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Abstract. This paper is a survey of the theory and methods of photogrammetric
bundle adjustment, aimed at potential implementors in the computer vision commu-
nity. Bundle adjustment is the problem of refining a visual reconstruction to produce
jointly optimal structure and viewing parameter estimates. Topics covered include:
the choice of cost function and robustness; numerical optimization including sparse
Newton methods, linearly convergent approximations, updating and recursive meth-
ods; gauge (datum) invariance; and quality control. The theory is developed for
general robust cost functions rather than restricting attention to traditional nonlinear
least squares.

Keywords: Bundle Adjustment, Scene Reconstruction, Gauge Freedom, Sparse Ma-
trices, Optimization.

1 Introduction

This paperis asurvey of the theory and methods of bundle adjustment aimed at the compute
vision community, and more especially at potential implementors who already know a little
about bundle methods. Most of the results appeared long ago in the photogrammetry anc
geodesy literatures, but many seem to be little known in vision, where they are gradually
being reinvented. By providing an accessible modern synthesis, we hope to forestall some
of this duplication of effort, correct some common misconceptions, and speed progress in
visual reconstruction by promoting interaction between the vision and photogrammetry
communities.

Bundle adjustmentis the problem of refining a visual reconstruction to prodoagly
optimal 3D structure and viewing parameter (camera pose and/or calibration) estimates.
Optimal means that the parameter estimates are found by minimizing some cost function
that quantifies the model fitting error, ajoihtly that the solution is simultaneously optimal
with respect to both structure and camera variations. The name refers to the ‘bundles’
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of light rays leaving each 3D feature and converging on each camera centre, which are
‘adjusted’ optimally with respect to both feature and camera positions. Equivalently —
unlike independent model methqdghich merge partial reconstructions without updating
their internal structure — all of the structure and camera parameters are adjusted togethe
‘in one bundle’.

Bundle adjustmentis really just a large sparse geometric parameter estimation problem
the parameters being the combined 3D feature coordinates, camera poses and calibration
Almost everything that we will say can be applied to many similar estimation problems in
vision, photogrammetry, industrial metrology, surveying and geodesy. Adjustment com-
putations are a major common theme throughout the measurement sciences, and once tt
basic theory and methods are understood, they are easy to adapt to a wide variety of prob
lems. Adaptation is largely a matter of choosing a numerical optimization scheme that
exploits the problem structure and sparsity. We will consider several such schemes below
for bundle adjustment.

Classically, bundle adjustment and similar adjustment computations are formulated
as nonlinear least squares problems [19, 46, 100, 21, 22, 69, 5, 73, 109]. The cost functior
is assumed to be quadratic in the feature reprojection errors, and robustness is providet
by explicit outlier screening. Although it is already very flexible, this model is not really
general enough. Modern systems often use non-quadratic M-estimator-like distributional
models to handle outliers more integrally, and many include additional penalties related to
overfitting, model selection and system performance (priors, MDL). For this reason, we
will notassume a least squares / quadratic cost model. Instead, the cost will be modellec
as a sum of opaque contributions from the independent information sources (individual
observations, prior distributions, overfitting penalties). The functional forms of these
contributions and their dependence on fixed quantities such as observations will usually be
leftimplicit. This allows many different types of robust and non-robust cost contributions to
be incorporated, without unduly cluttering the notation or hiding essential model structure.
It fits well with modern sparse optimization methods (cost contributions are usually sparse
functions of the parameters) and object-centred software organization, and it avoids many
tedious displays of chain-rule results. Implementors are assumed to be capable of choosin
appropriate functions and calculating derivatives themselves.

One aim of this paper is to correct a number of misconceptions that seem to be common
in the vision literature:

e “Optimization / bundle adjustment is slow”: Such statements often appear in papers
introducing yet another heuristic Structure from Motion (SFM) iteration. The claimed
slowness is almost always due to the unthinking use of a general-purpose optimiza-
tion routine that completely ignores the problem structure and sparseness. Real bundle
routines arenuchmore efficient than this, and usually considerably more efficient and
flexible than the newly suggested meth@@,(7). That is why bundle adjustment re-
mains the dominant structure refinement technique for real applications, after 40 years
of research.

¢ “Only linear algebra is required”: This is a recent variant of the above, presumably
meant to imply that the new technique is especially simple. Virtually all iterative refine-
ment techniques use only linear algebra, and bundle adjustment is simpler than many
in that it only solves linear systems: it makes no use of eigen-decomposition or SVD,
which are themselves complex iterative methods.
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¢ “Any sequence can be used’Many vision workers seem to be very resistant to the idea
that reconstruction problems should be planned in advejidg,(and results checked
afterwards to verify their reliability§(10). System builders should at least be aware of the
basic techniques for this, even if application constraints make it difficult to use them.
The extraordinary extent to which weak geometry and lack of redundancy can mask
gross errors is too seldom appreciated, [34, 50, 30, 33].

e “Point P is reconstructed accurately”:In reconstruction, just as there are no absolute
references for position, there are none for uncertainty. The 3D coordinate frame is
itself uncertain, as it can only be located relative to uncertain reconstructed features or
cameras. All other feature and camera uncertainties are expressed relative to the fram
and inherit its uncertainty, so statements about them are meaningless until the frame
and its uncertainty are specified. Covariances can look completely different in different
frames, particularly in object-centred versus camera-centred one$9 See

There is a tendency in vision to develop a profusioadhocadjustment iterations. Why

should you use bundle adjustment rather than one of these methods? :

¢ Flexibility: Bundle adjustment gracefully handles a very wide variety of different 3D
feature and camera types (points, lines, curves, surfaces, exotic cameras), scene type
(including dynamic and articulated models, scene constraints), information sources (2D
features, intensities, 3D information, priors) and error models (including robust ones).
It has no problems with missing data.

e Accuracy: Bundle adjustment gives precise and easily interpreted results because it uses
accurate statistical error models and supports a sound, well-developed quality control
methodology.

e Efficiency: Mature bundle algorithms are comparatively efficient even on very large
problems. They use economical and rapidly convergent numerical methods and make
near-optimal use of problem sparseness.

In general, as computer vision reconstruction technology matures, we expect that bundle

adjustment will predominate over alternative adjustment methods in much the same way as

it has in photogrammetry. We see this as an inevitable consequence of a greater appreciatio
of optimization (notably, more effective use of problem structure and sparseness), and of
systems issues such as quality control and network design.

Coverage:We will touch on a good many aspects of bundle methods. We start by consid-
ering the camera projection model and the parametrization of the bundle prgb)amd

the choice of error metric or cost functi@B. 54 gives a rapid sketch of the optimization
theory we will use§5 discusses the network structure (parameter interactions and char-
acteristic sparseness) of the bundle problem. The following three sections consider three
types of implementation strategies for adjustment computatigBsovers second order
Newton-like methods, which are still the most often used adjustment algoriffifrasyers
methods with only first order convergence (most ofdldehocmethods are in this class);

and 8 discusses solution updating strategies and recursive filtering bundle mej@ods.
returns to the theoretical issue of gauge freedom (datum deficiency), including the theory
of inner constraints§10 goes into some detail on quality control methods for monitoring
the accuracy and reliability of the parameter estimatks gives some brief hints on net-
work designj.e. how to place your shots to ensure accurate, reliable reconstrugtian.
completes the body of the paper by summarizing the main conclusions and giving some
provisional recommendations for methods. There are also several appefdigéges a

brief historical overview of the development of bundle methods, with literature references.
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§B gives some technical details of matrix factorization, updating and covariance calcula-
tion methods§C gives some hints on designing bundle software, and pointers to useful
resources on the Internet. The paper ends with a glossary and references.

General references:Cultural differences sometimes make it difficult for vision workers

to read the photogrammetry literature. The collection edited by Atkinson [5] and the
manual by Karara [69] are both relatively accessible introductions to close-range (rather
than aerial) photogrammetry. Other accessible tutorial papers include [46, 21, 22]. Kraus
[73] is probably the most widely used photogrammetry textbook. Brown's early survey
of bundle methods [19] is well worth reading. The often-cited manual edited by Slama
[100] is now quite dated, although its presentation of bundle adjustment is still relevant.
Wolf & Ghiliani [109] is a text devoted to adjustment computations, with an emphasis
on surveying. Hartley & Zisserman [62] is an excellent recent textbook covering vision
geometry from a computer vision viewpoint. For nonlinear optimization, Fletcher [29]
and Gill et al [42] are the traditional texts, and Nocedal & Wright [93] is a good modern
introduction. For linear least squarespBjk [11] is superlative, and Lawson & Hanson is

a good older text. For more general numerical linear algebra, Golub & Van Loan [44] is
the standard. Du#t al[26] and George & Liu [40] are the standard texts on sparse matrix
techniques. We will not discuss initialization methods for bundle adjustment in detail, but
appropriate reconstruction methods are plentiful and well-known in the vision community.
Seee.g, [62] for references.

Notation: The structure, camerastc, being estimated will be parametrized by a single
largestate vectorx. In general the state belongs to a nonlinear manifold, but we linearize
this locally and work with small linear state displacements denéte@®bservationsd.g
measured image features) are denatethe corresponding predicted values at parameter
valuex are denoted = z(x), with residual prediction error Az(x) = z—z(x). However,

observations and prediction errors usually only appear implicitly, through their influence
df

on thecost function f(x) = f(predz(x)). The cost function'gradient isg = 4, and
its Hessianis H = 3%. Theobservation-state Jacobiaris J = g_)z(_ The dimensions of

0X, 8z areny, ny.

2 Projection Model and Problem Parametrization

2.1 The Projection Model

We begin the development of bundle adjustment by considering the basic image projection
model and the issue of problem parametrization. Visual reconstruction attempts to recover &
model of a 3D scene from multiple images. As part of this, it usually also recovers the poses
(positions and orientations) of the cameras that took the images, and information about their
internal parameters. A simple scene model might be a collection of isolated 3D features,
e.g, points, lines, planes, curves, or surface patches. However, far more complicated scen
models are possible, involving,g, complex objects linked by constraints or articulations,
photometry as well as geometry, dynamies;, One of the great strengths of adjustment
computations — and one reason for thinking that they have a considerable future in vision
— is their ability to take such complex and heterogeneous models in their stride. Almost
any predictive parametrianodel can be handlede. any model thapredictsthe values

of some known measurements or descriptors on the basis of some confiauansetric
representation of the world, which is to be estimated from the measurements.
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Similarly, many possible camera models exist. Perspective projection is the standard,
but the affine and orthographic projections are sometimes useful for distant cameras, anc
more exotic models such as push-broom and rational polynomial cameras are needed fo
certain applications [56, 63]. In addition to pose (position and orientation), and simple
internal parameters such as focal length and principal point, real cameras also require vari-
ous types ofdditional parametersto model internal aberrations such as radial distortion
[17-19,100, 69, 5].

For simplicity, suppose that the scene is modelled by individual static 3D fe&ires
p=1...n,imaged inm shots with camera pose and internal calibration param&tgrs
i = 1...m. There may also be further calibration paramet@rsc = 1...k, constant
across several images.¢, depending on which of several cameras was used). We are
given uncertain measurements of some subset of the possible image featuiggthe
true image of featur&,, in images). For each observatiox,,,, we assume that we have
a predictive model x;, = X(C,, P;,X,,) based on the parameters, that can be used to
derive afeature prediction error ;

Axip(cw Pi) Xp) = Xip - X(CCa Pia Xp) (1)

In the case of image observations the predictive model is image projection, but other
observation types such as 3D measurements can also be included.

To estimate the unknown 3D feature and camera parameters from the observations
and hence reconstruct the scene, we minimize some measure (discuiged their total
prediction error. Bundle adjustment is the model refinement part of this, starting from given
initial parameter estimates.@, from some approximate reconstruction method). Hence,
it is essentially a matter of optimizing a complicated nonlinear cost function (the total
prediction error) over a large nonlinear parameter space (the scene and camera parameter

We will not go into the analytical forms of the various possible feature and image
projection models, as these do not affect the general structure of the adjustment network.
and only tend to obscure its central simplicity. We simply stress that the bundle framework
is flexible enough to handle almost any desired model. Indeed, there are so many different
combinations of features, image projections and measurements, that it is best to regarc
them as black boxes, capable of giving measurement predictions based on their curren
parameters. (For optimization, first, and possibly second, derivatives with respect to the
parameters are also needed).

For much of the paper we will take quite an abstract view of this situation, collecting the
scene and camera parameters to be estimated into astatgevectorx, and representing
the cost (total fitting error) as an abstract functf¢x). The cost is really a function of
the feature prediction errorsx;, = Xip — x(C.,P;,X,). Butasthe observatiorgp are
constants during an adjustment calculation, we leave the cost’s dependence on them an
on the projection model(-) implicit, and display only its dependence on the parameters
x actually being adjusted.

2.2 Bundle Parametrization

The bundle adjustment parameter space is generally a high-dimensional nonlinear manifolc
— alarge Cartesian product of projective 3D feature, 3D rotation, and camera calibration
manifolds, perhaps with nonlinear constrairg; The statex is not strictly speaking a

vector, but rather a point in this space. Depending on how the entities that it contains are



Bundle Adjustmeh— A Modern Synthesis 303

Fig. 1.Vision geometry and its error model are essentially
projective. Affine parametrization introduces an artificial
singularity at projective infinity, which may cause numer-
ical problems for distant features.

representedx can be subject to various types of complications including singularities,
internal constraints, and unwanted internal degrees of freedom. These arise because ge«
metric entities like rotations, 3D lines and even projective points and planes, do not have
simple global parametrizations. Their local parametrizations are nonlinear, with singular-
ities that prevent them from covering the whole parameter space unifoemlyte many
variants on Euler angles for rotations, the singularity of affine point coordinates at infinity).
And their global parametrizations either have constramts quaternions witig||? = 1),

or unwanted internal degrees of freedosrg(homogeneous projective quantities have a
scale factor freedom, two points defining a line can slide along the line). For more compli-
cated compound entities such as matching tensors and assemblies of 3D features linked b
coincidence, parallelism or orthogonality constraints, parametrization becomes even more
delicate.

Although they are in principle equivalent, different parametrizations often have pro-
foundly different numerical behaviours which greatly affect the speed and reliability of the
adjustment iteration. The most suitable parametrizations for optimization are as uniform,
finite and well-behaved as possilsiear the current state estimatkleally, they should
be locally close to linear in terms of their effect on the chosen error model, so that the
cost function is locally nearly quadratic. Nonlinearity hinders convergence by reducing
the accuracy of the second order cost model used to predict state up@tExtessive
correlations and parametrization singularities cause ill-conditioning and erratic numerical
behaviour. Large or infinite parameter values can only be reached after excessively many
finite adjustment steps.

Any given parametrization will usually only be well-behaved in this sense over a rela-
tively small section of state space. So to guarantee uniformly good performance, however
the state itself may be representstiite updates should be evaluated using a sthlual
parametrization based on increments from the current estimatexamples we consider
3D points and rotations.

3D points: Even for calibrated cameras, vision geometry and visual reconstructions are
intrinsically projective. Ifa30 X Y Z)" parametrization (or equivalently a homogeneous
affine (X Y Z 1)" one) is used for very distant 3D points, lar§eY’, Z displacements

are needed to change the image significany, in (X Y Z) space the cost function
becomes very flat and steps needed for cost adjustment become very large for distan
points. In comparison, with a homogeneous projective parametrizgkiori Z W)', the
behaviour near infinity is natural, finite and well-conditioned so long as the normalization
keeps the homogeneous 4-vector finite at infinity (by sendling— 0 there). In fact,

there is no immediate visual distinction between the images of real points near infinity
and virtual ones ‘beyond’ it (all camera geometries admit such virtual poirdsrzs fide
projective constructs). The optimal reconstruction of a real 3D point may even be virtual
in this sense, if image noise happens to push it ‘across infinity’. Also, there is nothing to
stop a reconstructed point wandering beyond infinity and back during the optimization.
This sounds bizarre at first, but it is an inescapable consequence of the fact that the nat
ural geometry and error model for visual reconstruction is projective rather than affine.
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Projectively,infinity is just like any other placeAffine parametrizatiof X Y Z 1) is
acceptable for points near the origin with close-range convergent camera geometries, bu
itis disastrous for distant ones because it artificially cuts away half of the natural parameter
space, and hides the fact by sending the resulting edge to infinite parameter values. Insteac
you should use a homogeneous parametrizdtlory” Z W)" for distant pointse.g with
spherical normalizatioh” X? = 1.

Rotations: Similarly, experience suggests that quasi-global 3 parameter rotation para-
metrizations such as Euler angles cause numerical problems unless one can be certain t
avoid their singularities and regions of uneven coverage. Rotations should be parametrizec
using either quaternions subject [fq||> = 1, or local perturbationR R or SRR of

an existing rotatiorR, wheredR can be any well-behaved 3 parameter small rotation
approximationg.g 0R = (I + [4r ], ), the Rodriguez formula, local Euler angles:.

State updates:Just as state vectossrepresent points in some nonlinear space, state
updatesx — x + dx represent displacements in this nonlinear space that often can not
be represented exactly by vector addition. Nevertheless, we assume that we can locally
linearize the state manifold, locally resolving any internal constraints and freedoms that
it may be subject to, to produce an unconstrained vetxgparametrizing the possible
local state displacements. We can them, use Taylor expansion ifix to form a local

cost modeff(x + dx) ~ f(x) + % OX + 36X gi; ox, from which we can estimate the
state updatéx that optimizes this modekg4). The displacemenix need not have the
same structure or representatiorxas- indeed, if a well-behaved local parametrization is
used to represemdx, it generally will not have — but we must at least be able to update
the state with the displacement to produce a new state estimate. We write this operatior
asx — X + dx, even though it may involve considerably more than vector addition. For
example, apart from the change of representation, an updated qua@rrian- dgwill

need to have its normalizatidjg||?> = 1 corrected, and a small rotation update of the form

R — R(1+ [r],) will notin general give an exact rotation matrix.

3 Error Modelling

We now turn to the choice of the cost functifin), which quantifies the total prediction
(image reprojection) error of the model parametrized by the combined scene and camere
parameters. Our main conclusion will be that robust statistically-based error metrics
based on total (inlier + outlier) log likelihoods should be used, to correctly allow for the
presence of outliers. We will argue this at some length as it seems to be poorly understood.
The traditional treatments of adjustment methods consider only least squares (albeit with
data trimming for robustness), and most discussions of robust statistics give the impressior
that the choice of robustifier or M-estimator is wholly a matter of personal whim rather
than data statistics.

Bundle adjustment is essentially a parameter estimation problem. Any parameter es-
timation paradigm could be used, but we will consider angimal point estimators,
whose output is by definition the single parameter vector that minimizes a prededisted
function designed to measure how well the model fits the observations and background
knowledge. This framework covers many practical estimators including maximum likeli-
hood (ML) and maximum a posteriori (MAP), but not explicit Bayesian model averaging.
Robustification, regularization and model selection terms are easily incorporated in the
cost.
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A typical ML cost function would be the summed negative log likelihoods of the
prediction errors of all the observed image features. For Gaussian error distributions,
this reduces to the sum of squared covariance-weighted prediction &3&s A MAP
estimator would typically add cost terms giving certain structure or camera calibration
parameters a bias towards their expected values.

The cost function is also a tool for statistical interpretation. To the extent that lower
costs are uniformly ‘better’, it provides a natural model preference ordering, so that cost
iso-surfaces above the minimum define natural confidence regions. Locally, these regions
are nested ellipsoids centred on the cost minimum, with size and shape characterized by

thedispersion matrix (the inverse of the cost function Hessldn= 3)% at the minimum).

Also, the residual cost at the minimum can be used as a test statistic for model validity
(810). E.g, for a negative log likelihood cost model with Gaussian error distributions,
twice the residual is &2 variable.

3.1 Desiderata for the Cost Function

In adjustment computations we go to considerable lengths to optimize a large nonlinear cost
model, so it seems reasonable to require that the refinement should actually improve the
estimates in some objective (albeit statistical) sense. Heuristically motivated cost functions
can not usually guarantee this. They almost always lead to biased parameter estimates, ar
often severely biased ones. A large body of statistical theory points to maximum likelihood
(ML) and its Bayesian cousin maximum a posteriori (MAP) as the estimators of choice.
ML simply selects the model for which the total probability of the observed data is highest,
or saying the same thing in different words, for which tbial posterior probabilityof the

model given the observations is highest. MAP adds a prior term representing background
information. ML could just as easily have included the prior as an additional ‘observation’;
so far as estimation is concerned, the distinction between ML/ MAP and prior / observation
is purely terminological.

Information usually comes from many independent sources. In bundle adjustment
these include: covariance-weighted reprojection errors of individual image features; other
measurements such as 3D positions of control points, GPS or inertial sensor readings:
predictions from uncertain dynamical models (for ‘Kalman filtering’ of dynamic cameras
or scenes); prior knowledge expressed as soft constra&msofy camera calibration or
pose values); and supplementary sources such as overfitting, regularization or descriptior
length penalties. Note the variety. One of the great strengths of adjustment computations is
their ability to combine information from disparate sources. Assuming that the sources are
statistically independent of one another given the model, the total probability for the model
given the combined data is the product of the probabilities from the individual sources. To
get an additive cost function we take logs, so the total log likelihood for the model given
the combined data is the sum of the individual source log likelihoods.

Properties of ML estimators: Apart from their obvious simplicity and intuitive appeal,

ML and MAP estimators have strong statistical properties. Many of the most notable ones
areasymptotic, i.e. they apply in the limit of a large number of independent measurements,
or more precisely in theentral limit where the posterior distribution becomes effectively
Gaussiah In particular:

! Cost is additive, so as measurements of the same type are added the entire cost surface grows |
direct proportion to the amount of data. This means that thelativesizes of the cost and all of
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e Under mild regularity conditions on the observation distributions, the posterior distri-
bution of the ML estimate converges asymptotically in probability to a Gaussian with
covariance equal to the dispersion matrix.

e The ML estimate asymptotically has zero bias and the lowest variance that any unbiased
estimator can have. So in this sense, ML estimation is at least as good as any othel
method.

Non-asymptotically, the dispersion is not necessarily a good approximation for the
covariance of the ML estimator. The asymptotic limit is usually assumed to be a valid
for well-designed highly-redundant photogrammetric measurement networks, but recent
sampling-based empirical studies of posterior likelihood surfaces [35, 80, 68] suggest that
the case is much less clear for small vision geometry problems and weaker networks. More
work is needed on this.

The effect of incorrect error models:Itis clear thatincorrect modelling of the observation
distributions is likely to disturb the ML estimate. Such mismodelling is to some extent
inevitable because error distributions stand for influences that we can not fully predict or
control. To understand the distortions that unrealistic error models can cause, first realize
that geometric fitting is really a special case of parametric probability density estimation.
For each set of parameter values, the geometric image projection model and the assume
observation error models combine to predict a probability density for the observations.
Maximizing the likelihood corresponds to fitting tipsedicted observation density the
observed data. The geometry and camera model only enter indirectly, via their influence
on the predicted distributions.

Accurate noise modelling is just as critical to successful estimation as accurate ge-
ometric modelling. The most important mismodelling is failure to take account of the
possibility of outliers (aberrant data values, caused, by blunders such as incorrect
feature correspondences). We stress that so long as the assumed error distributions mod
the behaviour ofll of the data used in the fit (includingpth inliers and outliers), the
above properties of ML estimation including asymptotic minimum variance remain valid
in the presence of outliers. In other wordl4l,. estimation is naturally robustthere is no

its derivatives — and hence the sizef the region around the minimum over which the second
order Taylor terms dominate all higher order ones — remain roughly constantiasreases.
Within this region, the total cost is roughly quadratic, so if the cost function was taken to be the
posterior log likelihood, the posterior distribution is roughly Gaussian. However the curvature of
the quadratici(e. the inverse dispersion matrix) increases as data is added, so the posterior standarc
deviation shrinks a® (o /v/n; — nx), whereO(o) characterizes the average standard deviation
from a single observation. Fer, — nx > (o/r)?, essentially the entire posterior probability
mass lies inside the quadratic region, so the posterior distribution converges asymptotically in
probability to a Gaussian. This happensay proper isolated cost minimum at which second
order Taylor expansion is locally valid. The approximation gets better with more data (stronger
curvature) and smaller higher order Taylor terms.

This result follows from th€ramér-Rao bound(e.g [23]), which says that the covariance of any
unbiased estimator is bounded below byFrsher information or mean curvature of the posterior

log likelihood surfacé(X —X)(X —X)") = —<d2d1§§ Py wherep is the posterior probability the
parameters being estimatédthe estimate given by any unbiased estimattine true underlying

x value, andA > B denotes positive semidefinitenessfof- B. Asymptotically, the posterior
distribution becomes Gaussian and the Fisher information converges to the inverse dispersion (the
curvature of the posterior log likelihood surface at the cost minimum), so the ML estimate attains

the Crangr-Rao bound.

N
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Fig. 2. Beware of treating any bell-shaped observation distribution as a Gaussian. Despite being
narrower in the peak and broader in the tails, the probability density function of a Cauchy distribution,
p(z) = (7(1+ x2))_1, does not look so very different from that of a Gausstap (eff). But their
negative log likelihoods are very differeriidttom lef}, and large deviations (“outliers”) arauch

more probable for Cauchy variates than for Gaussian aigd#t). In fact, the Cauchy distribution

has infinite covariance.

need to robustify it so long as realistic error distributions were used in the first place. A
distribution that models both inliers and outliers is calledtal distribution . There is no

need to separate the two classes, as ML estimation does not care about the distinction. If thi
total distribution happens to be an explicit mixture of an inlier and an outlier distribution
(e.g, a Gaussian with a locally uniform background of outliers), outliers can be labeled
after fitting using likelihood ratio tests, but this is in no way essential to the estimation
process.

Itis also important to realize the extent to which superficially similar distributions can
differ from a Gaussian, or equivalently, how extraordinarily rapidly the tails of a Gaussian
distribution fall away compared to more realistic models of real observation errors. See
figure 2. In fact, unmodelled outliers typically have very severe effects on the fit. To see this,
suppose thatthe real observations are drawn from a fixed (but perhaps unknown) underlying
distributionpy(z). Thelaw of large numbersays that their empirical distributions (the ob-
served distribution of each set of samples) converge asymptotically in probabilifyzto
So for each model the negative log likelihood cost sui’, log pmogei(Z;|X) converges
to —n; [ po(z) log(pmode(z|X)) dz. Up to @ model-independent constant, thisigimes
therelative entropy or Kullback-Leibler divergence [ po(z) log(po(z)/pmodei(z|X)) dz
of the model distribution w.r.t. the true opg(z). Hence, even if the model family does
not includepy, the ML estimate converges asymptotically to the model whose predicted
observation distribution hasinimum relative entropw.r.t. pg. (Seeg.g [96, proposition
2.2)]). It follows that ML estimates are typically very sensitive to unmodelled outliers, as
regions which are relatively probable unggr but highly improbable under the model
make large contributions to the relative entropy. In contrast, allowing for outliers where
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none actually occur causes relatively little distortion, as no region which is probable under
po Will have large— log pmodet

In summary, if there is a possibility of outliers, non-robust distribution models such
as Gaussians should be replaced with more realistic long-tailed ones such as: mixtures o
a narrow ‘inlier’ and a wide ‘outlier’ density, Cauchy ardensities, or densities defined
piecewise with a central peaked ‘inlier’ region surrounded by a constant ‘outlier’ region
We emphasize again that poor robustness is due entirely to unrealistic distributional as-
sumptions: the maximum likelihood framework itself is naturally robust provided that the
total observation distribution including both inliers and outliers is modelled. In fact, real
observations can seldom be cleanly divided into inliers and outliers. There is a hard core
of outliers such as feature correspondence errors, but there is also a grey area of feature
that for some reason (a specularity, a shadow, poor focus, motion.blQrwere not as
accurately located as other features, without clearly being outliers.

3.2 Nonlinear Least Squares

One of the most basic parameter estimation methowisnnear least squaresSuppose

that we have vectors of observationspredicted by a modet, = z;(x), wherex is a

vector of model parameters. Then nonlinear least squares takes as estimates the parame
values that minimize theveighted Sum of Squared Error (SSE)cost function:

f(x) = % ZAZi(X)TWi AZ;(x), Az;(x) = z2; — Zi(X) (2

Here, Az,(x) is the feature prediction error al; is an arbitrary symmetric positive
definite (SPDyveight matrix. Modulo normalization terms independenkothe weighted
SSE cost function coincides with the negative log likelihood for observatippsrturbed
by Gaussian noise of mean zero and covaridhice So for least squares to have a useful
statistical interpretation, th&/; should be chosen to approximate the inverse measurement
covariance og,. Even for non-Gaussian noise with this mean and covarianc&ahss-
Markov theorem [37, 11] states that if the modetg(x) are linear, least squares gives the
Best Linear Unbiased Estimator (BLUE), where ‘best’ means minimum vartance

Any weighted least squares model can be converted to an unweighteWgnre {)
by pre-multiplyingz,, z;, Az, by anyL] satisfyingW,; = L; L. Such arL_; can be cal-
culated efficiently fromWV, or W;" using Cholesky decompositiofR.1). Az, = L] Az,
is called astandardized residual and the resulting unweighted least squares problem
miny £ 3, [|Az;(x)||? is said to be irstandard form. One advantage of this is that opti-
mization methods based on linear least squares solvers can be used in place of ones bas
on linear (normal) equation solvers, which allows ill-conditioned problems to be handled
more stably §{B.2).

Another peculiarity of the SSE cost function is its indifference to the natural bound-
aries between the observations. If observatiprnisom any sources are assembled into a

3 The latter case corresponds to a hard inlier/ outlier decision rule : for any observation in the ‘outlier’
region, the density is constant so the observation has no influence at all on the fit. Similarly, the
mixture case corresponds to a softer inlier / outlier decision rule.

41t may be possible (and even useful) to do better with either biased (towards the correct solution),
or nonlinear estimators.
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compound observation vector= (z1, ... ,z;,)", and their weight matricé#/; are assem-

bled into compound block diagonal weight maik= diag(W, ... , W), the weighted
squared errof(x) = 1 Az(x)"W Az(x) is the same as the original SSE cost function,
332, Az,(X)TW; Az(x). The general quadratic form of the SSE cost is preserved under
such compounding, and also under arbitrary linear transformationshatt mix compo-
nents from different observations. The only place that the underlying structure is visible
is in the block structure dfV. Such invariances do not hold for essentially any other cost
function, but they simplify the formulation of least squares considerably.

3.3 Robustified Least Squares

The main problem with least squares s its high sensitivity to outliers. This happens because
the Gaussian has extremely small tails compared to most real measurement error distribu
tions. For robust estimates, we must choose a more realistic likelihood n§@dE). (The

exact functional form is less important than the general way in which the expected types
of outliers enter. A single blunder such as a correspondence error may affect one or a few
of the observations, but it will usually leave all of the others unchanged. This locality is
the whole basis of robustification. If we can decide which observations were affected, we
can down-weight or eliminate them and use the remaining observations for the parametel
estimates as usual. If all of the observations had been affected about egualhs(by

an incorrect projection model), we might still know that something was wrong, but not be
able to fix it by simple data cleaning.

We will adopt a ‘single layer’ robustness model, in which the observations are par-
titioned into independent grous, each group being irreducible in the sense that it is
accepted, down-weighted or rejected as a whole, independently of all the other groups.
The partitions should reflect the types of blunders that occur. For example, if feature cor-
respondence errors are the most common blunders, the two coordinates of a single imag
point would naturally form a group as both would usually be invalidated by such a blunder,
while no other image point would be affected. Even if one of the coordinates appeared to
be correct, if the other were incorrect we would usually want to discard both for safety.
On the other hand, in stereo problems, the four coordinates of each pair of corresponding
image points might be a more natural grouping, as a point in one image is useless without
its correspondent in the other one.

Henceforth, when we sagbservationwe meanirreducible group of observations
treated as a unit by the robustifying modkeé., our observations need not be scalars, but
they must be units, probabilistically independent of one another irrespective of whether
they are inliers or outliers.

As usual, each independent observatipoontributes an independent tefyfx | z,) to
the total cost function. This could have more or less any form, depending on the expected
total distribution of inliers and outliers for the observation. One very natural family are the
radial distributions , which have negative log likelihoods of the form:

fi(x) = 3pi( AZ;(x)"W; Az;(x)) 3)
Here, p;(s) can be any increasing function wigh(0) = 0 and %pi(O) = 1. (These

guarantee thatatz, = 0O, f vanishes an%% = W,). Weighted SSE has (s) = s, while
more robust variants have sublingar often tending to a constant ab so that distant



310 B. Triggs et al.

outliers are entirely ignored. The dispersion matkix determines the spatial spreadzof
and up to scale its covariance (if this is finite). The radial form is preserved under arbitrary
affine transformations af,, so within a group, all of the observations are on an equal
footing in the same sense as in least squares. However, non-Gaussian radial distribution
are almost neveseparable the observations ig, can neither be split into independent
subgroups, nor combined into larger groups, without destroying the radial form. Radial
cost models do not have the remarkable isotropy of non-robust SSE, but this is exactly
what we wanted, as it ensures that all observations in a group will be either left alone, or
down-weighted together.

As an example of this, forimage features polluted with occasional large outliers caused
by correspondence errors, we might model the error distribution as a Gaussian central peal
plus a uniform background of outliers. This would give negative log likelihood contribu-

tions of the formf(x) = —log (exp(féxfp) + €) instead of the non-robust weighted
SSE modef(x) = 3x3,. wherex?, = Ax], W;, AX;, is the squared weighted residual

error (which is ay? variable for a correct model and Gaussian error distribution),eand
parametrizes the frequency of outliers.

8 Gaussian -Ibg likelihood

7t Robystified -log likelijood ---------- .
6 L

5 L

Ak N
3 L

2 L

1 L
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3.4 Intensity-Based Methods

The above models apply not only to geometric image features, but also to intensity-based
matching of image patches. In this case, the observables are image gray-scales or color
I rather than feature coordinatasand the error model is based on intensity residuals.
To get from a point projection model = u(x) to an intensity based one, we simply
compose with the assumed local intensity mddel I(u) (e.g obtained from an image
template or another image that we are matching against), premultiply point Jacobians by

point-to-intensity Jacobiar’%, etc The full range of intensity models can be implemented
within this framework: pure translation, affine, quadratic or homographic patch deforma-
tion models, 3D model based intensity predictions, coupled affine or spline patches for
surface coveragejc, [1, 52, 55,9, 110, 94, 53,97, 76, 104, 102]. The structure of intensity
based bundle problems is very similar to that of feature based ones, so all of the technique:
studied below can be applied.

We will not go into more detail on intensity matching, except to note that it is the
real basis of feature based methods. Feature detectors are optimized for detection no
localization. To localize a detected feature accurately we need to match (some function of)
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the image intensities in its region against either an idealized template or another image of
the feature, using an appropriate geometric deformation metteFor example, suppose

that the intensity matching modeliéu) = 1 [ p(||6I(u)||*) where the integration is

over some image patch] is the current intensity prediction errorparametrizes the local
geometry (patch translation & warping), apd) is some intensity error robustifier. Then

the cost gradient in terms ofis g, = % =[] p'o17 g—llj. Similarly, the cost Hessian in
u in a Gauss-Newton approximationhl, = % ~ [ p" (3—5
model, we express = u(x) as a function of the bundle parameters, sh,iE= g—g we have

a corresponding cost gradient and Hessian contribwjos g/, Jy, andHx = J| Hy Ju.

In other words, the intensity matching model is locally equivalent to a quadratic feature
matching one on the ‘features(x), with effective weight (inverse covariance) matrix
W, = H,. All image feature error models in vision are ultimately based on such an
underlying intensity matching model. As feature covariances are a function of intensity
gradients(| p” (3—1)T g—lIJ, they can be both highly variable between features (depending
on how much IocaTgradient there is), and highly anisotropic (depending on how directional
the gradients arek.g., for points along a 1D intensity edge, the uncertainty is large in the
along edge direction and small in the across edge one.

)" 3—5. In a feature based

3.5 Implicit Models

Sometimes observations are most naturally expressed in terms of an implicit observation-
constraining modeh(x, z) = 0, rather than an explicit observation-predicting ane-

z(x). (The associated image error still has the fdfem— z)). For example, if the model

is a 3D curve and we observe points on it (the noisy images of 3D points that may lie
anywhere along the 3D curve), we can predict the whole image curve, but not the exact
position of each observation along it. We only have the constraint that the noiseless image
of the observed point would lie on the noiseless image of the curve, if we knew these. There
are basically two ways to handle implicit models: nuisance parameters and reduction.

Nuisance parametersin this approach, the model is made explicit by adding additional
‘nuisance’ parameters representing something equivalent to model-consistent estimate:
of the unknown noise free observations, to z with h(x,z) = 0. The most direct way
to do this is to include the entire parameter ve@@s nuisance parameters, so that we
have to solve a constrained optimization problem on the extended parametefsgace
minimizing f(z — z) over (x,z) subject toh(x,z) = 0. This is a sparse constrained
problem, which can be solved efficiently using sparse matrix technigée3)( In fact,
for image observations, the subproblemszifoptimizing f(z — z) over z for fixed z
andx) are small and for typicaf rather simple. So in spite of the extra parameters
optimizing this model is not significantly more expensive than optimizing an explicit one
z = z(x) [14, 13, 105, 106]. For example, when estimating matching constraints between
image pairs or triplets [60, 62], instead of using an explicit 3D representation, pairs or
triplets of corresponding image points can be used as featyreabject to the epipolar
or trifocal geometry contained [105, 106].

However, if a smaller nuisance parameter vector thaan be found, it is wise to use
it. In the case of a curve, it suffices to include just one nuisance parameter per observation
saying where along the curve the corresponding noise free observation is predicted to
lie. This model exactly satisfies the constraints, so it converts the implicit model to an
unconstrained explicit ore= z(x, A), where are the along-curve nuisance parameters.
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The advantage of the nuisance parameter approach is that it gives the exact optima
parameter estimate for, and jointly, optimalx-consistent estimates for the noise free
observationg.

Reduction: Alternatively, we can regart(x, z) rather tharz as the observation vector,
and hence fit the parameters to the explicit log likelihood modeh{sr z). To do this,

we must transfer the underlying error model / distributf¢Az) on z to onef(h) on
h(x,z). In principle, this should be done by marginalization: the densityhfeg given

by integrating that forAz over all Az giving the saméh. Within the point estimation
framework, it can be approximated by replacing the integration with maximization. Neither
calculation is easy in general, but in the asymptotic limit where first order Taylor expansion
h(x,z) =h(x,z+ Az) = 0+ % Az is valid, the distribution oh is a marginalization or
maximization of that of\z over affine subspaces. This can be evaluated in closed form for
some robust distributions. Also, standard covariance propagation gives (more precisely,
this applies to thé and Az dispersions):

dh dh™ dh a1 dh™
(h(x,z)) ~ 0, (h(x,z)h(x,2)") ~ g (LzAz) g = gW'g @
whereW is the covariance of\z. So at least for an outlier-free Gaussian model, the
reduced distribution remains Gaussian (albeit withependent covariance).

4 Basic Numerical Optimization

Having chosen a suitable model quality metric, we must optimize it. This section gives a
very rapid sketch of the basic local optimization methods for differentiable functions. See
[29, 93, 42] for more details. We need to minimize a cost fundifai over parameters,
starting from some given initial estimateof the minimum, presumably supplied by some
approximate visual reconstruction method or prior knowledge of the approximate situation.
Asin §2.2, the parameter space may be nonlinear, but we assume that local displacement
can be parametrized by a local coordinate system / vector of free paramdetdie try

to find a displacement — x + dx that locally minimizes or at least reduces the cost
function. Real cost functions are too complicated to minimize in closed form, so instead
we minimize an approximatecal modelfor the functione.g based on Taylor expansion

or some other approximation at the current pairAlthough this does not usually give the
exact minimum, with luck it will improve on the initial parameter estimate and allow us to
iterate to convergence. The art of reliable optimization is largely in the details that make
this happen even without luck: which local model, how to minimize it, how to ensure that
the estimate is improved, and how to decide when convergence has occurred. If you not
are interested in such subjects, use a professionally designed pagka)e (letailsare
important here.

4.1 Second Order Methods
The reference for all local models is the quadratic Taylor series one:
df d%f
f(x + 6x) ~ f(x) + g7 6x + £0X" Hdx g=5X H= $z(X 5)
quadratic local model gradient vector Hessian matrix
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For now, assume that the Hessldiis positive definite (but see below afé). The local
model is then a simple quadratic with a unique global minimum, which can be found

explicitly using linear algebra. Setting}< (X + 0x) =~ Hdx + g to zero for the stationary
point gives theNewton step

ox = —H™'g (6)

The estimated new function valuefix + 6x) ~ f(x) — $6x"Hédx = f(x) — 3g"H'g.
Iterating the Newton step givddewton’s method This is the canonical optimization
method for smooth cost functions, owing to its exceptionally rapid theoretical and practical
convergence near the minimum. For quadratic functions it converges in one iteration, and
for more general analytic ones &isymptotic convergences quadratic : as soon as the
estimate gets close enough to the solution for the second order Taylor expansion to be
reasonably accurate, the residual state error is approximsgelgredat each iteration.

This means that the number of significant digits in the estimate approximately doubles at
each iteration, so starting from any reasonable estimate, at mostlapgut) + 1 ~ 56
iterations are needed for full double precision (16 digit) accuracy. Methods that potentially
achieve such rapid asymptotic convergence are cabednd order methodsThis is a

high accolade for alocal optimization method, but it can only be achieved if the Newton step
is asymptotically well approximated. Despite their conceptual simplicity and asymptotic
performance, Newton-like methods have some disadvantages:

e To guarantee convergence, a suitable step control policy must be ddded (

e Solving then x n Newton step equations takes til@e{n3) for a dense systen§B.1),
which can be prohibitive for large. Although the cost can often be reduced (very
substantially for bundle adjustment) by exploiting sparsenebk inremains true that
Newton-like methods tend to have a high cost per iteration, which increases relative to
that of other methods as the problem size increases. For this reason, it is sometimes
worthwhile to consider more approximdiest order methods (§7), which are occa-
sionally more efficient, and generally simpler to implement, than sparse Newton-like
methods.

e Calculating second derivative$ is by no means trivial for a complicated cost func-
tion, both computationally, and in terms of implementation effort. Gagiss-Newton
method §4.3) offers a simple analytic approximationkbfor nonlinear least squares
problems. Some other methods build up approximatioftfrom the way the gradient
g changes during the iteration are in use ($&4, Krylov methods).

e The asymptotic convergence of Newton-like methods is sometimes felt to be an expen-
sive luxury when far from the minimum, especially when damping (see below) is active.
However, it must be said that Newton-like methods generally do require significantly
fewer iterations than first order ones, even far from the minimum.

4.2 Step Control

Unfortunately, Newton’s method can fail in several ways. It may converge to a saddle
point rather than a minimum, and for large steps the second order cost prediction may be
inaccurate, so there is no guarantee that the true cost will actually decrease. To guarante
convergence to a minimum, the step must follow a latedcent direction(a direction

with a non-negligible component down the local cost gradient, or if the gradient is zero
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near a saddle point, down a negative curvature direction of the Hessian), and it must make
reasonable progress in this direction (neither so little that the optimization runs slowly
or stalls, nor so much that it greatly overshoots the cost minimum along this direction).
It is also necessary to decide when the iteration has converged, and perhaps to limit any
over-large steps that are requested. Together, these topics form the delicate sugbggct of
control.

To choose a descent direction, one can take the Newton step direction if this descend:
(it may not near a saddle point), or more generally some combination of the Newton and
gradient directiondamped Newton methodsolve a regularized system to find the step:

(H+AW)dx = —g ©)

Here, )\ is some weighting factor and/ is some positive definite weight matrix (often
the identity, so\ — oo becomes gradient desceit « —g). A can be chosen to limit
the step to a dynamically chosen maximum sizest region methods), or manipulated
more heuristically, to shorten the step if the prediction is paevénberg-Marquardt
methods.

Given a descent direction, progress along it is usually assureting/searchmethod,
of which there are many based on quadratic and cubic 1D cost models. If the suggestec
(e.g Newton) step i®ix, line search finds the that actually minimize$ along the line
X + « dX, rather than simply taking the estimate= 1.

There is no space for further details on step control here (again, see [29, 93, 42]). How-
ever note that poor step control can make a huge difference in reliability and convergence
rates, especially for ill-conditioned problems. Unless you are familiar with these issues, it
is advisable to use professionally designed methods.

4.3 Gauss-Newton and Least Squares

Consider the nonlinear weighted SSE cost mddel = 1 Az(x)" W Az(x) (§3.2) with
prediction error\z(x) = z—z(x) and weight matri3V. Differentiation gives the gradient

and Hessian in terms of thkacobianor design matrix of the predictive model] = % :

g=9 - Az wy H= 9 — gwa+ S az7w), £%  (g)

dx dx2  dx2

These formulae could be used directly in a damped Newton method, b%a%merm inH
is likely to be small in comparison to the corresponding componerXs\WiJ if either: ()

the prediction errornz(x) is small; or {i) the model is nearly Iineafﬁ(—zj ~ 0. Dropping

the second term gives th@auss-Newton approximationto the least squares Hessian,

H ~ J" W J. With this approximation, the Newton step prediction equations become the
Gauss-Newtonor normal equations:

(J"WJ)dx = —JTWAz 9)
The Gauss-Newton approximation is extremely common in nonlinear least squares, and

practically all current bundle implementations use it. Its main advantage is simplicity: the
second derivatives of the projection modet) are complex and troublesome to implement.
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In fact, the normal equations are just one of many methods of solving the weighted
linear least squares problémin sx 3(Jéx — Az)"W (Jéx — Az). Another notable
method is that based on QR decompositi¢l.2, [11, 44]), which is up to a factor of two
slower than the normal equations, but much less sensitive to ill-conditionihg.in

Whichever solution method is used, the main disadvantage of the Gauss-Newton ap-
proximation is that when the discarded terms are not negligible, the convergence rate is
greatly reduceds(/.2). In our experience, such reductions are indeed common in highly
nonlinear problems with (at the current step) large residuals. For example, near a saddle
point the Gauss-Newton approximationnisveraccurate, as its predicted Hessian is al-
ways at least positive semidefinite. However, for well-parametrizeddcally near linear,

§2.2) bundle problems under an outlier-free least squares cost model evaluated near the co
minimum, the Gauss-Newton approximation is usually very accurate. Feature extraction
errors and hencéz andW" have characteristic scales of at most a few pixels. In contrast,
the nonlinearities of(x) are caused by nonlinear 3D feature-camera geometry (perspec-
tive effects) and nonlinear image projection (lens distortion). For typical geometries and
lenses, neither effect varies significantly on a scale of a few pixels. So the nonlinear correc-
tions are usually small compared to the leading order linear terms, and bundle adjustmen
behaves as a near-linear small residual problem.

However note that this doe®t extend to robust cost models. Robustification works
by introducing strong nonlinearity into the cost function at the scale of typical feature
reprojection errors. For accurate step prediction, the optimization routine must take account
of this. For radial cost function$8.3), a reasonable compromise is to take account of
the exact second order derivatives of the robustifiets), while retaining only the first
order Gauss-Newton approximation for the predicted observatigrs. If p; andp” are
respectively the first and second derivativeg oht the current evaluation point, we have
arobustified Gauss-Newton approximation

9 = i IWi Az, Hi & Jj (0 Wi + 27 (Wi Az;) (W; Az;)T) 3 (10)

So robustification has two effects) (it down-weights the entire observation (bathand

H,) by p’; and (i) it makes a rank-one reductibof the curvatureH; in the radial (\z;)
direction, to account for the way in which the weight changes with the residual. There
are reweighting-based optimization methods that include only the first effect. They still
find the true cost minimurg = 0 as theg, are evaluated exacflybut convergence may

® Here, the dependence dbnx is ignored, which amounts to the same thing as ignoring(gﬁf
term inH.

® The QR method gives the solution to a relative error of alfd(€'¢), as compared t(j)(Oze)
for the normal equations, whe€gis the condition number (the ratio of the largest to the smallest
singular value) o), ande is the machine precisiori(~*° for double precision floating point).

" The useful robustifiers; are sublinear, with, < 1 andp!’ < 0 in the outlier region.

8 Reweighting is also sometimes used in vision to handle projective homogeneous scale factors
rather than error weightingz.g., suppose that image pointa/w,v/w)" are generated by a
homogeneous projection equatien v, w)" = P (X,Y, Z,1)", whereP is the3 x 4 homoge-
neous image projection matrix. A scale factor reweighting scheme might take derivatives w.r.t.
u, v While treating the inverse weight as a constant within each iteration. Minimizing the re-
sulting globally bilinear linear least squares error model ®eand (X, Y, Z)" doesnot give
the true cost minimum: it zeros the gradient-ignoringrariations, not the true cost gradient.
Such schemes should not be used for precise work as the bias can be substantial, especially fo
wide-angle lenses and close geometries.
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be slowed owing to inaccuracy bf, especially for the mainly radial deviations produced

by non-robust initializers containing outlietd; has a direction of negative curvature if

P Az; W; Az; < —1ip), butif not we can even reduce the robustified Gauss-Newton
model to a local unweighted SSE one for which linear least squares methods can be usec
For simplicity suppose th&V; has already reduced 1oby premultiplyingz; andJ; by L]
whereL; L] = W,. Then minimizing theeffective squared error%HEi — J; 6x||? gives

the correct second order robust state update, whereRootOf 2 a2 —a—pf / o}, || AZ,]|?)

and:

— VP - Nz, Nz!
= YL Az, ;= 1l - —— ; 11
0z; 1— o Zz(X) J; \/107 ( @ HAZiH2 Ji (11)

In practice, ifp!/ || Az,]|? < —1p}, we can use the same formulae but limit 1 — € for
some smalt. However, the full curvature correction is not applied in this case.

4.4 Constrained Problems

More generally, we may want to minimize a functif{ix) subject to a set of constraints
c(x) = 0 onx. These might be scene constraints, internal consistency constraints on the
parametrization§@.2), or constraints arising from an implicit observation modalg).

Given an initial estimatex of the solution, we try to improve this by optimizing the
guadratic local model fdrsubject to a linear local model of the constramt3 his linearly
constrained quadratic problem has an exact solution in linear algebra, Hebe the
gradient and Hessian 6fs before, and let the first order expansion of the constraints be

C(x46x) ~ c(x)+C dxwhereC = g—i. Introduce a vector of Lagrange multipliexor c.

We seek tha -+ dx that optimize$+-c™ A subjecttac = 0,i.e.0 = %(f—I—CT A)(X+0x) =~
g-+Hdx+C" Aand0 = ¢(x+dx) =~ c(x)+C dx. Combining these gives ttf&equential
Quadratic Programming (SQP) step:

(2 %T> (‘2‘) - - (g) L f(x+8%) ~ fx) = L (g7 C) (g %T>1 (2) (12)

(H CT> o <H1 ~H'C'D'CH'H'C’ Dl) 5

—1 T
Co D'CH" D cH™C (13)
At the optimuméx andc vanish, buiC™ A = —g, which is generally non-zero.

An alternative constrained approach uses the linearized constraints to eliminate some
of the variables, then optimizes over the rest. Suppose that we can order the variables
to give partitionsx = (x; x2)" andC = (C; C,), whereC, is square and invertible.
Then usingC; x; + Cox; = Cx = —c, we can solve foix; in terms ofx, andc:

X3 = —C7'(Cax2 + ). Substituting this into the quadratic cost model has the effect of
eliminatingx, , leaving a smaller unconstrainestiuced problemHas o = —0,, Where:

ﬁgg = Hss — Hoy Cil C2 — C; CIT His + Cg CIT Hiq CIl C2 (14)
0, =02-C5C1'g1 — (Hu —C3C"Hip)Ci'c (15)

(These matrices can be evaluated efficiently using simple matrix factorization schemes
[11]). This method is stable provided that the cho8eris well-conditioned. It works well
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for dense problems, but is not always suitable for sparse ones bec#ligedense, the
reduced HessiaH,, becomes dense too.

For least squares cost models, constraints can also be handled within the linear leas
squares frameworle.g see [11].

4.5 General Implementation Issues

Before going into details, we mention a few points of good numerical practice for large-
scale optimization problems such as bundle adjustment:

Exploit the problem structure: Large-scale problems are almost always highly structured
and bundle adjustment is no exception. In professional cartography and photogrammetric
site-modelling, bundle problems with thousands of images and many tens of thousands
of features are regularly solved. Such problems would simply be infeasible without a
thorough exploitation of the natural structure and sparsity of the bundle problem. We will
have much to say about sparsity below.

Use factorization effectively:Many of above formulae contain matrix inverses. This is

a convenient short-hand for theoretical calculations,noumerically, matrix inversion is
almost never usednstead, the matrix is decomposed into its Cholesky, LU, &R,
factors and these are used directyy linear systems are solved using forwards and
backwards substitution. This is much faster and numerically more accurate than explicit
use of the inverse, particularly for sparse matrices such as the bundle Hessian, whost
factors are still quite sparse, but whose inverse is always dense. Explicit inversion is
required only occasionallye.g for covariance estimates, and even then only a few of
the entries may be needeelg diagonal blocks of the covariance). Factorization is the
heart of the optimization iteration, where most of the time is spent and where most can be
done to improve efficiency (by exploiting sparsity, symmetry and other problem structure)
and numerical stability (by pivoting and scaling). Similarly, certain matrices (subspace
projectors, Householder matrices) have (diagonal)+(low rank) forms which should not be
explicitly evaluated as they can be applied more efficiently in pieces.

Use stable local parametrizations:As discussed ir32.2, the parametrization used for
step prediction need not coincide with the global one used to store the state estimate. It is
more important that it should be finite, uniform and locally as nearly linear as possible.
If the global parametrization is in some way complex, highly nonlinear, or potentially
ill-conditioned, it is usually preferable to use a stable local parametrization based on
perturbations of the current state for step prediction.

Scaling and preconditioning:Another parametrization issue that has a profound and too-
rarely recognized influence on numerical performancaaitable scaling (the choice of
‘units’ or reference scale to use for each parameter), and more gengrdbnditioning
(the choice of which linear combinations of parameters to use). These represent the lineal
part of the general parametrization problem. The performance of gradient descent and mos
other linearly convergent optimization methods is critically dependent on preconditioning,
to the extent that for large problems, they are seldom practically useful without it.

One of the great advantages of the Newton-like methods is their theoretical indepen-
dence of such scaling issde8ut even for these, scaling makes itself felt indirectly in

% Under a linear change of coordinates+~ Tx we haveg — T-""gand H — T-TH T, so the
Newton stepdx = —H™ g varies correctly agx — T dx, whereas the gradient odx ~ g
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Fig. 3. The network graph, parameter connection graph, Jacobian structure and Hessian structure fo
a toy bundle problem with five 3D features A—E, four images 1-4 and two camera calibrAtions
(shared by images 1,2) ar¢, (shared by images 3,4). Feature A is seeninimages 1,2; B in 1,2,4;
Cinl,3;Din2-4;and Ein 3,4.

several ways:ij Step control strategies including convergence tests, maximum step size
limitations, and damping strategies (trust region, Levenberg-Marquardt) are usually all
based on some implicit norf¥x||2, and hence change under linear transformations of
(e.g, damping makes the step more like the non-invariant gradient descentipnijv-

oting strategies for factoringl are highly dependent on variable scaling, as they choose
‘large’ elements on which to pivot. Here, ‘largghouldmean ‘in which little numerical
cancellation has occurred’ but with uneven scaling it becomes ‘with the largest siiigle’. (
The choice of gauge (datug9) may depend on variable scaling, and this can significantly
influence convergence [82, 81].

For all of these reasons, it is important to choose variable scalings that relate mean-
ingfully to the problem structure. This involves a judicious comparison of the relative
influence of,e.g, a unit of error on a nearby point, a unit of error on a very distant one,

a camera rotation error, a radial distortion eretc For this, it is advisable to use an
‘ideal’ Hessian or weight matrix rather than the observed one, otherwise the scaling might
break down if the Hessian happens to become ill-conditioned or non-positive during a few
iterations before settling down.

5 Network Structure

Adjustment networks have a rich structure, illustrated in figure 3 for a toy bundle problem.
The free parameters subdivide naturally into blocks corresponding to: 3D feature coor-
dinates A,... , E; camera poses and unshared (single image) calibration parameters 1,
..., 4;and calibration parameters shared across several inkagés,. Parameter blocks

varies incorrectly agx — T~ 6x. The Newton and gradient descent steps agree only when
T T=H
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interact only via their joint influence on image features and other observatm®nga their

joint appearance in cost function contributions. The abstract structure of the measurement
network can be characterized graphically by tieéwork graph (top left), which shows
which features are seen in which images, angirameter connection graph(top right)

which details the sparse structure by showing which parameter blocks have direct interac-
tions. Blocks are linked if and only if they jointly influence at least one observation. The
cost function Jacobian (bottom left) and Hessian (bottom right) reflect this sparse structure.
The shaded boxes correspond to non-zero blocks of matrix entries. Each block of rows in
the Jacobian corresponds to an observed image feature and contains contributions fron
each of the parameter blocks that influenced this observation. The Hessian contains ar
off-diagonal block for each edge of the parameter connection graplor each pair of
parameters that couple to at least one common feature / appear in at least one commo
cost contributiof?.

Two layers of structure are visible in the Hessian. phenary structure consists of
the subdivision into structure (A—E) and camera (154+K>) submatrices. Note that the
structure submatrix is block diagonal: 3D features couple only to cameras, not to other
features. (This would no longer hold if inter-feature measurements such as distances ol
angles between points were present). The camera submatrix is often also block diagonal
but in this example the sharing of unknown calibration parameters produces off-diagonal
blocks. Thesecondary structureis the internal sparsity pattern of the structure-camera
Hessian submatrix. This is dense for small problems where all features are seen in all
images, but in larger problems it often becomes quite sparse because each image only see
a fraction of the features.

All worthwhile bundle methods exploit at least the primary structure of the Hessian,
and advanced methods exploit the secondary structure as well. The secondary structure i
particularly sparse and regular in surface coverage problems such grids of photographs ir
aerial cartography. Such problems can be handled using a fixed ‘nested dissection’ variable
reordering §6.3). But for the more irregular connectivities of close range problems, general
sparse factorization methods may be required to handle secondary structure.

Bundle problems are by no means limited to the above structures. For example, for
more complex scene models with moving or articulated objects, there will be additional
connections to object pose or joint angle nodes, with linkages reflecting the kinematic
chain structure of the scene. Itis often also necessary to add constraints to the adjustmen
e.g coplanarity of certain points. One of the greatest advantages of the bundle technique is
its ability to adapt to almost arbitrarily complex scene, observation and constraint models.

10 The Jacobian structure can be described more directly by a bipartite graph whose nodes correspon
on one side to the observations, and on the other to the parameter blocks that influence them. The
parameter connection graph is then obtained by deleting each observation node and linking eact
pair of parameter nodes that it connects to. This is an example of elimination graph processing
(see below).
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6 Implementation Strategy 1: Second Order Adjustment Methods

The next three sections cover implementation strategies for optimizing the bundle adjust-
ment cost functiofi(x) over the complete set of unknown structure and camera parameters
X. This section is devoted to second-order Newton-style approaches, which are the basi:
of the great majority of current implementations. Their most notable characteristics are
rapid (second order) asymptotic convergence but relatively high cost per iteration, with
an emphasis on exploiting the network structure (the sparsity of the Hdﬂsian(%
for efficiency. In fact, the optimization aspects are more or less stan@igri®0, 93, 42]),

so we will concentrate entirely on efficient methods for solving the linearized Newton
step prediction equations = —H™g, (6). For now, we will assume that the Hessian
H is non-singular. This will be amended §® on gauge freedom, without changing the

conclusions reached here.

6.1 The Schur Complement and the Reduced Bundle System

Schur complement:Consider the following block triangular matrix factorization:

AB 1 0 AO 1A'B = o
M(CD)(CA—11><0D><O 1 ) D=D-CA"B  (16)
(A 3)71: (1 ,A713)<A*1 7071)( 1 0) _ (A—1+A—1BB’1CA—1 7A—18571>
cD 0 1 0D —-CA _Bleat 5!
(17)

HereA must be square and invertible, and for (17), the whole matrix must also be square
and invertibleD is called theschur complementof A in M. If both A andD are invertible,
complementing oI rather tham gives
A B\ Al A 'BD! N 1
(CD) = (—DCKA D_1+D_1CKilBD—1>’ A=A-BD'C

Equating upper left blocks gives tMgoodbury formula :
(A+BD'C)" = A FA'B(D£CA'B)"' CA" (18)

This is the usual method of updating the inverse of a nonsingular nfatfier an update
(especially a low rank onéd — A+ BD*C. (Sees8.1).

Reduction: Now consider the linear systefrg B )(X}) = (E; ). Pre-multiplying by
(7C1A*1 (1)) gives (g %) (%)= <%; ) whereb, = b, — CA~'b;. Hence we can use
Schur complement and forward substitution to finceduced systenD X, = b,, solve
this for x,, then back-substitute and solve to fixd

D=D-CA"'B - B
b2 = b2 —CA_lbl Dxy = b2 AX; = bl — BxXy (19)
Schur complement + reduced system back-substitution

forward substitution
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Note that the reduced system entirely subsumes the contributiornafitbes and columns

to the network. Once we have reduced, we can pretend that the problem does not involve
x; at all — it can be found later by back-substitution if needed, or ignored if not. This is
the basis of all recursive filtering methods. In bundle adjustment, if we use the primary
subdivision into feature and camera variables and subsume the structure ones, we get th
reduced camera systenHoo Xo = 9., Where:

ﬁCC = Hee — Hes H;S Hse = Hee — ZpHCP H;; Hyc (20)

Jc = 9c —HesHgs9s = 9c — > HepHyp 0y

Here, 'S’ selects the structure block and™ the camera oneHgg is block diagonal,
so the reduction can be calculated rapidly by a sum of contributions from the individual
3D features’ in S. Brown’s original 1958 method for bundle adjustment [16, 19, 100]
was based on finding the reduced camera system as above, and solving it using Gaussia
elimination. Profile Cholesky decompositic§B(3) offers a more streamlined method of
achieving this.

Occasionally, long image sequences have more camera parameters than structure one
Inthis case itis more efficient to reduce the camera parameters, leaethgeed structure
system

6.2 Triangular Decompositions

If D in (16) is further subdivided into blocks, the factorization process can be contin-
ued recursively. In fact, there is a family of block (lower triangular)*(diagonal)*(upper
triangular) factorization&, = LD U:

Li1
A1 A2 - Alg Lot Loo D1 U1 Upg oo oo Uin
A21 Agz - Aan | : o, Do Ugg -+ - Usn
Aml Am2 Amn : : : Dr Urn
Lml Lm2 o Lmr
(21)

SeesB.1 for computational details. The main advantage of triangular factorizations is that
they make linear algebra computations with the matrix much easier. In particular, if the
input matrixA is square and nonsingular, linear equatidns = b can be solved by a
sequence of three recursions thatimplicitly implement multiplicatiohthy= U~ D~ L~:

Lc=b c;i «— L (bi =2 j<iLij cj> forward substitution  (22)
Dd =c d; < D;'c; diagonal solution (23)
Ux = d xi U (di = X5, Uixg) back-substitution ~ (24)

Forward substitution corrects for the influence of earlier variables on later ones, diagonal
solution solves the transformed system, and back-substitution propagates corrections du
to later variables back to earlier ones. In practice, this is usual method of solving linear

equations such as the Newton step prediction equations. It is stabler and much faster thal
explicitly inverting A and multiplying byA—.
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The diagonal blockk;;, D;, U;; can be setarbitrarily provided that the produgtD; U;;
remains constant. This gives a number of well-known factorizations, each optimized for a
different class of matrice®ivoting (row and/or column exchanges designed to improve
the conditioning oL and/orU, §B.1) is also hecessary in most cases, to ensure stability.
Choosing.;; = D;; = 1 gives the (block).U decompositionA = L U, the matrix repre-
sentation of (block) Gaussian elimination. Pivoted by rows, this is the standard method for
non-symmetric matrices. For symmetAg roughly half of the work of factorization can
be saved by using a symmetry-preserving LDactorization, for whictD is symmetric
andU = L". The pivoting strategy must also preserve symmetry in this case, so it has to
permute columns in the same way as the corresponding rossiEymmetric positive
definite we can further s& = 1 to get theCholesky decompositionA = LL". This is
stable even without pivoting, and hence extremely simple to implement. It is the standard
decomposition method for almost all unconstrained optimization problems including bun-
dle adjustment, as the Hessian is positive definite near a non-degenerate cost minimun
(and in the Gauss-Newton approximation, almost everywhere else, téak fymmetric
but only positivesemdefinite,diagonally pivoted Cholesky decompositiortan be used.

This is the caseg.g in subset selection methods of gauge fixifg.%). Finally, ifA is
symmetric but indefinite, it is not possible to redu@estably tol. Instead, theBunch-
Kaufman method is used. This is a diagonally pivoted LDImethod, wheréD has a
mixture of1 x 1 and2 x 2 diagonal blocks. The augmented Hess(acﬂ 8) of the La-
grange multiplier method for constrained optimization problems (12) is always symmetric
indefinite, so Bunch-Kaufman is the recommended method for solving constrained bundle
problems. (It is something like 40% faster than Gaussian elimination, and about equally
stable).

Another use of factorization is matrix inversion. Inverses can be calculated by factoring,
inverting each triangular factor by forwards or backwards substitution (52), and multiplying
out: A = U D'L. However, explicit inverses are rarely used in numerical analysis,
it being both stabler and much faster in almost all cases to leave them implicit and work
by forward/backward substitution w.r.t. a factorization, rather than multiplication by the
inverse. One place where inversiesmeeded in its own right, is to calculate the dispersion
matrix (inverse Hessian, which asymptotically gives the posterior covariance) as a measure
of the likely variability of parameter estimates. The dispersion can be calculated by explicit
inversion of the factored Hessian, but often only a few of its entries are needethe
diagonal blocks and a few key off-diagonal parameter covariances. In this case (53) can be
used, which efficiently calculates the covariance entries corresponding to just the nonzero
elements of_, D, U.

6.3 Sparse Factorization

To apply the above decompositions to sparse matrices, we must obviously avoid storing
and manipulating the zero blocks. But there is more to the subject than this. As a sparse
matrix is decomposed, zero positions tend to rapidilin (become non-zero), essentially
because decomposition is based on repeated linear combination of matrix rows, which
is generically non-zero wherever any one of its inputs is. Fill-in depends strongly on the
order in which variables are eliminated, so efficient sparse factorization routines attempt
to minimize either operation counts or fill-in by re-ordering the variables. (The Schur
process is fixed in advance, so this is the only available freedom). Globally minimizing
either operations or fill-in is NP complete, but reasonably good heuristics exist (see below).
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Variable order affects stability (pivoting) as well as speed, and these two goals conflict to

some extent. Finding heuristics that work well on both counts is still a research problem.
Algorithmically, fill-in is characterized by aelimination graph derived from the pa-

rameter coupling / Hessian graph [40, 26, 11]. To create this, nodes (blocks of parameters’

are visited in the given elimination ordering, at each step linking together all unvisited

nodes that are currently linked to the current node. The coupling of bitechlockj via

visited blockk corresponds to a non-zero Schur contributignD; ' Uy ;, and at each stage

the subgraph on the currently unvisited nodes is the coupling graph of the current reducec

Hessian. The amount of fill-in is the number of new graph edges created in this process.

Pattern Matrices We seek variable orderings that approximately minimize the total
operation count or fill-in over the whole elimination chain. For many problems a suitable
ordering can be fixed in advance, typically giving one of a few standard pattern matrices
such as band or arrowhead matrices, perhaps with such structure at several levels.

= o HHN
= = HEE
o N [
B = EEN (25)
B N EEE

[ |

(5 Y [ I [ BE

arrowhead matrix block tridiagonal matrix

The most prominent pattern structure in bundle adjustment is the primary subdivision of
the Hessian into structure and camera blocks. To get the reduced camera system (19
we treat the Hessian as an arrowhead matrix with a broad final column containing all of
the camera parameters. Arrowhead matrices are trivial to factor or reduce by2blozk
Schur complementation,f. (16, 19). For bundle problems with many independentimages
and only a few features, one can also complement on the image parameter block to get
reducedstructuresystem.

Another very common pattern structure is the block tridiagonal one which characterizes
all singly coupled chains (sequences of images with only pairwise overlap, Kalman filtering
and other time recursions, simple kinematic chains). Tridiagonal matrices are factored or
reduced by recursive block x 2 Schur complementation starting from one end. The
andU factors are also block tridiagonal, but the inverse is generally dense.

Pattern orderings are often very natural but it is unwise to think of them as immutable:
structure often occurs at several levels and deeper structure or simply changes in the relativi
sizes of the various parameter classes may make alternative orderings preferable. For mor
difficult problems there are two basic classes of on-line ordering stratdgi¢®am-up
methods try to minimize fill-in locally and greedily at each step, at the risk of global short-
sightednesslop-downmethods take a divide-and-conquer approach, recursively splitting
the problem into smaller sub-problems which are solved quasi-independently and later
merged.

Top-Down Ordering Methods The most common top-down method is caltessted dis-
sectionor recursive partitioning [64,57,19, 38, 40, 11]. The basic idea is to recursively
split the factorization problem into smaller sub-problems, solve these independently, and



324 B. Triggs et al.

Minimum Degree Reverse Cuthill-McKee

Fig. 4. A bundle Hessian for an irregular coverage problem with only local connections, and its
Cholesky factor in natural (structure-then-camera), minimum degree, and reverse Cuthill-McKee
ordering.

then glue the solutions together along their common boundaries. Splitting involves choos-
ing aseparating sef variables, whose deletion will separate the remaining variables into
two or more independent subsets. This corresponds to findwerex) graph cut of the
elimination graphi.e. a set of vertices whose deletion will split it into two or more discon-
nected components. Given such a partitioning, the variables are reordered into connecte
components, with the separating set ones last. This produces an ‘arrowhead’ engtrix,

A1 Ao A1 A1z
| A2 ||A22|| Azs | — (26)

Asz  ||As2

(A ] e e

The arrowhead matrix is factored by blocks, as in reduction or profile Cholesky, tak-
ing account of any internal sparsity in the diagonal blocks and the borders. Any suitable
factorization method can be used for the diagonal blocks, including further recursive par-
titionings.
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Nested dissection is most useful when comparatively small separating sets can be found
A trivial example is the primary structure of the bundle problem: the camera variables
separate the 3D structure into independent features, giving the standard arrowhead form o
the bundle Hessian. More interestingly, networks with good geometric or temporal locality
(surface- and site-covering networks, video sequences) tend to have small separating sef
based on spatial or temporal subdivision. The classic examples are geodesic and aeric
cartography networks with their local 2D connections — spatial bisection gives simple
and very efficient recursive decompositions for these [64, 57, 19].

For sparse problems with less regular structure, one can use graph partitioning algo-
rithms to find small separating sets. Finding a globally minimal partition sequence is NP
complete but several effective heuristics exist. This is currently an active research field.
One promising family are multilevel schemes [70, 71, 65, 4] which decimate (subsample)
the graph, partition using.g a spectral method, then refine the result to the original graph.
(These algorithms should also be very well-suited to graph based visual segmentation anc
matching).

Bottom-Up Ordering Methods Many bottom-up variable ordering heuristics exist. Prob-
ably the most widespread and effectivanigmimum degree ordering. At each step, this
eliminates the variable coupled to the fewest remaining oinesitfe elimination graph

node with the fewest unvisited neighbours), so it minimizes the nUE¥eqignpourd OF
changed matrix elements and hence FLOPs for the step. The minimum degree ordering
can also be computed quite rapidly without explicit graph chasing. A related ordering,
minimum deficiency, minimizes the fill-in (newly created edges) at each step, but this is
considerably slower to calculate and not usually so effective.

Fill-in or operation minimizing strategies tend to produce somewhat fragmentary ma-
trices that require pointer- or index-based sparse matrix implementations (see fig. 4). This
increases complexity and tends to reduce cache locality and pipeline-ability. An alternative
is to useprofile matriceswhich (for lower triangles) store all elements in each row between
the first non-zero one and the diagonal in a contiguous block. This is easy to implement
(seesB.3), and practically efficient so long as about 30% or more of the stored elements are
actually non-zero. Orderings for this case aim to minimize the sum of the profile lengths
rather than the number of non-zero elements. Profiling enforces a multiply-linked chain
structure on the variables, so it is especially successful for linear / chain-like / one dimen-
sional problemse.g space or time sequences. The simplest profiling strategyésse
Cuthill-McKee which chooses some initial variable (very preferably one from one ‘end’
of the chain), adds all variables coupled to that, then all variables coupled to ¢tose,
then reverses the ordering (otherwise, any highly-coupled variables get eliminated early
on, which causes disastrous fill-in). More sophisticated are the so-balidetr's strate-
gies which maintain an active set of all the variables coupled to the already-eliminated
ones, and choose the next variable — from the active set (King [72]), it and its neighbours
(Snay [101]) or all uneliminated variables (Levy [75]) — to minimize the new size of the
active set at each step. In particul8nay’s banker’s algorithm is reported to perform
well on geodesy and aerial cartography problems [101, 24].

For all of these automatic ordering methods, it often pays to do some of the initial work
by hand.e.g it might be appropriate to enforce the structure / camera division beforehand
and only order the reduced camera system. If there are nodes of particularly high degree
such as inner gauge constraints, the ordering calculation will usually run faster and the
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guality may also be improved by removing these from the graph and placing them last by
hand.

The above ordering methods apply to both Cholesky / Lidecomposition of the
Hessian and QR decomposition of the least squares Jacobian. Sparse QR methods can |
implemented either with Givens rotations or (more efficiently) with sparse Householder
transformations. Row ordering is important for the Givens methods [39]. For Householder
ones (and some Givens ones too) thatifrontal organization is now usual [41, 11], as
it captures the natural parallelism of the problem.

7 Implementation Strategy 2: First Order Adjustment Methods

We have seen that for large problems, factoring the Hedsiém compute the Newton

step can be both expensive and (if done efficiently) rather complex. In this section we
consider alternative methods that avoid the cost of exact factorization. As the Newton step
can not be calculated, such methods generally only achieve first order (linear) asymptotic
convergence: when close to the final state estimate, the error is asymptotically reduced by
constant (andin practice often depressingly small) factor at each step, whereas quadratically
convergent Newton methods roughly double the number of significant digits at each step.
So first order methods require more iterations than second order ones, but each iteratior
is usually much cheaper. The relative efficiency depends on the relative sizes of these
two effects, both of which can be substantial. For large problems, the reduction in work
per iteration is usually at lea€)(n), wheren is the problem size. But whereas Newton
methods converge fror®(1) to O (107'%) in aboutl + log, 16 = 5 iterations, linearly
convergent ones take respectivédyg 10716/ log(1 — ) = 16,350, 3700 iterations for
reductiorry = 0.9,0.1, 0.01 per iteration. Unfortunately, reductions of orll{ or less are

by no means unusual in practidg (2), and the reduction tends to decrease im&reases.

7.1 First Order Iterations

We first consider a number of common first order methods, before returning to the question
of why they are often slow.

Gradient descent: The simplest first order method ggadient descent which “slides

down the gradient” by takingx ~ g or H, = 1. Line search is needed, to find an appro-
priate scale for the step. For most problems, gradient descent is spectacularly inefficient
unless the Hessian actually happens to be very close to a multipl&is can be arranged

by preconditioning with a linear transform x — Lx,g — L-"gandH — L-"HL™,
whereL L™ ~ H is an approximate Cholesky factor (or other left square roat), o that

H — L-THL™ ~ 1. In this very special case, preconditioned gradient descent approxi-
mates the Newton method. Strictly speaking, gradient descent is a cheat: the gradient is
covector (linear form on vectors) not a vector, so it does not actually define a direction in
the search space. Gradient descent’s sensitivity to the coordinate system is one symptor
of this.

Alternation: Another simple approach @ternation: partition the variables into groups

and cycle through the groups optimizing over each in turn, with the other groups held
fixed. This is most appropriate when the subproblems are significantly easier to optimize
than the full one. A natural and often-rediscovered alternation for the bundle problem is
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resection-intersection which interleaves steps #section(finding the camera poses and

if necessary calibrations from fixed 3D features) artdrsection(finding the 3D features

from fixed camera poses and calibrations). The subproblems for individual features and
cameras are independent, so only the diagonal blockisawé required.

Alternation can be used in several ways. One extreme is to optimize (or perhaps only
perform one step of optimization) over each group in turn, with a state update and re-
evaluation of (the relevant components gfH after each group. Alternatively, some of
the re-evaluations can be simulated by evaluating the linearized effects of the parametel
group update on the other groufsg., for resection-intersection with structure update
oXs = —Hgs 9s(Xs,Xc) (where S’ selects the structure variables an@ the camera
ones), the updated camera gradient is exactly the gradient of the reduced camera systen
gc(Xs + 0Xg,Xco) =~ go(Xs, Xe) + Hosdxs = gc — Hes H;S gc. So the total update

, H 0 -1
for the cycle is( 555 ) = (s i v ) (85) = (Fo2 w2e) (82).m
general, this correction propagation amounts to solving the system as if the above-diagona
triangle ofH were zero. Once we have cycled through the variables, we can update the
full state and relinearize. This is tm®nlinear Gauss-Seidel methodAlternatively, we
can split the above-diagonal triangle ldf off as a correction (back-propagation) term

. . . (Hgs O OXs _ gs 0OH dXs i
and continue |terat|nﬁ Hos Hoo ) (5><c )(k) =— ( do ) — (0 80 ) (5XC )(k—l) until
(hopefully) (gzg) converges to the full Newton stejx = —H™g. This is thelinear

Gauss-Seidel methodpplied to solving the Newton step prediction equations. Finally,
alternation methods always tend to underestimate the size of the Newton step becaus
they fail to account for the cost-reducing effects of including the back-substitution terms.
Successive Over-Relaxation (SORpethods improve the convergence rate by artificially
lengthening the update steps by a heuristic fattar~y < 2.

Most if not all of the above alternations have been applied to both the bundle problem
and the independent model one many tineeg,[19, 95, 2, 108, 91, 20]. Brown considered
the relatively sophisticated SOR method for aerial cartography problems as early as 1964
before developing his recursive decomposition method [19]. None of these alternations are
very effective for traditional large-scale problems, altho§ght below shows that they
can sometimes compete for smaller highly connected ones.

Krylov subspace methods:Another large family of iterative techniques are tg/lov
subspace methods based on the remarkable properties of the power subspaces
Sparf{A*b|k = 0...n}) for fixed A,b asn increases. Krylov iterations predominate
in many large-scale linear algebra applications, including linear equation solving.

The earliest and greatest Krylov method is¢bejugate gradientiteration for solving
a positive definite linear system or optimizing a quadratic cost function. By augmenting the
gradient descent step with a carefully chosen multiple of the previous step, this manages
to minimize the quadratic model function over the entite Krylov subspace at the'"
iteration, and hence (in exact arithmetic) over the whole space atithene. This no
longer holds when there is round-off error, f¢ny ) iterations usually still suffice to find
the Newton step. Each iterationd¥(n3) so this is not in itself a large gain over explicit
factorization. However convergence is significantly faster if the eigenvaludaf tightly
clustered away from zero: if the eigenvalues are covered by intdayals|;—, ., conver-

gence occurs im(zle \/bi/al—) iterations [99, 47, 48}. Preconditioning (see below)

11 For other eigenvalue based based analyses of the bundle adjustment covariance, see [103, 92].
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Fig. 5. An example of the typical behaviour of first and second order convergent methods near the
minimum. This is a 2D projection of a small but ill-conditioned bundle problem along the two
most variable directions. The second order methods converge quite rapidly, whether they use exac
(Gauss-Newton) or iterative (diagonally preconditioned conjugate gradient) linear solver for the
Newton equations. In contrast, first order methods such as resection-intersection converge slowly
near the minimum owing to their inaccurate model of the Hessian. The effects of mismodelling can
be reduced to some extent by adding a line search.

aims at achieving such clustering. As with alternation methods, there is a range of possible
update / re-linearization choices, ranging from a fully nonlinear method that relinearizes
after each step, to solving the Newton equations exactly using many linear iterations. One
major advantage of conjugate gradient is its simplicity: there is no factorization, all that is
needed is multiplication bid. For the full nonlinear methodt is not even needed — one
simply makes a line search to find the cost minimum along the direction defingary

the previous step.

One disadvantage of nonlinear conjugate gradient is its high sensitivity to the accuracy
of the line search. Achieving the required accuracy may waste several function evaluations
at each step. One way to avoid this is to make the information obtained by the conjugation
process more explicit by building up an explicit approximatiohltor H=. Quasi-Newton
methods such as the BFGS method do this, and hence need less accurate line searche
The guasi-Newton approximation kbor H™ is dense and hence expensive to store and
manipulate, butimited Memory Quasi-Newton (LMQN) methods often get much of
the desired effect by maintaining only a low-rank approximation.

There are variants of all of these methods for least squares (Jacobian rather than Hessia
based) and for constrained problems (non-positive definite matrices).

7.2 Why Are First Order Methods Slow?

To understand why first order methods often have slow convergence, consider the effect of
approximating the Hessian in Newton’s method. Suppose that in some local parametriza-
tion x centred at a cost minimum = 0, the cost function is well approximated by a



Bundle Adjustmeh— A Modern Synthesis 329

guadratic nead: f(x) ~ ix"Hx and hencey(x) = Hx, whereH is the true Hessian.
For most first order methods, the predicted step is linear in the gragli¢intve adopt a

Newton-like state updatéx = —H_' g(x) based on some approximatibfy to H, we get

an iteration:

Xes1 = Xp — HZ g(X,) ~ (L —H;'H) X, ~ (1 —H;'H)"™ x, (27)

The numerical behaviour is determined by projeckinglong the eigenvectors bf-H_' H.

The components corresponding to large-modulus eigenvalues decay slowly and hence
asymptotically dominate the residual error. For genefjthe method converges ‘linearly’

(i.e. exponentially) at ratél — H-' H||, or diverges if this is greater than one. (Of course,

the exact Newton stex = —H™ g converges in a single iteration, B = H). Along
eigen-directions corresponding to positive eigenvalues (for wHicloverestimates$),

the iteration is over-damped and convergence is slow but monotonic. Conversely, along
directions corresponding to negative eigenvalues (for whighunderestimatesi), the
iteration is under-damped and zigzags towards the solutidt.isfunderestimated by a
factor greater than two along any direction, there is divergence. Figure 5 shows an example
of the typical asymptotic behaviour of first and second order methods in a small bundle
problem.

Ignoring the camera-feature coupling:As an example, many approximate bundle meth-
ods ignore or approximate the off-diagonal feature-camera blocks of the Hessian. This
amounts to ignoring the fact that the cost of a feature displacement can be partially offset
by a compensatory camera displacement and vice versa. It therefore significantly over-
estimates the total ‘stiffness’ of the network, particularly for large, loosely connected
networks. The fact that off-diagonal blocks aret negligible compared to the diagonal
ones can be seen in several ways:

e Looking forward to§9, before the gauge is fixed, the full Hessian is singular owing to
gauge freedom. The diagonal blocks by themselves are well-conditioned, but including
the off-diagonal ones entirely cancels this along the gauge orbit directions. Although
gauge fixing removes the resulting singularity, it can not change the fact that the off-
diagonal blocks have enough weight to counteract the diagonal ones.

¢ In bundle adjustment, certain well-known ambiguities (poorly-controlled parameter
combinations) often dominate the uncertainty. Camera distance and focal length es-
timates, and structure depth and camera baseline ones (bas-relief), are both strongh
correlated whenever the perspective is weak and become strict ambiguities in the affine
limit. The well-conditioned diagonal blocks of the Hessian give no hint of these ambi-
guities: when both features and cameras are free, the overall netwotichdess rigid
than it appears to be when each treats the other as fixed.

¢ During bundle adjustment, local structure refinements cause ‘ripples’ that must be prop-
agated throughout the network. The camera-feature coupling information carried in the
off-diagonal blocks is essential to this. In the diagonal-only model, ripples can propa-
gate at most one feature-camera-feature step per iteration, so it takes many iteration:s
for them to cross and re-cross a sparsely coupled network.

These arguments suggest that any approximdtipio the bundle HessiaH that sup-

presses or significantly alters the off-diagonal terms is likely to have lgtge H' H||

and hence slow convergence. This is exactly what we have observed in practice for all

such methods that we have tested: near the minimum, convergence is linear and for large

problems often extremely slow, withl — H_'H||» very close to 1. The iteration may
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either zigzag or converge slowly and monotonically, depending on the exact method and
parameter values.

Line search: The above behaviour can often be improved significantly by adding a line
search to the method. In principle, the resulting method convergesygositive definite

H.. However, accurate modelling &f is still highly desirable. Even with no rounding
errors, an exactly quadratic (but otherwise unknown) cost function and exact line searches
(i.e. the minimum along the line is found exactly), the most efficient generic line search
based methods such as conjugate gradient or quasi-Newton require @(legsterations

to converge. For large bundle problems with thousands of parameters, this can already be
prohibitive. However, if knowledge abottis incorporated via a suitabfgeconditioner

the number of iterations can often be reduced substantially.

7.3 Preconditioning

Gradient descent and Krylov methods are sensitive to the coordinate system and their
practical success depends critically on good preconditioning. The aim is to find a linear
transformatiorx — T x and henceg — T-"g andH — T-"HT for which the trans-
formedH is nearl, or at least has only a few clusters of eigenvalues well separated from
the origin. Ideally,T should be an accurate, low-cost approximation to the left Cholesky
factor ofH. (Exactly evaluating this would give the expensive Newton method again). In
the experiments below, we tried conjugate gradient with preconditioners based on the di-
agonal blocks oH, and onpartial Cholesky decomposition dropping either all filled-in
elements, or all that are smaller than a preset size when performing Cholesky decomposi
tion. These methods were not competitive with the exact Gauss-Newton ones in the ‘strip’
experiments below, but for large enough problems it is likely that a preconditioned Krylov
method would predominate, especially if more effective preconditioners could be found.
An exact Cholesky factor ofl from a previous iteration is often a quite effective
preconditioner. This gives hybrid methods in whidlis only evaluated and factored every
few iterations, with the Newton step at these iterations and well-preconditioned gradient
descent or conjugate gradient at the others.

7.4 Experiments

Figure 6 shows the relative performance of several methods on two synthetic projective
bundle adjustment problems. In both cases, the number of 3D points increases in proportior
to the number of images, so the dense factorization tirﬂb('rs3) wheren is the number

of points or images. The following methods are shown: ‘Sparse Gauss-Newton’ — sparse
Cholesky decomposition with variables ordered naturally (features then cameras); ‘Dense
Gauss-Newton’ — the same, but (inefficiently) ignoring all sparsity of the Hessian; ‘Diag.
Conj. Gradient’ — the Newton step is found by an iterative conjugate gradient linear
system solver, preconditioned using the Cholesky factors of the diagonal blocks of the
Hessian; ‘Resect-Intersect’ — the state is optimized by alternate steps of resection and
intersection, with relinearization after each. In the ‘spherical cloud’ problem, the points
are uniformly distributed within a spherical cloud, all points are visible in all images,
and the camera geometry is strongly convergent. These are ideal conditions, giving a low
diameter network graph and a well-conditioned, nearly diagonal-dominant Hessian. All
of the methods converge quite rapidly. Resection-intersection is a competitive method for
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Fig. 6. Relative speeds of various bundle optimization methods for strong ‘spherical cloud’ and weak
‘strip’ geometries.

larger problems owing to its low cost per iteration. Unfortunately, although this geometry
is often used for testing computer vision algorithms, it is atypical for large-scale bundle
problems. The ‘strip’ experiment has a more representative geometry. The images are
arranged in a long strip, with each feature seen in about 3 overlapping images. The strip’s
long thin weakly-connected network structure gives it large scale low stiffness ‘flexing’
modes, with correspondingly poor Hessian conditioning. The off-diagonal terms are critical
here, so the approximate methods perform very poorly. Resection-intersection is slower
even than dense Cholesky decomposition ignoring all sparsity. For 16 or more images
it fails to converge even after 3000 iterations. The sparse Cholesky methods continue to
perform reasonably well, with the natural, minimum degree and reverse Cuthill-McKee
orderings all giving very similar run times in this case. For all of the methods that we
tested, including resection-intersection with its linear per-iteration cost, the total run time
for long chain-like geometries scaled roughly@é:®).
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8 Implementation Strategy 3: Updating and Recursion

8.1 Updating Rules

It is often convenient to be able wpdate a state estimate to reflect various types of
changesg.g to incorporate new observations or to delete erroneous ah@sifdating’).
Parameters may have to be added or deleted too. Updating rules are often used recursivel
toincorporate a series of observations one-by-one rather than solving a single batch systern
This is useful in on-line applications where a rapid response is needed, and also to provide
preliminary predictionse.g for correspondence searches. Much of the early development
of updating methods was aimed at on-line data editing in aerial cartography workstations.

The main challenge in adding or deleting observations is efficiently updating either a
factorization of the Hessiat, or the covarianckl™. Given either of these, the state update
ox is easily found by solving the Newton step equatibhdx = —g, where (assuming
that we started at an un-updated optimgiz 0) the gradieng depends only on the newly
added terms. The Hessian updbdte—~ H + BW BT needs to have relatively low rank,
otherwise nothing is saved over recomputing the batch solution. In least squares the rank i
the number of independent observations added or deleted, but even without this the rank i
often low in bundle problems because relatively few parameters are affected by any given
observation.

One limitation of updating is that it is seldom as accurate as a batch solution owing to
build-up of round-off error. Updating (adding observations) itself is numerically stable, but
downdating (deleting observations) is potentially ill-conditioned as it reduces the positivity
of the Hessian, and may cause previously good pivot choices to become arbitrarily bad.
This is particularly a problem if all observations relating to a parameter are deleted, or
if there are repeated insertion-deletion cycles as in time window filtering. Factorization
updating methods are stabler than Woodbury formula / covariance updating ones.

Consider first the case where no parameters need be added nor detptadiling or
deleting an observation of an existing pointin an existing image. Several methods have beer
suggested [54, 66]. Mikhail & Helmering [88] use the Woodbury formula (18) to update
the covarianceH™. This simple approach becomes inefficient for problems with many
features because the sparse structure is not exploited: the full covariance matrix is dens
and we would normally avoid calculating itin its entiretyi@{51, 54] avoids this problem
by maintaining a running copy of the reduced camera system (20), using an incremental
Schur complement / forward substitution (16) to fold each new observation into this, and
then re-factorizing and solving as usual after each update. This is effective when there are
many features in a few images, but for larger numbers of images it becomes inefficient
owing to the re-factorization step. Factorization updating methods such as (55, 56) are
currently the recommended update methods for most applications: they allow the existing
factorization to be exploited, they handle any number of images and features and arbitrary
problem structure efficiently, and they are numerically more accurate than Woodbury
formula methods. The Givens rotation method [12, 54], which is equivalent to the rank
1 Cholesky update (56), is probably the most common such method. The other updating
methods are confusingly named in the literature. Mikhail & Helmering’s method [88]
is sometimes called ‘Kalman filtering’, even though no dynamics and hence no actual
filtering is involved. Giin’s reduced camera system method [51] is called ‘triangular factor
update (TFU)’, even though it actually updates the (square) reduced Hessian rather thar
its triangular factors.
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For updates involving a previously unseen 3D feature or image, new variables must
also be added to the system. This is easy. We simply choose where to put the variables ir
the elimination sequence, and extetdnd its L,D,U factors with the corresponding rows
and columns, setting all of the newly created positions to zero (except for the unit diagonals
of LDL™'s and LU’sL factor). The factorization can then be updated as usual, presumably
adding enough cost terms to make the extended Hessian nonsingular and couple the ne
parameters into the old network. If a direct covariance update is needed, the Woodbury
formula (18) can be used on the old part of the matrix, then (17) to fill in the new blocks
(equivalently, invert (54), witlb, < A representing the old blocks abg <+ 0 the new
ones).

Conversely, it may be necessary to delete paramedagsf an image or 3D feature
has lost most or all of its support. The corresponding rows and columns of the Hessian
H (and rows ofg, columns of]) must be deleted, and all cost contributions involving the
deleted parameters must also be removed using the usual factorization downdates (55, 56
To delete the rows and columns of blokkn a matrixA, we first delete thé rows and
columns ofL, D, U. This maintains triangularity and gives the correct trimmeexcept
that the blocks in the lower right cornéy;; = Z,Kmin(i’j) Lix Di Ug;, 4,5 > b are
missing a ternk;;, D, Up; from the deleted columhof L / rowd of U. This is added using
an updatetL,;, Dy Uy, x > b. To updateA— when rows and columns & are deleted,
permute the deleted rows and columns to the end and use (17) backWards? =
(A™)11 — (A )12 (A7) 55 (A2

It is also possible to freeze some live parameters at fixed (current or default) values,
or to add extra parameters / unfreeze some previously frozen@he@8, 49) below. In
this case, rows and columns corresponding to the frozen parameters must be deleted ¢
added, but no other change to the cost function is required. Deletion is as above. To inser
rows and columng,., A,; at blockb of matrix A, we open space in row and colurhof
L, D, U and fill these positions with the usual recursively defined values (51}, Fos b,
the sum (51) will now have a contributidn, D, U,; that it should not have, so to correct
this we downdate the lower right submatsix> b with a cost cancelling contribution
—L Dy Ups.

8.2 Recursive Methods and Reduction

Each update computation is roughly quadratic in the size of the state vector, so if new
features and images are continually added the situation will eventually become unman-
ageable. We must limit what we compute. In principle parameter refinement never stops:
each observation update affects all components of the state estimate and its covariance
However, the refinements are in a sense trivial for parameters that are not directly coupled
to the observation. If these parameters are eliminated using reduction (19), the observa
tion update can be applied directly to the reduced Hessian and gradiem eliminated
parameters can then be updated by simple back-substitution (19) and their covariances b
(17). In particular, if we cease to receive new information relating to a block of parameters
(an image that has been fully treated, a 3D feature that has become invisible), they and
all the observations relating to them can be subsumed once-and-for-all in a reduced Hes.
sian and gradient on the remaining parameters. If required, we can later re-estimate the

21n (19), only D and b, are affected by the observation as it is independent of the subsumed
componentdA, B, C, b;. So applying the update 1, b, has the same effect as applying it to
D, bs.
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eliminated parameters by back-substitution. Otherwise, we do not need to consider them
further.

This elimination process has some limitations. Only ‘dead’ parameters can be elim-
inated: to merge a new observation into the problem, we need the current Hessian or
factorization entries for all parameter blocks relating to it. Reduction also commits us to
a linearized / quadratic cost approximation for the eliminated variables at their current
estimates, although to the extent that this model is correct, the remaining variables can still
be treated nonlinearly. Itis perhaps best to view reduction as the first half-iteration of a full
nonlinear optimization: by (19), the Newton method for the full model can be implemented
by repeated cycles of reduction, solving the reduced system, and back-substitution, with
relinearization after each cycle, whereas for eliminated variables we stop after solving the
first reduced system. Equivalently, reduction evaluates just the reduced components of the
full Newton step and the full covariance, leaving us the option of computing the remaining
eliminated ones later if we wish.

Reduction can be used to refine estimates of relative camera poses (or fundamenta
matricesetc) for a fixed set of images, by reducing a sequence of feature correspondences
to their camera coordinates. Or conversely, to refine 3D structure estimates for a fixed set
of features in many images, by reducing onto the feature coordinates.

Reduction is also the basis of recursive (Kalman) filtering. In this case, one bag a (
time) series of system state vectors linked by some probabilistic transition rule (‘dynamical
model’), for which we also have some observations (‘observation model’). The parameter
space consists of the combined state vectors for all times represents a path through
the states. Both the dynamical and the observation models provide “observations” in the
sense of probabilistic constraints on the full state parameters, and we seek a maximum like-
lihood (or similar) parameter estimate / path through the states. The full Hessian is block
tridiagonal: the observations couple only to the current state and give the diagonal blocks,
and dynamics couples only to the previous and next ones and gives the off-diagonal blocks
(differential observations can also be included in the dynamics likelihood). So the model
is large (if there are many time steps) but very sparse. As always with a tridiagonal matrix,
the Hessian can be decomposed by recursive steps of reduction, at each step Schur compl
menting to get the current reduced blddkfrom the previous on#l,_, the off-diagonal
(dynamical) coupllng-ht 1 and the current unreduced block (observation Hesshan)

H; = H; — Hy oo 1Ht 1 Hi,_1. Similarly, for the grad|entj, =0;— Hieo 1Ht 10,1,

and as usual the reduced state updadxijs= —Ht g,

This forwards reduction process is calfdgbring . At each time step it finds the optimal
(linearized) current state estimate given all of the previous observations and dynamics. The
corresponding unwinding of the recursion by back-substituiomothing, finds the opti-
mal state estimate at each time given both past and future observations and dynamics. Th
usual equations of Kalman filtering and smoothing are easily derived from this recursion,
but we will not do this here. We emphasize that filtering is merely the first half-iteration of
a nonlinear optimization procedure: even for nonlinear dynamics and observation models,
we can find the exact maximum likelihood state path by cyclic passes of filtering and
smoothing, with relinearization after each.

For long or unbounded sequences it may not be feasible to run the full iteration, but
it can still be very helpful to run short sections ofétg smoothing back over the last
3-4 state estimates then filtering forwards again, to verify previous correspondences anc
anneal the effects of nonlinearities. (The traditioeglended Kalman filter optimizes
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Reconstruction Error vs. Time Window Size
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Fig. 7. The residual state estimation error of the VSDF sequential bundle algorithm for progressively
increasing sizes of rolling time window. The residual error at image 16 is shown for rolling
windows of 1-5 previous images, and also for a ‘batch’ method (all previous images) and a ‘simple’
one (reconstruction / intersection is performed independently of camera location / resection). To
simulate the effects of decreasing amounts of image data, 0%, 15% and 70% of the image measure
ments are randomly deleted to make runs with 100%, 85% and only 30% of the supplied image data.
The main conclusion is that window size has little effect for strong data, but becomes increasingly
important as the data becomes weaker.

nonlinearly over just the current state, assuming all previous ones to be linearized). The
effects of variable window size on the Variable State Dimension Filter (VSDF) sequential
bundle algorithm [85, 86, 83, 84] are shown in figure 7.

9 Gauge Freedom

Coordinates are a very convenient device for reducing geometry to algebra, but they come
at the price of some arbitrariness. The coordinate system can be changed at any time
without affecting the underlying geometry. This is very familiar, but it leaves us with two
problems: {) algorithmically, we need some concrete way of deciding which particular
coordinate system to use at each moment, and hiereakingthe arbitrariness;ii) we

need to allow for the fact that the results may look quite different under different choices,
even though they represent the same underlying geometry.

Consider the choice of 3D coordinates in visual reconstruction. The only objects in the
3D space are the reconstructed cameras and features, so we have to decide where to pla
the coordinate system relative to these Or in coordinate-centred language, where to
place the reconstruction relative to the coordinate system. Moreover, bundle adjustment
updates and uncertainties can perturb the reconstructed structure almost arbitrarily, sc
we must specify coordinate systems not just for the current structure, but aleeefioyr
possible nearby oneJltimately, this comes down to constraining the coordinate values
of certain aspects of the reconstructed structure — features, cameras or combinations o
these — whatever the rest of the structure might be. Saying this more intrinsically, the
coordinate frame is specified and held fixed with respect to the chosen reference elements
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and the rest of the geometry is then expressed in this frame as usual. In measuremen
science such a set of coordinate system specifying rules is catlatuen, but we will

follow the wider mathematics and physics usage and catjétuage?. The freedom in the
choice of coordinate fixing rules is callgduge freedom

As a gauge anchors the coordinate system rigidly to its chosen reference elements, per
turbing the reference elements has no effect on their own coordinates. Instead, it change
the coordinate system itself and hence systematically changes the coordinates of all the
other features, while leaving the reference coordinates fixed. Similarly, uncertainties in
the reference elements do not affect their own coordinates, but appear as highly correlatec
uncertainties in all of thetherreconstructed features. The moral is tsiatictural pertur-
bations and uncertainties are highly relativEneir form depends profoundly on the gauge,
and especially on how this changes as the state vagesvhich elements it holds fixed).

The effects of disturbances amet restricted to the coordinates of the features actually
disturbed, but may appear almost anywhere depending on the gauge.

In visual reconstruction, the differences between object-centred and camera-centred
gauges are often particularly marked. In object-centred gauges, object points appear to b
relatively certain while cameras appear to have large and highly correlated uncertainties.
In camera-centred gauges, it is the camera that appears to be precise and the object poin
that appear to have large correlated uncertainties. One often sees statements like “th
reconstructed depths are very uncertain”. This may be true in the camera frame, yet the
object may be very well reconstructed in its own frame — it all depends on what fraction
of the total depth fluctuations are simply due to global uncertainty in the camera location,
and hence identical for all object points.

Besides 3D coordinates, many other types of geometric parametrization in vision in-
volve arbitrary choices, and hence are subject to gauge freedoms [106]. These include the
choice of: homogeneous scale factors in homogeneous-projective representations; sup
porting points in supporting-point based representations of lines and planes; reference
plane in plane + parallax representations; and homographies in homography-epipole rep-
resentations of matching tensors. In each case the symptoms and the remedies are tt
same.

9.1 General Formulation

The general set up is as follows: We take as our state vetharset of all of the 3D feature
coordinates, camera poses and calibratietts, that enter the problem. This state space
has internal symmetries related to the arbitrary choices of 3D coordinates, homogeneous
scale factorsetc, that are embedded i Any two state vectors that differ only by such
choices representthe same underlying 3D geometry, and hence have exactly the same imag
projections and other intrinsic properties. So under change-of-coordinates equivalence, the
state space is partitioned into classes of intrinsically equivalent state vectors, each clas:
representing exactly one underlying 3D geometry. These classes aregzaligel orbits
Formally, they are the group orbits of the state space action of the relgzagé group
(coordinate transformation group), but we will not need the group structure below. A state
space function represents an intrinsic function of the underlying geometry if and only if
it is constant along each gauge orhi¢(coordinate system independent). Such quantities

13 Here,gaugejust means reference frame. The sense is that of a reference against which something
is judged(O.Fr. jauger, gauger). Pronoung&dj.
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Fig. 8. Gauge orbits in state space, two gauge cross-sections and their covariances.

are calledgauge invariants We want the bundle adjustment cost function to quantify
‘intrinsic merit’, so it must be chosen to be gauge invariant.

In visual reconstruction, the principal gauge groups are3the3 + 1 = 7 dimen-
sional group of 3D similarity (scaled Euclidean) transformations for Euclidean recon-
struction, and thd5 dimensional group of projective 3D coordinate transformations for
projective reconstruction. But other gauge freedoms are also present. Examples include
(i) The arbitrary scale factors of homogeneous projective feature representations, with
their 1D rescaling gauge groups.) (The arbitrary positions of the points in ‘two point’
line parametrizations, with their two 1D motion-along-line groujiig. The underspecified
3 x 3 homographies used for ‘homography + epipole’ parametrizations of matching tensors
[77,62,106]. For example, the fundamental matrix can be parametriZéd=ase|, H
whereeis its left epipole andH is the inter-image homography induced by any 3D plane.
The choice of plane gives a freeddin— H + e a wherea s an arbitrary 3-vector, and
hence a 3D linear gauge group.

Now consider how to specify a gaude. a rule saying how each possible underlying
geometry near the current one should be expressed in coordinates. Coordinatizations ar
represented by state space points, so this is a matter of choosing exactly one point (structur
coordinatization) from each gauge orbit (underlying geometry). Mathematically, the gauge
orbits foliate (fill without crossing) the state space, and a gauge is a local transversal
‘cross-sectiony through this foliation. See fig. 8. Different gauges represent different but
geometrically equivalent coordinatization rules. Results can be mapped between gauge:
by pushing them along gauge orbitg, by applying local coordinate transformations that
vary depending on the particular structure involved. Such transformations are 8alled
transforms (‘similarity’ transforms) [6, 107, 22, 25]. Different gauges through the same
central state represent coordinatization rules that agree for the central geometry but differ
for perturbed ones — the S-transform is the identity at the centre but not elsewhere.

Given agauge, only state perturbations that lie within the gauge cross-section are autho-
rized. This is what we want, as such state perturbations are in one-to-one correspondenc
with perturbations of the underlying geometry. Indeed, any state perturbation is equivalent
to some on-gauge one under the gauge groapunder a small coordinate transformation
that pushes the perturbed state along its gauge orbit until it meets the gauge cross-section
State perturbations along the gauge orbits are uninteresting, because they do not chang
the underlying geometry at all.
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Covariances are averages of squared perturbations and must also be based on on-gau
perturbations (they would be infinite if we permitted perturbations along the gauge orbits,
as there is no limit to these — they do not change the cost at all). So covariance matrices
are gauge-dependent and in fact represent ellipsoids tangent to the gauge cross-section
the cost minimum. They can look very different for different gauges. But, as with states, S-
transforms map them between gauges by projecting along gauge orbits / state equivalenc
classes.

Note that there is no intrinsic notion of orthogonality on state space, so itis meaningless
to ask which state-space directions are ‘orthogonal’ to the gauge orbits. This would in-
volve deciding when two different structures have been “expressed in the same coordinate
system”, so every gauge believes its own cross section to be orthogonal and all others tc
be skewed.

9.2 Gauge Constraints

We will work near some point of state space, perhaps a cost minimum or a running state
estimate. Leti be the dimension of andng the dimension of the gauge orbits. lfeg, H
be the cost function and its gradient and Hessian,@rxe anyny x ng matrix whose
columns span the local gauge orbit directions &t. By the exact gauge invariance fof
its gradient and Hessian vanish along orbit directigis<d = 0 andH G = 0. Note that
the gauged Hessidth is singular with (at least) rank deficiengy and null spac&. This
is calledgauge deficiencyMany numerical optimization routines assume nonsingd|ar
and must be modified to work in gauge invariant problems. The singularity is an expression
of indifference: when we come to calculate state updates, any two updates ending on the
same gauge orbit are equivalent, both in terms of cost and in terms of the change in the
underlying geometry. All that we need is a method of telling the routine which particular
update to choose.

Gauge constraints are the most direct means of doing this. A gauge cross-gection
can be specified in two wayst) ( constrained form:specify ng local constraints(x)
with d(x) = 0 for points ongG; (ii) parametric form:specify a functiorx(y) of ny — nq
independent local parameteyswith X = x(y) being the points ofj. For example, a
trivial gauge is one that simply freezes the valuesrgfof the parameters ir (usually
feature or camera coordinates). In this case we cand@keto be the parameter freezing
constraints ang to be the remaining unfrozen parameters. Note that once the gauge is
fixed the problem is no longer gauge invariant — the whole purposi>af x(y) is to
breakthe underlying gauge invariance.

Examples of trivial gauges includé) (using several visible 3D points as a ‘projective
basis’ for reconstructioni.g. fixing their projective 3D coordinates to simple values, as
in [27]); and {i) fixing the components of one projectidex 4 camera matrix agl 0),
as in [61] (this only partially fixes the 3D projective gaug- 3 projective 3D degrees of
freedom remain unfixed).

14 A suitable G is easily calculated from the infinitesimal action of the gauge group.dfor
example, for spatial similarities the columng®fvould be theng = 3+ 34 1 = 7 state velocity
vectors describing the effects of infinitesimal translations, rotations and changes of spatial scale
onx.
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Linearized gauge:Let the local linearizations of the gauge functions be:

d(x + 6x) ~ d(x) + D éx D=4 (28)
X(y + 8y) ~ x(y) +Ydy Y = g-; (29)

Compatibility between the two gauge specification methods reqdirdy)) = O for all
y, and henc®® Y = 0. Also, sinceG must be transversal to the gauge orbids; must
have full rankng and(Y G) must have full rank:y. Assuming thak itself is ong, a
perturbatiorx + dxg is ong to first order iffD dxg = 0 or dxg = Y &y for somedy.

Two ny x ny rankny — ng matrices characterizg. Thegauge projection matrix Py
implements linearized projection of state displacement veétoedong their gauge orbits
onto the local gauge cross-sectidgix — dxg = Pg dx. (The projection is usually non-
orthogonal P; # Pg). Thegauged covariance matrixVg plays the role of the inverse
Hessian. It gives the cost-minimizing Newton step withindxg = —Vg g, and also
the asymptotic covariance 6kg. P; andVg have many special properties and equivalent
forms. For convenience, we display some of these'fewletV = (H + D" B D) where
B is any nonsingular symmetrigy x ng matrix, and lelg’ be any other gauge:

Vg =Y (YTHY)' Y = VHV = V-G(DG)'B*(DG) " G" (30)
=P;V =PgVg = PgVg Pg (32)

Pb =1-G(DG)"D =Y(Y'HY)'Y'H=VH=V;H=P;Pg (32
P;G = 0, PY =Y, DP; = DVg = 0 (33)

g'Pg =9, HP; = H, Vgg = Vg (34)

These relations can be summarized by sayinguhét theG-supported generalized inverse
of H and that?; : (i) projects along gauge orbitB{ G = 0); (ii) projects onto the gauge
cross-sectioy (DPg = 0, PgY =Y, Pgdx = dxg andVg = Pg Vg P;); and {ii)
preserves gauge invariantsg f(x + Pg x) = f(x + dx), 9" Pg = g" andH Pz = H).
BothVg andH have ranki, —ng. Their null space®™ andG are transversal but otherwise
unrelatedPg has left null spac® and right null spacé.

State updates:lt is straightforward to add gauge fixing to the bundle update equations.
First consider the constrained form. Enforcing the gauge constdiints dxg) = 0 with
Lagrange multipliers\ gives an SQP step:

(g %T> <5§g> T <3> ’ (g %T>_1 B <(D G\;QTGTG(%G)_1> (35)
so 6xg = —(Vgg+G(DG)'d), A =0 (36)

This is a rather atypical constrained problem. For typical cost functions the gradient has a
component pointing away from the constraint surface, 00 at the constrained minimum

5 These results are most easily proved by inserting strategic factof¥ oG) (Y G)™ and

T —1yT
usingHG = 0, DY = 0and(Y G)™* = (v HY),ly ") For anyng x ng B in-
(DG)™'D
. T YTHY 0 . :
cluding O, (éT) (H+D'BD) (Y G) = < 0 (DG)TB(DG)>' If B is nonsingular,

V=(H+D'BD)'=Y(Y'HY)'Y +G(DG)'B(DG) G
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and a non-vanishing forck # 0 is required to hold the solution on the constraints. Here,
the cost function and its derivatives are entirely indifferent to motions along the orbits.
Nothing actively forces the state to move off the gauge, so the constraintXoraeishes
everywhereg vanishes at the optimum, and the constrained minimum valiis wfentical
to the unconstrained minimum. The only effect of the constraints is to correct any gradual
drift away fromg that happens to occur, via tdgerm indxg.

A simpler way to get the same effect is to add a gauge-invariance breaking term such
asid(x)"Bd(x) to the cost function, wherB is some positiveig x ng Weight matrix.
Note thatld(x)” B d(x) has a unique minimum df on each orbit at the poirt(x) = 0,
i.e. forx ong. Asf is constant along gauge orbits, optimizatiorf(of) + 1d(x)" Bd(x)
along each orbit enforces and hence returns the orbifvalue, so global optimization
will find the global constrained minimum df The cost functiorf(x) + 1d(x)" B d(x)
is nonsingular with Newton stefixg = V(g + D"Bd) whereV = (H+ D"BD)"is
the new inverse Hessian. By (34, 30), this is identical to the SQP step (36), so the SQP
and cost-modifying methods are equivalent. This strategy works only because no force is
required to keep the state on-gauge — if this were not the case, the \Beighild have
to be infinite. Also, for densP this form is not practically useful because+ D" BD is
dense and hence slow to factorize, although updating formulae can be used.

Finally, consider the parametric forrn= X(y) of G. Suppose that we already have a
current reduced state estimgtéVe can approximatéx(y + dy)) to get a reduced system
for dy, solve this, and findxg afterwards if necessary:

(YTHY) 6y = —Y'g, oxg = Yoy = —Vgg (37)

The(nx —ng) X (nx —ng) matrix YT HY is generically nonsingular despite the singularity

of H. In the case of a trivial gaug¥,simply selects the submatricesg corresponding

to the unfrozen parameters, and solves for these. For less trivial gauge¥, &udD are

often dense and there is a risk that substantial fill-in will occur in all of the above methods.

Gauged covariance By (30) and standard covariance propagation in (37), the covariance
of the on-gauge fluctuation$xg is E [dxg ;| = Y (YTHY)™ YT = Vg. éxg never
moves offG, soV; represents a rank, — ng covariance ellipsoid ‘flattened on{. In a
trivial gauge Vg is the covariancéY™ H Y)™ of the free variables, padded with zeros for
the fixed ones. .

GivenVg, the linearized gauged covariance of a functigr) is % Vg % as usual.
If h(x) is gauge invariant (constant along gauge orbits) this is just its ordinary covariance.

Intuitively, Vg and 3—2 Vg %T depend on the gauge because they measure not absolute
uncertainty, but uncertainty relative to the reference features on which the gauge is based
Just as there are no absolute reference frames, there are no absolute uncertainties. The b
we can do is relative ones.

Gauge transforms:We can change the gauge at will during a computaganto improve
sparseness or numerical conditioning or re-express results in some standard gauge. Thi
is simply a matter of ars-transform [6], i.e. pushing all gauged quantities along their
gauge orbits onto the new gauge cross-sedfioVe will assume that the base point

is unchanged. If not, a fixed (structure independent) change of coordinates achieves this
Locally, an S-transform then linearizes into a linear projection along the orbits spanned by
G onto the new gauge constraints giveribgr Y. This is implemented by they x ny rank

nx — ng hon-orthogonal projection matri; defined in (32). The projection preserves alll
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gauge invariants —e.g f(x+Pg dx) = f(x+ dx) — and it cancels the effects of projection
onto any other gaugd; Pg = Pg.

9.3 Inner Constraints

Given the wide range of gauges and the significant impact that they have on the appearanc
of the state updates and covariance matrix, it is useful to ask which gauges give the
“smallest” or “best behaved” updates and covariances. This is useful for interpreting and
comparing results, and it also gives beneficial numerical properties. Basically it is a matter
of deciding which features or cameras we care most about and tying the gauge to some
stable average of them, so that gauge-induced correlations in them are as small as possibl
For object reconstruction the resulting gauge will usually be object-centred, for vehicle
navigation camera-centred. We stress that such choices are only a matter of superficia
appearance: in principle, allgauges are equivalent and give identical values and covariance
for all gauge invariants.

Another way to say thisis thatitis only for gauge invariants that we can find meaningful
(coordinate system independent) values and covariances. But one of the most fruitful ways
to create invariants is to locate features w.r.t. a basis of reference featergst.t. the
gauge based on them. The choice of inner constraints is thus a choice of a stable basi
of compound features w.r.t. which invariants can be measured. By including an average
of many features in the compound, we reduce the invariants’ dependence on the basis
features.

As a performance criterion we can minimize some sort of weighted average size, either
of the state update or of the covariance.Webe ami, x ny information-like weight matrix
encoding the relative importance of the various error components, ba@dny left square
root for it, LL™ = W. The local gauge ax that minimizes the weighted size of the state
updatedx; W dxg, the weighted covariance sufmacgW Vg ) = TracgL" Vg L), and the

L, or Frobenius norm of.™ \; L, is given by thénner constraints [87, 89, 6, 22, 25F:
Dox =0 where D =G'W (38)

The corresponding covarianbg is given by (30) withD = G™ W, and the state update is
d0Xxg = —Vg g asusual. Also, itV is nonsingulany is given by the weighted rank, —ng
pseudo-inversé~" (L*H L—T)T L=, whereW = L L is the Cholesky decomposition of
W and(-)" is the Moore-Penrose pseudo-inverse.

16 Sketch proof For W = 1 (whencelL = 1) and diagonaH = (61 8), we haveG = ((1))
andg = (%l) asg’ G = 0. Any gaugeg transversal t@S has the fornrD = (—B C) with
nonsingulaC. Premultiplying byC " reduce® to the formD = (—B 1) for someng x (nx —ng)
matrix B. It follows thatPy = ( 2 8) andVg = (3)A™(1 BT), whencedxf W dxg =
9" VgWVgg =g A7 (1+B"B) Ay and TracéVy) = Trac§A™") + TracBA'B).
Both criteria are clearly minimized by takiy = 0, soD = (0 1) = G" W as claimed. For
nonsingulaMW = LL", scaling the coordinates by— L x reducesustV — 1, g — g'L™
andH — L™"HL™". Eigen-decomposition then reduces us to diagbh&leither transformation
affectséxg; W éxg or TracéW Vg ), and back substituting gives the general result. For singular
W, use a limiting argument oB = G" W. Similarly, usingVg as aboveB — 0, and hence the
inner constraint, minimizes thB, and Frobenius norms df” Vg L. Indeed, by the interlacing
property of eigenvalues [448.1], B — 0 minimizesany strictly non-decreasing rotationally
invariant function olL™ Vg L (i.e. any strictly non-decreasing function of its eigenvalues).(J
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The inner constraints are covariant under global transformatonrst(x) provided
thatW is transformed in the usual information matrix/ Hessian Way> T-" W T~ where
T= g—)t( 7. However, such transformations seldom preserve the forii ¢diagonality,

W = 1, etc). If W represents an isotropic weighted sum over 3D pé&inits form is
preserved under global 3D Euclidean transformations, and rescaled under scalings. Bu
this extends neither to points under projective transformations, nor to camera poses, 3D
planes and other non-point-like features even under Euclidean ones. (The choice of origin
has a significant influence For poses, plam¢s,: changes of origin propagate rotational
uncertainties into translational ones).

Inner constraints were originally introduced in geodesy in the ¥ése 1 [87]. The
meaning of this is entirely dependent on the chosen 3D coordinates and variable scaling.
In bundle adjustment there is little to recomméiid= 1 unless the coordinate origin has
been carefully chosen and the variables carefully pre-scaled as &lgoxe;~ L™ x and
henceH — L7"HL-", whereW ~ L LT is a fixed weight matrix that takes account of the
fact that the covariances of features, camera translations and rotations, focal lengths, aspe
ratios and lens distortions, all have entirely different units, scales and relative importances.
ForW = 1, the gauge projectioRg becomes orthogonal and symmetric.

9.4 Free Networks

Gauges can be divided roughly irdater gaugeswhich are locked to predefined external
reference features givingixed network adjustment, anthner gauges which are locked

only to the recovered structure givingfr@e network adjustment. (If their weightV is
concentrated on the external reference, the inner constraints give an outer gauge). A
above, well-chosen inner gauges do not distort the intrinsic covariance structure so much
as most outer ones, so they tend to have better numerical conditioning and give a more
representative idea of the true accuracy of the network. It is also useful to make another,
slightly different fixed / free distinction. In order to control the gauge deficiency, any
gauge fixing method must at least specify which motionslacally possible at each
iteration. However, it is not indispensable for these local decisions to cohere to enforce
a global gauge. A method igobally fixed if it does enforce a global gauge (whether
inner or outer), andlobally free if not. For example, the standard photogrammetric inner
constraints [87, 89, 22, 25] give a globally free inner gauge. They require that the cloud of
reconstructed points should not be translated, rotated or rescaled under perturbations (
the centroid and average directions and distances from the centroid remain unchanged)
However, they do not specify where the cloud actually is and how it is oriented and scaled,
and they do not attempt to correct for any gradual drift in the position that may occur during
the optimization iterationg.g owing to accumulation of truncation errors. In contrast,
McLauchlan globally fixes the inner gauge by locking it to the reconstructed centroid
and scatter matrix [82, 81]. This seems to give good numerical properties (although more
testing is required to determine whether there is much improvement over a globally free

"G — TG implies thatD — DT, whenceVg — TVg T7, P — TPg T}, anddxg — T dxg.
So0dx; W dxg and TracéW Vg) are preserved.

18 This means that it vanishes identically for all non-point features, camera parare&teiad is
a weighted identity matriXV; = w; |33 for each 3D point, or more generally it has the form
W ® l3x3 on the block of 3D point coordinates, whev is somenggints X points iNter-point
weighting matrix.
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inner gauge), and it has the advantage of actually fixing the coordinate system so that
direct comparisons of solutions, covariancets,, are possible. Numerically, a globally
fixed gauge can be implemented either by including thidérm in (36), or simply by
applying a rectifying gauge transformation to the estimate, at each step or when it drifts
too far from the chosen gauge.

9.5 Implementation of Gauge Constraints

Given that all gauges are in principle equivalent, it does not seem worthwhile to pay a
high computational cost for gauge fixing during step prediction, so methods requiring
large dense factorizations or (pseudo-)inverses should not be used directly. Instead, the
main computation can be done in any convenient, low cost gauge, and the results later
transformed into the desired gauge using the gauge projé®er= 1 — G (DG)'D.

It is probably easiest to use a trivial gauge for the computation. This is simply a matter
of deleting the rows and columns gfH corresponding toyy preselected parameters,
which should be chosen to give a reasonably well-conditioned gauge. The choice can be
made automatically by aubset selectiormethod €.f., e.g [11]). H is left intact and
factored as usual, except that the final dense (owing to fill-in) submatrix is factored using a
stable pivoted method, and the factorization is stopggtblumns before completion. The
remainingng x ng block (and the corresponding block of the forward-substituted gradient
g) should be zero owing to gauge deficiency. The corresponding rows of the state update
are set to zero (or anything else that is wanted) and back-substitution gives the remaining
update components as usual. This method effectively findstharameters that are least

well constrained by the data, and chooses the gauge constraints that freeze these by settir
the correspondingxg components to zero.

10 Quality Control

This section discusses quality control methods for bundle adjustment, giving diagnostic
tests that can be used to detect outliers and characterize the overall accuracy and reliabilit
of the parameter estimates. These techniques are not well known in vision so we will go
into some detail. Skip the technical details if you are not interested in them.

Quality control is a serious issue in measurement science, and it is perhaps here tha
the philosophical differences between photogrammetrists and vision workers are greatest
the photogrammetrist insists on good equipment, careful project planning, exploitation
of prior knowledge and thorough error analyses, while the vision researcher advocates &
more casual, flexible ‘point-and-shoot’ approach with minimal prior assumptions. Many
applications demand a judicious compromise between these virtues.

A basic maxim is “quality = accuracy + reliabilit$?. The absoluteccuracyof the
system depends on the imaging geometry, number of measurerienByt theoretical

9 The projectoiP; itself is never calculated. Instead, it is applied in pieces, multiplyin® bgtc
The gauged Newton stefixg is easily found like this, and selected blocks of the covariance
Vg = Pg Vg P§ can also be found in this way, expandigand using (53) for the leading term,
and for the remaining ones finditig' D", etc, by forwards substitution.

20 Accuracy’ is sometimes called ‘precision’ in photogrammetry, but we have preferred to retain
the familiar meanings from numerical analysis: ‘precision’ means numerical error / number of
working digits and ‘accuracy’ means statistical error / number of significant digits.
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precision by itself is not enough: the system must alsodtiable in the face of out-
liers, small modelling errors, and so forth. The key to reliability is the intelligent use of
redundancy the results should represent an internally self-consistent consensus among
many independent observations, no aspect of them should rely excessively on just a few
observations.

The photogrammetric literature on quality control deserves to be better known in vision,
especially among researchers working on statistical issu#strier [33,34] and Gmn
[49, 50] give introductions with some sobering examples of the effects of poor design.
See also [7,8, 21, 22]. All of these papers use least squares cost functions and scala
measurements. Our treatment generalizes this to allow robust cost functions and vectol
measurements, and is also slightly more self-consistent than the traditional approach. The
techniques considered are useful for data analysis and reporting, and also to check whethe
design requirements are realistically attainable during project planning. Several properties
should be verifiedinternal reliability is the ability to detect and remove large aberrant
observations using internal self-consistency checks. This is provided by traditional outlier
detection and/or robust estimation procedukedernal reliability is the extent to which
any remainingundetected outliers can affect the estimat8ensitivity analysisgives
useful criteria for the quality of a design. Finalijodel selection testattempt to decide
which of several possible models is most appropriate and whether certain parameters catu
be eliminated.

10.1 Cost Perturbations

We start by analyzing the approximate effects of adding or deleting an observation, which
changesthe costfunction and hence the solution. We will use second order Taylor expansior
to characterize the effects of this. Lfet(x) andf(x) = f_(x) + 6f(x) be respectively

the total cost functions without and with the observation included, wéféxg is the cost
contribution of the observation itself. L@t , 6g be the gradients artd.., dH the Hessians

of f1, of. Letxq be the unknown true underlying state aadbe the minima of (x) (i.e.

the optimal state estimates with and without the observation included). Residuxals at
are the most meaningful quantities for outlier decisionsxgus unknown so we will be
forced to use residuals &t instead. Unfortunately, as we will see below, these are biased.
The bias is small for strong geometries but it can become large for weaker ones, so to
produce uniformly reliable statistical tests we will have to correct for it. The fundamental
resultis:For any sufficiently well behaved cost function, difference in fitted residuals

f,(x;) —f_(x_) is asymptotically an unbiased and accurate estimaif(of,) 2*:

o(xo) ~ fi(xp) —f-(x=) + v, v ~ O(6g]l/v/nz = nx), (v) ~0 (39

21 Sketch proof From the Newton stepdx+ = X+ — Xo ~ —H3' g+(Xo) at xo, we find
that fi(X+) — f+(Xo) & —10xt Hi dx+ and hencer = fi(xy) — f_(x_) — &f(x0) =~
2 (6xZ H_ 6x_ — 8x} Hy éx4). v is unbiased to relatively high order: by the central limit
property of ML estimators, the asymptotic distributionsdaf. are Gaussiawv (0, H7!), so the
expectation of botlx. Hy dx+ is asymptotically the number of free model parameters
Expandingdx+ and usingg: = g-— + dg, the leading term i3y ~ —8g(Xo)" X, which
asymptotically has normal distributian ~ A/(0, §g(Xo)" HZ! g(Xo)) with standard deviation
of orderO(||8g||/v/nz — nx), asx— ~ N(0,HZ) and|[H_|| ~ O(n; — nx). O
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Note that by combining values at two known evaluation patswe simulate a value at
a third unknown one,. The estimate is not perfect, but it is the best that we can do in the
circumstances.

There are usually many observations to test, so to avoid having to refit the model many
times we approximate the effects of adding or removing observations. Workxgaatd
using the fact thag. (x+) = 0, the Newton stepx = x; — X_ ~ —HZ dg(x+) implies
a change in fitted residual of:

fi(xy) —fo(x2) & 6f(x4) & $0X" Hy X
= 0f(x+) £ 569(x+)" HF 6g(x+)

So df(x4) systematically underestimatés(x) — f_(x_) and hencejf(xy) by about
30X H_ &x, andsf(x_) overestimates it by abodtdx™ H., dx. These biases are of order
O(1/(n; — nx)) and hence negligible when there is plenty of data, but they become large
at low redundancies. Intuitively, includind improves the estimate on average, bringing
about a ‘good’ reduction off, but it also overfitaf slightly, bringing about a further ‘bad’
reduction. Alternatively, the reduction & on moving fromx_ to x, is bought at the cost
of a slight increase ifi. (sincex_ was already the minimum &f ), which should morally
also be ‘charged’ tof.

When deleting observations, we will usually have already evaludtedor a corre-
sponding factorization dfi, ) to find the Newton step near_, whereas (40) requirds".
And vice versa for addition. Provided théi < H, it is usually sufficient to usel_! in
place ofH in the simple tests below. However if the observation couples to relatively few
state variables, it is possible to calculate the relevant componel=rt§1 dirly economi-
cally. If *x’ means ‘select thé variables on whicldH, g are non-zero’, thedg™ H™ 6g =
(097" (H)"8g" and? (H3)" = (((H)") " F 8H") =~ (H)" + (H)" 0H" (H)".
Even without the approximation, this involves at most a & factorization or inverse.
Indeed, for least squaré#l is usually of even lower rank={ the number of independent
observations inaf), so the Woodbury formula (18) can be used to calculate the inverse even
more efficiently.

(40)

10.2 Inner Reliability and Outlier Detection

In robust cost models nothing special needs to be done with outliers — they are just
normal measurements that happen be downweighted owing to their large deviations. But
in non-robust models such as least squares, explicit outlier detection and removal are
essential for inner reliability. An effective diagnostic is to estiméte,) using (39, 40),

and significance-test it against its distribution under the null hypothesis that the observation
is an inlier. For the least squares cost model, the null distributi@vt(x,) is x7 where

k is the number of independent observations contributingf t&o if « is a suitabley?
significance threshold, the typical one-sided significance test is:

o <2 (f(xy) — f(x))

Q

20f(xg) + 09(x+)" HZ 69(X+) (41)
= AZi (Xi)T (Wz +W,; J;r H;:l J; Wz) Azi (Xi) (42)
22 C f. the lower right corner of (17), where the’ ‘components correspond to block 2, so that

((H;)*)’1 is ‘D2’, the Schur complement of the remaining variableldin AddingdH* changes
the ‘D’ term but not the Schur complement correction.
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As usual we approximatelZ ~ H} and usex_ results for additions an&, ones for
deletions. These tests require the fitted covariance midtyixXor, if relatively few tests
will be run, an equivalent factorization i), but given this they are usually fairly
economical owing to the sparseness of the observation gradig(its ). Equation (42)
is for the nonlinear least squares model with residual efrpy(x) = z;, — z;(x), cost
$Az,(x)TW; Az,(x) and Jacobiad; = dzxi . Note that even thougt) induces a change in
all components of the observation resi viaitsinfluence odx, only the immediately
involved componentg\z, are required in (42). The bias-correction-induced change of
weight matrixW; — W; + W; Jj HZ J; W; accounts for the others. For non-quadratic
cost functions, the above framework still applies but the cost function’s native distribution
of negative log likelihood values must be used instead of the Gaus%ia(ﬁ’s

In principle, the above analysisis only valid when at most one outlier causes a relatively
small perturbatiodx. In practice, the observations are repeatedly scanned for outliers, at
each stage removing any discovered outliers (and perhaps reinstating previously discarde
observations that have become inliers) and refitting. The net resultis a form of M-estimator
routine with an abruptly vanishing weight functiooutlier deletion is just a roundabout
way of simulating a robust cost functiofHard inlier/outlier rules correspond to total
likelihood functions that become strictly constant in the outlier region).

Thetests (41, 42) give what is needed for outlier decisions badétbaistate estimates
X+, but for planning purposesitis also useful to know how large a gross error must typically
be w.r.t. thetrue statex, before it is detected. Outlier detection is based on the uncertain
fitted state estimates, so we can only give an average case result. No adjustmrerisfor
needed in this case, so the averagaimum detectable gross erroris simply:

a é 26f(xg) &= Az(Xg)"W Az(xg) (43)

10.3 Outer Reliability

Ideally, the state estimate should be as insensitive as possible to any remaining errors ir
the observations. To estimate how much a particular observation influences the final state
estimate, we can directly monitor the displacem&nt= x;, —x_ ~ HI dg+(X4).

For example, we might define an importance weighting on the state parameters with a
criterion matrixU and monitor absolute displacemetitd 0x|| ~ [[UHZ g(x+)||, or
compare the displacemedix to the covariancél;! of x4 by monitoringdx™ H: dx ~

89+ (x+)THZ 69+ (x+). A bound ondg(x.+) of the forn?3 6g g™ < V for some positive
semidefiniteV implies a boundx x™ < HZV HZ onéx and hence a bourjfl x> <
N(UHZVHU") whereN/(-) can beL, norm, trace or Frobenius norm. For a robust

Z This is a convenient intermediate form for deriving bounds. For positive semidefinite matri-
cesA, B, we say thaB dominatesA, B = A, if B — A is positive semidefinite. It follows
that V(UAUT) < N (UBUT) for any matrixU and any matrix functionV'(-) that is non-
decreasing under positive additions. Rotationally invariant non-decreasing funtf{enisclude
all non-decreasing functions of the eigenval@eg,L> normmax \;, traced_, A;, Frobenius norm
V/>_ A2, For a vectora and positiveB, a'Ba < k if and only ifaa”™ < kB~ (Proof: Conju-
gate byB'/2 and then by 4B'/2 a)-reducing Householder rotation to reduce the question to the
equivalence 00 < Diag (k — u?, k,... ,k) andu® < k, whereu® = ||B'/? a||). Bounds of
the form||U a||> < k AV (UB™U") follow for any U and any\/(-) for which A"(vv") = ||v||?,

e.g L, norm, trace, Frobenius norm.
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cost model in whichdg is globally bounded, this already gives asymptotic bounds of
order O(||H||6gl]) ~ O(]|dg||/+/nz — nx) for the state perturbation, regardless of
whether an outlier occurred. For non-robust cost models we have to use an inlier criterion
to limit 4g. For the least squares observation model with rejection test 2Y\z" <

o (Wi +W,;J] H;F1 J; Wi)’1 and hence the maximum state perturbation due to a declared-
inlying observatiorg, is:

OXOX" = aHT I Wi (Wi W, I HI ;W) W, J7 H
= a (H}—H}) (44)
~ aH}J; W JTHY (45)

so, e.g, 0xX'Hidx < aTracgJ;HJW;") and [[Udx||> <  «Trace
J;HEUTUHJ] W,", whereW," is the nominal covariance af. Note that these bounds
are based on changes in #imatedstatex.. They do not directly control perturbations
w.r.t. thetrue onexy. The combined influence of several & n, — ny) observations is
given by summing theidg’s.

10.4 Sensitivity Analysis

This section gives some simple figures of merit that can be used to quantify network
redundancy and hence reliability. First, df(xo) ~ 6f(x;) + 3 8g(x; ) HZ 8g(x4),
each cost contributiodf(Xo) is split into two parts: theisible residuabf(x ) at the fitted
statex, ; and3 8x™ H_ &x, thechange in the base cokt (x) due to the state perturbation
dx = HZ' §g(x, ) induced by the observation. Ideally, we would like the state perturbation
to be small (for stability) and the residual to be large (for outlier detectability). In other
words, we would like the followingnasking factor to be small {»; < 1) for each
observation:

09(x4)" HZ 8g(x4)

"= 25H(x, ) + 8g(x, )T HZ 6g(x) (40)

_ AZ;(X4)"W; I HZ T W, Az (X4 ) “n
T Az (%) (W, + W, HZITW,) Az (x4

(Here,of should be normalized to have minimum valur an exact fit). Ifm, is known,
the outlier test becomes(x,.)/(1 — m;) > a. The maskingn; depends on the relative
size ofdg anddsf, which in general depends on the functional formybénd the specific
deviation involved. For robust cost models, a bounddgmrmay be enough to bound;
for outliers. However, for least squares cage form), and more generally for quadratic
cost models (such as robust models near the origindepends only on the direction of
Az,, not on its size, and we have a glolial matrix norm based bound,; < HLV where

v =|LTJ;H? I L||> < TracegJ; H? I W) andL L™ = W; is a Cholesky decomposition
of W;. (These bounds become equalities for scalar observations).

The stability of the state estimate is determined by the total cost Hessian (information
matrix)H. A largeH implies a small state estimate covariaiteand also small responses
0x ~ —H™4dg to cost perturbationdg. Thesensitivity numberss; = Trace(Hj:(SHi)
are a useful measure of the relative amount of information contributétl, tby each
observation. They sum to the model dimension)—-s, = ny becausé _, dH, = H,
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— so they count “how many parameters worth” of the total information the observation
contributes. Some authors prefer to quadundancy numbersr; = n; — s;, where

n; is the effective number of independent observations containggd ifhe redundancy
numbers sum ta, — ny, the total redundancy of the system. In the least squares case,
s = Trace(Ji H'J7 W) andm,; = s; for scalar observations, so the scalar outlier test
becomesif(x)/r; > «. Sensitivity numbers can also be defined for subgroups of the
parameters in the form Tradé H— dH), whereU is an orthogonal projection matrix that
selects the parameters of interest. Ideally, the sensitivities of each subgroup should be
spread evenly across the observations: a laygalicates a heavily weighted observation,
whose incorrectness might significantly compromise the estimate.

10.5 Model Selection

It is often necessary to chose between several alternative models of the cameras or scen
e.g additional parameters for lens distortion, camera calibrations that may or may not have
changed between images, coplanarity or non-coplanarity of certain features. Over-specia
models give biased results, while over-general ones tend to be noisy and unstable. We
will consider onlynested modelsfor which a more general model is specialized to a
more specific one by freezing some of its parameters at default vaigegdro skew or
lens distortion, equal calibrations, zero deviation from a plane). X ée the parameter
vector of the more general modé(x) be its cost function¢(x) = 0 be the parameter
freezing constraints enforcing the specializatibbg the number of parameters frozep;
be the true underlying state, be the optimal state estimate for the general mddelthe
unconstrained minimum dfx)); andx, be the optimal state estimate for the specialized
one {.e. the minimum off(x) subject to the constraints(x) = 0). Then, under the
null hypothesis that the specialized model is corretty) = 0, and in the asymptotic
limit in which x, — Xo andx, — Xo become Gaussian and the constraints become locally
approximately linear across the width of this Gaussian, the difference in fitted residuals
2 (f(xs) — f(x4)) has ax? distributiort*. So if2 (f(x;) — f(x,)) is less than some suitable
X2 decision threshold., we can accept the hypothesis that the additional parameters take
their default values, and use the specialized model rather than the more genétal one

As before, we can avoid fitting one of the models by using a linearized analysis. First
suppose that we start with a fit of the more general megldlet the linearized constraints

atx, bec(x, + 0x) ~ c(x,) + Cdx, whereC = %. A straightforward Lagrange
multiplier calculation gives:

2 (f(xs) —f(xg)) ~ c(xg)" (CHTCT)™ c(x,)
Xs & X; —H7'CT (CH'C")™ ¢(x,)

Q

(48)

Conversely, starting from a fit of the more specialized model, the unconstrained minimum s
given by the Newton stepx; ~ X, —H™g(X,),and2 (f(xs) — f(Xy)) =~ g(Xs)"Hg(Xs),
whereg(x;) is the residual cost gradientat This requires the general-model covariance

24 This happens irrespective of the observation distributions because — unlike the case of adding
an observation — the same observations and cost function are used for both fits.

5 |n practice, small models are preferable as they have greater stability and predictive power and
less computational cost. So the threshelid usually chosen to be comparatively large, to ensure
that the more general model will not be chosen unless there is strong evidence for it.
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H~ (or an equivalent factorization ¢f), which may not have been worked out. Suppose
that the additional parameters were simply appended to the model(x, y) wherex is
now the reduced parameter vector of the specialized mode} andtains the additional

parameters. Let the general-model cost gradiefxaty;) be ( ﬂ) whereh = %, and

its Hessian be(x 'g ) . A straightforward calculation shows that:
2 (f(xs,Ys) = f(Xg,¥4)) = h" (B—AHAT)"h

(49)
(v,) = (o) + ("2 ) B-AHA)"h
Given H™ or an equivalent factorization d¢d, these tests are relatively inexpensive for
smallk. They amount respectively to one step of Sequential Quadratic Programming and
one Newton step, so the results will only be accurate when these methods converge rapidly

Another, softer, way to handle nested models is to apply a ffigy:(x) peaked at the
zero of the specialization constrairi&x). If this is weak the data will override it when
necessary, but the constraints may not be very accurately enforced. If it is stronger, we
can either apply an ‘outlier’ test (39, 41) to remove it if it appears to be incorrect, or use
asticky prior — a prior similar to a robust distribution, with a concentrated central peak
and wide flat tails, that will hold the estimate near the constraint surface for weak data, but
allow it to ‘unstick’ if the data becomes stronger.

Finally, more heuristic rules are often used for model selection in photogrammetry,
for example deleting any additional parameters that are excessively correlated (correlatior
coefficient greater than 0.9) with other parameters, or whose introduction appears to
cause an excessive increase in the covariance of other parameters [49, 50].

11 Network Design

Network design is the problem of planning camera placements and numbers of images
before a measurement project, to ensure that sufficiently accurate and reliable estimate:
of everything that needs to be measured are found. We will not say much about design,
merely outlining the basic considerations and giving a few useful rules of thumb. See [5,
chapter 6], [79, 78], [73, Vol.84] for more information.

Factors to be considered in network design include: scene coverage, occlusion / vis-
ibility and feature viewing angle; field of view, depth of field, resolution and workspace
constraints; and geometric strength, accuracy and redundancy. The basic quantitative aid
to design are covariance estimation in a suitably chosen gaugé9sead the quality
control tests fron§10. Expert systems have been developed [79], but in practice most
designs are still based on personal experience and rules of thumb.

In general, geometric stability is best for ‘convergent’ (close-in, wide baseline, high
perspective) geometries, using wide angle lenses to cover as much of the object as possible
and large film or CCD formats to maximize measurement precision. The wide coverage
maximizes the overlap between different sub-networks and hence overall network rigidity,
while the wide baselines maximize the sub-network stabilities. The practical limitations
on closeness are workspace, field of view, depth of field, resolution and feature viewing
angle constraints.

Maximizing the overlap between sub-networks is very important. For objects with
several faces such as buildings, images should be taken from corner positions to tie the
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face sub-networks together. For large projects, large scale overview images can be used t
tie together close-in densifying ones. When covering individual faces or surfaces, overlap
and hence stability are improved by taking images with arange of viewing angles rather than
strictly fronto-parallel ones(g, for the same number of images, pan-move-pan-move or
interleaved left-looking and right-looking images are stabler than a simple fronto-parallel
track). Similarly, for buildings or turntable sequences, using a mixture of low and high
viewpoints helps stability.

For reliability, one usually plans to see each feature point in at least four images.
Although two images in principle suffice for reconstruction, they offer little redundancy
and no resistance against feature extraction failures. Even with three images, the interna
reliability is still poor: isolated outliers can usually be detected, but it may be difficult to
say which of the three images they occurred in. Moreover, 3—4 image geometries with
widely spacedi(e. non-aligned) centres usually give much more isotropic feature error
distributions than two image ones.

If the bundle adjustment will include self-calibration, it is important to include a range
of viewing angles. For example for a flat, compact object, views might be taken at regularly
spaced points along a 30-45alf-angle cone centred on the object, witl? @ptical axis
rotations between views.

12 Summary and Recommendations

This survey was written in the hope of making photogrammetric know-how about bundle
adjustment — the simultaneous optimization of structure and camera parameters in visual
reconstruction — more accessible to potential implementors in the computer vision com-
munity. Perhaps the main lessons are the extraordinary versatility of adjustment methods,
the critical importance of exploiting the problem structure, and the continued dominance
of second order (Newton) algorithms, in spite of all efforts to make the simpler first order
methods converge more rapidly.

We will finish by giving a series of recommendations for methods. At present, these
must be regarded as very provisional, and subject to revision after further testing.

Parametrization: (§2.2, 4.5) During step prediction, avoid parameter singularities, infini-
ties, strong nonlinearities and ill-conditioning. Use well-conditioned local (current value

+ offset) parametrizations of nonlinear elements when necessary to achieve this: the local
step prediction parametrization can be different from the global state representation one.
The ideal is to make the parameter space error function as isotropic and as near-quadrati
as possible. Residual rotation or quaternion parametrizations are advisable for rotations.
and projective homogeneous parametrizations for distant points, lines and plarngs (
features near the singularity of their affine parametrizations, affine infinity).

Cost function: (§3) The cost should be a realistic approximation to the negative log
likelihood of the total (inlier + outlier) error distribution. The exact functional form of the
distribution is not too critical, howeveri)( Undue weight should not be given to outliers

by making the tails of the distribution (the predicted probability of outliers) unrealistically
small. (NB: Compared to most real-world measurement distributions, the tails of a Gaussian
areunrealistically small).i{) The dispersion matrix or inlier covariance should be arealistic
estimate of the actual inlier measurement dispersion, so that the transition between inliers
and outliers is in about the right place, and the inlier errors are correctly weighted during
fitting.
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Optimization method: (84, 6, 7) Forbatch problemsuse a second order Gauss-Newton

method with sparse factorization (see below) of the Hessian, unless:

e The problemis so large that exact sparse factorization is impractical. In this case consider
either iterative linear system solvers such as Conjugate Gradient for the Newton step,
or related nonlinear iterations such as Conjugate Gradient, or preferably Limited Mem-
ory Quasi-Newton or (if memory permits) full Quasi-NewtdT([29, 93, 42]). (None
of these methods require the Hessian). If you are in this case, it would pay to investi-
gate professional large-scale optimization codes such as MINPACK-2, LANCELOQOT, or
commercial methods from NAG or IMSL (s€€.2).

e If the problem is medium or large but dense (which is unusual), and if it has strong
geometry, alternation of resection and intersection may be preferable to a second ordel
method. However, in this case Successive Over-Relaxation (SOR) would be even better,
and Conjugate Gradient is likely to be better yet.

¢ In all of the above cases, good preconditioning is critig@lJ).

For on-line problems (rather than batch ones), use factorization updating rather than

matrix inverse updating or re-factorizatiofB(5). In time-series problems, investigate the

effect of changing the time windovw$§.2, [83, 84]), and remember that Kalman filtering

is only the first half-iteration of a full nonlinear method.

Factorization method: (§6.2, B.1) For speed, preserve the symmetry of the Hessian dur-
ing factorization by using: Cholesky decomposition for positive definite Hessags (
unconstrained problems in a trivial gauge); pivoted Cholesky decomposition for positive
semi-definite Hessian®.g unconstrained problems with gauge fixing by subset selec-
tion §9.5); and Bunch-Kauffman decompositio§fB(1) for indefinite Hessiane(g the
augmented Hessians of constrained probldjsgl). Gaussian elimination is stable but a
factor of two slower than these.

Variable ordering: (§6.3) The variables can usually be ordered by hand for regular net-
works, but for more irregular ones.@ close range site-modelling) some experimentation
may be needed to find the most efficient overall ordering method. If reasonably compact
profiles can be found, profile representatiof8.8, B.3) are simpler to implement and
faster than general sparse ong&. B).

e For dense networks use a profile representation and a “natural” variable ordering: either
features then cameras, or cameras then features, with whichever has the fewest paran
eters last. An explicit reduced system based implementation such as Brown’s method
[19] can also be used in this cagé (1, A).

o If the problem has some sort of 1D temporal or spatial structeug ifnage streams,
turntable problems), try a profile representation with natural (simple connectivity) or
Snay’s banker’'s (more complex connectivity) ordering.§, [101, 24]). A recursive
on-line updating method might also be useful in this case.

e |f the problem has 2D structure.g cartography and other surface coverage problems)
try nested dissection, with hand ordering for regular problems (cartographic blocks),
and a multilevel scheme for more complex org& 3). A profile representation may or
may not be suitable.

e For less regular sparse networks, the choice is not clear. Try minimum degree ordering
with a general sparse representation, Snay’s Banker’s with a profile representation, or
multilevel nested dissection.

For all of the automatic variable ordering methods, try to order any especially highly

connected variables last by hand, before invoking the method.
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Gauge fixing: (§9) For efficiency, use either a trivial gauge or a subset selection method as
aworking gauge for calculations, and project the results into whatever gauge you want later
by applying a suitable gauge projeciy (32). Unless you have a strong reason to use an
external reference system, the output gauge should probably be an inner gauge centred o
the network elements you care most abaet,the observed features for a reconstruction
problem, and the cameras for a navigation one.

Quality control and network design: (§10) A robust cost function helps, but for overall
system reliability you still need to plan your measurements in advance (until you have
developed a good intuition for this), and check the results afterwards for outlier sensitivity
and over-modelling, using a suitable quality control procedure. Do not underestimate the
extent to which either low redundancy, or weak geometry, or over-general models can
make gross errors undetectable.

A Historical Overview

This appendix gives a brief history of the main developments in bundle adjustment, in-
cluding literature references.

Least squares:The theory of combining measurements by minimizing the sum of their
squared residuals was developed independently by Gauss and Legendre around 1795-18:
[37,74], [36, Vol.IV, 1-93], about 40 yeasdter robustL, estimation [15]. Least squares

was motivated by estimation problems in astronomy and geodesy and extensively applied
to both fields by Gauss, whose remarkable 1823 monograph [37, 36] already contains
almost the complete modern theory of least squares including elements of the theory of
probability distributions, the definition and properties of the Gaussian distribution, and a
discussion of bias and the “Gauss-Markov” theorem, which states that least squares give:
the Best Linear Unbiased Estimator (BLUE) [37, 11]. It also introduce& e form of
symmetric Gaussian elimination and the Gauss-Newton iteration for nonlinear problems,
essentially in their modern forms although without explicitly using matrices. The 1828
supplement on geodesy introduced the Gauss-Seidel iteration for solving large nonlinear
systems. The economic and military importance of surveying lead to extensive use of least
squares and several further developments: Helmert's nested dissection [64] — probably the
first systematic sparse matrix method — in the 1880’s, Cholesky decomposition around
1915, Baarda’s theory of reliability of measurement networks in the 1960's [7, 8], and
Meissl [87, 89] and Baarda’s [6] theories of uncertain coordinate frames and free networks
[22, 25]. We will return to these topics below.

Second order bundle algorithms:Electronic computers capable of solving reasonably
large least squares problems first became available in the late 1950’s. The basic photogram
metric bundle method was developed for the U.S. Air Force by Duane C. Brown and his
co-workers in 1957-9 [16, 19]. The initial focus was aerial cartography, but by the late
1960's bundle methods were also being used for close-range measuréniEmsinks

with geodesic least squares and the possibility of combining geodesic and other types
of measurements with the photogrammetric ones were clear right from the start. Initially

%6 Close rangemeans essentially that the object has significant depth relative to the camera distance,
i.e. that there is significant perspective distortion. For aerial images the scene is usually shallow
compared to the viewing height, so focal length variations are very difficult to disentangle from
depth variations.
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Fig. 9. A schematic history of bundle adjustment.

the cameras were assumed to be calibFdtesh the optimization was over object points
and camera poses onigelf calibration (the estimation of internal camera parameters
during bundle adjustment) was first discussed around 1964 and implemented by 1968
[19]. Camera models were greatly refined in the early 1970’s, with the investigation of
many alternative sets @dditional (distortion) parameters [17-19]. Even with stable

and carefully calibrated aerial photogrammetry cameras, self calibration significantly im-
proved accuracies (by factors of around 2—10). This lead to rapid improvements in camera
design as previously unmeasurable defects like film platten non-flatness were found and
corrected. Much of this development was lead by Brown and his collaborators. See [19]
for more of the history and references.

Brown’s initial 1958 bundle method [16, 19] uses block matrix techniques to elimi-
nate the structure parameters from the normal equations, leaving only the camera pos:¢
parameters. The resultimgduced camera subsystens then solved by dense Gaussian
elimination, and back-substitution gives the structure. For self-calibration, a second reduc-
tion from pose to calibration parameters can be added in the same way. Brown’s method is
probably what most vision researchers think of as ‘bundle adjustment’, following descrip-
tions by Slama [100] and Hartley [58, 59]. It is still a reasonable choice for small dense
networkg®, but it rapidly becomes inefficient for the large sparse ones that arise in aerial
cartography and large-scale site modelling.

For larger problems, more of the natural sparsity has to be exploited. In aerial cartog-
raphy, the regular structure makes this relatively straightforward. The images are arrangec
in blocks— rectangular or irregular grids designed for uniform ground coverage, formed
from parallel 1Dstrips of images with about 50-70% forward overlap giving adjacent
stereo pairs or triplets, about 10—-20% side overlap, and a few known ground control points

27 calibration always denoteinternal camera parameters (“interior orientation”) in photogram-
metric terminology. External calibration is calledseor (exterior) orientation.

28 A photogrammetric network idenseif most of the 3D features are visible in most of the images,
andsparseif most features appear in only a few images. This corresponds directly to the density
or sparsity of the off-diagonal block (feature-camera coupling matrix) of the bundle Hessian.
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sprinkled sparsely throughout the block. Features are shared only between neighbouring
images, and images couple in the reduced camera subsystem only if they share commol
features. So if the images are arranged in strip or cross-strip ordering, the reduced cam
era system has a triply-banded block structure (the upper and lower bands representing
e.g, right and left neighbours, and the central band forward and backward ones). Several
efficient numerical schemes exist for such matrices. The first was Gyer & Brown's@967
cursive partitioning method [57, 19], which is closely related to Helmert's 1880 geodesic
method [64]. (Generalizations of these have become one of the major families of modern
sparse matrix methods [40, 26, 11]). The basic idea is to split the rectangle into two halves,
recursively solving each half and gluing the two solutions together along their common
boundary. Algebraically, the variables are reordered into left-half-only, right-half-only and
boundary variables, with the latter (representing the only coupling between the two halves)
eliminated last. The technique is extremely effective for aerial blocks and similar problems
where smalkeparating setsf variables can be found. Brown mentions adjusting a block

of 162 photos on a machine with only 8k words of memory, and 1000 photo blocks were
already feasible by mid-1967 [19]. For less regular networks such as site modelling ones
it may not be feasible to choose an appropriate variable ordering beforehand, but efficient
on-line ordering methods exist [40, 26, 11] ($€€3).

Independent model methods:These approximate bundle adjustment by calculating a
number of partial reconstructions independently and merging them by pairwise 3D align-
ment. Even when the individual models and alignments are separately optimal, the result
is suboptimal because the the stresses produced by alignment are not propagated bac
into the individual models. (Doing so would amount to completing one full iteration of
an optimal recursive decomposition style bundle method —$8&9. Independent model
methods were at one time the standard in aerial photogrammetry [95, 2, 100, 73], where
they were used to merge individual stereo pair reconstructions within aerial strips into
a global reconstruction of the whole block. They are always less accurate than bundle
methods, although in some cases the accuracy can be comparable.

First order & approximate bundle algorithms: Another recurrent theme is the use of
approximations or iterative methods to avoid solving the full Newton update equations.
Most of the plausible approximations have been rediscovered several times, especially
variants of alternate steps of resection (finding the camera poses from known 3D points) anc
intersection (finding the 3D points from known camera poses), and the linearized version of
this, the block Gauss-Seidel iteration. Brown'’s group had already experimented with Block
Successive Over-Relaxation (BSOR — an accelerated variant of Gauss-Seidel) by 1964
[19], before they developed their recursive decomposition method. Both Gauss-Seidel anc
BSOR were also applied to the independent model problem around this time [95, 2]. These
methods are mainly of historical interest. For large sparse problems such as aerial blocks
they can not compete with efficiently organized second order methods. Because some
of the inter-variable couplings are ignored, corrections propagate very slowly across the
network (typically one step per iteration), and many iterations are required for convergence
(sees?).

Quality control: In parallel with this algorithmic development, two important theoretical
developments took place. Firstly, the Dutch geodesist W. Baarda led a long-running work-
ing group that formulated a theory of statistical reliability for least squares estimation [7,
8]. This greatly clarified the conditions (essentiagdundancy) needed to ensure that
outliers could be detected from their residuatsér reliability ), and that any remaining
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undetected outliers had only a limited effect on the final resalitef reliability ). A. Grin
[49,50] and W. Brstner [30, 33, 34] adapted this theory to photogrammetry around 1980,
and also gave some early correlation and covariance based model selection heuristics de
signed to control over-fitting problems caused by over-elaborate camera models in self
calibration.

Datum / gauge freedom:Secondly, as problem size and sophistication increased, it
became increasingly difficult to establish sufficiently accurate control points for large
geodesic and photogrammetric networks. Traditionally, the network had been viewed as
a means of ‘densifying’ a fixed control coordinate system — propagating control-system
coordinates from a few known control points to many unknown ones. But this viewpoint
is suboptimal when the network is intrinsically more accurate than the control, because
most of the apparent uncertainty is simply due to the uncertain definition of the control
coordinate system itself. In the early 1960’s, Meissl studied this problem and developed the
firstfree network approach, in which the reference coordinate system floated freely rather
than being locked to any given control points [87, 89]. More precisely, the coordinates
are pinned to a sort of average structure defined by so-calfet constraints. Owing

to the removal of control-related uncertainties, the nominal structure covariances become
smaller and easier to interpret, and the numerical bundle iteration also converges more
rapidly. Later, Baarda introduced another approach to this theory basedransforms

— coordinate transforms between uncertain frames [6, 21, 22, 25].

Least squares matching:All of the above developments originally used manually ex-
tracted image points. Automated image processing was clearly desirable, but it only grad-
ually became feasible owing to the sheer size and detail of photogrammetric images. Both
feature based,.g [31, 32], and direct (region based) [1, 52, 55, 110] methods were studied,
the latter especially for matching low-contrast natural terrain in cartographic applications.
Both rely on some form deast squares matchingas image correlation is called in pho-
togrammetry). Correlation based matching techniques remain the most accurate method
of extracting precise translations from images, both for high contrast photogrammetric
targets and for low contrast natural terrain. Starting from around 1988y &1d his co-
workers combined region based least squares matching with various geometric constraints
Multi-photo geometrically constrained matchingoptimizes the match over multiple im-
ages simultaneously, subject to the inter-image matching geometry [52, 55, 9]. For each
surface patch there is a single search over patch depth and possibly slantsivhitth-
neouslymoves it along epipolar lines in the other images. Initial versions assumed known
camera matrices, but a full patch-based bundle method was later investigated [9]. Relatec
methods in computer vision include [94, 98, 6B&]obally enforced least squares match-

ing [53, 97, 76] further stabilizes the solution in low-signal regions by enforcing continuity
constraints between adjacent patches. Patches are arranged in a grid and matched usi
local affine or projective deformations, with additional terms to penalize mismatching at
patch boundaries. Related work in vision includes [104, 102]. The inter-patch constraints
give a sparsely-coupled structure to the least squares matching equations, which can agai
be handled efficiently by recursive decomposition.
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B Matrix Factorization

This appendix covers some standard material on matrix factorization, including the tech-
nical details of factorization, factorization updating, and covariance calculation methods.
See [44,11] for more details.

Terminology: Depending on the factorization, ‘L’ stands for lower triangular, ‘U’ or ‘R’

for upper triangular, ‘D’ or ‘S’ for diagonal, ‘Q’ or ‘U’,'V’ for orthogonal factors.

B.1 Triangular Decompositions

Any matrix A has a family of block (lower triangular)*(diagonal)*(upper triangular) fac-
torizationsA = LD U:

A = L D U
L1
A Az - Al Lor Loz D; Ui Upg - - Uin
Az21 Agz - An | oo, D2 Ugp - - Uan
Amit Amz = Amn Do : ‘D, U
Lml Lm2 o Lmr
(50)
LiDiUis = A, 0= 5 _
N 1 _; . . Aij = Aij - Zk<min(i,j) Lir Dk Ukj
L;; = A;; Us. D 1> ] T (51)
J J 43 730 - A — Z A'kAlAk
UZ] = D;l Lz_zlAlj , 1 <] %7 k<min(z,5) " kk J

Here, the diagonal block3; ... D,_; must be chosen to be square and invertible,and
is determined by the rank &f. The recursion (51) follows immediately from the product
A;; =(LDU);; = Z,Kmin(i’j) L,z Dy, Uy;. Given such a factorization, linear equations
can be solved by forwards and backwards substitution as in (22—24). -

The diagonal blocks of, D, U can be chosen freely subject tg; D;; U;; = Ay,
but once this is done the factorization is uniquely defined. Chodsing- D;; = 1 so
thatU;; = A;; gives the (blockL.U decompositionA = L U, the matrix representation
of (block) Gaussian elimination. Choosihg, = U;; = 1 so thatD; = A;; gives the
LDU decomposition If A is symmetric, the LDU decomposition preserves the symmetry
and becomes theDL ™ decompositionA = LDL™ whereU = L™ andD = D". If A
is symmetric positive definite we can set= 1 to get theCholesky decomposition
A =LL", wherelL; L], = A;; (recursively) defines the Cholesky factqy of the positive
definite matrixA,;. (For a scalar, Chék) = +/a). If all of the blocks are chosen to be
1x 1, we get the conventional scalar forms of these decompositions. These decompositions
are obviously equivalent, but for speed and simplicity it is usual to use the most specific
one that applies: LU for general matrices, LDlor symmetric ones, and Cholesky for
symmetric positive definite ones. For symmetric matrices such as the bundle Hessian,
LDL™/ Cholesky are 1.5-2 times faster than LDU / LU. We will use the general form (50)
below as it is trivial to specialize to any of the others.

Loop ordering: From (51), theij block of the decomposition depends only on the the
upper left(m — 1) x (m — 1) submatrix and the firs: elements of row and columry of
A, wherem = min(i, j). This allows considerable freedom in the ordering of operations
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during decomposition, which can be exploited to enhance parallelism and improve memory
cache locality.

Fillin: If Aiis sparse, its andU factors tend to become ever denser as the decomposition
progresses. Recursively expandig, andAy; in (51) gives contributions of the form
A Apr Akl Apg K;; A, fork,1...p,q < min(i, 7). So even ifA;; is zero, if there

is any path of the form — k — | — ... = p — ¢ — j via non-zeroAy,; with
k,l...p,q < min(s, j), theij block of the decomposition will genericalfil-in (become
non-zero). The amount of fill-in is strongly dependent on the ordering of the variables
(i.e. of the rows and columns &). Sparse factorization method6(3) manipulate this
ordering to minimize either fill-in or total operation counts.

Pivoting: For positive definite matrices, the above factorizations are very stable because
the pivots A;; must themselves remain positive definite. More generally, the pivots may
become ill-conditioned causing the decomposition to break down. To deal with this, it is
usual to search the undecomposed part of the matrix for a large pivot at each step, anc
permute thisinto the leading position before proceeding. The stablest pdlithpisoting

which searches the whole submatrix, but usually a less cepstfjal pivoting search

over just the current columredlumn pivoting) or row (row pivoting) suffices. Pivoting
ensures that and/orU are relatively well-conditioned and postpones ill-conditioning in

D for as long as possible, but it can not ultimately mBkany better conditioned thakis.
Column pivoting is usual for the LU decomposition, but if applied to a symmetric matrix

it destroys the symmetry and hence doubles the workIb&tjonal pivoting preserves
symmetry by searching for the largest remaining diagonal element and permuting both
its row and its column to the front. This suffices for positive semidefinite matreegs (
gauge deficient Hessians). For general symmetric indefinite mateégeshe augmented
Hessmns( HC ) of constrained problems (12)), off-diagonal pivots can not be avéided

but there are Past stable, symmetry-preserving pivoted'LélBcompositions with block
diagonalD having1l x 1 and2 x 2 blocks. Full pivoting is possibleBunch-Parlett
decompositior), but Bunch-Kaufman decompositionwhich searches the diagonal and
only one or at most two columns usually suffices. This method is nearly as fast as pivoted
Cholesky decomposition (to which it reduces for positive matrices), and as stable LU
decomposition with partial pivotinﬁAsen’s methodhas similar speed and stability but
produces a tridiagon&. The constrained HessmﬂqH g) has further special properties
owing to its zero block, but we will not consider these here — see§ii4,6 Equilibrium
Systems].

B.2 Orthogonal Decompositions

For least squares problems, there is an alternative family of decompositions based on
orthogonal reduction of the Jacobidn= dx Given any rectangular matri¥, it can be
decomposed & = Q R whereR is upper triangular an@ is orthogonali(e., its columns

are orthonormal unit vectors). This is called @& decompositionof A. R is identical

to the right Cholesky factor A" A = (R"Q")(QR) = R"R. The solution of the linear

29 The archetypical failure is the unstable LDtecomposition of the well-conditioned symmetric
indefinite matrix(§ §) = (1}6 (1)) (0 Y 6) ( ! 1/6) for e — 0. Fortunately, for small
diagonal elements permuting the domlnant off- dOagonaI element next to the diagonal and leaving
the resulting2 x 2 block undecomposed i suffices for stability.
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least squares probleminy ||[AX — bl|2isx = R Q" b, andR* Q" is the Moore-Penrose
pseduo-inverse oA. The QR decomposition is calculated by finding a series of simple
rotations that successively zero below diagonal elemem{s@formR, and accumulating
the rotations iQ, Q" A = R. Various types of rotations can be us&ivens rotations

are the fine-grained extreme: one-paramgter2 rotations that zero a single element of
A and affect only two of its rowd-douseholder reflectionsare coarser-grained reflections

in hyperplaned — QHK%, designed to zero an entire below-diagonal colum aind
affecting all elements oA in or below the diagonal row of that column. Intermediate
sizes of Householder reflections can also be used th& case being computationally
equivalent, and equal up to a sign, to the corresponding Givens rotation. This is useful for
sparse QR decompositioresg multifrontal methods (se€§6.3 and [11]). The Householder
method is the most common one for general use, owing to its speed and simplicity. Both
the Givens and Householder methods calclRageplicitly, butQ is not calculated directly
unless it is explicitly needed. Instead, it is stored in factorized form (as a seres af
rotations or Householder vectors), and applied piecewise when needed. In pad¢blar,

is needed to solve the least squares system, but it can be calculated progressively as part
the decomposition process. As for Cholesky decomposition, QR decomposition is stable
without pivoting so long a#\ has full column rank and is not too ill-conditioned. For
degeneraté\, Householder QR decomposition with column exchange pivoting can be
used. See [11] for more information about QR decomposition.

Both QR decomposition ¢k and Cholesky decomposition of the normal maixA
can be used to calculate the Cholesky / QR faB@nd to solve least squares problems
with design matrix / Jacobiah. The QR method runs about as fast as the normal / Cholesky
one for squard\, but becomes twice as slow for long thin(i.e. many observations in
relatively few parameters). However, the QR is numerically much stabler than the normal /
Cholesky one in the following sense Afhas condition number (ratio of largest to smallest
singular value} and the machine precisiondsthe QR solution has relative err6Xce),
whereas the normal matrix” A has condition numbef and its solution has relative error
O(c%). This matters only it2e approaches the relative accuracy to which the solution
is required. For example, even in accurate bundle adjustments, we do not need relative
accuracies greater than abaut 10°. As e ~ 10716 for double precision floating point,
we can safely use the normal equation method:dy < 10°, whereas the QR method is
safe up toe(J) < 1019, whereld is the bundle Jacobian. In practice, the Gauss-Newton /
normal equation approach is used in most bundle implementations.

Individual Householder reflections are also useful for projecting parametrizations of
geometric entities orthogonal to some constraint vector. For example, for quaternions
or homogeneous projective vectdXs we often want to enforce spherical normalization
|X]|? = 1. Tofirst order, only displacemeniX orthogonal toX are allowedX™ §X = 0.

To parametrize the directions we can move in, we need a basis for the vectors orthogona
to X. A Householder reflectio@ based orX convertsX to (1 0...0)" and hence the
orthogonal directions to vectors of the foh « ... x)". So if U contains rows 2= of Q,

we can reduce Jacobiag% to then — 1 independent parametedis of the orthogonal
subspace by post-multiplying By™, and once we have solved féu, we can recover
the orthogonadX = U §u by premultiplying byU. Multiple constraints can be enforced
by successivélouseholder reductionsof this form. This corresponds exactly to th®
method for solving constrained least squares problems [11].
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x = profile_cholesky _forward_subs(A, b)
for ¢ = first(b) to n do

1—1
L = profile_cholesky decomp(A) X; = (bi — Z Lix Xk)/Lii
fori=1tondo k=max(first(:) first(b))
for j = first(:) to i do
j—1
a = Ay — Z Lk Ljk y = profile_cholesky_back_subs(A, x)
k=max(first(z),first(5)) y =X
L = (j<i)?a/L;; : va for ¢ = last(b) to 1 step—1 do
! o for k = max(first(i), first(y)) to i do
Y = Yk — VYiLlik
Yi = Vi / Lis

Fig. 10.A complete implementation of profile Cholesky decomposition.

B.3 Profile Cholesky Decomposition

One of the simplest sparse methods suitable for bundle problepr®fite Cholesky
decomposition With natural (features then cameras) variable ordering, it is as efficient
as any method for dense networkg.(most features visible in most images, giving dense
camera-feature coupling blocks in the Hessian). With suitable variable oréftitrigalso
efficient for some types of sparse problems, particularly ones with chain-like connectivity.
Figure 10 shows the complete implementation of profile Cholesky, including decom-
positionL L™ = A, forward substitutiorx = L™b, and back substitutioy = L~ x.
first(b), lastb) are the indices of the first and last nonzero entrigs, @nd first:) is the
index of the first nonzero entry in roinof A and hencd.. If desired L, X, y can overwrite
A, b, x during decomposition to save storage. As always with factorizations, the loops can
be reordered in several ways. These have the same operation counts but different acces
patterns and hence memory cache localities, which on modern machines can lead to sig
nificant performance differences for large problems. Here we store and sceastl
consistently by rows.

B.4 Matrix Inversion and Covariances

When solving linear equations, forward-backward substitutions (22, 24) are much faster
than explicitly calculating and multiplying b, and numerically stabler too. Explicit
inverses are only rarely needexg to evaluate the dispersion (“covariance”) matix.
Covariance calculation is expensive for bundle adjustment: no matter how bjraesebe,

H™ is always dense. Given a triangular decomposifioa L D U, the most obvious way

to calculateA is via the producA— = U~ D' L, whereL~" (which is lower triangular)

is found using arecurrence based on eithét. = 1 orL L~ = 1 as follows (and similarly

but transposed fdd):

J
(LDu = (L) (L = —Lj; (ZLyk z) = —< > (L% Lki) L
k=i+1
1=1..n, j=i+l..n 1=n...1, j=n...i+1

(52)

30 snay’s Banker's strateg$§§.3, [101, 24]) seems to be one of the most effective ordering strategies.
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Alternatively [45, 11], the diagonal and the (zero) upper triangle of the linear system
UA~ = D'L™" can be combined with the (zero) lower trianglefof L = U~ D" to give
the direct recursioni(=n...1andj =n...i+ 1):

(A = — ( > (A '—ki) Li, (A)y = —U¢§< > Ui (Al)ka)

k=i+1 k=i+1

(A = Uj} (DJLJ— > Ui <A‘1>m> = (U;Df— > (A Lki) Lii
k=i+1 k=i+1

(53)

In the symmetric cas@\™) ;; = (A™);; S0 we can avoid roughly half of the work. If only a

few blocks ofA™ are requiredd.g the diagonal ones), this recursion has the property that
the blocks ofA— associated with the filled positions lbofandU can be calculated without
calculating any blocks associated with unfilled positions. More precisely, to calculate
(A™),; for whichL;; (j > 4) or U;; (j < 1) is non-zero, we do not need any block
(A, for whichLy, = 0 (I > k) or Uy, = 0 (I < k) 3L This is a significant saving if

L, U are sparse, as in bundle problems. In particular, given the covariance of the reduced
camera system, the 3D feature variances and feature-camera covariances can be calculat
efficiently using (53) (or equivalently (17), whefe+ H,, is the block diagonal feature
Hessian an@ is the reduced camera one).

B.5 Factorization Updating

For on-line applications$g.2), it is useful to be able topdate the decompositior =
L DU to account for a (usually low-rank) change— A = A+ BWC. LetB=L"B
andC = CU*'sothatLt" AU = D &+ BWC. This low-rank update ob can be LDU
decomposed efficiently. Separating the first bloclbdfom the others we have:

D B ==y ( - L _ D 1 4D, B1WC
( 1D2)i(§;)w(0102> = (iszwchjl 1)( 162)( S
61 = D1 :|:§1W61 62 = DQ iEQ (W:FW61511§1W) 62
(54)

D, is a low-rank update ob, with the sameC, andB, but a differentw. Evaluating
this recursively and merging the resulting L and U factors inemdU gives the updated

3 This holds because of the way fill-in occurs in the LDU decomposition. Suppose that we want to
find (A™);, wherej > ¢ andL;; # 0. For this we needA ), for all non-zerdJ;, k > i. But

fortheseA;, = L;ji D; Ui + ... + Ajir # 0, S0(A™);; is associated with a filled position and
will already have been evaluated.
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decompositiof? A =LDU :

wh « +w; BMD « B; Cc « C;
fori=1tondo
Ei “— Bgl), 62‘ — CEZ),
WD W W T, D,

61‘ «— D; -‘rgi w() 61 ;
1—= . . J— — -1
B,W = ((W(z))_l‘f' C, b Bi) P (55)
for j =i+ 1tondo
i+1 i B. T i+ \W(+1) & DL

o) B LB L Ll wicon

Cj — Cj -G Uij ; Uij — Ul‘j + D;l B; Wwit+1) Cj ;
TheW form of theW update is numerically stabler for additions-('signinA+=BWC
with positive W), but is not usable unles#/( is invertible. In either case, the update
takes timeO ((k? + b?)N?) whereA is N x N, W is k x k and theD; arebx b. So other
things being equak should be kept as small as possil#ey(by splitting the update into
independent rows using an initial factorizationWf and updating for each row in turn).
The scalar Cholesky form of this method for a rank one upAate A + wbb" is:

wh «— w; bW +— p;
for i = 1tondo
wi D w® /d;;
for j =i+ 1tondo
b§i+1) — by) —Lj; Bi; Eji — (Lji + bgi—H) w(Hl)Ez‘) \/Ea
(56)

This takesO(nQ) operations. The same recursion rule (and several equivalent forms) can
be derived by reducingL b)" to an upper triangular matrix using Givens rotations or
Householder transformations [43, 11].

C Software

C.1 Software Organization

For a general purpose bundle adjustment code, an extensible object-based organization i
natural. The measurement network can be modelled as a network of objects, representin
measurements and their error modelsd the different types @&D featuresandcamera
modelsthat they depend on. It is obviously useful to allow the measurement, feature and
camera types to be open-ended. Measurements may be 2D or 3D, implicit or explicit, and
many different robust error models are possible. Features may range from points through
curves and homographies to entire 3D object models. Many types of camera and lens

#Here, B = B; — 31"\ LixBr = Y LwBr andC)’ = C; - 37\ Cilyy =
7 _, Ci Uy, accumulaté ™ BandC U™. Forthel, U updates one can also usé**!) C; D;* =

W(i> 62 5:1 and D;l EZ W(i+1) = 51_1 EZ W(i>.
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distortion models exist. If the scene is dynamic or articulated, additional nodes representing
3D transformations (kinematic chains or relative motions) may also be needed.

The main purpose of the network structure is to predict observations and their Jacobians
w.r.t. the free parameters, and then to integrate the resulting first order parameter update
back into the internal 3D feature and camera state representations. Prediction is essentiall
a matter of systematically propagating values through the network, with heavy use of the
chain rule for derivative propagation. The network representation must interface with a
numerical linear algebra one that supports appropriate methods for forming and solving the
sparse, damped Gauss-Newton (or other) step prediction equations. A fixed-order spars
factorization may suffice for simple networks, while automatic variable ordering is needed
for more complicated networks and iterative solution methods for large ones.

Several extensible bundle codes exist, but as far as we are aware, none of them art
currently available as freeware. Our own implementations include:

e CARMEN [59] is a program for camera modelling and scene reconstruction using itera-
tive nonlinear least squares. It has a modular design that allows many different feature,
measurement and camera types to be incorporated (including some quite exotic one:
[56, 63]). It uses sparse matrix techniques similar to Brown’s reduced camera system
method [19] to make the bundle adjustment iteration efficient.

e HoraTIO (http://www.ee.surrey.ac.uk/Personal/P.McLauchlan/horatio/html, [85], [86],
[83], [84]) is a C library supporting the development of efficient computer vision ap-
plications. It contains support for image processing, linear algebra and visualization,
and will soon be made publicly available. The bundle adjustment methods in Horatio,
which are based on the Variable State Dimension Filter (VSDF) [83, 84], are being
commercialized. These algorithms support sparse block matrix operations, arbitrary
gauge constraints, global and local parametrizations, multiple feature types and camere
models, as well as batch and sequential operation.

e VXL: This modular C++ vision environment is a new, lightweight version of the Tar-
getJr/IUE environment, which is being developed mainly by the Universities of Oxford
and Leuven, and General Electric CRD. The initial public release on
http://www.robots.ox.ac.uk/vxl will include an OpenGL user interface and classes
for multiple view geometry and numerics (the latter being mainly C++ wrappers to well
established routines from Netlib — see below). A bundle adjustment code exists for it
but is not currently planned for release [28, 62].

C.2 Software Resources

A great deal of useful numerical linear algebra and optimization software is available on
the Internet, although more commonly KORTRAN than in C/C++. The main reposi-

tory is NETLIB at http://www.netlib.org/. Other useful sites include: the ‘Guide to Avail-
able Mathematical Software’ GAMS at http://gams.nist.gov; the NEOS guide http://www-
fp.mcs.anl.gov/otc/Guide/, which is based in part on &&#iVright's guide book [90]; and

the Object Oriented Numerics page http://oonumerics.org. For large-scale dense linear al-
gebra, LAPACK (http://www.netlib.org/lapack, [3]) is the best package available. However
itis optimized for relatively large problems (matrices of size 100 or more), soif you are solv-
ing many small ones (size less than 20 or so) it may be faster to use the older LINPACK and
EISPACK routines. These libraries all use the BLAS (Basic Linear Algebra Subroutines)
interface for low level matrix manipulations, optimized versions of which are available from
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most processor vendors. They arelalirRTrRAN based, but C/C++ versions and interfaces
exist (CLAPACK,
http://www.netlib.org/clapack; LAPACK++, http://math.nist.gov/lapack++). For sparse
matrices there is a bewildering array of packages. One good one is Boeing’s SPOOLES
(http://www.netlib.org/linalg/spooles/spooles.2.2.html) which implements sparse Bunch-
Kaufman decomposition in C with several ordering methods. For iterative linear system
solvers implementation is seldom difficult, but there are again many methods and imple-
mentations. The ‘Templates’ book [10] contains potted code. For nonlinear optimization
there are various older codes such as MINPACK, and more recent codes designed mainly
for very large problems such as MINPACK-2 (ftp://info.mcs.anl.gov/pub/MINPACK-2)
and LANCELOT (http://lwww.cse.clrc.ac.uk/Activity/LANCELOT). (Both of these latter
codes have good reputations for other large scale problems, but as far as we are aware the
have not yet been tested on bundle adjustment). All of the above packages are freely avail-
able. Commercial vendors such as NAG (ttp://www.nag.co.uk) and IMSL (www.imsl.com)
have their own optimization codes.

Glossary

This glossary includes a few common terms from vision, photogrammetry, numerical optimization
and statistics, with their translations.

Additional parameters: Parameters added to the basic perspective model to represent lens distor-
tion and similar small image deformations.

a-distribution: A family of wide tailed probability distributions, including th@auchy distribu-
tion ( = 1) and the Gaussiam(= 2).

Alternation: A family of simplistic and largely outdated strategies for nonlinear optimization (and
also iterative solution of linear equations). Cycles through variables or groups of variables, opti-
mizing over each in turn while holding all the others fixed. Nonlinear alternation methods usually
relinearize the equations after each group, wBiteiss-Seideiethods propagate first order cor-
rections forwards and relinearize only at the end of the cycle (the results are the same to first
order). Successive over-relaxatiomdds momentum terms to speed convergence s€para-
ble problem. Alternation ofresectionandintersectionis a ndve and often-rediscovered bundle
method.

Asymptotic limit: In statistics, the limit as the number of independent measurements is increased
to infinity, or as the second order moments dominate all higher order ones so that the posterior
distribution becomes approximately Gaussian.

Asymptotic convergence: In optimization, the limit of small deviations from the solutiare. as
the solution is reache&econd orderor quadratically convergent methods such asdewton’s
method squarethe norm of the residual at each step, wtiitet order or linearly convergent
methods such agradient descentandalternation only reduce the error by a constant factor at
each step.

Banker's strategy: Seefill in, §6.3.

Block: A (possibly irregular) grid of overlapping photos in aerial cartography.

Bunch-Kauffman: A numerically efficient factorization method for symmetric indefinite matrices,
A = LDL" whereL is lower triangular and is block diagonal withl x 1 and2 x 2 blocks
(§6.2,B.1).

Bundle adjustment: Any refinement method for visual reconstructions that aims to produce jointly
optimal structure and camera estimates.
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Calibration: In photogrammetry, this always meangernal calibration of the cameras. Semer
orientation.

Central limit theorem: States that maximum likelihood and similar estimators asymptotically have
Gaussian distributions. The basis of most of our perturbation expansions.

Cholesky decomposition: A numerically efficient factorization method for symmetric positive def-
inite matricesA = L L™ whereL is lower triangular.

Close Range: Any photogrammetric problem where the scene is relatively close to the camera,
so that it has significant depth compared to the camera distance. Terrestrial photogrammetry as
opposed taerial cartography.

Conjugate gradient: A cleverly accelerated first order iteration for solving positive definite linear
systems or minimizing a nonlinear cost function. eglov subspace

Cost function: The function quantifying the total residual error that is minimized in an adjustment
computation.

Cramér-Rao bound: SeeFisher information.
Criterion matrix: In network design, an ideal or desired form for a covariance matrix.

Damped Newton method: Newton’s methodwith a stabilizing step control policy added. See
Levenberg-Marquardt.

Data snooping: Elimination of outliers based on examination of their residual errors.

Datum: A reference coordinate system, against which other coordinates and uncertainties are mea-
sured. Our principle example ofgauge

Dense: A matrix or system of equations with so few known-zero elements that it may as well be
treated as having none. The oppositsdrse For photogrammetric networkdensemeans that
the off-diagonal structure-camera block of the Hessian is dersmost features are seen in most
images.

Descent direction: In optimization, any search direction with a downhill componeatthat locally
reduces the cost.

Design: The process of defining a measurement network (placement of cameras, number of images,
etc) to satisfy given accuracy and quality criteria.

Design matrix: The observation-state Jacobihn- g—

z

-

Direct method: Dense correspondence or reconstruction methods based directly on cross-correlat-
ing photometric intensities or related descriptor images, without extracting geometric features.

Seeleast squares matchingfeature based method

Dispersion matrix: The inverse of the cost functidiessian a measure of distribution spread. In
theasymptotic limit, the covariance is given by the dispersion.

Downdating: On-the-fly removal of observations, without recalculating everything from scratch.
The inverse ofipdating.

Elimination graph: A graph derived from th@etwork graph, describing the progress €fl in
during sparse matrix factorization.

Empirical distribution: A set of samples from some probability distribution, viewed as an sum-
of-delta-function approximation to the distribution itself. Tlhes of large numbersasserts that
the approximation asymptotically converges to the true distribution in probability.

Fill-in: The tendency of zero positions to become nonzero as sparse matrix factorization progresses
Variable ordering strategiesseek to minimize fill-in by permuting the variables before factor-
ization. Methods includeninimum degree, reverse Cuthill-McKee, Banker's strategies and
nested dissectionSee§6.3.

Fisher information: In parameter estimation, the mean curvature of the posterior log likelihood
function, regarded as a measure of the certainty of an estimat€raheér-Rao boundsays that
any unbiased estimator has covariaixcthe inverse of the Fisher information.
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Free gauge / free network: A gaugeor datum that is defined internally to the measurement net-
work, rather than being based on predefined reference featuredidezlauge

Feature based: Sparse correspondence / reconstruction methods based on geometric image feature:
(points, lines, homographies. ) rather than direct photometry. Seeect method.

Filtering: In sequential problems such as time series, the estimation of a current value using all
of the previous measurementmoothing can correct this afterwards, by integrating also the
information from future measurements.

First order method / convergence: Seeasymptotic convergence

Gauge: Aninternal or external reference coordinate system defined for the current state and (at least)
small variations of it, against which other quantitésl their uncertaintiesan be measured. The
3D coordinate gauge is also called th@tum. A gauge constraintis any constraint fixing a
specific gaugee.g for the current state and arbitrary (small) displacements of it. The fact that
the gauge can be chosen arbitrarily without changing the underlying structure is gallgd
freedomor gauge invariance The rank-deficiency that this transformation-invariance of the cost
function induces on the Hessian is callgalige deficiencyDisplacements that violate the gauge
constraints can be corrected by applyingatmansform, whose linear form is gauge projection
matrix Pg.

Gauss-Markov theorem: This says that for a linear system, least squares weighted by the true
measurement covariances gives the Best (minimum variance) Linear Unbiased Estimator or BLUE.

Gauss-Newton method: A Newton-like method for nonlinear least squares problems, in which the
Hessian is approximated by the Gauss-Newtonldne J* W J whereJ is thedesign matrix
andW is a weight matrix. Th@ormal equationsare the resulting Gauss-Newton step prediction
equationgJ" W J) 6x = —(JW Az).

Gauss-Seidel method:Seealternation.

Givens rotation: A 2 x 2 rotation used to as part of orthogonal reduction of a matig, QR,
SVD. SeeHouseholder reflection
df

Gradient: The derivative of the cost function w.r.t. the parametges ax:

Gradient descent: Naive optimization method which consists of steepest descent (in some given
coordinate system) down the gradient of the cost function.

2

Hessian: The second derivative matrix of the cost functibr= d—;. Symmetric and positive (semi-
)definite at a cost minimum. Measures how ‘stiff’ the state estimate is against perturbations. Its
inverse is thalispersion matrix.

Householder reflection: A matrix representing reflection in a hyperplane, used as a tool for or-
thogonal reduction of a matrie.g QR, SVD. Sedivens rotation.

Independent model method: A suboptimal approximation to bundle adjustment developed for
aerial cartography. Small local 3D models are reconstructed, each from a few images, and then
glued together vidgie featuresat their common boundaries, without a subsequent adjustment to
relax the internal stresses so caused.

Inner: Internal or intrinsic.

Inner constraints: Gauge constraintslinking the gauge to some weighted average of the recon-
structed features and cameras (rather than to an externally supplied reference system).

Inner orientation: Internal camera calibration, including lens distortiett,

Inner reliability:  The ability to either resist outliers, or detect and reject them based on their residual
errors.

Intersection: (of optical rays). Solving for 3D feature positions given the corresponding image
features and known 3D camera poses and calibrationgeSeetion alternation.

Jacobian: Seedesign matrix.
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Krylov subspace: The linear subspace spanned by the iterated productd|k = 0...n} of
some square matr with some vectob, used as a tool for generating linear algebra and nonlinear
optimization iterationsConjugate gradientis the most famous Krylov method.

Kullback-Leibler divergence: Seerelative entropy.

Least squares matching: Image matching based on photometric intensities.ddeet method.

Levenberg-Marquardt: A common damping (step control) method for nonlinear least squares
problems, consisting of adding a multip® of some positive definite weight matrX to the
Gauss-Newton Hessian before solving for the step. Levenberg-Marquardt uses a simple rescaling
based heuristic for setting, while trust region methods use a more sophisticated step-length
based one. Such methods are catlachped Newtonmethods in general optimization.

Local model: In optimization, a local approximation to the function being optimized, which is easy
enough to optimize that an iterative optimizer for the original function can be based on it. The
second order Taylor series model givdswton’s method

Local parametrization: A parametrization of a nonlinear space based on offsets from some current
point. Used during an optimization step to give better local numerical conditioning than a more
global parametrization would.

LU decomposition: The usual matrix factorization form of Gaussian elimination.

Minimum degree ordering: One of the most widely used automatic variable ordering methods for
sparse matrix factorization.

Minimum detectable gross error: The smallestoutlier that can be detected on average by an outlier
detection method.

Nested dissection:A top-down divide-and-conquesariable ordering method for sparse matrix
factorization. Recursively splits the problem into disconnected halves, dealing wittheating
setof connecting variables last. Particularly suitable for surface coverage problems. Also called
recursive partitioning .

Nested models: Pairs of models, of which one is a specialization of the other obtained by freezing
certain parameters(s) at prespecified values.

Network: The interconnection structure of the 3D features, the cameras, and the measurements tha
are made of them (image pointtc). Usually encoded as a graph structure.

Newton method: The basic iterative second order optimization method. Neeston stepstate
updatedx = —H™'g minimizes a local quadratic Taylor approximation to the cost function at
each iteration.

Normal equations: SeeGauss-Newton method

Nuisance parameter: Any parameter that had to be estimated as part of a nonlinear parameter
estimation problem, but whose value was not really wanted.

Outer: External. Seénner.

Outer orientation: Camera pose (position and angular orientation).

Outer reliability: The influence of unremoved outliers on the final parameter estimatethe
extent to which they are reliable even though some (presumably small or lowly-weighted) outliers
may remain undetected.

Outlier: An observation that deviates significantly from its predicted position. More generally,
any observation that does not fit some preconceived notion of how the observations should be
distributed, and which must therefore be removed to avoid disturbing the parameter estimates.
Seetotal distribution .

Pivoting: Row and/or column exchanges designed to promote stability during matrix factorization.

Point estimator: Any estimator that returns a single “best” parameter estimeate,maximum
likelihood, maximum a posteriori.

Pose: 3D position and orientation (angled,g of a camera.
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Preconditioner: A linear change of variables designed to improve the accuracy or convergence rate
of a numerical methodg.g a first order optimization iteratioivariable scaling is the diagonal
part of preconditioning.

Primary structure: The main decomposition of the bundle adjustment variables into structure and
camera ones.

Profile matrix: A storage scheme for sparse matrices in which all elements between the first and
the last nonzero one in each row are stored, even if they are zero. Its simplicity makes it efficient
even if there are quite a few zeros.

Quality control: The monitoring of an estimation process to ensure that accuracy requirements
were met, that outliers were removed or down-weighted, and that appropriate models were used,
e.g for additional parameters.

Radial distribution: An observation error distribution which retains the Gaussian dependence on
a squared residual errer= x™ W x, but which replaces the exponential”/? form with a more
robust long-tailed one.

Recursive: Used of filtering-based reconstruction methods that handle sequences of images or
measurements by successive updating steps.

Recursive partitioning: Seenested dissection

Reduced problem: Any problem where some of the variables have already been eliminated by
partial factorization, leaving only the others. Tregluced camera systen{20) is the result of
reducing the bundle problem to only the camera variab{€s1(8.2,4.4).

Redundancy: The extent to which any one observation has only a small influence on the results,
so that it could be incorrect or missing without causing problems. Redundant consenses are the
basis of reliabilityRedundancy numbersr are a heuristic measure of the amount of redundancy
in an estimate.

Relative entropy: An information-theoretic measure of how badly a model probability depsity
fits an actual ong : the mean (w.r.tpo) log likelihood contrast opg to p1, (log(po/p1))pe-

Resection: (of optical rays). Solving for 3D camera poses and possibly calibrations, given image
features and the corresponding 3D feature positionsireesection.

Resection-intersection: Seealternation.
Residual: The errorAz in a predicted observation, or its cost function value.

S-transformation: A transformation between twgauges implemented locally by gauge pro-
jection matrix Pg.

Scaling: Seepreconditioner.

Schur complement: Of A in (é B )isD — CA™'B. See$6.1.
Second order method / convergence Seeasymptotic convergence

Secondary structure: Internal structure or sparsity of the off-diagonal feature-camera coupling
block of the bundle Hessian. Spemary structure .

Self calibration: Recovery of camera (internal) calibration during bundle adjustment.

Sensitivity number: A heuristic numbers measuring the sensitivity of an estimate to a given
observation.

Separable problem: Any optimization problem in which the variables can be separated into two
or more subsets, for which optimization over each subset given all of the others is significantly
easier than simultaneous optimization over all variables. Bundle adjustment is separable into 3D
structure and cameraslternation (successive optimization over each subset) iS\eegpproach
to separable problems.

Separating set: Seenested dissection
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Sequential Quadratic Programming (SQP): An iteration for constrained optimization problems,
the constrained analogue ldéwton’s method At each step optimizeslacal modelbased on a
quadratic model function with linearized constraints.

Sparse: “Any matrix with enough zeros that it pays to take advantage of them” (Wilkinson).

State: The bundle adjustment parameter vector, including all scene and camera parameters to be
estimated.

Sticky prior: A robust prior with a central peak but wide tails, designed to let the estimate ‘unstick’
from the peak if there is strong evidence against it.

Subset selection: The selection of a stable subset of ‘live’ variables on-line during pivoted factor-
ization.E.g, used as a method for selecting variables to constrain with trivial gauge constraints
(89.5).

Successive Over-Relaxation (SOR) Seealternation.

Sum of Squared Errors (SSE): The nonlinear least squares cost function. The (possibly weighted)
sum of squares of all of the residual feature projection errors.

Total distribution: The error distribution expected fatl observations of a given type, including
bothinliers and outliers.e. the distribution that should be used in maximum likelihood estimation.

Trivial gauge: A gaugethat fixes a small set of predefined reference features or cameras at given
coordinates, irrespective of the values of the other features.

Trust region: SeelLevenberg-Marquardt.
Updating: Incorporation of additional observations without recalculating everything from scratch.
Variable ordering strategy: Seéfill-in .

Weight matrix: An information (inverse covariance) like matrix mati¥, designed to put the
correct relative statistical weights on a set of measurements.

Woodbury formula: The matrix inverse updating formula (18).
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