation results in a slightly
lower objective value than the trust region, the restoration
looks just as good. Here the last component of the eigen-
vector is 0.85 which explains the similarity of these two
restorations. The subgradient method yields a solution with
values closer to ±1 as expected. Recall that there is a dual-
ity gap which means that the optimal solution will not attain
xi = ±1 for all i in general. The spectral bundle method
provides a solution where some pixel values are much larger
than 1. In order to make the difference between pixels with
values −1 and 1 visible in Figure 4(d) we hade to replace
these pixel values with a lower value. This results in the
white areas in Figure 4(d) and the bar close to the value 2 in
Figure 4(d).

5.2. Partitioning

In this section we consider the problem of partitioning
an image into perceptionally different parts. Figure 5 (a)
shows the image that is to be partitioned. Here we want to
separate the buildings from the sky. To do this we use the

following regularization term
∑

ij

wij(xi − xj)2. (34)

The weights wij are of the type

wij = e−
(RGB(i)−RGB(j))2

σRGB e
−d(i,j)2

σd , (35)

where RGB(i) denotes the RGB value of pixel i and d(i, j)
denotes the distance between pixels i and j. To avoid so-
lutions where all pixels are put in the same partition, and
to favour balanced partitions, a term penalizing unbalanced
solutions is added. If one adds the constraint eT x = 0 (as
in [6]) or equivalently xT eeT x = 0 we will get partitions of
exactly equal size (at least for the subgradient method). In-
stead we add a penalty term to the objective function yield-
ing a problem of the type

inf xT (L + µeeT )x, xi ∈ {−1, 1}. (36)

Observe that this problem is not submodular [7]. Since the
size of the skyline image (Figure 5(a)) is 35×55 we obtain a
dense matrix of size 1925× 1925. However, because of the
structure of the matrix it is easy to calculate (L + µeeT )x
which is all that is needed to employ power iteration type
procedures to calculate eigensystems. This type of matri-
ces are not supported in the spectral bundle software, so



we cannot compare with this method. Also, the problem
is too large for SeDuMi and there is no point in running
the trust region method on this problem since the matrix L
has not been homogenized. Figure 5 (b) shows the result-
ing partition. Figures 5 (e),(f) give the relaxed solutions
after 4 and 7 iterations, respectively, of the subgradient al-
gorithm. Both relaxed solutions yield the same result when
thresholded at zero. As a comparison, we have included the
partitionings obtained from Normalized Cuts [13] which is
a frequently applied method for segmentation. The rea-

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Original image, (b) thresholded segmentation with 7
iterations of the subgradient algorithm (white pixels correspond to
one class, remaining pixels are in the other class) (c) Fiedlervec-
tor thresholded at the median, (d) Fiedlervector thresholded at the
mean, (e),(f) relaxed (untruncated) solutions obtained with 4 and
7 iterations, respectively, of the subgradient algorithm.

Method Time (s)
Subgradient, 4 iter. 209
Subgradient, 7 iter. 288
Normalized Cuts 5.5

Table 4. Computing times for the skyline image.

son for the strange partitioning in Figures 5(c),(d) is that
the Fiedler vector in Normalized Cuts essentially contains
values close to −0.3 and 3.3 and the median is also close
to −0.3. Table 4 shows the computing times of the differ-
ent methods. Note that the convergence of the subgradient
method here is slower than previously. This is because the
eigenvalue calculations is more demanding for (L+µeeT ).

6. Registration

In our final experiments we consider the registration
problem. It appears as a subproblem in many vision ap-
plications and similar formulations as the one we propose
here have appeared in [2, 12, 15].
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Figure 6. One random example for the registration problem: (a)
Target points n = 60 and (b) source points m = 15.

Suppose we are given a set of m source points that
should be registered to a set of n target points, where
m < n. Let xij denote a binary (0, 1)-variable which is 1
when source point i is matched to target point j, otherwise
0. As objective function, we choose the quadratic function

∑
wijklxijxkl, (37)

and set wijkl = −1 if the coordinates of the source points
si, sk are consistent with the coordinates of the target points
tj , tl, otherwise wijkl = 0. Two correspondence pairs are
considered to be consistent if the distances are approxi-
mately the same between source and target pairs, that is,

abs(||si − sk||− ||tj − tl||) < θ, (38)

for some threshold θ. Each source point is a priori equally
likely to be matched to any of the target points and hence
there is no linear term in the objective function. In addition,
each source point should be mapped to one of the target
points and hence

∑
j xij = 1 for all i. Also, two source

points cannot be mapped to the same target point. This can
be specified by introducing (0, 1)-slack variables xm+1,j

for j = 1, . . . , n and the constraints
∑

j xm+1,j = n − m

as well as
∑m+1

i=1 xij = 1 for all j.
By substituting xij = zij+1

2 , the problem is turned into
a standard (−1, 1)-problem, but now with linear equality
constraints. In the case of the trust region method we may
penalize deviations from the linear constraints by adding
penalties of the type µ(

∑
j xij − 1)2 to the objective func-

tion. One could the same in the case of the subgradient
algorithm, however, in this case the penalties have to be ho-
mogenized and may therefore not be as effective as for the
trust region method. Instead Lagrange multipliers of the
type σk(

∑
j xij)2 − σk are introduced. These multipliers

can then be handled in exactly the same way as the con-
straints x2

ij − 1 = 0. Each constraint gives a new entry in
the subgradient vector which is updated in the same way as
before.

We have tested the formulation on random data of var-
ious sizes. First, coordinates for the n target points are
randomly generated with a uniform distribution, then we
randomly selected m source points out of the target points,
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Figure 7. Computed solutions z = [ z11, z12, . . . , zm+1,n ] for the
registration problem using (a) the trust region method, (b) the sub-
gradient method, 7 iterations, (c) the subgradient method, 15 iter-
ations, and (d) SDP with SeDuMi, cf. Figure 6.
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Figure 8. Registration of the source points to their corresponding
target points, cf. Figure 6.

Method Time (s)
Trust region 1.9

Subgradient, 7 iter. 43.5
Subgradient, 15 iter. 193

SDP 6867

Table 5. The registration problem with m = 15, n = 60.

added noise and applied a random Euclidean motion. Fig-
ures 6 (a),(b) show the target and source points for one ex-
ample with m = 15 and n = 60. The threshold θ is set
to 0.1. The untruncated (vectorized) solutions for zij are
plotted in Figure 7 and the resulting registration for the sub-
gradient method is shown in Figure 8. The standard spectral
relaxation for this problem works rather bad as the last en-
try zn+1 is in general far from one. The computing times
are given in Table 5. Note that this example has approxi-
mately four times as many decision variables as the largest
problems dealt with in [12, 15]. For more information on
the quality of SDP relaxations for this problem, the reader
is also referred to the same papers.

7. Conclusions

We have shown how large scale binary problems with
quadratic objectives can be solved by taking advantage of
the spectral properties of such problems. The approxima-

tion gap compared to traditional spectral relaxations is con-
siderably smaller, especially, for the subgradient method.
Compared to standard SDP relaxations, the computational
effort is less demanding, in particular, for the trust region
method. Future work includes to apply the two methods
to more problems that can be formulated within the same
framework and to make an in-depth experimental compar-
isons. It would also be interesting to see how the proposed
methods behave in a branch-and-bound algorithm for ob-
taining more accurate estimates.
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