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Abstract. This paper is a survey of the theory and methods of photogrammetric
bundle adjustment, aimed at potential implementors in the computer vision commu-
nity. Bundle adjustment is the problem of refining a visual reconstruction to produce
jointly optimal structure and viewing parameter estimates. Topics covered include:
the choice of cost function and robustness; numerical optimization including sparse
Newtonmethods, linearly convergent approximations, updating and recursive meth-
ods; gauge (datum) invariance; and quality control. The theory is developed for
general robust cost functions rather than restricting attention to traditional nonlinear
least squares.

Keywords:BundleAdjustment, SceneReconstruction,GaugeFreedom,SparseMa-
trices, Optimization.

1 Introduction

Thispaper isasurveyof the theoryandmethodsofbundleadjustmentaimedat thecomputer
vision community, andmore especially at potential implementorswho already knowa little
about bundle methods. Most of the results appeared long ago in the photogrammetry and
geodesy literatures, but many seem to be little known in vision, where they are gradually
being reinvented. By providing an accessible modern synthesis, we hope to forestall some
of this duplication of effort, correct some common misconceptions, and speed progress in
visual reconstruction by promoting interaction between the vision and photogrammetry
communities.

Bundle adjustmentis the problemof refininga visual reconstruction to producejointly
optimal3D structure and viewing parameter (camera pose and/or calibration) estimates.
Optimalmeans that the parameter estimates are found by minimizing some cost function
that quantifies themodel fitting error, andjointly that the solution is simultaneously optimal
with respect to both structure and camera variations. The name refers to the ‘bundles’
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of light rays leaving each 3D feature and converging on each camera centre, which are
‘adjusted’ optimally with respect to both feature and camera positions. Equivalently —
unlike independent model methods, which merge partial reconstructions without updating
their internal structure — all of the structure and camera parameters are adjusted together
‘in one bundle’.
Bundle adjustment is really just a large sparsegeometric parameter estimationproblem,

the parameters being the combined 3D feature coordinates, camera poses and calibrations.
Almost everything that we will say can be applied to many similar estimation problems in
vision, photogrammetry, industrial metrology, surveying and geodesy. Adjustment com-
putations are a major common theme throughout the measurement sciences, and once the
basic theory and methods are understood, they are easy to adapt to a wide variety of prob-
lems. Adaptation is largely a matter of choosing a numerical optimization scheme that
exploits the problem structure and sparsity. We will consider several such schemes below
for bundle adjustment.
Classically, bundle adjustment and similar adjustment computations are formulated

as nonlinear least squares problems [19, 46, 100, 21, 22, 69, 5, 73, 109]. The cost function
is assumed to be quadratic in the feature reprojection errors, and robustness is provided
by explicit outlier screening. Although it is already very flexible, this model is not really
general enough. Modern systems often use non-quadratic M-estimator-like distributional
models to handle outliers more integrally, and many include additional penalties related to
overfitting, model selection and system performance (priors, MDL). For this reason, we
will not assume a least squares / quadratic cost model. Instead, the cost will be modelled
as a sum of opaque contributions from the independent information sources (individual
observations, prior distributions, overfitting penalties. . . ). The functional forms of these
contributions and their dependence on fixed quantities such as observations will usually be
left implicit. This allowsmanydifferent typesof robust andnon-robust cost contributions to
be incorporated, without unduly cluttering the notation or hiding essential model structure.
It fits well with modern sparse optimization methods (cost contributions are usually sparse
functions of the parameters) and object-centred software organization, and it avoids many
tedious displays of chain-rule results. Implementors are assumed to be capable of choosing
appropriate functions and calculating derivatives themselves.

One aim of this paper is to correct a number ofmisconceptions that seem to be common
in the vision literature:

• “Optimization / bundle adjustment is slow”: Such statements often appear in papers
introducing yet another heuristic Structure from Motion (SFM) iteration. The claimed
slowness is almost always due to the unthinking use of a general-purpose optimiza-
tion routine that completely ignores the problem structure and sparseness. Real bundle
routines aremuchmore efficient than this, and usually considerably more efficient and
flexible than the newly suggested method (§6, 7). That is why bundle adjustment re-
mains the dominant structure refinement technique for real applications, after 40 years
of research.

• “Only linear algebra is required”: This is a recent variant of the above, presumably
meant to imply that the new technique is especially simple. Virtually all iterative refine-
ment techniques use only linear algebra, and bundle adjustment is simpler than many
in that it only solves linear systems: it makes no use of eigen-decomposition or SVD,
which are themselves complex iterative methods.
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• “Any sequence can be used”:Many visionworkers seem to be very resistant to the idea
that reconstruction problems should be planned in advance (§11), and results checked
afterwards to verify their reliability (§10). Systembuilders should at least be aware of the
basic techniques for this, even if application constraints make it difficult to use them.
The extraordinary extent to which weak geometry and lack of redundancy can mask
gross errors is too seldom appreciated,c.f . [34, 50, 30, 33].
• “Point P is reconstructed accurately”: In reconstruction, just as there are no absolute
references for position, there are none for uncertainty. The 3D coordinate frame is
itself uncertain, as it can only be located relative to uncertain reconstructed features or
cameras. All other feature and camera uncertainties are expressed relative to the frame
and inherit its uncertainty, so statements about them are meaningless until the frame
and its uncertainty are specified. Covariances can look completely different in different
frames, particularly in object-centred versus camera-centred ones. See§9.

There is a tendency in vision to develop a profusion ofad hocadjustment iterations. Why
should you use bundle adjustment rather than one of these methods? :
• Flexibility: Bundle adjustment gracefully handles a very wide variety of different 3D
feature and camera types (points, lines, curves, surfaces, exotic cameras), scene types
(including dynamic and articulatedmodels, scene constraints), information sources (2D
features, intensities, 3D information, priors) and error models (including robust ones).
It has no problems with missing data.
• Accuracy:Bundle adjustment gives precise andeasily interpreted results because it uses
accurate statistical error models and supports a sound, well-developed quality control
methodology.
• Efficiency: Mature bundle algorithms are comparatively efficient even on very large
problems. They use economical and rapidly convergent numerical methods and make
near-optimal use of problem sparseness.

In general, as computer vision reconstruction technology matures, we expect that bundle
adjustment will predominate over alternative adjustmentmethods inmuch the sameway as
it has in photogrammetry.Wesee this as an inevitable consequenceof a greater appreciation
of optimization (notably, more effective use of problem structure and sparseness), and of
systems issues such as quality control and network design.

Coverage:We will touch on a good many aspects of bundle methods. We start by consid-
ering the camera projection model and the parametrization of the bundle problem§2, and
the choice of error metric or cost function§3. §4 gives a rapid sketch of the optimization
theory we will use.§5 discusses the network structure (parameter interactions and char-
acteristic sparseness) of the bundle problem. The following three sections consider three
types of implementation strategies for adjustment computations:§6 covers second order
Newton-likemethods, which are still themost often used adjustment algorithms;§7 covers
methods with only first order convergence (most of thead hocmethods are in this class);
and§8 discusses solution updating strategies and recursive filtering bundle methods.§9
returns to the theoretical issue of gauge freedom (datum deficiency), including the theory
of inner constraints.§10 goes into some detail on quality control methods for monitoring
the accuracy and reliability of the parameter estimates.§11 gives some brief hints on net-
work design,i.e. how to place your shots to ensure accurate, reliable reconstruction.§12
completes the body of the paper by summarizing the main conclusions and giving some
provisional recommendations for methods. There are also several appendices.§A gives a
brief historical overview of the development of bundle methods, with literature references.
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§B gives some technical details of matrix factorization, updating and covariance calcula-
tion methods.§C gives some hints on designing bundle software, and pointers to useful
resources on the Internet. The paper ends with a glossary and references.

General references:Cultural differences sometimes make it difficult for vision workers
to read the photogrammetry literature. The collection edited by Atkinson [5] and the
manual by Karara [69] are both relatively accessible introductions to close-range (rather
than aerial) photogrammetry. Other accessible tutorial papers include [46, 21, 22]. Kraus
[73] is probably the most widely used photogrammetry textbook. Brown’s early survey
of bundle methods [19] is well worth reading. The often-cited manual edited by Slama
[100] is now quite dated, although its presentation of bundle adjustment is still relevant.
Wolf & Ghiliani [109] is a text devoted to adjustment computations, with an emphasis
on surveying. Hartley & Zisserman [62] is an excellent recent textbook covering vision
geometry from a computer vision viewpoint. For nonlinear optimization, Fletcher [29]
and Gillet al [42] are the traditional texts, and Nocedal & Wright [93] is a good modern
introduction. For linear least squares, Björck [11] is superlative, and Lawson & Hanson is
a good older text. For more general numerical linear algebra, Golub & Van Loan [44] is
the standard. Duffet al [26] and George & Liu [40] are the standard texts on sparse matrix
techniques. We will not discuss initialization methods for bundle adjustment in detail, but
appropriate reconstructionmethods are plentiful and well-known in the vision community.
See,e.g., [62] for references.

Notation: The structure, cameras,etc., being estimated will be parametrized by a single
largestate vectorx. In general the state belongs to a nonlinear manifold, but we linearize
this locally and work with small linear state displacements denotedδx. Observations (e.g.
measured image features) are denotedz. The corresponding predicted values at parameter
valuex aredenotedz = z(x), with residual prediction error �z(x) ≡ z−z(x). However,
observations and prediction errors usually only appear implicitly, through their influence
on thecost function f(x) = f(predz(x)). The cost function’sgradient is g ≡ df

dx , and

its Hessianis H ≡ d2f
dx2 . Theobservation-state Jacobianis J ≡ dz

dx . The dimensions of
δx, δz arenx, nz.

2 Projection Model and Problem Parametrization

2.1 The Projection Model

Webegin the development of bundle adjustment by considering the basic image projection
model and the issueof problemparametrization.Visual reconstructionattempts to recover a
model of a 3D scene frommultiple images. As part of this, it usually also recovers the poses
(positionsandorientations) of the cameras that took the images, and informationabout their
internal parameters. A simple scene model might be a collection of isolated 3D features,
e.g., points, lines, planes, curves, or surface patches. However, far more complicated scene
models are possible, involving,e.g., complex objects linked by constraints or articulations,
photometry as well as geometry, dynamics,etc. One of the great strengths of adjustment
computations— and one reason for thinking that they have a considerable future in vision
— is their ability to take such complex and heterogeneous models in their stride. Almost
anypredictive parametricmodel can be handled,i.e. any model thatpredictsthe values
of some known measurements or descriptors on the basis of some continuousparametric
representation of the world, which is to be estimated from the measurements.
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Similarly, many possible camera models exist. Perspective projection is the standard,
but the affine and orthographic projections are sometimes useful for distant cameras, and
more exotic models such as push-broom and rational polynomial cameras are needed for
certain applications [56, 63]. In addition to pose (position and orientation), and simple
internal parameters such as focal length and principal point, real cameras also require vari-
ous types ofadditional parameters to model internal aberrations such as radial distortion
[17–19, 100, 69, 5].
For simplicity, suppose that the scene is modelled by individual static 3D featuresXp,

p = 1 . . . n, imaged inm shots with camera pose and internal calibration parametersPi,
i = 1 . . .m. There may also be further calibration parametersCc, c = 1 . . . k, constant
across several images (e.g., depending on which of several cameras was used). We are
given uncertain measurementsxip of some subset of the possible image featuresxip (the
true image of featureXp in imagei). For each observationxip, we assume that we have
a predictive model xip = x(Cc,Pi,Xp) based on the parameters, that can be used to
derive afeature prediction error :

�xip(Cc,Pi,Xp) ≡ xip − x(Cc,Pi,Xp) (1)

In the case of image observations the predictive model is image projection, but other
observation types such as 3D measurements can also be included.
To estimate the unknown 3D feature and camera parameters from the observations,

and hence reconstruct the scene, weminimize somemeasure (discussed in§3) of their total
prediction error. Bundle adjustment is themodel refinement part of this, starting fromgiven
initial parameter estimates (e.g., from some approximate reconstruction method). Hence,
it is essentially a matter of optimizing a complicated nonlinear cost function (the total
prediction error) over a large nonlinear parameter space (the sceneand camera parameters).
We will not go into the analytical forms of the various possible feature and image

projection models, as these do not affect the general structure of the adjustment network,
and only tend to obscure its central simplicity. We simply stress that the bundle framework
is flexible enough to handle almost any desired model. Indeed, there are so many different
combinations of features, image projections and measurements, that it is best to regard
them as black boxes, capable of giving measurement predictions based on their current
parameters. (For optimization, first, and possibly second, derivatives with respect to the
parameters are also needed).
Formuch of the paperwewill take quite an abstract viewof this situation, collecting the

scene and camera parameters to be estimated into a largestate vectorx, and representing
the cost (total fitting error) as an abstract functionf(x). The cost is really a function of
the feature prediction errors�xip = xip− x(Cc,Pi,Xp). But as the observationsxip are
constants during an adjustment calculation, we leave the cost’s dependence on them and
on the projection modelx(·) implicit, and display only its dependence on the parameters
x actually being adjusted.

2.2 Bundle Parametrization

Thebundleadjustment parameter space isgenerally ahigh-dimensional nonlinearmanifold
— a large Cartesian product of projective 3D feature, 3D rotation, and camera calibration
manifolds, perhaps with nonlinear constraints,etc. The statex is not strictly speaking a
vector, but rather a point in this space. Depending on how the entities that it contains are
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Fig. 1.Vision geometry and its errormodel are essentially
projective. Affine parametrization introduces an artificial
singularity at projective infinity, whichmay cause numer-
ical problems for distant features.

represented,x can be subject to various types of complications including singularities,
internal constraints, and unwanted internal degrees of freedom. These arise because geo-
metric entities like rotations, 3D lines and even projective points and planes, do not have
simple global parametrizations. Their local parametrizations are nonlinear, with singular-
ities that prevent them from covering the whole parameter space uniformly (e.g. the many
variants on Euler angles for rotations, the singularity of affine point coordinates at infinity).
And their global parametrizations either have constraints (e.g. quaternionswith‖q‖2 = 1),
or unwanted internal degrees of freedom (e.g. homogeneous projective quantities have a
scale factor freedom, two points defining a line can slide along the line). For more compli-
cated compound entities such asmatching tensors and assemblies of 3D features linked by
coincidence, parallelism or orthogonality constraints, parametrization becomes evenmore
delicate.
Although they are in principle equivalent, different parametrizations often have pro-

foundly different numerical behaviours which greatly affect the speed and reliability of the
adjustment iteration. The most suitable parametrizations for optimization are as uniform,
finite and well-behaved as possiblenear the current state estimate. Ideally, they should
be locally close to linear in terms of their effect on the chosen error model, so that the
cost function is locally nearly quadratic. Nonlinearity hinders convergence by reducing
the accuracy of the second order cost model used to predict state updates (§6). Excessive
correlations and parametrization singularities cause ill-conditioning and erratic numerical
behaviour. Large or infinite parameter values can only be reached after excessively many
finite adjustment steps.
Any given parametrization will usually only be well-behaved in this sense over a rela-

tively small section of state space. So to guarantee uniformly good performance, however
the state itself may be represented,state updates should be evaluated using a stablelocal
parametrization based on increments from the current estimate. As examples we consider
3D points and rotations.

3D points: Even for calibrated cameras, vision geometry and visual reconstructions are
intrinsically projective. If a 3D(X Y Z)�parametrization (or equivalently a homogeneous
affine (X Y Z 1)� one) is used for very distant 3D points, largeX,Y, Z displacements
are needed to change the image significantly.I.e., in (X Y Z) space the cost function
becomes very flat and steps needed for cost adjustment become very large for distant
points. In comparison, with a homogeneous projective parametrization(X Y Z W )�, the
behaviour near infinity is natural, finite and well-conditioned so long as the normalization
keeps the homogeneous 4-vector finite at infinity (by sendingW → 0 there). In fact,
there is no immediate visual distinction between the images of real points near infinity
and virtual ones ‘beyond’ it (all camera geometries admit such virtual points asbona fide
projective constructs). The optimal reconstruction of a real 3D point may even be virtual
in this sense, if image noise happens to push it ‘across infinity’. Also, there is nothing to
stop a reconstructed point wandering beyond infinity and back during the optimization.
This sounds bizarre at first, but it is an inescapable consequence of the fact that the nat-
ural geometry and error model for visual reconstruction is projective rather than affine.
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Projectively,infinity is just like any other place. Affine parametrization(X Y Z 1)� is
acceptable for points near the origin with close-range convergent camera geometries, but
it is disastrous for distant ones because it artificially cuts away half of the natural parameter
space, and hides the fact by sending the resulting edge to infinite parameter values. Instead,
you should use a homogeneous parametrization(X Y Z W )� for distant points,e.g. with
spherical normalization

∑
X2

i = 1.
Rotations: Similarly, experience suggests that quasi-global 3 parameter rotation para-
metrizations such as Euler angles cause numerical problems unless one can be certain to
avoid their singularities and regions of uneven coverage. Rotations should be parametrized
using either quaternions subject to‖q‖2 = 1, or local perturbationsRδR or δR R of
an existing rotationR, whereδR can be any well-behaved 3 parameter small rotation
approximation,e.g. δR = (I + [ δr ]×), the Rodriguez formula, local Euler angles,etc.

State updates:Just as state vectorsx represent points in some nonlinear space, state
updatesx → x + δx represent displacements in this nonlinear space that often can not
be represented exactly by vector addition. Nevertheless, we assume that we can locally
linearize the state manifold, locally resolving any internal constraints and freedoms that
it may be subject to, to produce an unconstrained vectorδx parametrizing the possible
local state displacements. We can then,e.g., use Taylor expansion inδx to form a local

cost modelf(x + δx) ≈ f(x) + df
dx δx + 1

2δx� d2f
dx2 δx, from which we can estimate the

state updateδx that optimizes this model (§4). The displacementδx need not have the
same structure or representation asx— indeed, if a well-behaved local parametrization is
used to representδx, it generally will not have — but we must at least be able to update
the state with the displacement to produce a new state estimate. We write this operation
asx → x + δx, even though it may involve considerably more than vector addition. For
example, apart from the change of representation, an updated quaternionq→ q+ dqwill
need to have its normalization‖q‖2 = 1 corrected, and a small rotation update of the form
R→ R(1 + [ r ]×) will not in general give an exact rotation matrix.

3 Error Modelling

We now turn to the choice of the cost functionf(x), which quantifies the total prediction
(image reprojection) error of the model parametrized by the combined scene and camera
parametersx. Our main conclusion will be that robust statistically-based error metrics
based on total (inlier + outlier) log likelihoods should be used, to correctly allow for the
presence of outliers. We will argue this at some length as it seems to be poorly understood.
The traditional treatments of adjustment methods consider only least squares (albeit with
data trimming for robustness), andmost discussions of robust statistics give the impression
that the choice of robustifier or M-estimator is wholly a matter of personal whim rather
than data statistics.
Bundle adjustment is essentially a parameter estimation problem. Any parameter es-

timation paradigm could be used, but we will consider onlyoptimal point estimators,
whose output is by definition the single parameter vector that minimizes a predefinedcost
function designed to measure how well the model fits the observations and background
knowledge. This framework covers many practical estimators including maximum likeli-
hood (ML) and maximum a posteriori (MAP), but not explicit Bayesian model averaging.
Robustification, regularization and model selection terms are easily incorporated in the
cost.
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A typical ML cost function would be the summed negative log likelihoods of the
prediction errors of all the observed image features. For Gaussian error distributions,
this reduces to the sum of squared covariance-weighted prediction errors (§3.2). A MAP
estimator would typically add cost terms giving certain structure or camera calibration
parameters a bias towards their expected values.
The cost function is also a tool for statistical interpretation. To the extent that lower

costs are uniformly ‘better’, it provides a natural model preference ordering, so that cost
iso-surfaces above the minimum define natural confidence regions. Locally, these regions
are nested ellipsoids centred on the cost minimum, with size and shape characterized by

thedispersionmatrix (the inverse of the cost function HessianH = d2f
dx2 at theminimum).

Also, the residual cost at the minimum can be used as a test statistic for model validity
(§10). E.g., for a negative log likelihood cost model with Gaussian error distributions,
twice the residual is aχ2 variable.

3.1 Desiderata for the Cost Function

In adjustment computationswego to considerable lengths tooptimizea largenonlinear cost
model, so it seems reasonable to require that the refinement should actually improve the
estimates in some objective (albeit statistical) sense. Heuristicallymotivated cost functions
can not usually guarantee this. They almost always lead to biased parameter estimates, and
often severely biased ones. A large body of statistical theory points tomaximum likelihood
(ML) and its Bayesian cousin maximum a posteriori (MAP) as the estimators of choice.
ML simply selects themodel for which the total probability of the observed data is highest,
or saying the same thing in different words, for which thetotal posterior probabilityof the
model given the observations is highest. MAP adds a prior term representing background
information.ML could just as easily have included the prior as an additional ‘observation’:
so far as estimation is concerned, the distinction betweenML /MAPandprior / observation
is purely terminological.
Information usually comes from many independent sources. In bundle adjustment

these include: covariance-weighted reprojection errors of individual image features; other
measurements such as 3D positions of control points, GPS or inertial sensor readings;
predictions from uncertain dynamical models (for ‘Kalman filtering’ of dynamic cameras
or scenes); prior knowledge expressed as soft constraints (e.g. on camera calibration or
pose values); and supplementary sources such as overfitting, regularization or description
length penalties. Note the variety. One of the great strengths of adjustment computations is
their ability to combine information from disparate sources. Assuming that the sources are
statistically independent of one another given themodel, the total probability for themodel
given the combined data is the product of the probabilities from the individual sources. To
get an additive cost function we take logs, so the total log likelihood for the model given
the combined data is the sum of the individual source log likelihoods.

Properties of ML estimators: Apart from their obvious simplicity and intuitive appeal,
ML and MAP estimators have strong statistical properties. Many of the most notable ones
areasymptotic, i.e. they apply in the limit of a large number of independentmeasurements,
or more precisely in thecentral limit where the posterior distribution becomes effectively
Gaussian1. In particular:
1 Cost is additive, so as measurements of the same type are added the entire cost surface grows in
direct proportion to the amount of datanz. This means that therelativesizes of the cost and all of
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• Under mild regularity conditions on the observation distributions, the posterior distri-
bution of the ML estimate converges asymptotically in probability to a Gaussian with
covariance equal to the dispersion matrix.
• TheML estimate asymptotically has zero bias and the lowest variance that any unbiased
estimator can have. So in this sense, ML estimation is at least as good as any other
method2.
Non-asymptotically, the dispersion is not necessarily a good approximation for the

covariance of the ML estimator. The asymptotic limit is usually assumed to be a valid
for well-designed highly-redundant photogrammetric measurement networks, but recent
sampling-based empirical studies of posterior likelihood surfaces [35, 80, 68] suggest that
the case ismuch less clear for small vision geometry problems andweaker networks. More
work is needed on this.

Theeffect of incorrect errormodels:It is clear that incorrectmodellingof theobservation
distributions is likely to disturb the ML estimate. Such mismodelling is to some extent
inevitable because error distributions stand for influences that we can not fully predict or
control. To understand the distortions that unrealistic error models can cause, first realize
that geometric fitting is really a special case of parametric probability density estimation.
For each set of parameter values, the geometric image projection model and the assumed
observation error models combine to predict a probability density for the observations.
Maximizing the likelihood corresponds to fitting thispredicted observation densityto the
observed data. The geometry and camera model only enter indirectly, via their influence
on the predicted distributions.
Accurate noise modelling is just as critical to successful estimation as accurate ge-

ometric modelling. The most important mismodelling is failure to take account of the
possibility of outliers (aberrant data values, causede.g., by blunders such as incorrect
feature correspondences). We stress that so long as the assumed error distributions model
the behaviour ofall of the data used in the fit (includingboth inliers and outliers), the
above properties of ML estimation including asymptotic minimum variance remain valid
in the presence of outliers. In other words,ML estimation is naturally robust: there is no

its derivatives — and hence the sizer of the region around the minimum over which the second
order Taylor terms dominate all higher order ones — remain roughly constant asnz increases.
Within this region, the total cost is roughly quadratic, so if the cost function was taken to be the
posterior log likelihood, the posterior distribution is roughly Gaussian. However the curvature of
thequadratic (i.e. the inversedispersionmatrix) increasesasdata is added, so theposterior standard
deviation shrinks asO(

σ/
√
nz − nx

)
, whereO(σ) characterizes the average standard deviation

from a single observation. Fornz − nx � (σ/r)2, essentially the entire posterior probability
mass lies inside the quadratic region, so the posterior distribution converges asymptotically in
probability to a Gaussian. This happens atanyproper isolated cost minimum at which second
order Taylor expansion is locally valid. The approximation gets better with more data (stronger
curvature) and smaller higher order Taylor terms.

2 This result follows from theCramér-Rao bound(e.g. [23]), which says that the covariance of any
unbiasedestimator is boundedbelowby theFisher information ormeancurvature of theposterior

log likelihood surface〈(x̂−x)(x̂−x)�〉 � −〈d2 log p
dx2 〉wherep is the posterior probability,x the

parameters being estimated,x̂ the estimate given by any unbiased estimator,x the true underlying
x value, andA � B denotes positive semidefiniteness ofA − B. Asymptotically, the posterior
distribution becomesGaussian and the Fisher information converges to the inverse dispersion (the
curvature of the posterior log likelihood surface at the cost minimum), so the ML estimate attains
the Craḿer-Rao bound.
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Fig. 2. Beware of treating any bell-shaped observation distribution as a Gaussian. Despite being
narrower in the peak andbroader in the tails, the probability density function of aCauchy distribution,
p(x) =

(
π(1 + x2)

)−1
, does not look so very different from that of a Gaussian (top left). But their

negative log likelihoods are very different (bottom left), and large deviations (“outliers”) aremuch
more probable for Cauchy variates than for Gaussian ones (right). In fact, the Cauchy distribution
has infinite covariance.

need to robustify it so long as realistic error distributions were used in the first place. A
distribution that models both inliers and outliers is called atotal distribution . There is no
need to separate the two classes, asML estimation does not care about the distinction. If the
total distribution happens to be an explicit mixture of an inlier and an outlier distribution
(e.g., a Gaussian with a locally uniform background of outliers), outliers can be labeled
after fitting using likelihood ratio tests, but this is in no way essential to the estimation
process.
It is also important to realize the extent to which superficially similar distributions can

differ from a Gaussian, or equivalently, how extraordinarily rapidly the tails of a Gaussian
distribution fall away compared to more realistic models of real observation errors. See
figure 2. In fact, unmodelled outliers typically have very severe effects on the fit. To see this,
suppose that the real observationsaredrawn fromafixed (but perhapsunknown)underlying
distributionp0(z). Thelaw of large numberssays that their empirical distributions (the ob-
served distribution of each set of samples) converge asymptotically in probability top0(z).
So for each model, the negative log likelihood cost sum−∑i log pmodel(zi|x) converges
to−nz

∫
p0(z) log(pmodel(z|x)) dz. Up to a model-independent constant, this isnz times

therelative entropy orKullback-Leibler divergence
∫
p0(z) log(p0(z)/pmodel(z|x))dz

of the model distribution w.r.t. the true onep0(z). Hence, even if the model family does
not includep0, the ML estimate converges asymptotically to the model whose predicted
observation distribution hasminimum relative entropyw.r.t.p0. (See,e.g. [96, proposition
2.2]). It follows that ML estimates are typically very sensitive to unmodelled outliers, as
regions which are relatively probable underp0 but highly improbable under the model
make large contributions to the relative entropy. In contrast, allowing for outliers where
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none actually occur causes relatively little distortion, as no region which is probable under
p0 will have large− log pmodel.
In summary, if there is a possibility of outliers, non-robust distribution models such

as Gaussians should be replaced with more realistic long-tailed ones such as: mixtures of
a narrow ‘inlier’ and a wide ‘outlier’ density, Cauchy orα-densities, or densities defined
piecewise with a central peaked ‘inlier’ region surrounded by a constant ‘outlier’ region3.
We emphasize again that poor robustness is due entirely to unrealistic distributional as-
sumptions: the maximum likelihood framework itself is naturally robust provided that the
total observation distribution including both inliers and outliers is modelled. In fact, real
observations can seldom be cleanly divided into inliers and outliers. There is a hard core
of outliers such as feature correspondence errors, but there is also a grey area of features
that for some reason (a specularity, a shadow, poor focus, motion blur. . . ) were not as
accurately located as other features, without clearly being outliers.

3.2 Nonlinear Least Squares

One of the most basic parameter estimation methods isnonlinear least squares. Suppose
that we have vectors of observationszi predicted by a modelzi = zi(x), wherex is a
vector of model parameters. Then nonlinear least squares takes as estimates the parameter
values that minimize theweighted Sum of Squared Error (SSE)cost function:

f(x) ≡ 1
2

∑
i

�zi(x)� Wi�zi(x) , �zi(x) ≡ zi − zi(x) (2)

Here,�zi(x) is the feature prediction error andWi is an arbitrary symmetric positive
definite (SPD)weightmatrix .Modulo normalization terms independent ofx, theweighted
SSE cost function coincides with the negative log likelihood for observationszi perturbed
by Gaussian noise of mean zero and covarianceW−1

i . So for least squares to have a useful
statistical interpretation, theWi should be chosen to approximate the inversemeasurement
covariance ofzi. Even for non-Gaussian noise with this mean and covariance, theGauss-
Markov theorem [37, 11] states that if the modelszi(x) are linear, least squares gives the
Best Linear Unbiased Estimator (BLUE), where ‘best’ means minimum variance4.
Any weighted least squares model can be converted to an unweighted one (Wi = 1)

by pre-multiplyingzi, zi,�zi by anyL
�
i satisfyingWi = Li L�

i . Such anLi can be cal-
culated efficiently fromWi orW−1

i using Cholesky decomposition (§B.1).�zi = L�
i �zi

is called astandardized residual, and the resulting unweighted least squares problem
minx

1
2

∑
i ‖�zi(x)‖2 is said to be instandard form. One advantage of this is that opti-

mization methods based on linear least squares solvers can be used in place of ones based
on linear (normal) equation solvers, which allows ill-conditioned problems to be handled
more stably (§B.2).
Another peculiarity of the SSE cost function is its indifference to the natural bound-

aries between the observations. If observationszi from any sources are assembled into a

3 The latter casecorresponds toahard inlier / outlier decision rule: for anyobservation in the ‘outlier’
region, the density is constant so the observation has no influence at all on the fit. Similarly, the
mixture case corresponds to a softer inlier / outlier decision rule.

4 It may be possible (and even useful) to do better with either biased (towards the correct solution),
or nonlinear estimators.
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compound observation vectorz ≡ (z�
1, . . . , z

�
k)�, and their weight matricesWi are assem-

bled into compound block diagonal weight matrixW ≡ diag(W1, . . . ,Wk), the weighted
squared errorf(x) ≡ 1

2 �z(x)� W�z(x) is the same as the original SSE cost function,
1
2

∑
i �zi(x)� Wi�zi(x). The general quadratic form of the SSE cost is preserved under

such compounding, and also under arbitrary linear transformations ofz that mix compo-
nents from different observations. The only place that the underlying structure is visible
is in the block structure ofW. Such invariances do not hold for essentially any other cost
function, but they simplify the formulation of least squares considerably.

3.3 Robustified Least Squares

Themain problemwith least squares is its high sensitivity to outliers. This happens because
the Gaussian has extremely small tails compared to most real measurement error distribu-
tions. For robust estimates, we must choose a more realistic likelihood model (§3.1). The
exact functional form is less important than the general way in which the expected types
of outliers enter. A single blunder such as a correspondence error may affect one or a few
of the observations, but it will usually leave all of the others unchanged. This locality is
the whole basis of robustification. If we can decide which observations were affected, we
can down-weight or eliminate them and use the remaining observations for the parameter
estimates as usual. If all of the observations had been affected about equally (e.g. as by
an incorrect projection model), we might still know that something was wrong, but not be
able to fix it by simple data cleaning.
We will adopt a ‘single layer’ robustness model, in which the observations are par-

titioned into independent groupszi, each group being irreducible in the sense that it is
accepted, down-weighted or rejected as a whole, independently of all the other groups.
The partitions should reflect the types of blunders that occur. For example, if feature cor-
respondence errors are the most common blunders, the two coordinates of a single image
point would naturally form a group as both would usually be invalidated by such a blunder,
while no other image point would be affected. Even if one of the coordinates appeared to
be correct, if the other were incorrect we would usually want to discard both for safety.
On the other hand, in stereo problems, the four coordinates of each pair of corresponding
image points might be a more natural grouping, as a point in one image is useless without
its correspondent in the other one.
Henceforth, when we sayobservationwe meanirreducible group of observations

treated as a unit by the robustifying model. I.e., our observations need not be scalars, but
they must be units, probabilistically independent of one another irrespective of whether
they are inliers or outliers.
As usual, each independent observationzi contributes an independent termfi(x | zi) to

the total cost function. This could have more or less any form, depending on the expected
total distribution of inliers and outliers for the observation. One very natural family are the
radial distributions , which have negative log likelihoods of the form:

fi(x) ≡ 1
2 ρi(�zi(x)� Wi�zi(x) ) (3)

Here,ρi(s) can be any increasing function withρi(0) = 0 and d
ds
ρi(0) = 1. (These

guarantee that at�zi = 0, f vanishes andd
2fi

dz2
i

= Wi). Weighted SSE hasρi(s) = s, while

more robust variants have sublinearρi, often tending to a constant at∞ so that distant
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outliers are entirely ignored. The dispersionmatrixW−1
i determines the spatial spread ofzi,

and up to scale its covariance (if this is finite). The radial form is preserved under arbitrary
affine transformations ofzi, so within a group, all of the observations are on an equal
footing in the same sense as in least squares. However, non-Gaussian radial distributions
are almost neverseparable: the observations inzi can neither be split into independent
subgroups, nor combined into larger groups, without destroying the radial form. Radial
cost models do not have the remarkable isotropy of non-robust SSE, but this is exactly
what we wanted, as it ensures that all observations in a group will be either left alone, or
down-weighted together.
As an example of this, for image features pollutedwith occasional large outliers caused

by correspondence errors, wemightmodel the error distribution as aGaussian central peak
plus a uniform background of outliers. This would give negative log likelihood contribu-
tions of the formf(x) = − log

(
exp(− 1

2χ
2
ip) + ε

)
instead of the non-robust weighted

SSE modelf(x) = 1
2χ

2
ip, whereχ

2
ip = �x�

ip Wip�xip is the squared weighted residual
error (which is aχ2 variable for a correct model and Gaussian error distribution), andε
parametrizes the frequency of outliers.
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3.4 Intensity-Based Methods

The above models apply not only to geometric image features, but also to intensity-based
matching of image patches. In this case, the observables are image gray-scales or colors
I rather than feature coordinatesu, and the error model is based on intensity residuals.
To get from a point projection modelu = u(x) to an intensity based one, we simply
compose with the assumed local intensity modelI = I(u) (e.g. obtained from an image
template or another image that we are matching against), premultiply point Jacobians by
point-to-intensity JacobiansdIdu ,etc. The full range of intensitymodels can be implemented
within this framework: pure translation, affine, quadratic or homographic patch deforma-
tion models, 3D model based intensity predictions, coupled affine or spline patches for
surface coverage,etc., [1, 52, 55, 9, 110, 94, 53, 97, 76, 104, 102]. The structure of intensity
based bundle problems is very similar to that of feature based ones, so all of the techniques
studied below can be applied.
We will not go into more detail on intensity matching, except to note that it is the

real basis of feature based methods. Feature detectors are optimized for detection not
localization. To localize a detected feature accurately we need to match (some function of)
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the image intensities in its region against either an idealized template or another image of
the feature, using an appropriate geometric deformation model,etc. For example, suppose
that the intensity matching model isf(u) = 1

2

∫∫
ρ(‖δI(u)‖2) where the integration is

over some image patch,δI is the current intensity prediction error,u parametrizes the local
geometry (patch translation & warping), andρ(·) is some intensity error robustifier. Then
the cost gradient in terms ofu is g�

u = df
du =

∫∫
ρ′ δI� dI

du . Similarly, the cost Hessian in

u in a Gauss-Newton approximation isHu = d2f
du2 ≈

∫∫
ρ′′ ( dI

du )� dI
du . In a feature based

model, we expressu = u(x) as a function of the bundle parameters, so ifJu = du
dx we have

a corresponding cost gradient and Hessian contributiong�
x = g�

u Ju andHx = J�
u Hu Ju.

In other words, the intensity matching model is locally equivalent to a quadratic feature
matching one on the ‘features’u(x), with effective weight (inverse covariance) matrix
Wu = Hu. All image feature error models in vision are ultimately based on such an
underlying intensity matching model. As feature covariances are a function of intensity
gradients

∫∫
ρ′′ ( dI

du )� dI
du , they can be both highly variable between features (depending

on howmuch local gradient there is), and highly anisotropic (depending on howdirectional
the gradients are).E.g., for points along a 1D intensity edge, the uncertainty is large in the
along edge direction and small in the across edge one.

3.5 Implicit Models

Sometimes observations are most naturally expressed in terms of an implicit observation-
constraining modelh(x, z) = 0, rather than an explicit observation-predicting onez =
z(x). (The associated image error still has the formf(z − z)). For example, if the model
is a 3D curve and we observe points on it (the noisy images of 3D points that may lie
anywhere along the 3D curve), we can predict the whole image curve, but not the exact
position of each observation along it. We only have the constraint that the noiseless image
of the observed point would lie on the noiseless image of the curve, if we knew these. There
are basically two ways to handle implicit models: nuisance parameters and reduction.
Nuisance parameters:In this approach, the model is made explicit by adding additional
‘nuisance’ parameters representing something equivalent to model-consistent estimates
of the unknown noise free observations,i.e. to z with h(x, z) = 0. The most direct way
to do this is to include the entire parameter vectorz as nuisance parameters, so that we
have to solve a constrained optimization problem on the extended parameter space(x, z),
minimizing f(z − z) over (x, z) subject toh(x, z) = 0. This is a sparse constrained
problem, which can be solved efficiently using sparse matrix techniques (§6.3). In fact,
for image observations, the subproblems inz (optimizing f(z − z) over z for fixed z
andx) are small and for typicalf rather simple. So in spite of the extra parametersz,
optimizing this model is not significantly more expensive than optimizing an explicit one
z = z(x) [14, 13, 105, 106]. For example, when estimating matching constraints between
image pairs or triplets [60, 62], instead of using an explicit 3D representation, pairs or
triplets of corresponding image points can be used as featureszi, subject to the epipolar
or trifocal geometry contained inx [105, 106].
However, if a smaller nuisance parameter vector thanz can be found, it is wise to use

it. In the case of a curve, it suffices to include just one nuisance parameter per observation,
saying where along the curve the corresponding noise free observation is predicted to
lie. This model exactly satisfies the constraints, so it converts the implicit model to an
unconstrained explicit onez = z(x,λ), whereλ are the along-curve nuisance parameters.



312 B. Triggs et al.

The advantage of the nuisance parameter approach is that it gives the exact optimal
parameter estimate forx, and jointly, optimalx-consistent estimates for the noise free
observationsz.

Reduction: Alternatively, we can regardh(x, z) rather thanz as the observation vector,
and hence fit the parameters to the explicit log likelihood model forh(x, z). To do this,
we must transfer the underlying error model / distributionf(�z) on z to one f(h) on
h(x, z). In principle, this should be done by marginalization: the density forh is given
by integrating that for�z over all�z giving the sameh. Within the point estimation
framework, it can beapproximated by replacing the integrationwithmaximization.Neither
calculation is easy in general, but in the asymptotic limit where first order Taylor expansion
h(x, z) = h(x, z +�z) ≈ 0 + dh

dz �z is valid, the distribution ofh is a marginalization or
maximization of that of�z over affine subspaces. This can be evaluated in closed form for
some robust distributions. Also, standard covariance propagation gives (more precisely,
this applies to theh and�z dispersions):

〈h(x, z)〉 ≈ 0 , 〈h(x, z) h(x, z)�〉 ≈ dh
dz 〈�z�z�〉 dh

dz

�
= dh

dz W−1 dh
dz

�
(4)

whereW−1 is the covariance of�z. So at least for an outlier-free Gaussian model, the
reduced distribution remains Gaussian (albeit withx-dependent covariance).

4 Basic Numerical Optimization

Having chosen a suitable model quality metric, we must optimize it. This section gives a
very rapid sketch of the basic local optimization methods for differentiable functions. See
[29, 93, 42] for more details. We need to minimize a cost functionf(x) over parametersx,
starting from some given initial estimatex of the minimum, presumably supplied by some
approximate visual reconstructionmethodor prior knowledgeof theapproximate situation.
As in §2.2, the parameter space may be nonlinear, but we assume that local displacements
can be parametrized by a local coordinate system / vector of free parametersδx. We try
to find a displacementx → x + δx that locally minimizes or at least reduces the cost
function. Real cost functions are too complicated to minimize in closed form, so instead
weminimize an approximatelocal modelfor the function,e.g. based on Taylor expansion
or some other approximation at the current pointx. Although this does not usually give the
exact minimum, with luck it will improve on the initial parameter estimate and allow us to
iterate to convergence. The art of reliable optimization is largely in the details that make
this happen even without luck: which local model, how to minimize it, how to ensure that
the estimate is improved, and how to decide when convergence has occurred. If you not
are interested in such subjects, use a professionally designed package (§C.2): detailsare
important here.

4.1 Second Order Methods

The reference for all local models is the quadratic Taylor series one:

f(x + δx) ≈ f(x) + g� δx + 1
2δx� H δx g ≡ df

dx (x) H ≡ d2f
dx2 (x)

quadratic local model gradient vector Hessian matrix
(5)
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For now, assume that the HessianH is positive definite (but see below and§9). The local
model is then a simple quadratic with a unique global minimum, which can be found
explicitly using linear algebra. Settingdf

dx (x + δx) ≈ H δx + g to zero for the stationary
point gives theNewton step:

δx = −H−1g (6)

The estimated new function value isf(x + δx) ≈ f(x) − 1
2δx� H δx = f(x) − 1

2g� H−1g.
Iterating the Newton step givesNewton’s method. This is the canonical optimization
method for smooth cost functions, owing to its exceptionally rapid theoretical and practical
convergence near the minimum. For quadratic functions it converges in one iteration, and
for more general analytic ones itsasymptotic convergenceis quadratic : as soon as the
estimate gets close enough to the solution for the second order Taylor expansion to be
reasonably accurate, the residual state error is approximatelysquaredat each iteration.
This means that the number of significant digits in the estimate approximately doubles at
each iteration, so starting from any reasonable estimate, at most aboutlog2(16)+1 ≈ 5–6
iterations are needed for full double precision (16 digit) accuracy. Methods that potentially
achieve such rapid asymptotic convergence are calledsecond order methods. This is a
highaccolade for a local optimizationmethod, but it canonly beachieved if theNewtonstep
is asymptotically well approximated. Despite their conceptual simplicity and asymptotic
performance, Newton-like methods have some disadvantages:
• To guarantee convergence, a suitable step control policy must be added (§4.2).
• Solving then× n Newton step equations takes timeO(n3

)
for a dense system (§B.1),

which can be prohibitive for largen. Although the cost can often be reduced (very
substantially for bundle adjustment) by exploiting sparseness inH, it remains true that
Newton-like methods tend to have a high cost per iteration, which increases relative to
that of other methods as the problem size increases. For this reason, it is sometimes
worthwhile to consider more approximatefirst order methods (§7), which are occa-
sionally more efficient, and generally simpler to implement, than sparse Newton-like
methods.
• Calculating second derivativesH is by no means trivial for a complicated cost func-
tion, both computationally, and in terms of implementation effort. TheGauss-Newton
method (§4.3) offers a simple analytic approximation toH for nonlinear least squares
problems. Some other methods build up approximations toH from the way the gradient
g changes during the iteration are in use (see§7.1, Krylov methods).
• The asymptotic convergence of Newton-like methods is sometimes felt to be an expen-
sive luxury when far from theminimum, especially when damping (see below) is active.
However, it must be said that Newton-like methods generally do require significantly
fewer iterations than first order ones, even far from the minimum.

4.2 Step Control

Unfortunately, Newton’s method can fail in several ways. It may converge to a saddle
point rather than a minimum, and for large steps the second order cost prediction may be
inaccurate, so there is no guarantee that the true cost will actually decrease. To guarantee
convergence to a minimum, the step must follow a localdescent direction(a direction
with a non-negligible component down the local cost gradient, or if the gradient is zero
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near a saddle point, down a negative curvature direction of the Hessian), and it must make
reasonable progress in this direction (neither so little that the optimization runs slowly
or stalls, nor so much that it greatly overshoots the cost minimum along this direction).
It is also necessary to decide when the iteration has converged, and perhaps to limit any
over-large steps that are requested. Together, these topics form the delicate subject ofstep
control.
To choose a descent direction, one can take the Newton step direction if this descends

(it may not near a saddle point), or more generally some combination of the Newton and
gradient directions.DampedNewtonmethodssolve a regularized system to find the step:

(H + λW) δx = −g (7)

Here,λ is some weighting factor andW is some positive definite weight matrix (often
the identity, soλ → ∞ becomes gradient descentδx ∝ −g). λ can be chosen to limit
the step to a dynamically chosen maximum size (trust region methods), or manipulated
more heuristically, to shorten the step if the prediction is poor (Levenberg-Marquardt
methods).
Given a descent direction, progress along it is usually assured by aline searchmethod,

of which there are many based on quadratic and cubic 1D cost models. If the suggested
(e.g. Newton) step isδx, line search finds theα that actually minimizesf along the line
x + α δx, rather than simply taking the estimateα = 1.
There is no space for further details on step control here (again, see [29, 93, 42]). How-

ever note that poor step control can make a huge difference in reliability and convergence
rates, especially for ill-conditioned problems. Unless you are familiar with these issues, it
is advisable to use professionally designed methods.

4.3 Gauss-Newton and Least Squares

Consider the nonlinear weighted SSE cost modelf(x) ≡ 1
2 �z(x)� W�z(x) (§3.2) with

prediction error�z(x) = z−z(x) andweightmatrixW. Differentiation gives the gradient
and Hessian in terms of theJacobianor design matrix of the predictive model,J ≡ dz

dx :

g ≡ df
dx = �z� W J H ≡ d2f

dx2 = J� W J +
∑

i(�z� W)i
d2zi

dx2 (8)

These formulae could be used directly in a dampedNewtonmethod, but thed2zi

dx2 term inH
is likely to be small in comparison to the corresponding components ofJ� W J if either: (i)

the prediction error�z(x) is small; or (ii ) the model is nearly linear,d
2zi

dx2 ≈ 0. Dropping
the second term gives theGauss-Newton approximationto the least squares Hessian,
H ≈ J� W J. With this approximation, the Newton step prediction equations become the
Gauss-Newtonor normal equations:

(J� W J) δx = −J� W�z (9)

The Gauss-Newton approximation is extremely common in nonlinear least squares, and
practically all current bundle implementations use it. Its main advantage is simplicity: the
secondderivativesof theprojectionmodelz(x)arecomplexand troublesome to implement.
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In fact, the normal equations are just one of many methods of solving the weighted
linear least squares problem5 min δx

1
2 (J δx − �z)� W (J δx − �z). Another notable

method is that based on QR decomposition (§B.2, [11, 44]), which is up to a factor of two
slower than the normal equations, but much less sensitive to ill-conditioning inJ 6.
Whichever solution method is used, the main disadvantage of the Gauss-Newton ap-

proximation is that when the discarded terms are not negligible, the convergence rate is
greatly reduced (§7.2). In our experience, such reductions are indeed common in highly
nonlinear problems with (at the current step) large residuals. For example, near a saddle
point the Gauss-Newton approximation isneveraccurate, as its predicted Hessian is al-
ways at least positive semidefinite. However, for well-parametrized (i.e. locally near linear,
§2.2) bundle problemsunder an outlier-free least squares costmodel evaluated near the cost
minimum, the Gauss-Newton approximation is usually very accurate. Feature extraction
errors and hence�z andW−1have characteristic scales of at most a few pixels. In contrast,
the nonlinearities ofz(x) are caused by nonlinear 3D feature-camera geometry (perspec-
tive effects) and nonlinear image projection (lens distortion). For typical geometries and
lenses, neither effect varies significantly on a scale of a few pixels. So the nonlinear correc-
tions are usually small compared to the leading order linear terms, and bundle adjustment
behaves as a near-linear small residual problem.
However note that this doesnot extend to robust cost models. Robustification works

by introducing strong nonlinearity into the cost function at the scale of typical feature
reprojectionerrors. For accurate stepprediction, theoptimization routinemust takeaccount
of this. For radial cost functions (§3.3), a reasonable compromise is to take account of
the exact second order derivatives of the robustifiersρi(·), while retaining only the first
order Gauss-Newton approximation for the predicted observationszi(x). If ρ′

i andρ
′′ are

respectively the first and second derivatives ofρi at the current evaluation point, we have
a robustified Gauss-Newton approximation:

gi = ρ′
i J�

i Wi�zi Hi ≈ J�
i (ρ′

i Wi + 2 ρ′′
i (Wi�zi) (Wi�zi)

�) Ji (10)

So robustification has two effects: (i) it down-weights the entire observation (bothgi and
Hi) by ρ′

i ; and (ii ) it makes a rank-one reduction
7 of the curvatureHi in the radial (�zi)

direction, to account for the way in which the weight changes with the residual. There
are reweighting-based optimization methods that include only the first effect. They still
find the true cost minimumg = 0 as thegi are evaluated exactly8, but convergence may

5 Here, the dependence ofJ onx is ignored, which amounts to the same thing as ignoring thed2zi

dx2
term inH.

6 The QR method gives the solution to a relative error of aboutO(Cε), as compared toO(
C2ε

)
for the normal equations, whereC is the condition number (the ratio of the largest to the smallest
singular value) ofJ, andε is the machine precision (10−16 for double precision floating point).

7 The useful robustifiersρi are sublinear, withρ′
i < 1 andρ′′

i < 0 in the outlier region.
8 Reweighting is also sometimes used in vision to handle projective homogeneous scale factors
rather than error weighting.E.g., suppose that image points(u/w, v/w)� are generated by a
homogeneous projection equation(u, v, w)� = P (X,Y, Z, 1)�, whereP is the3 × 4 homoge-
neous image projection matrix. A scale factor reweighting scheme might take derivatives w.r.t.
u, v while treating the inverse weightw as a constant within each iteration. Minimizing the re-
sulting globally bilinear linear least squares error model overP and(X,Y, Z)� doesnot give
the true cost minimum: it zeros the gradient-ignoring-w-variations, not the true cost gradient.
Such schemes should not be used for precise work as the bias can be substantial, especially for
wide-angle lenses and close geometries.



316 B. Triggs et al.

be slowed owing to inaccuracy ofH, especially for the mainly radial deviations produced
by non-robust initializers containing outliers.Hi has a direction of negative curvature if
ρ′′

i �z�
i Wi�zi < − 1

2ρ
′
i, but if not we can even reduce the robustified Gauss-Newton

model to a local unweighted SSE one for which linear least squares methods can be used.
For simplicity suppose thatWi has already reduced to1 by premultiplyingzi andJi byL�

i

whereLi L�
i = Wi. Then minimizing theeffective squared error 1

2‖δzi − Ji δx‖2 gives
the correct second order robust state update, whereα ≡ RootOf( 1

2α
2−α−ρ′′

i /ρ
′
i ‖�zi‖2)

and:

δzi ≡
√
ρ′

i

1− α
�zi(x) Ji ≡

√
ρ′

i

(
1− α

�zi�z�
i

‖�zi‖2
)

Ji (11)

In practice, ifρ′′
i ‖�zi‖2 � − 1

2ρ
′
i, we can use the same formulae but limitα ≤ 1− ε for

some smallε. However, the full curvature correction is not applied in this case.

4.4 Constrained Problems

More generally, we may want to minimize a functionf(x) subject to a set of constraints
c(x) = 0 on x. These might be scene constraints, internal consistency constraints on the
parametrization (§2.2), or constraints arising from an implicit observation model (§3.5).
Given an initial estimatex of the solution, we try to improve this by optimizing the
quadratic local model forf subject to a linear local model of the constraintsc. This linearly
constrained quadratic problem has an exact solution in linear algebra. Letg,H be the
gradient and Hessian off as before, and let the first order expansion of the constraints be
c(x+δx) ≈ c(x)+C δxwhereC ≡ dc

dx . Introduceavector of Lagrangemultipliersλ for c.

We seek thex+δx that optimizesf+c� λ subject toc = 0, i.e.0 = d
dx (f+c� λ)(x+δx) ≈

g+H δx+C� λ and0 = c(x+δx) ≈ c(x)+C δx. Combining these gives theSequential
Quadratic Programming (SQP)step:(

H C�

C 0

)(
δx
λ

)
= −

(
g
c

)
, f(x + δx) ≈ f(x)− 1

2

(
g� c�)(H C�

C 0

)−1(
g
c

)
(12)

(
H C�

C 0

)−1

=
(

H−1− H−1C� D−1C H−1 H−1C� D−1

D−1C H−1 −D−1

)
, D ≡ C H−1C� (13)

At the optimumδx andc vanish, butC� λ = −g, which is generally non-zero.
An alternative constrained approach uses the linearized constraints to eliminate some

of the variables, then optimizes over the rest. Suppose that we can order the variables
to give partitionsx = (x1 x2)� andC = (C1 C2), whereC1 is square and invertible.
Then usingC1 x1 + C2 x2 = C x = −c, we can solve forx1 in terms ofx2 and c:
x1 = −C−1

1 (C2x2 + c). Substituting this into the quadratic cost model has the effect of
eliminatingx1, leaving a smaller unconstrainedreduced problemH22 x2 = −g2, where:

H22 ≡ H22 − H21 C−1
1 C2 − C�

2 C−�
1 H12 + C�

2 C−�
1 H11 C−1

1 C2 (14)

g2 ≡ g2 − C�
2 C−�

1 g1 − (H21 − C�
2 C−�

1 H11) C−1
1 c (15)

(These matrices can be evaluated efficiently using simple matrix factorization schemes
[11]). This method is stable provided that the chosenC1 is well-conditioned. It works well
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for dense problems, but is not always suitable for sparse ones because ifC is dense, the
reduced HessianH22 becomes dense too.
For least squares cost models, constraints can also be handled within the linear least

squares framework,e.g. see [11].

4.5 General Implementation Issues

Before going into details, we mention a few points of good numerical practice for large-
scale optimization problems such as bundle adjustment:

Exploit the problemstructure: Large-scale problemsare almost always highly structured
and bundle adjustment is no exception. In professional cartography and photogrammetric
site-modelling, bundle problems with thousands of images and many tens of thousands
of features are regularly solved. Such problems would simply be infeasible without a
thorough exploitation of the natural structure and sparsity of the bundle problem. We will
have much to say about sparsity below.

Use factorization effectively:Many of above formulae contain matrix inverses. This is
a convenient short-hand for theoretical calculations, butnumerically, matrix inversion is
almost never used. Instead, the matrix is decomposed into its Cholesky, LU, QR,etc.,
factors and these are used directly,e.g. linear systems are solved using forwards and
backwards substitution. This is much faster and numerically more accurate than explicit
use of the inverse, particularly for sparse matrices such as the bundle Hessian, whose
factors are still quite sparse, but whose inverse is always dense. Explicit inversion is
required only occasionally,e.g. for covariance estimates, and even then only a few of
the entries may be needed (e.g. diagonal blocks of the covariance). Factorization is the
heart of the optimization iteration, where most of the time is spent and where most can be
done to improve efficiency (by exploiting sparsity, symmetry and other problem structure)
and numerical stability (by pivoting and scaling). Similarly, certain matrices (subspace
projectors, Householder matrices) have (diagonal)+(low rank) forms which should not be
explicitly evaluated as they can be applied more efficiently in pieces.

Use stable local parametrizations:As discussed in§2.2, the parametrization used for
step prediction need not coincide with the global one used to store the state estimate. It is
more important that it should be finite, uniform and locally as nearly linear as possible.
If the global parametrization is in some way complex, highly nonlinear, or potentially
ill-conditioned, it is usually preferable to use a stable local parametrization based on
perturbations of the current state for step prediction.

Scaling and preconditioning:Another parametrization issue that has a profound and too-
rarely recognized influence on numerical performance isvariable scaling (the choice of
‘units’ or reference scale to use for each parameter), and more generallypreconditioning
(the choice of which linear combinations of parameters to use). These represent the linear
part of the general parametrization problem. The performance of gradient descent andmost
other linearly convergent optimizationmethods is critically dependent on preconditioning,
to the extent that for large problems, they are seldom practically useful without it.
One of the great advantages of the Newton-like methods is their theoretical indepen-

dence of such scaling issues9. But even for these, scaling makes itself felt indirectly in

9 Under a linear change of coordinatesx → Tx we haveg → T−� g and H → T−� H T−1, so the
Newton stepδx = −H−1g varies correctly asδx → T δx, whereas the gradient oneδx ∼ g
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Fig. 3.The network graph, parameter connection graph, Jacobian structure and Hessian structure for
a toy bundle problem with five 3D features A–E, four images 1–4 and two camera calibrationsK1

(shared by images 1,2) andK2 (shared by images 3,4). Feature A is seen in images 1,2; B in 1,2,4;
C in 1,3; D in 2–4; and E in 3,4.

several ways: (i) Step control strategies including convergence tests, maximum step size
limitations, and damping strategies (trust region, Levenberg-Marquardt) are usually all
based on some implicit norm‖δx‖2, and hence change under linear transformations ofx
(e.g., damping makes the step more like the non-invariant gradient descent one). (ii ) Piv-
oting strategies for factoringH are highly dependent on variable scaling, as they choose
‘large’ elements on which to pivot. Here, ‘large’shouldmean ‘in which little numerical
cancellation has occurred’ but with uneven scaling it becomes ‘with the largest scale’. (iii )
The choice of gauge (datum,§9) may depend on variable scaling, and this can significantly
influence convergence [82, 81].
For all of these reasons, it is important to choose variable scalings that relate mean-

ingfully to the problem structure. This involves a judicious comparison of the relative
influence of,e.g., a unit of error on a nearby point, a unit of error on a very distant one,
a camera rotation error, a radial distortion error,etc. For this, it is advisable to use an
‘ideal’ Hessian or weight matrix rather than the observed one, otherwise the scaling might
break down if the Hessian happens to become ill-conditioned or non-positive during a few
iterations before settling down.

5 Network Structure

Adjustment networks have a rich structure, illustrated in figure 3 for a toy bundle problem.
The free parameters subdivide naturally into blocks corresponding to: 3D feature coor-
dinates A,. . . , E; camera poses and unshared (single image) calibration parameters 1,
. . . , 4; and calibration parameters shared across several imagesK1,K2. Parameter blocks

varies incorrectly asδx → T−� δx. The Newton and gradient descent steps agree only when
T� T = H.
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interact only via their joint influence on image features and other observations,i.e. via their
joint appearance in cost function contributions. The abstract structure of the measurement
network can be characterized graphically by thenetwork graph (top left), which shows
which features are seen in which images, and theparameter connection graph(top right)
which details the sparse structure by showing which parameter blocks have direct interac-
tions. Blocks are linked if and only if they jointly influence at least one observation. The
cost function Jacobian (bottom left) andHessian (bottom right) reflect this sparse structure.
The shaded boxes correspond to non-zero blocks of matrix entries. Each block of rows in
the Jacobian corresponds to an observed image feature and contains contributions from
each of the parameter blocks that influenced this observation. The Hessian contains an
off-diagonal block for each edge of the parameter connection graph,i.e. for each pair of
parameters that couple to at least one common feature / appear in at least one common
cost contribution10.
Two layers of structure are visible in the Hessian. Theprimary structure consists of

the subdivision into structure (A–E) and camera (1–4,K1–K2) submatrices. Note that the
structure submatrix is block diagonal: 3D features couple only to cameras, not to other
features. (This would no longer hold if inter-feature measurements such as distances or
angles between points were present). The camera submatrix is often also block diagonal,
but in this example the sharing of unknown calibration parameters produces off-diagonal
blocks. Thesecondary structure is the internal sparsity pattern of the structure-camera
Hessian submatrix. This is dense for small problems where all features are seen in all
images, but in larger problems it often becomes quite sparse because each image only sees
a fraction of the features.
All worthwhile bundle methods exploit at least the primary structure of the Hessian,

and advanced methods exploit the secondary structure as well. The secondary structure is
particularly sparse and regular in surface coverage problems such grids of photographs in
aerial cartography. Such problems can be handled using a fixed ‘nested dissection’ variable
reordering (§6.3). But for themore irregular connectivities of close rangeproblems, general
sparse factorization methods may be required to handle secondary structure.
Bundle problems are by no means limited to the above structures. For example, for

more complex scene models with moving or articulated objects, there will be additional
connections to object pose or joint angle nodes, with linkages reflecting the kinematic
chain structure of the scene. It is often also necessary to add constraints to the adjustment,
e.g. coplanarity of certain points. One of the greatest advantages of the bundle technique is
its ability to adapt to almost arbitrarily complex scene, observation and constraint models.

10 The Jacobian structure canbedescribedmoredirectly by abipartite graphwhosenodes correspond
on one side to the observations, and on the other to the parameter blocks that influence them. The
parameter connection graph is then obtained by deleting each observation node and linking each
pair of parameter nodes that it connects to. This is an example of elimination graph processing
(see below).
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6 Implementation Strategy 1: Second Order Adjustment Methods

The next three sections cover implementation strategies for optimizing the bundle adjust-
ment cost functionf(x) over the complete set of unknown structure and camera parameters
x. This section is devoted to second-order Newton-style approaches, which are the basis
of the great majority of current implementations. Their most notable characteristics are
rapid (second order) asymptotic convergence but relatively high cost per iteration, with

an emphasis on exploiting the network structure (the sparsity of the HessianH = d2f
dx2 )

for efficiency. In fact, the optimization aspects are more or less standard (§4, [29, 93, 42]),
so we will concentrate entirely on efficient methods for solving the linearized Newton
step prediction equationsδx = −H−1g, (6). For now, we will assume that the Hessian
H is non-singular. This will be amended in§9 on gauge freedom, without changing the
conclusions reached here.

6.1 The Schur Complement and the Reduced Bundle System

Schur complement:Consider the following block triangular matrix factorization:

M =
(

A B
C D

)
=
(

1 0
C A−1 1

)(
A 0
0 D

)(
1 A−1B
0 1

)
, D ≡ D− C A−1B (16)

( A B
C D )−1

=
(

1 −A−1B
0 1

)(
A−1 0
0 D

−1

)(
1 0

−C A−1 1

)
=
(

A−1+A−1B D
−1

C A−1 −A−1B D
−1

−D
−1

C A−1 D
−1

)
(17)

HereA must be square and invertible, and for (17), the whole matrix must also be square
and invertible.D is called theSchur complementofA inM. If bothA andD are invertible,
complementing onD rather thanA gives

( A B
C D )−1

=
(

A
−1 −A

−1
B D−1

−D C A
−1

D−1+D−1C A
−1

B D−1

)
, A = A − B D−1C

Equating upper left blocks gives theWoodbury formula :

(A ± B D−1C)−1 = A−1∓ A−1B (D± C A−1B)−1 C A−1 (18)

This is the usual method of updating the inverse of a nonsingular matrixA after an update
(especially a low rank one)A→ A ± B D−1C . (See§8.1).
Reduction: Now consider the linear system( A B

C D )( x1
x2 ) =

(
b1
b2

)
. Pre-multiplying by(

1 0
−C A−1 1

)
gives

(
A B
0 D

)
( x1

x2 ) =
(

b1

b2

)
whereb2 ≡ b2 − C A−1b1. Hence we can use

Schur complement and forward substitution to find areduced systemD x2 = b2, solve
this forx2, then back-substitute and solve to findx1 :

D ≡ D− C A−1B
b2 ≡ b2 − C A−1b1

Schur complement +
forward substitution

D x2 = b2 A x1 = b1 − B x2

reduced system back-substitution
(19)



Bundle Adjustment — A Modern Synthesis 321

Note that the reducedsystementirely subsumes the contributionof thex1 rowsandcolumns
to the network. Once we have reduced, we can pretend that the problem does not involve
x1 at all — it can be found later by back-substitution if needed, or ignored if not. This is
the basis of all recursive filtering methods. In bundle adjustment, if we use the primary
subdivision into feature and camera variables and subsume the structure ones, we get the
reduced camera systemHCC xC = gC , where:

HCC ≡ HCC − HCS H−1
SS HSC = HCC −

∑
pHCp H−1

pp HpC

gC ≡ gC − HCS H−1
SS gS = gC −

∑
pHCp H−1

pp gp

(20)

Here, ‘S’ selects the structure block and ‘C ’ the camera one.HSS is block diagonal,
so the reduction can be calculated rapidly by a sum of contributions from the individual
3D features ‘p’ in S. Brown’s original 1958 method for bundle adjustment [16, 19, 100]
was based on finding the reduced camera system as above, and solving it using Gaussian
elimination. Profile Cholesky decomposition (§B.3) offers a more streamlined method of
achieving this.
Occasionally, long image sequences havemore camera parameters than structure ones.

In this case it ismoreefficient to reduce thecameraparameters, leavingareducedstructure
system.

6.2 Triangular Decompositions

If D in (16) is further subdivided into blocks, the factorization process can be contin-
ued recursively. In fact, there is a family of block (lower triangular)*(diagonal)*(upper
triangular) factorizationsA = L D U:

(
A11 A12 ··· A1n
A21 A22 ··· A2n...

...
...
...

Am1 Am2 ··· Amn

)
=




L11
L21 L22...

...
...

...
...

...
Lm1 Lm2 ··· Lmr



(

D1
D2 ...

Dr

)(
U11 U12 ··· ··· U1n

U22 ··· ··· U2n...
...

··· Urn

)

(21)

See§B.1 for computational details. The main advantage of triangular factorizations is that
they make linear algebra computations with the matrix much easier. In particular, if the
input matrixA is square and nonsingular, linear equationsA x = b can be solved by a
sequenceof three recursions that implicitly implementmultiplicationbyA−1 = U−1D−1L−1:

L c = b ci ← L−1
ii

(
bi −

∑
j<i Lij cj

)
forward substitution (22)

D d = c di ← D−1
i ci diagonal solution (23)

U x = d xi ← U−1
ii

(
di −

∑
j>i Uij xj

)
back-substitution (24)

Forward substitution corrects for the influence of earlier variables on later ones, diagonal
solution solves the transformed system, and back-substitution propagates corrections due
to later variables back to earlier ones. In practice, this is usual method of solving linear
equations such as the Newton step prediction equations. It is stabler and much faster than
explicitly invertingA and multiplying byA−1.
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ThediagonalblocksLii,Di,Uii canbesetarbitrarilyprovided that theproductLii Di Uii

remains constant. This gives a number of well-known factorizations, each optimized for a
different class of matrices.Pivoting (row and/or column exchanges designed to improve
the conditioning ofL and/orU, §B.1) is also necessary in most cases, to ensure stability.
ChoosingLii = Dii = 1 gives the (block)LU decompositionA = L U, the matrix repre-
sentation of (block) Gaussian elimination. Pivoted by rows, this is the standard method for
non-symmetric matrices. For symmetricA, roughly half of the work of factorization can
be saved by using a symmetry-preserving LDL� factorization, for whichD is symmetric
andU = L�. The pivoting strategy must also preserve symmetry in this case, so it has to
permute columns in the same way as the corresponding rows. IfA is symmetric positive
definite we can further setD = 1 to get theCholesky decompositionA = L L�. This is
stable even without pivoting, and hence extremely simple to implement. It is the standard
decomposition method for almost all unconstrained optimization problems including bun-
dle adjustment, as the Hessian is positive definite near a non-degenerate cost minimum
(and in the Gauss-Newton approximation, almost everywhere else, too). IfA is symmetric
but only positivesemidefinite,diagonally pivoted Cholesky decompositioncan be used.
This is the case,e.g. in subset selection methods of gauge fixing (§9.5). Finally, ifA is
symmetric but indefinite, it is not possible to reduceD stably to1. Instead, theBunch-
Kaufman method is used. This is a diagonally pivoted LDL� method, whereD has a
mixture of1× 1 and2× 2 diagonal blocks. The augmented Hessian

(
H C

C� 0

)
of the La-

grangemultiplier method for constrained optimization problems (12) is always symmetric
indefinite, so Bunch-Kaufman is the recommendedmethod for solving constrained bundle
problems. (It is something like 40% faster than Gaussian elimination, and about equally
stable).
Another useof factorization ismatrix inversion. Inverses canbecalculatedby factoring,

invertingeach triangular factor by forwardsorbackwardssubstitution (52), andmultiplying
out:A−1 = U−1D−1L−1. However, explicit inverses are rarely used in numerical analysis,
it being both stabler and much faster in almost all cases to leave them implicit and work
by forward/backward substitution w.r.t. a factorization, rather than multiplication by the
inverse. One place where inversionisneeded in its own right, is to calculate the dispersion
matrix (inverseHessian, which asymptotically gives the posterior covariance) as ameasure
of the likely variability of parameter estimates. The dispersion can be calculated by explicit
inversion of the factored Hessian, but often only a few of its entries are needed,e.g. the
diagonal blocks and a few key off-diagonal parameter covariances. In this case (53) can be
used, which efficiently calculates the covariance entries corresponding to just the nonzero
elements ofL,D,U.

6.3 Sparse Factorization

To apply the above decompositions to sparse matrices, we must obviously avoid storing
and manipulating the zero blocks. But there is more to the subject than this. As a sparse
matrix is decomposed, zero positions tend to rapidlyfill in (become non-zero), essentially
because decomposition is based on repeated linear combination of matrix rows, which
is generically non-zero wherever any one of its inputs is. Fill-in depends strongly on the
order in which variables are eliminated, so efficient sparse factorization routines attempt
to minimize either operation counts or fill-in by re-ordering the variables. (The Schur
process is fixed in advance, so this is the only available freedom). Globally minimizing
either operations or fill-in is NP complete, but reasonably good heuristics exist (see below).
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Variable order affects stability (pivoting) as well as speed, and these two goals conflict to
some extent. Finding heuristics that work well on both counts is still a research problem.
Algorithmically, fill-in is characterized by anelimination graph derived from the pa-

rameter coupling / Hessian graph [40, 26, 11]. To create this, nodes (blocks of parameters)
are visited in the given elimination ordering, at each step linking together all unvisited
nodes that are currently linked to the current node. The coupling of blocki to blockj via
visited blockk corresponds to a non-zero Schur contributionLik D−1

k Ukj , and at each stage
the subgraph on the currently unvisited nodes is the coupling graph of the current reduced
Hessian. The amount of fill-in is the number of new graph edges created in this process.

Pattern Matrices We seek variable orderings that approximately minimize the total
operation count or fill-in over the whole elimination chain. For many problems a suitable
ordering can be fixed in advance, typically giving one of a few standard pattern matrices
such as band or arrowhead matrices, perhaps with such structure at several levels.



















bundle Hessian arrowhead matrix block tridiagonal matrix

(25)

The most prominent pattern structure in bundle adjustment is the primary subdivision of
the Hessian into structure and camera blocks. To get the reduced camera system (19),
we treat the Hessian as an arrowhead matrix with a broad final column containing all of
the camera parameters. Arrowhead matrices are trivial to factor or reduce by block2× 2
Schur complementation,c.f . (16, 19). For bundle problemswithmany independent images
and only a few features, one can also complement on the image parameter block to get a
reducedstructuresystem.
Another very commonpattern structure is theblock tridiagonal onewhich characterizes

all singly coupled chains (sequencesof imageswith only pairwiseoverlap,Kalmanfiltering
and other time recursions, simple kinematic chains). Tridiagonal matrices are factored or
reduced by recursive block2 × 2 Schur complementation starting from one end. TheL
andU factors are also block tridiagonal, but the inverse is generally dense.
Pattern orderings are often very natural but it is unwise to think of them as immutable:

structure often occurs at several levels anddeeper structure or simply changes in the relative
sizes of the various parameter classesmaymake alternative orderings preferable. For more
difficult problems there are two basic classes of on-line ordering strategies.Bottom-up
methods try to minimize fill-in locally and greedily at each step, at the risk of global short-
sightedness.Top-downmethods take a divide-and-conquer approach, recursively splitting
the problem into smaller sub-problems which are solved quasi-independently and later
merged.

Top-DownOrderingMethods Themost common top-downmethod is callednested dis-
sectionor recursive partitioning [64, 57, 19, 38, 40, 11]. The basic idea is to recursively
split the factorization problem into smaller sub-problems, solve these independently, and
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Hessian Natural Cholesky

Minimum Degree Reverse Cuthill-McKee

Fig. 4. A bundle Hessian for an irregular coverage problem with only local connections, and its
Cholesky factor in natural (structure-then-camera), minimum degree, and reverse Cuthill-McKee
ordering.

then glue the solutions together along their common boundaries. Splitting involves choos-
ing aseparating setof variables, whose deletion will separate the remaining variables into
two or more independent subsets. This corresponds to finding a(vertex) graph cut of the
elimination graph,i.e. a set of vertices whose deletion will split it into two or more discon-
nected components. Given such a partitioning, the variables are reordered into connected
components, with the separating set ones last. This produces an ‘arrowhead’ matrix,e.g. :



A11 A12

A21 A22 A23

A32 A33




−→




A11 A12

A33 A32

A21 A23 A22




(26)

The arrowhead matrix is factored by blocks, as in reduction or profile Cholesky, tak-
ing account of any internal sparsity in the diagonal blocks and the borders. Any suitable
factorization method can be used for the diagonal blocks, including further recursive par-
titionings.
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Nesteddissection ismostusefulwhencomparatively small separatingsetscanbe found.
A trivial example is the primary structure of the bundle problem: the camera variables
separate the 3D structure into independent features, giving the standard arrowhead form of
the bundle Hessian. More interestingly, networks with good geometric or temporal locality
(surface- and site-covering networks, video sequences) tend to have small separating sets
based on spatial or temporal subdivision. The classic examples are geodesic and aerial
cartography networks with their local 2D connections — spatial bisection gives simple
and very efficient recursive decompositions for these [64, 57, 19].
For sparse problems with less regular structure, one can use graph partitioning algo-

rithms to find small separating sets. Finding a globally minimal partition sequence is NP
complete but several effective heuristics exist. This is currently an active research field.
One promising family are multilevel schemes [70, 71, 65, 4] which decimate (subsample)
the graph, partition usinge.g. a spectral method, then refine the result to the original graph.
(These algorithms should also be very well-suited to graph based visual segmentation and
matching).

Bottom-UpOrderingMethods Manybottom-up variable orderingheuristics exist. Prob-
ably the most widespread and effective isminimum degree ordering. At each step, this
eliminates the variable coupled to the fewest remaining ones (i.e. the elimination graph
node with the fewest unvisited neighbours), so it minimizes the numberO(n2

neighbours) of
changed matrix elements and hence FLOPs for the step. The minimum degree ordering
can also be computed quite rapidly without explicit graph chasing. A related ordering,
minimum deficiency, minimizes the fill-in (newly created edges) at each step, but this is
considerably slower to calculate and not usually so effective.
Fill-in or operation minimizing strategies tend to produce somewhat fragmentary ma-

trices that require pointer- or index-based sparse matrix implementations (see fig. 4). This
increases complexity and tends to reduce cache locality and pipeline-ability. An alternative
is to useprofilematriceswhich (for lower triangles) store all elements in each rowbetween
the first non-zero one and the diagonal in a contiguous block. This is easy to implement
(see§B.3), and practically efficient so long as about 30%ormore of the stored elements are
actually non-zero. Orderings for this case aim to minimize the sum of the profile lengths
rather than the number of non-zero elements. Profiling enforces a multiply-linked chain
structure on the variables, so it is especially successful for linear / chain-like / one dimen-
sional problems,e.g. space or time sequences. The simplest profiling strategy isreverse
Cuthill-McKee which chooses some initial variable (very preferably one from one ‘end’
of the chain), adds all variables coupled to that, then all variables coupled to those,etc.,
then reverses the ordering (otherwise, any highly-coupled variables get eliminated early
on, which causes disastrous fill-in). More sophisticated are the so-calledbanker’s strate-
gies, which maintain an active set of all the variables coupled to the already-eliminated
ones, and choose the next variable — from the active set (King [72]), it and its neighbours
(Snay [101]) or all uneliminated variables (Levy [75]) — to minimize the new size of the
active set at each step. In particular,Snay’s banker’s algorithm is reported to perform
well on geodesy and aerial cartography problems [101, 24].

For all of these automatic orderingmethods, it often pays to do some of the initial work
by hand,e.g. it might be appropriate to enforce the structure / camera division beforehand
and only order the reduced camera system. If there are nodes of particularly high degree
such as inner gauge constraints, the ordering calculation will usually run faster and the
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quality may also be improved by removing these from the graph and placing them last by
hand.
The above ordering methods apply to both Cholesky / LDL� decomposition of the

Hessian and QR decomposition of the least squares Jacobian. Sparse QR methods can be
implemented either with Givens rotations or (more efficiently) with sparse Householder
transformations. Row ordering is important for the Givens methods [39]. For Householder
ones (and some Givens ones too) themultifrontal organization is now usual [41, 11], as
it captures the natural parallelism of the problem.

7 Implementation Strategy 2: First Order Adjustment Methods

We have seen that for large problems, factoring the HessianH to compute the Newton
step can be both expensive and (if done efficiently) rather complex. In this section we
consider alternative methods that avoid the cost of exact factorization. As the Newton step
can not be calculated, such methods generally only achieve first order (linear) asymptotic
convergence: when close to the final state estimate, the error is asymptotically reduced by a
constant (and inpracticeoftendepressinglysmall) factorateachstep,whereasquadratically
convergent Newton methods roughly double the number of significant digits at each step.
So first order methods require more iterations than second order ones, but each iteration
is usually much cheaper. The relative efficiency depends on the relative sizes of these
two effects, both of which can be substantial. For large problems, the reduction in work
per iteration is usually at leastO(n), wheren is the problem size. But whereas Newton
methods converge fromO(1) toO(10−16

)
in about1 + log2 16 = 5 iterations, linearly

convergent ones take respectivelylog 10−16/ log(1 − γ) = 16, 350, 3700 iterations for
reductionγ = 0.9, 0.1, 0.01 per iteration. Unfortunately, reductions of only1% or less are
by no means unusual in practice (§7.2), and the reduction tends to decrease asn increases.

7.1 First Order Iterations

Wefirst consider a number of common first ordermethods, before returning to the question
of why they are often slow.

Gradient descent:The simplest first order method isgradient descent, which “slides
down the gradient” by takingδx ∼ g orHa = 1. Line search is needed, to find an appro-
priate scale for the step. For most problems, gradient descent is spectacularly inefficient
unless theHessian actually happens to be very close to amultiple of1. This can be arranged
by preconditioning with a linear transformL, x → L x, g → L−� g andH → L−� H L−1,
whereL L� ∼ H is an approximate Cholesky factor (or other left square root) ofH, so that
H → L−� H L−1 ∼ 1. In this very special case, preconditioned gradient descent approxi-
mates the Newton method. Strictly speaking, gradient descent is a cheat: the gradient is a
covector (linear form on vectors) not a vector, so it does not actually define a direction in
the search space. Gradient descent’s sensitivity to the coordinate system is one symptom
of this.

Alternation: Another simple approach isalternation : partition the variables into groups
and cycle through the groups optimizing over each in turn, with the other groups held
fixed. This is most appropriate when the subproblems are significantly easier to optimize
than the full one. A natural and often-rediscovered alternation for the bundle problem is
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resection-intersection, which interleaves steps ofresection(finding the camera poses and
if necessary calibrations from fixed 3D features) andintersection(finding the 3D features
from fixed camera poses and calibrations). The subproblems for individual features and
cameras are independent, so only the diagonal blocks ofH are required.
Alternation can be used in several ways. One extreme is to optimize (or perhaps only

perform one step of optimization) over each group in turn, with a state update and re-
evaluation of (the relevant components of)g,H after each group. Alternatively, some of
the re-evaluations can be simulated by evaluating the linearized effects of the parameter
group update on the other groups.E.g., for resection-intersection with structure update
δxS = −HSS gS(xS , xC) (where ‘S’ selects the structure variables and ‘C ’ the camera
ones), the updated camera gradient is exactly the gradient of the reduced camera system,
gC(xS + δxS , xC) ≈ gC(xS , xC) + HCSδxS = gC − HCS H−1

SS gC . So the total update

for the cycle is
(

δxS
δxC

)
= −

(
H−1

SS 0

−H−1
CC HCS H−1

SS H−1
CC

)( gS
gC

)
=
( HSS 0

HCS HCC

)−1( gS
gC

)
. In

general, this correction propagation amounts to solving the system as if the above-diagonal
triangle ofH were zero. Once we have cycled through the variables, we can update the
full state and relinearize. This is thenonlinear Gauss-Seidel method. Alternatively, we
can split the above-diagonal triangle ofH off as a correction (back-propagation) term
and continue iterating

( HSS 0
HCS HCC

)(
δxS
δxC

)
(k)

= −
( gS

gC

)
−
(

0 HSC
0 0

)(
δxS
δxC

)
(k−1)

until

(hopefully)
(

δxS
δxC

)
converges to the full Newton stepδx = −H−1g. This is thelinear

Gauss-Seidel methodapplied to solving the Newton step prediction equations. Finally,
alternation methods always tend to underestimate the size of the Newton step because
they fail to account for the cost-reducing effects of including the back-substitution terms.
Successive Over-Relaxation (SOR)methods improve the convergence rate by artificially
lengthening the update steps by a heuristic factor1 < γ < 2.
Most if not all of the above alternations have been applied to both the bundle problem

and the independent model onemany times,e.g. [19, 95, 2, 108, 91, 20]. Brown considered
the relatively sophisticated SORmethod for aerial cartography problems as early as 1964,
before developing his recursive decompositionmethod [19]. None of these alternations are
very effective for traditional large-scale problems, although§7.4 below shows that they
can sometimes compete for smaller highly connected ones.

Krylov subspace methods:Another large family of iterative techniques are theKrylov
subspace methods, based on the remarkable properties of the power subspaces
Span({Ak b|k = 0 . . . n}) for fixed A,b asn increases. Krylov iterations predominate
in many large-scale linear algebra applications, including linear equation solving.
The earliest and greatest Krylovmethod is theconjugate gradientiteration for solving

a positive definite linear systemor optimizing a quadratic cost function. By augmenting the
gradient descent step with a carefully chosen multiple of the previous step, this manages
to minimize the quadratic model function over the entirekth Krylov subspace at thekth

iteration, and hence (in exact arithmetic) over the whole space at thenth
x one. This no

longer holds when there is round-off error, butO(nx) iterations usually still suffice to find
the Newton step. Each iteration isO(n2

x

)
so this is not in itself a large gain over explicit

factorization.However convergence is significantly faster if the eigenvalues ofHare tightly
clustered away from zero: if the eigenvalues are covered by intervals[ai, bi]i=1...k, conver-

gence occurs inO
(∑k

i=1

√
bi/ai

)
iterations [99, 47, 48]11. Preconditioning (see below)

11 For other eigenvalue based based analyses of the bundle adjustment covariance, see [103, 92].
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Fig. 5.An example of the typical behaviour of first and second order convergent methods near the
minimum. This is a 2D projection of a small but ill-conditioned bundle problem along the two
most variable directions. The second order methods converge quite rapidly, whether they use exact
(Gauss-Newton) or iterative (diagonally preconditioned conjugate gradient) linear solver for the
Newton equations. In contrast, first order methods such as resection-intersection converge slowly
near the minimum owing to their inaccurate model of the Hessian. The effects of mismodelling can
be reduced to some extent by adding a line search.

aims at achieving such clustering. As with alternation methods, there is a range of possible
update / re-linearization choices, ranging from a fully nonlinear method that relinearizes
after each step, to solving the Newton equations exactly using many linear iterations. One
major advantage of conjugate gradient is its simplicity: there is no factorization, all that is
needed is multiplication byH. For the full nonlinear method,H is not even needed— one
simply makes a line search to find the cost minimum along the direction defined byg and
the previous step.
One disadvantage of nonlinear conjugate gradient is its high sensitivity to the accuracy

of the line search. Achieving the required accuracymay waste several function evaluations
at each step. One way to avoid this is to make the information obtained by the conjugation
processmore explicit by building up an explicit approximation toH orH−1.Quasi-Newton
methods such as the BFGS method do this, and hence need less accurate line searches.
The quasi-Newton approximation toH or H−1 is dense and hence expensive to store and
manipulate, butLimited Memory Quasi-Newton (LMQN) methods often get much of
the desired effect by maintaining only a low-rank approximation.
There are variants of all of thesemethods for least squares (Jacobian rather thanHessian

based) and for constrained problems (non-positive definite matrices).

7.2 Why Are First Order Methods Slow?

To understand why first order methods often have slow convergence, consider the effect of
approximating the Hessian in Newton’s method. Suppose that in some local parametriza-
tion x centred at a cost minimumx = 0, the cost function is well approximated by a
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quadratic near0: f(x) ≈ 1
2x� H x and henceg(x) ≡ H x, whereH is the true Hessian.

For most first order methods, the predicted step is linear in the gradientg. If we adopt a
Newton-like state updateδx = −H−1

a g(x) based on some approximationHa toH, we get
an iteration:

xk+1 = xk − H−1
a g(xk) ≈ (1− H−1

a H) xk ≈ (1− H−1
a H)k+1 x0 (27)

Thenumerical behaviour isdeterminedbyprojectingx0 along theeigenvectorsof1−H−1
a H.

The components corresponding to large-modulus eigenvalues decay slowly and hence
asymptotically dominate the residual error. For genericx0, themethod converges ‘linearly’
(i.e. exponentially) at rate‖1−H−1

a H‖2, or diverges if this is greater than one. (Of course,
the exact Newton stepδx = −H−1g converges in a single iteration, asHa = H). Along
eigen-directions corresponding to positive eigenvalues (for whichHa overestimatesH),
the iteration is over-damped and convergence is slow but monotonic. Conversely, along
directions corresponding to negative eigenvalues (for whichHa underestimatesH), the
iteration is under-damped and zigzags towards the solution. IfH is underestimated by a
factor greater than two along any direction, there is divergence. Figure 5 shows an example
of the typical asymptotic behaviour of first and second order methods in a small bundle
problem.

Ignoring the camera-feature coupling:As an example, many approximate bundle meth-
ods ignore or approximate the off-diagonal feature-camera blocks of the Hessian. This
amounts to ignoring the fact that the cost of a feature displacement can be partially offset
by a compensatory camera displacement and vice versa. It therefore significantly over-
estimates the total ‘stiffness’ of the network, particularly for large, loosely connected
networks. The fact that off-diagonal blocks arenot negligible compared to the diagonal
ones can be seen in several ways:
• Looking forward to§9, before the gauge is fixed, the full Hessian is singular owing to
gauge freedom. The diagonal blocks by themselves are well-conditioned, but including
the off-diagonal ones entirely cancels this along the gauge orbit directions. Although
gauge fixing removes the resulting singularity, it can not change the fact that the off-
diagonal blocks have enough weight to counteract the diagonal ones.
• In bundle adjustment, certain well-known ambiguities (poorly-controlled parameter
combinations) often dominate the uncertainty. Camera distance and focal length es-
timates, and structure depth and camera baseline ones (bas-relief), are both strongly
correlated whenever the perspective is weak and become strict ambiguities in the affine
limit. The well-conditioned diagonal blocks of the Hessian give no hint of these ambi-
guities: when both features and cameras are free, the overall network ismuchless rigid
than it appears to be when each treats the other as fixed.
• During bundle adjustment, local structure refinements cause ‘ripples’ that must be prop-
agated throughout the network. The camera-feature coupling information carried in the
off-diagonal blocks is essential to this. In the diagonal-only model, ripples can propa-
gate at most one feature-camera-feature step per iteration, so it takes many iterations
for them to cross and re-cross a sparsely coupled network.

These arguments suggest that any approximationHa to the bundle HessianH that sup-
presses or significantly alters the off-diagonal terms is likely to have large‖1 − H−1

a H‖
and hence slow convergence. This is exactly what we have observed in practice for all
such methods that we have tested: near the minimum, convergence is linear and for large
problems often extremely slow, with‖1 − H−1

a H‖2 very close to 1. The iteration may
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either zigzag or converge slowly and monotonically, depending on the exact method and
parameter values.

Line search:The above behaviour can often be improved significantly by adding a line
search to the method. In principle, the resulting method converges foranypositive definite
Ha. However, accurate modelling ofH is still highly desirable. Even with no rounding
errors, an exactly quadratic (but otherwise unknown) cost function and exact line searches
(i.e. the minimum along the line is found exactly), the most efficient generic line search
basedmethods suchas conjugate gradient or quasi-Newton require at leastO(nx) iterations
to converge. For large bundle problems with thousands of parameters, this can already be
prohibitive. However, if knowledge aboutH is incorporated via a suitablepreconditioner,
the number of iterations can often be reduced substantially.

7.3 Preconditioning

Gradient descent and Krylov methods are sensitive to the coordinate system and their
practical success depends critically on good preconditioning. The aim is to find a linear
transformationx → T x and henceg → T−� g andH → T−� H T for which the trans-
formedH is near1, or at least has only a few clusters of eigenvalues well separated from
the origin. Ideally,T should be an accurate, low-cost approximation to the left Cholesky
factor ofH. (Exactly evaluating this would give the expensive Newton method again). In
the experiments below, we tried conjugate gradient with preconditioners based on the di-
agonal blocks ofH, and onpartial Cholesky decomposition, dropping either all filled-in
elements, or all that are smaller than a preset size when performing Cholesky decomposi-
tion. These methods were not competitive with the exact Gauss-Newton ones in the ‘strip’
experiments below, but for large enough problems it is likely that a preconditioned Krylov
method would predominate, especially if more effective preconditioners could be found.
An exact Cholesky factor ofH from a previous iteration is often a quite effective

preconditioner. This gives hybrid methods in whichH is only evaluated and factored every
few iterations, with the Newton step at these iterations and well-preconditioned gradient
descent or conjugate gradient at the others.

7.4 Experiments

Figure 6 shows the relative performance of several methods on two synthetic projective
bundle adjustment problems. In both cases, the number of 3Dpoints increases in proportion
to the number of images, so the dense factorization time isO(n3

)
wheren is the number

of points or images. The following methods are shown: ‘Sparse Gauss-Newton’ — sparse
Cholesky decomposition with variables ordered naturally (features then cameras); ‘Dense
Gauss-Newton’— the same, but (inefficiently) ignoring all sparsity of the Hessian; ‘Diag.
Conj. Gradient’ — the Newton step is found by an iterative conjugate gradient linear
system solver, preconditioned using the Cholesky factors of the diagonal blocks of the
Hessian; ‘Resect-Intersect’ — the state is optimized by alternate steps of resection and
intersection, with relinearization after each. In the ‘spherical cloud’ problem, the points
are uniformly distributed within a spherical cloud, all points are visible in all images,
and the camera geometry is strongly convergent. These are ideal conditions, giving a low
diameter network graph and a well-conditioned, nearly diagonal-dominant Hessian. All
of the methods converge quite rapidly. Resection-intersection is a competitive method for
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Fig. 6.Relative speeds of various bundle optimizationmethods for strong ‘spherical cloud’ andweak
‘strip’ geometries.

larger problems owing to its low cost per iteration. Unfortunately, although this geometry
is often used for testing computer vision algorithms, it is atypical for large-scale bundle
problems. The ‘strip’ experiment has a more representative geometry. The images are
arranged in a long strip, with each feature seen in about 3 overlapping images. The strip’s
long thin weakly-connected network structure gives it large scale low stiffness ‘flexing’
modes,with correspondinglypoorHessianconditioning.Theoff-diagonal termsarecritical
here, so the approximate methods perform very poorly. Resection-intersection is slower
even than dense Cholesky decomposition ignoring all sparsity. For 16 or more images
it fails to converge even after 3000 iterations. The sparse Cholesky methods continue to
perform reasonably well, with the natural, minimum degree and reverse Cuthill-McKee
orderings all giving very similar run times in this case. For all of the methods that we
tested, including resection-intersection with its linear per-iteration cost, the total run time
for long chain-like geometries scaled roughly asO(n3

)
.
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8 Implementation Strategy 3: Updating and Recursion

8.1 Updating Rules

It is often convenient to be able toupdate a state estimate to reflect various types of
changes,e.g. to incorporate new observations or to delete erroneous ones (‘downdating’).
Parameters may have to be added or deleted too. Updating rules are often used recursively,
to incorporate a series of observations one-by-one rather than solving a single batch system.
This is useful in on-line applications where a rapid response is needed, and also to provide
preliminary predictions,e.g. for correspondence searches. Much of the early development
of updating methods was aimed at on-line data editing in aerial cartography workstations.
The main challenge in adding or deleting observations is efficiently updating either a

factorization of the HessianH, or the covarianceH−1. Given either of these, the state update
δx is easily found by solving the Newton step equationsH δx = −g, where (assuming
that we started at an un-updated optimumg = 0) the gradientg depends only on the newly
added terms. The Hessian updateH → H ± B W B� needs to have relatively low rank,
otherwise nothing is saved over recomputing the batch solution. In least squares the rank is
the number of independent observations added or deleted, but even without this the rank is
often low in bundle problems because relatively few parameters are affected by any given
observation.
One limitation of updating is that it is seldom as accurate as a batch solution owing to

build-up of round-off error. Updating (adding observations) itself is numerically stable, but
downdating (deleting observations) is potentially ill-conditioned as it reduces the positivity
of the Hessian, and may cause previously good pivot choices to become arbitrarily bad.
This is particularly a problem if all observations relating to a parameter are deleted, or
if there are repeated insertion-deletion cycles as in time window filtering. Factorization
updating methods are stabler than Woodbury formula / covariance updating ones.
Consider first the case where no parameters need be added nor deleted,e.g. adding or

deletinganobservationof anexistingpoint in anexisting image.Severalmethodshavebeen
suggested [54, 66]. Mikhail & Helmering [88] use the Woodbury formula (18) to update
the covarianceH−1. This simple approach becomes inefficient for problems with many
features because the sparse structure is not exploited: the full covariance matrix is dense
andwewould normally avoid calculating it in its entirety.Grün [51, 54] avoids this problem
by maintaining a running copy of the reduced camera system (20), using an incremental
Schur complement / forward substitution (16) to fold each new observation into this, and
then re-factorizing and solving as usual after each update. This is effective when there are
many features in a few images, but for larger numbers of images it becomes inefficient
owing to the re-factorization step. Factorization updating methods such as (55, 56) are
currently the recommended update methods for most applications: they allow the existing
factorization to be exploited, they handle any number of images and features and arbitrary
problem structure efficiently, and they are numerically more accurate than Woodbury
formula methods. The Givens rotation method [12, 54], which is equivalent to the rank
1 Cholesky update (56), is probably the most common such method. The other updating
methods are confusingly named in the literature. Mikhail & Helmering’s method [88]
is sometimes called ‘Kalman filtering’, even though no dynamics and hence no actual
filtering is involved. Gr̈un’s reduced camera systemmethod [51] is called ‘triangular factor
update (TFU)’, even though it actually updates the (square) reduced Hessian rather than
its triangular factors.
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For updates involving a previously unseen 3D feature or image, new variables must
also be added to the system. This is easy. We simply choose where to put the variables in
the elimination sequence, and extendH and its L,D,U factors with the corresponding rows
and columns, setting all of the newly created positions to zero (except for the unit diagonals
of LDL�’s and LU’sL factor). The factorization can then be updated as usual, presumably
adding enough cost terms to make the extended Hessian nonsingular and couple the new
parameters into the old network. If a direct covariance update is needed, the Woodbury
formula (18) can be used on the old part of the matrix, then (17) to fill in the new blocks
(equivalently, invert (54), withD1 ← A representing the old blocks andD2 ← 0 the new
ones).
Conversely, it may be necessary to delete parameters,e.g. if an image or 3D feature

has lost most or all of its support. The corresponding rows and columns of the Hessian
H (and rows ofg, columns ofJ) must be deleted, and all cost contributions involving the
deleted parameters must also be removed using the usual factorization downdates (55, 56).
To delete the rows and columns of blockb in a matrixA, we first delete theb rows and
columns ofL,D,U. This maintains triangularity and gives the correct trimmedA, except
that the blocks in the lower right cornerAij =

∑
k≤min(i,j) Lik Dk Ukj , i, j > b are

missing a termLib Db Ubj from the deleted columnb of L / row b ofU. This is added using
an update+L∗b Db Ub∗, ∗ > b. To updateA−1 when rows and columns ofA are deleted,
permute the deleted rows and columns to the end and use (17) backwards:(A11)−1 =
(A−1)11 − (A−1)12 (A−1)−1

22 (A−1)21.
It is also possible to freeze some live parameters at fixed (current or default) values,

or to add extra parameters / unfreeze some previously frozen ones,c.f . (48, 49) below. In
this case, rows and columns corresponding to the frozen parameters must be deleted or
added, but no other change to the cost function is required. Deletion is as above. To insert
rows and columnsAb∗,A∗b at blockb of matrixA, we open space in row and columnb of
L,D,U and fill these positions with the usual recursively defined values (51). Fori, j > b,
the sum (51) will now have a contributionLib Db Ubj that it should not have, so to correct
this we downdate the lower right submatrix∗ > b with a cost cancelling contribution
−L∗b Db Ub∗.

8.2 Recursive Methods and Reduction

Each update computation is roughly quadratic in the size of the state vector, so if new
features and images are continually added the situation will eventually become unman-
ageable. We must limit what we compute. In principle parameter refinement never stops:
each observation update affects all components of the state estimate and its covariance.
However, the refinements are in a sense trivial for parameters that are not directly coupled
to the observation. If these parameters are eliminated using reduction (19), the observa-
tion update can be applied directly to the reduced Hessian and gradient12. The eliminated
parameters can then be updated by simple back-substitution (19) and their covariances by
(17). In particular, if we cease to receive new information relating to a block of parameters
(an image that has been fully treated, a 3D feature that has become invisible), they and
all the observations relating to them can be subsumed once-and-for-all in a reduced Hes-
sian and gradient on the remaining parameters. If required, we can later re-estimate the
12 In (19), onlyD andb2 are affected by the observation as it is independent of the subsumed
componentsA,B,C, b1. So applying the update toD, b2 has the same effect as applying it to
D, b2.
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eliminated parameters by back-substitution. Otherwise, we do not need to consider them
further.
This elimination process has some limitations. Only ‘dead’ parameters can be elim-

inated: to merge a new observation into the problem, we need the current Hessian or
factorization entries for all parameter blocks relating to it. Reduction also commits us to
a linearized / quadratic cost approximation for the eliminated variables at their current
estimates, although to the extent that this model is correct, the remaining variables can still
be treated nonlinearly. It is perhaps best to view reduction as the first half-iteration of a full
nonlinear optimization: by (19), theNewtonmethod for the full model can be implemented
by repeated cycles of reduction, solving the reduced system, and back-substitution, with
relinearization after each cycle, whereas for eliminated variables we stop after solving the
first reduced system. Equivalently, reduction evaluates just the reduced components of the
full Newton step and the full covariance, leaving us the option of computing the remaining
eliminated ones later if we wish.
Reduction can be used to refine estimates of relative camera poses (or fundamental

matrices,etc.) for a fixed set of images, by reducing a sequence of feature correspondences
to their camera coordinates. Or conversely, to refine 3D structure estimates for a fixed set
of features in many images, by reducing onto the feature coordinates.
Reduction is also the basis of recursive (Kalman) filtering. In this case, one has a (e.g.

time) series of system state vectors linked by someprobabilistic transition rule (‘dynamical
model’), for which we also have some observations (‘observation model’). The parameter
space consists of the combined state vectors for all times,i.e. it represents a path through
the states. Both the dynamical and the observation models provide “observations” in the
sense of probabilistic constraints on the full state parameters, andwe seek amaximum like-
lihood (or similar) parameter estimate / path through the states. The full Hessian is block
tridiagonal: the observations couple only to the current state and give the diagonal blocks,
and dynamics couples only to the previous and next ones and gives the off-diagonal blocks
(differential observations can also be included in the dynamics likelihood). So the model
is large (if there are many time steps) but very sparse. As always with a tridiagonal matrix,
the Hessian can be decomposed by recursive steps of reduction, at each step Schur comple-
menting to get the current reduced blockHt from the previous oneHt−1, the off-diagonal
(dynamical) couplingHt t−1 and the current unreduced block (observation Hessian)Ht :
Ht = Ht − Ht t−1 H

−1

t−1 H�
t t−1. Similarly, for the gradientgt = gt − Ht t−1 H

−1

t−1 gt−1,

and as usual the reduced state update isδxt = −H
−1

t gt.
This forwards reduction process is calledfiltering . At each time step it finds the optimal

(linearized) current state estimate given all of the previous observations and dynamics. The
corresponding unwinding of the recursion by back-substitution,smoothing, finds the opti-
mal state estimate at each time given both past and future observations and dynamics. The
usual equations of Kalman filtering and smoothing are easily derived from this recursion,
but we will not do this here. We emphasize that filtering is merely the first half-iteration of
a nonlinear optimization procedure: even for nonlinear dynamics and observation models,
we can find the exact maximum likelihood state path by cyclic passes of filtering and
smoothing, with relinearization after each.
For long or unbounded sequences it may not be feasible to run the full iteration, but

it can still be very helpful to run short sections of it,e.g. smoothing back over the last
3–4 state estimates then filtering forwards again, to verify previous correspondences and
anneal the effects of nonlinearities. (The traditionalextended Kalman filter optimizes
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Fig. 7.The residual state estimation error of the VSDF sequential bundle algorithm for progressively
increasing sizes of rolling time window. The residual error at imaget = 16 is shown for rolling
windows of 1–5 previous images, and also for a ‘batch’ method (all previous images) and a ‘simple’
one (reconstruction / intersection is performed independently of camera location / resection). To
simulate the effects of decreasing amounts of image data, 0%, 15% and 70% of the image measure-
ments are randomly deleted to make runs with 100%, 85% and only 30% of the supplied image data.
The main conclusion is that window size has little effect for strong data, but becomes increasingly
important as the data becomes weaker.

nonlinearly over just the current state, assuming all previous ones to be linearized). The
effects of variable window size on the Variable State Dimension Filter (VSDF) sequential
bundle algorithm [85, 86, 83, 84] are shown in figure 7.

9 Gauge Freedom

Coordinates are a very convenient device for reducing geometry to algebra, but they come
at the price of some arbitrariness. The coordinate system can be changed at any time,
without affecting the underlying geometry. This is very familiar, but it leaves us with two
problems: (i) algorithmically, we need some concrete way of deciding which particular
coordinate system to use at each moment, and hencebreakingthe arbitrariness; (ii ) we
need to allow for the fact that the results may look quite different under different choices,
even though they represent the same underlying geometry.
Consider the choice of 3D coordinates in visual reconstruction. The only objects in the

3D space are the reconstructed cameras and features, so we have to decide where to place
the coordinate system relative to these. . . Or in coordinate-centred language, where to
place the reconstruction relative to the coordinate system. Moreover, bundle adjustment
updates and uncertainties can perturb the reconstructed structure almost arbitrarily, so
we must specify coordinate systems not just for the current structure, but also forevery
possible nearby one. Ultimately, this comes down to constraining the coordinate values
of certain aspects of the reconstructed structure — features, cameras or combinations of
these — whatever the rest of the structure might be. Saying this more intrinsically, the
coordinate frame is specified and held fixed with respect to the chosen reference elements,



336 B. Triggs et al.

and the rest of the geometry is then expressed in this frame as usual. In measurement
science such a set of coordinate system specifying rules is called adatum, but we will
follow the wider mathematics and physics usage and call it agauge13. The freedom in the
choice of coordinate fixing rules is calledgauge freedom.
As a gauge anchors the coordinate system rigidly to its chosen reference elements, per-

turbing the reference elements has no effect on their own coordinates. Instead, it changes
the coordinate system itself and hence systematically changes the coordinates of all the
other features, while leaving the reference coordinates fixed. Similarly, uncertainties in
the reference elements do not affect their own coordinates, but appear as highly correlated
uncertainties in all of theother reconstructed features. The moral is thatstructural pertur-
bations and uncertainties are highly relative. Their form depends profoundly on the gauge,
and especially on how this changes as the state varies (i.e. which elements it holds fixed).
The effects of disturbances arenot restricted to the coordinates of the features actually
disturbed, but may appear almost anywhere depending on the gauge.
In visual reconstruction, the differences between object-centred and camera-centred

gauges are often particularly marked. In object-centred gauges, object points appear to be
relatively certain while cameras appear to have large and highly correlated uncertainties.
In camera-centred gauges, it is the camera that appears to be precise and the object points
that appear to have large correlated uncertainties. One often sees statements like “the
reconstructed depths are very uncertain”. This may be true in the camera frame, yet the
object may be very well reconstructed in its own frame — it all depends on what fraction
of the total depth fluctuations are simply due to global uncertainty in the camera location,
and hence identical for all object points.
Besides 3D coordinates, many other types of geometric parametrization in vision in-

volve arbitrary choices, and hence are subject to gauge freedoms [106]. These include the
choice of: homogeneous scale factors in homogeneous-projective representations; sup-
porting points in supporting-point based representations of lines and planes; reference
plane in plane + parallax representations; and homographies in homography-epipole rep-
resentations of matching tensors. In each case the symptoms and the remedies are the
same.

9.1 General Formulation

The general set up is as follows:We take as our state vectorx the set of all of the 3D feature
coordinates, camera poses and calibrations,etc., that enter the problem. This state space
has internal symmetries related to the arbitrary choices of 3D coordinates, homogeneous
scale factors,etc., that are embedded inx. Any two state vectors that differ only by such
choices represent thesameunderlying3Dgeometry, andhencehaveexactly thesame image
projections and other intrinsic properties. So under change-of-coordinates equivalence, the
state space is partitioned into classes of intrinsically equivalent state vectors, each class
representing exactly one underlying 3D geometry. These classes are calledgauge orbits.
Formally, they are the group orbits of the state space action of the relevantgauge group
(coordinate transformation group), but we will not need the group structure below. A state
space function represents an intrinsic function of the underlying geometry if and only if
it is constant along each gauge orbit (i.e. coordinate system independent). Such quantities

13 Here,gaugejust means reference frame. The sense is that of a reference against which something
is judged(O.Fr. jauger, gauger). Pronouncegēidj.
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Gauge constraints fix coordinates

parameter space

Cost function is
constant along orbits

Gauge orbits foliate

for each nearby structure

Covariance depends on chosen gauge

Project along orbits to change gauge

Fig. 8.Gauge orbits in state space, two gauge cross-sections and their covariances.

are calledgauge invariants. We want the bundle adjustment cost function to quantify
‘intrinsic merit’, so it must be chosen to be gauge invariant.
In visual reconstruction, the principal gauge groups are the3 + 3 + 1 = 7 dimen-

sional group of 3D similarity (scaled Euclidean) transformations for Euclidean recon-
struction, and the15 dimensional group of projective 3D coordinate transformations for
projective reconstruction. But other gauge freedoms are also present. Examples include:
(i) The arbitrary scale factors of homogeneous projective feature representations, with
their 1D rescaling gauge groups. (ii ) The arbitrary positions of the points in ‘two point’
line parametrizations, with their two 1Dmotion-along-line groups. (iii ) The underspecified
3×3 homographies used for ‘homography + epipole’ parametrizations ofmatching tensors
[77, 62, 106]. For example, the fundamental matrix can be parametrized asF = [ e]× H
wheree is its left epipole andH is the inter-image homography induced by any 3D plane.
The choice of plane gives a freedomH → H + e a�wherea is an arbitrary 3-vector, and
hence a 3D linear gauge group.
Now consider how to specify a gauge,i.e. a rule saying how each possible underlying

geometry near the current one should be expressed in coordinates. Coordinatizations are
represented by state space points, so this is amatter of choosing exactly one point (structure
coordinatization) fromeach gauge orbit (underlying geometry). Mathematically, the gauge
orbits foliate (fill without crossing) the state space, and a gauge is a local transversal
‘cross-section’G through this foliation. See fig. 8. Different gauges represent different but
geometrically equivalent coordinatization rules. Results can be mapped between gauges
by pushing them along gauge orbits,i.e. by applying local coordinate transformations that
vary depending on the particular structure involved. Such transformations are calledS-
transforms (‘similarity’ transforms) [6, 107, 22, 25]. Different gauges through the same
central state represent coordinatization rules that agree for the central geometry but differ
for perturbed ones — the S-transform is the identity at the centre but not elsewhere.
Givenagauge, only state perturbations that liewithin thegaugecross-sectionareautho-

rized. This is what we want, as such state perturbations are in one-to-one correspondence
with perturbations of the underlying geometry. Indeed, any state perturbation is equivalent
to some on-gauge one under the gauge group (i.e. under a small coordinate transformation
that pushes the perturbed state along its gauge orbit until it meets the gauge cross-section).
State perturbations along the gauge orbits are uninteresting, because they do not change
the underlying geometry at all.
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Covariances are averages of squared perturbations andmust also be based on on-gauge
perturbations (they would be infinite if we permitted perturbations along the gauge orbits,
as there is no limit to these — they do not change the cost at all). So covariance matrices
are gauge-dependent and in fact represent ellipsoids tangent to the gauge cross-section at
the cost minimum. They can look very different for different gauges. But, as with states, S-
transforms map them between gauges by projecting along gauge orbits / state equivalence
classes.
Note that there is no intrinsic notion of orthogonality on state space, so it ismeaningless

to ask which state-space directions are ‘orthogonal’ to the gauge orbits. This would in-
volve deciding when two different structures have been “expressed in the same coordinate
system”, so every gauge believes its own cross section to be orthogonal and all others to
be skewed.

9.2 Gauge Constraints

We will work near some pointx of state space, perhaps a cost minimum or a running state
estimate. Letnx be the dimension ofx andng the dimension of the gauge orbits. Letf,g,H
be the cost function and its gradient and Hessian, andG be anynx × ng matrix whose
columns span the local gauge orbit directions atx 14. By the exact gauge invariance off,
its gradient and Hessian vanish along orbit directions:g� G = 0 andH G = 0. Note that
the gauged HessianH is singular with (at least) rank deficiencyng and null spaceG. This
is calledgauge deficiency. Many numerical optimization routines assume nonsingularH,
andmust bemodified to work in gauge invariant problems. The singularity is an expression
of indifference: when we come to calculate state updates, any two updates ending on the
same gauge orbit are equivalent, both in terms of cost and in terms of the change in the
underlying geometry. All that we need is a method of telling the routine which particular
update to choose.
Gauge constraints are the most direct means of doing this. A gauge cross-sectionG

can be specified in two ways: (i) constrained form:specifyng local constraintsd(x)
with d(x) = 0 for points onG ; (ii ) parametric form:specify a functionx(y) of nx − ng

independent local parametersy, with x = x(y) being the points ofG. For example, a
trivial gauge is one that simply freezes the values ofng of the parameters inx (usually
feature or camera coordinates). In this case we can taked(x) to be the parameter freezing
constraints andy to be the remaining unfrozen parameters. Note that once the gauge is
fixed the problem is no longer gauge invariant — the whole purpose ofd(x), x(y) is to
breakthe underlying gauge invariance.
Examples of trivial gauges include: (i) using several visible 3D points as a ‘projective

basis’ for reconstruction (i.e. fixing their projective 3D coordinates to simple values, as
in [27]); and (ii ) fixing the components of one projective3 × 4 camera matrix as(I 0),
as in [61] (this only partially fixes the 3D projective gauge — 3 projective 3D degrees of
freedom remain unfixed).

14 A suitableG is easily calculated from the infinitesimal action of the gauge group onx. For
example, for spatial similarities the columns ofGwould be theng = 3+3+1 = 7 state velocity
vectors describing the effects of infinitesimal translations, rotations and changes of spatial scale
onx.
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Linearized gauge:Let the local linearizations of the gauge functions be:

d(x + δx) ≈ d(x) + D δx D ≡ dd
dx (28)

x(y + δy) ≈ x(y) + Y δy Y ≡ dx
dy (29)

Compatibility between the two gauge specification methods requiresd(x(y)) = 0 for all
y, and henceD Y = 0. Also, sinceG must be transversal to the gauge orbits,D G must
have full rankng and(Y G) must have full ranknx. Assuming thatx itself is onG, a
perturbationx + δxG is onG to first order iffD δxG = 0 or δxG = Y δy for someδy.
Twonx × nx ranknx − ng matrices characterizeG. Thegauge projection matrixPG

implements linearized projection of state displacement vectorsδx along their gauge orbits
onto the local gauge cross-section:δx → δxG = PG δx. (The projection is usually non-
orthogonal:P�

G �= PG). Thegauged covariance matrixVG plays the role of the inverse
Hessian. It gives the cost-minimizing Newton step withinG, δxG = −VG g, and also
the asymptotic covariance ofδxG .PG andVG have many special properties and equivalent
forms. For convenience, we display some of these now15— letV ≡ (H + D� B D)−1where
B is any nonsingular symmetricng × ng matrix, and letG′ be any other gauge:

VG ≡ Y (Y� H Y)−1 Y� = V H V = V−G (D G)−1B−1 (D G)−� G� (30)

= PG V = PG VG = PG VG′ P�
G (31)

PG ≡ 1−G (D G)−1 D = Y (Y� H Y)−1Y� H = V H = VG H = PG PG′ (32)

PG G = 0 , PG Y = Y , D PG = D VG = 0 (33)

g� PG = g� , H PG = H , VG g = V g (34)

These relations canbesummarizedby saying thatVG is theG-supportedgeneralized inverse
of H and thatPG : (i) projects along gauge orbits (PG G = 0); (ii ) projects onto the gauge
cross-sectionG (D PG = 0, PG Y = Y, PGδx = δxG andVG = PG VG′ P�

G); and (iii )
preserves gauge invariants (e.g. f(x + PG δx) = f(x + δx), g� PG = g� andH PG = H).
BothVG andH have ranknx−ng. Their null spacesD�andG are transversal but otherwise
unrelated.PG has left null spaceD and right null spaceG.
State updates:It is straightforward to add gauge fixing to the bundle update equations.
First consider the constrained form. Enforcing the gauge constraintsd(x +δxG) = 0with
Lagrange multipliersλ gives an SQP step:(

H D�

D 0

)(
δxG
λ

)
= −

(
g
d

)
,

(
H D�

D 0

)−1

=
(

VG G (D G)−1

(D G)−� G� 0

)
(35)

so δxG = − (VG g + G (D G)−1d) , λ = 0 (36)

This is a rather atypical constrained problem. For typical cost functions the gradient has a
componentpointingaway from theconstraint surface, sog �= 0at theconstrainedminimum
15 These results are most easily proved by inserting strategic factors of(Y G) (Y G)−1 and

usingH G = 0, D Y = 0 and (Y G)−1 =
(

(Y� H Y)−1Y� H
(D G)−1D

)
. For anyng × ng B in-

cluding 0,
(

Y�
G�
) (

H + D� B D
)

(Y G) =
(

Y� H Y 0
0 (D G)� B (D G)

)
. If B is nonsingular,

V =
(
H + D� B D

)−1 = Y (Y� H Y)−1Y� + G (D G)−1B−1 (D G)−� G�.
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and a non-vanishing forceλ �= 0 is required to hold the solution on the constraints. Here,
the cost function and its derivatives are entirely indifferent to motions along the orbits.
Nothing actively forces the state to move off the gauge, so the constraint forceλ vanishes
everywhere,g vanishes at the optimum, and the constrainedminimumvalue off is identical
to the unconstrained minimum. The only effect of the constraints is to correct any gradual
drift away fromG that happens to occur, via thed term inδxG .
A simpler way to get the same effect is to add a gauge-invariance breaking term such

as 1
2d(x)� B d(x) to the cost function, whereB is some positiveng × ng weight matrix.

Note that12d(x)� B d(x) has a unique minimum of0 on each orbit at the pointd(x) = 0,
i.e. for x onG. As f is constant along gauge orbits, optimization off(x) + 1

2d(x)� B d(x)
along each orbit enforcesG and hence returns the orbit’sf value, so global optimization
will find the global constrained minimum off. The cost functionf(x) + 1

2d(x)� B d(x)
is nonsingular with Newton stepδxG = V (g + D� B d) whereV = (H + D� B D)−1 is
the new inverse Hessian. By (34, 30), this is identical to the SQP step (36), so the SQP
and cost-modifying methods are equivalent. This strategy works only because no force is
required to keep the state on-gauge — if this were not the case, the weightB would have
to be infinite. Also, for denseD this form is not practically useful becauseH + D� B D is
dense and hence slow to factorize, although updating formulae can be used.
Finally, consider the parametric formx = x(y) of G. Suppose that we already have a

current reduced state estimatey. We can approximatef(x(y+δy)) to get a reduced system
for δy, solve this, and findδxG afterwards if necessary:

(Y� H Y) δy = −Y� g , δxG = Y δy = −VG g (37)

The(nx−ng)×(nx−ng)matrixY� H Y is generically nonsingular despite the singularity
ofH. In the case of a trivial gauge,Y simply selects the submatrices ofg,H corresponding
to the unfrozen parameters, and solves for these. For less trivial gauges, bothY andD are
often dense and there is a risk that substantial fill-in will occur in all of the above methods.

Gauged covariance:By (30) and standard covariance propagation in (37), the covariance
of the on-gauge fluctuationsδxG is E

[
δxG δx�

G
]

= Y (Y� H Y)−1 Y� = VG . δxG never
moves offG, soVG represents a ranknx − ng covariance ellipsoid ‘flattened ontoG’. In a
trivial gauge,VG is the covariance(Y� H Y)−1 of the free variables, padded with zeros for
the fixed ones.
GivenVG , the linearized gauged covariance of a functionh(x) is dh

dx VG
dh
dx

�
as usual.

If h(x) is gauge invariant (constant along gauge orbits) this is just its ordinary covariance.
Intuitively, VG and

dh
dx VG

dh
dx

�
depend on the gauge because they measure not absolute

uncertainty, but uncertainty relative to the reference features on which the gauge is based.
Just as there are no absolute reference frames, there are no absolute uncertainties. The best
we can do is relative ones.

Gauge transforms:Wecan change the gauge at will during a computation,e.g. to improve
sparseness or numerical conditioning or re-express results in some standard gauge. This
is simply a matter of anS-transform [6], i.e. pushing all gauged quantities along their
gauge orbits onto the new gauge cross-sectionG. We will assume that the base pointx
is unchanged. If not, a fixed (structure independent) change of coordinates achieves this.
Locally, an S-transform then linearizes into a linear projection along the orbits spanned by
G onto the new gauge constraints given byD orY. This is implemented by thenx×nx rank
nx−ng non-orthogonal projection matrixPG defined in (32). The projection preserves all
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gauge invariants—e.g. f(x+PG δx) = f(x+δx)—and it cancels the effects of projection
onto any other gauge:PG PG′ = PG .

9.3 Inner Constraints

Given the wide range of gauges and the significant impact that they have on the appearance
of the state updates and covariance matrix, it is useful to ask which gauges give the
“smallest” or “best behaved” updates and covariances. This is useful for interpreting and
comparing results, and it also gives beneficial numerical properties. Basically it is a matter
of deciding which features or cameras we care most about and tying the gauge to some
stable average of them, so that gauge-induced correlations in them are as small as possible.
For object reconstruction the resulting gauge will usually be object-centred, for vehicle
navigation camera-centred. We stress that such choices are only a matter of superficial
appearance: in principle, all gaugesareequivalent andgive identical valuesandcovariances
for all gauge invariants.
Anotherway to say this is that it is only for gauge invariants thatwe can findmeaningful

(coordinate system independent) values and covariances. But one of themost fruitful ways
to create invariants is to locate features w.r.t. a basis of reference features,i.e. w.r.t. the
gauge based on them. The choice of inner constraints is thus a choice of a stable basis
of compound features w.r.t. which invariants can be measured. By including an average
of many features in the compound, we reduce the invariants’ dependence on the basis
features.
As a performance criterion we canminimize some sort of weighted average size, either

of the state update or of the covariance. LetW be annx×nx information-likeweightmatrix
encoding the relative importance of the various error components, andL be any left square
root for it, L L� = W. The local gauge atx that minimizes the weighted size of the state
updateδx�

G W δxG , the weighted covariance sumTrace(W VG) = Trace(L� VG L), and the
L2 or Frobenius norm ofL� VG L, is given by theinner constraints [87, 89, 6, 22, 25]16:

D δx = 0 where D ≡ G� W (38)

The corresponding covarianceVG is given by (30) withD = G� W, and the state update is
δxG = −VG g as usual. Also, ifW is nonsingular,VG is given by the weighted ranknx−ng

pseudo-inverseL−� (L−1H L−�)† L−1, whereW = L L� is the Cholesky decomposition of
W and(·)† is the Moore-Penrose pseudo-inverse.
16 Sketch proof: ForW = 1 (whenceL = 1) and diagonalH = ( Λ 0

0 0 ), we haveG = ( 0
1 )

andg =
(

g′
0

)
asg� G = 0. Any gaugeG transversal toG has the formD = (−B C) with

nonsingularC. Premultiplying byC
−1
reducesD to the formD = (−B 1) for someng×(nx −ng)

matrix B. It follows thatPG = ( 1 0
B 0 ) andVG = ( 1

B )Λ−1 (1 B�), whenceδx�
G W δxG =

g� VG W VG g = g′� Λ−1
(
1 + B� B

)
Λ−1g′ and Trace(VG) = Trace(Λ−1) + Trace

(
B Λ−1B�)

.
Both criteria are clearly minimized by takingB = 0, soD = (0 1) = G� W as claimed. For
nonsingularW = L L�, scaling the coordinates byx → L x reduces us toW → 1, g� → g�L−1

andH → L−1H L−�. Eigen-decomposition then reduces us to diagonalH. Neither transformation
affectsδx�

G W δxG or Trace(W VG), and back substituting gives the general result. For singular
W, use a limiting argument onD = G� W. Similarly, usingVG as above,B → 0, and hence the
inner constraint, minimizes theL2 and Frobenius norms ofL� VG L. Indeed, by the interlacing
property of eigenvalues [44,§8.1], B → 0 minimizesany strictly non-decreasing rotationally
invariant function ofL� VG L (i.e. any strictly non-decreasing function of its eigenvalues).�
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The inner constraints are covariant under global transformationsx → t(x) provided
thatW is transformed in theusual informationmatrix /HessianwayW→ T−� W T−1where
T = dt

dx
17. However, such transformations seldom preserve the form ofW (diagonality,

W = 1, etc.). If W represents an isotropic weighted sum over 3D points18, its form is
preserved under global 3D Euclidean transformations, and rescaled under scalings. But
this extends neither to points under projective transformations, nor to camera poses, 3D
planes and other non-point-like features even under Euclidean ones. (The choice of origin
has a significant influence For poses, planes,etc. : changes of origin propagate rotational
uncertainties into translational ones).
Inner constraints were originally introduced in geodesy in the caseW = 1 [87]. The

meaning of this is entirely dependent on the chosen 3D coordinates and variable scaling.
In bundle adjustment there is little to recommendW = 1 unless the coordinate origin has
been carefully chosen and the variables carefully pre-scaled as above,i.e. x → L� x and
henceH→ L−1H L−�, whereW ∼ L L� is a fixed weight matrix that takes account of the
fact that the covariances of features, camera translations and rotations, focal lengths, aspect
ratios and lens distortions, all have entirely different units, scales and relative importances.
ForW = 1, the gauge projectionPG becomes orthogonal and symmetric.

9.4 Free Networks

Gauges can be divided roughly intoouter gauges, which are locked to predefined external
reference features giving afixed network adjustment, andinner gauges, which are locked
only to the recovered structure giving afree network adjustment. (If their weightW is
concentrated on the external reference, the inner constraints give an outer gauge). As
above, well-chosen inner gauges do not distort the intrinsic covariance structure so much
as most outer ones, so they tend to have better numerical conditioning and give a more
representative idea of the true accuracy of the network. It is also useful to make another,
slightly different fixed / free distinction. In order to control the gauge deficiency, any
gauge fixing method must at least specify which motions arelocally possible at each
iteration. However, it is not indispensable for these local decisions to cohere to enforce
a global gauge. A method isglobally fixed if it does enforce a global gauge (whether
inner or outer), andglobally free if not. For example, the standard photogrammetric inner
constraints [87, 89, 22, 25] give a globally free inner gauge. They require that the cloud of
reconstructed points should not be translated, rotated or rescaled under perturbations (i.e.
the centroid and average directions and distances from the centroid remain unchanged).
However, they do not specify where the cloud actually is and how it is oriented and scaled,
and they do not attempt to correct for any gradual drift in the position thatmay occur during
the optimization iterations,e.g. owing to accumulation of truncation errors. In contrast,
McLauchlan globally fixes the inner gauge by locking it to the reconstructed centroid
and scatter matrix [82, 81]. This seems to give good numerical properties (although more
testing is required to determine whether there is much improvement over a globally free

17 G → T G implies thatD → D T−1, whenceVG → T VG T�, PG → T PG T−1, andδxG → T δxG .
Soδx�

G W δxG and Trace(W VG) are preserved.
18 This means that it vanishes identically for all non-point features, camera parameters,etc., and is
a weighted identity matrixWi = wi I3×3 for each 3D point, or more generally it has the form
W ⊗ I3×3 on the block of 3D point coordinates, whereW is somenpoints× npoints inter-point
weighting matrix.



Bundle Adjustment — A Modern Synthesis 343

inner gauge), and it has the advantage of actually fixing the coordinate system so that
direct comparisons of solutions, covariances,etc., are possible. Numerically, a globally
fixed gauge can be implemented either by including the ‘d’ term in (36), or simply by
applying a rectifying gauge transformation to the estimate, at each step or when it drifts
too far from the chosen gauge.

9.5 Implementation of Gauge Constraints

Given that all gauges are in principle equivalent, it does not seem worthwhile to pay a
high computational cost for gauge fixing during step prediction, so methods requiring
large dense factorizations or (pseudo-)inverses should not be used directly. Instead, the
main computation can be done in any convenient, low cost gauge, and the results later
transformed into the desired gauge using the gauge projector19 PG = 1 − G (D G)−1D.
It is probably easiest to use a trivial gauge for the computation. This is simply a matter
of deleting the rows and columns ofg,H corresponding tong preselected parameters,
which should be chosen to give a reasonably well-conditioned gauge. The choice can be
made automatically by asubset selectionmethod (c.f ., e.g. [11]). H is left intact and
factored as usual, except that the final dense (owing to fill-in) submatrix is factored using a
stable pivotedmethod, and the factorization is stoppedng columns before completion. The
remainingng×ng block (and the corresponding block of the forward-substituted gradient
g) should be zero owing to gauge deficiency. The corresponding rows of the state update
are set to zero (or anything else that is wanted) and back-substitution gives the remaining
update components as usual. This method effectively finds theng parameters that are least
well constrained by the data, and chooses the gauge constraints that freeze these by setting
the correspondingδxG components to zero.

10 Quality Control

This section discusses quality control methods for bundle adjustment, giving diagnostic
tests that can be used to detect outliers and characterize the overall accuracy and reliability
of the parameter estimates. These techniques are not well known in vision so we will go
into some detail. Skip the technical details if you are not interested in them.
Quality control is a serious issue in measurement science, and it is perhaps here that

the philosophical differences between photogrammetrists and vision workers are greatest:
the photogrammetrist insists on good equipment, careful project planning, exploitation
of prior knowledge and thorough error analyses, while the vision researcher advocates a
more casual, flexible ‘point-and-shoot’ approach with minimal prior assumptions. Many
applications demand a judicious compromise between these virtues.
A basic maxim is “quality = accuracy + reliability”20. The absoluteaccuracyof the

system depends on the imaging geometry, number of measurements,etc. But theoretical
19 The projectorPG itself is never calculated. Instead, it is applied in pieces, multiplying byD, etc.
The gauged Newton stepδxG is easily found like this, and selected blocks of the covariance
VG = PG VG′ P�

G can also be found in this way, expandingPG and using (53) for the leading term,
and for the remaining ones findingL−1D�, etc., by forwards substitution.

20 ‘Accuracy’ is sometimes called ‘precision’ in photogrammetry, but we have preferred to retain
the familiar meanings from numerical analysis: ‘precision’ means numerical error / number of
working digits and ‘accuracy’ means statistical error / number of significant digits.
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precision by itself is not enough: the system must also bereliable in the face of out-
liers, small modelling errors, and so forth. The key to reliability is the intelligent use of
redundancy: the results should represent an internally self-consistent consensus among
many independent observations, no aspect of them should rely excessively on just a few
observations.
Thephotogrammetric literatureonquality control deserves tobebetter known in vision,

especially among researchers working on statistical issues. Förstner [33, 34] and Grün
[49, 50] give introductions with some sobering examples of the effects of poor design.
See also [7, 8, 21, 22]. All of these papers use least squares cost functions and scalar
measurements. Our treatment generalizes this to allow robust cost functions and vector
measurements, and is also slightly more self-consistent than the traditional approach. The
techniques considered are useful for data analysis and reporting, and also to check whether
design requirements are realistically attainable during project planning. Several properties
should be verified.Internal reliability is the ability to detect and remove large aberrant
observations using internal self-consistency checks. This is provided by traditional outlier
detection and/or robust estimation procedures.External reliability is the extent to which
any remainingundetected outliers can affect the estimates.Sensitivity analysisgives
useful criteria for the quality of a design. Finally,model selection testsattempt to decide
which of several possible models is most appropriate and whether certain parameters can
be eliminated.

10.1 Cost Perturbations

We start by analyzing the approximate effects of adding or deleting an observation, which
changes thecost functionandhence thesolution.Wewill usesecondorderTaylorexpansion
to characterize the effects of this. Letf−(x) and f+(x) ≡ f−(x) + δf(x) be respectively
the total cost functions without and with the observation included, whereδf(x) is the cost
contribution of the observation itself. Letg±, δg be the gradients andH±, δH the Hessians
of f±, δf. Letx0 be the unknown true underlying state andx± be the minima off±(x) (i.e.
the optimal state estimates with and without the observation included). Residuals atx0
are the most meaningful quantities for outlier decisions, butx0 is unknown so we will be
forced to use residuals atx± instead. Unfortunately, as we will see below, these are biased.
The bias is small for strong geometries but it can become large for weaker ones, so to
produce uniformly reliable statistical tests we will have to correct for it. The fundamental
result is:For any sufficiently well behaved cost function, thedifference in fitted residuals
f+(x+)− f−(x−) is asymptotically an unbiased and accurate estimate ofδf(x0) 21:

δf(x0) ≈ f+(x+)− f−(x−) + ν, ν ∼ O(‖δg‖/√nz − nx
)
, 〈ν〉 ∼ 0 (39)

21 Sketch proof: From the Newton stepsδx± ≡ x± − x0 ≈ −H−1
± g±(x0) at x0, we find

that f±(x±) − f±(x0) ≈ − 1
2δx�

± H± δx± and henceν ≡ f+(x+) − f−(x−) − δf(x0) ≈
1
2

(
δx�

− H− δx− − δx�
+ H+ δx+

)
. ν is unbiased to relatively high order: by the central limit

property of ML estimators, the asymptotic distributions ofδx± are GaussianN (0,H−1
±), so the

expectation of bothδx�
± H± δx± is asymptotically the number of free model parametersnx.

Expandingδx± and usingg+ = g− + δg, the leading term isν ≈ −δg(x0)� x−, which
asymptotically has normal distributionν ∼ N (0, δg(x0)� H−1

− δg(x0)) with standard deviation
of orderO(‖δg‖/√nz − nx

)
, asx− ∼ N (0,H−1

−) and‖H−‖ ∼ O(nz − nx). �
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Note that by combining values at two known evaluation pointsx±, we simulate a value at
a third unknown onex0. The estimate is not perfect, but it is the best that we can do in the
circumstances.
There are usually many observations to test, so to avoid having to refit the model many

times we approximate the effects of adding or removing observations. Working atx± and
using the fact thatg±(x±) = 0, the Newton stepδx ≡ x+ − x− ≈ −H−1

∓ δg(x±) implies
a change in fitted residual of:

f+(x+)− f−(x−) ≈ δf(x±)± 1
2δx� H∓ δx

= δf(x±)± 1
2δg(x±)� H−1

∓ δg(x±)
(40)

So δf(x+) systematically underestimatesf+(x+) − f−(x−) and henceδf(x0) by about
1
2δx� H− δx, andδf(x−) overestimates it by about12δx� H+ δx. These biases are of order
O(1/(nz − nx)) and hence negligible when there is plenty of data, but they become large
at low redundancies. Intuitively, includingδf improves the estimate on average, bringing
about a ‘good’ reduction ofδf, but it also overfitsδf slightly, bringing about a further ‘bad’
reduction. Alternatively, the reduction inδf on moving fromx− to x+ is bought at the cost
of a slight increase inf− (sincex− was already the minimum off−), which should morally
also be ‘charged’ toδf.
When deleting observations, we will usually have already evaluatedH−1

+ (or a corre-
sponding factorization ofH+) to find the Newton step nearx+, whereas (40) requiresH−1

−.
And vice versa for addition. Provided thatδH � H, it is usually sufficient to useH−1

± in
place ofH−1

∓ in the simple tests below. However if the observation couples to relatively few
state variables, it is possible to calculate the relevant components ofH−1

∓ fairly economi-
cally. If ‘∗’ means ‘select thek variables onwhichδH, δgare non-zero’, thenδg� H−1δg =

(δg∗)�(H−1)∗δg∗ and22 (H−1
∓)∗ =

((
(H−1

±)∗)−1∓ δH∗
)−1

≈ (H−1
±)∗ ± (H−1

±)∗ δH∗ (H−1
±)∗.

Even without the approximation, this involves at most ak × k factorization or inverse.
Indeed, for least squaresδH is usually of even lower rank (= the number of independent
observations inδf), so theWoodbury formula (18) can be used to calculate the inverse even
more efficiently.

10.2 Inner Reliability and Outlier Detection

In robust cost models nothing special needs to be done with outliers — they are just
normal measurements that happen be downweighted owing to their large deviations. But
in non-robust models such as least squares, explicit outlier detection and removal are
essential for inner reliability. An effective diagnostic is to estimateδf(x0) using (39, 40),
and significance-test it against its distribution under the null hypothesis that the observation
is an inlier. For the least squares cost model, the null distribution of2 δf(x0) is χ2

k where
k is the number of independent observations contributing toδf. So if α is a suitableχ2

k

significance threshold, the typical one-sided significance test is:

α
?≤ 2 (f(x+)− f(x−)) ≈ 2 δf(x±) ± δg(x±)� H−1

∓ δg(x±) (41)

≈ �zi(x±)� (Wi ±Wi J�
i H−1

∓ Ji Wi

) �zi(x±) (42)

22 C.f . the lower right corner of (17), where the ‘∗’ components correspond to block 2, so that(
(H−1

±)∗)−1
is ‘D2’, the Schur complement of the remaining variables inH±. AddingδH∗ changes

the ‘D’ term but not the Schur complement correction.
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As usual we approximateH−1
∓ ≈ H−1

± and usex− results for additions andx+ ones for
deletions. These tests require the fitted covariance matrixH−1

± (or, if relatively few tests
will be run, an equivalent factorization ofH±), but given this they are usually fairly
economical owing to the sparseness of the observation gradientsδg(x±). Equation (42)
is for the nonlinear least squares model with residual error�zi(x) ≡ zi − zi(x), cost
1
2�zi(x)� Wi�zi(x) and JacobianJi = dzi

dx . Note that even thoughzi induces a change in
all components of the observation residual�z via its influenceonδx, only the immediately
involved components�zi are required in (42). The bias-correction-induced change of
weight matrixWi → Wi ±Wi J�

i H−1
∓ Ji Wi accounts for the others. For non-quadratic

cost functions, the above framework still applies but the cost function’s native distribution
of negative log likelihood values must be used instead of the Gaussian’s1

2 χ
2.

In principle, theaboveanalysis is only validwhenatmost oneoutlier causesa relatively
small perturbationδx. In practice, the observations are repeatedly scanned for outliers, at
each stage removing any discovered outliers (and perhaps reinstating previously discarded
observations that have become inliers) and refitting. The net result is a form ofM-estimator
routine with an abruptly vanishing weight function:outlier deletion is just a roundabout
way of simulating a robust cost function. (Hard inlier/outlier rules correspond to total
likelihood functions that become strictly constant in the outlier region).
The tests (41, 42) givewhat is needed for outlier decisionsbasedonfittedstateestimates

x±, but for planning purposes it is also useful to knowhow large agross errormust typically
be w.r.t. thetrue statex0 before it is detected. Outlier detection is based on the uncertain
fitted state estimates, so we can only give an average case result. No adjustment forx± is
needed in this case, so the averageminimum detectable gross erroris simply:

α
?≤ 2 δf(x0) ≈ �z(x0)� W�z(x0) (43)

10.3 Outer Reliability

Ideally, the state estimate should be as insensitive as possible to any remaining errors in
the observations. To estimate how much a particular observation influences the final state
estimate, we can directly monitor the displacementδx ≡ x+ − x− ≈ H−1

∓ δg±(x±).
For example, we might define an importance weighting on the state parameters with a
criterion matrixU and monitor absolute displacements‖U δx‖ ≈ ‖U H−1

∓ δg(x±)‖, or
compare the displacementδx to the covarianceH−1

± of x± by monitoringδx� H∓ δx ≈
δg±(x±)� H−1

∓ δg±(x±). A bound onδg(x±) of the form23 δg δg� � V for some positive
semidefiniteV implies a boundδx δx� � H−1

∓ V H−1
∓ onδx and hence a bound‖U δx‖2 ≤

N (U H−1
∓ V H−1

∓ U�) whereN (·) can beL2 norm, trace or Frobenius norm. For a robust

23 This is a convenient intermediate form for deriving bounds. For positive semidefinite matri-
cesA,B, we say thatB dominatesA, B � A, if B − A is positive semidefinite. It follows
thatN (U A U�) ≤ N (U B U�) for any matrixU and any matrix functionN (·) that is non-
decreasing under positive additions. Rotationally invariant non-decreasing functionsN (·) include
all non-decreasing functions of the eigenvalues,e.g.L2 normmaxλi, trace

∑
λi, Frobenius norm√∑

λ2
i . For a vectora and positiveB, a

�B a ≤ k if and only if a a� � k B−1. (Proof: Conju-
gate byB1/2 and then by a(B1/2 a)-reducing Householder rotation to reduce the question to the
equivalence of0 � Diag

(
k − u2, k, . . . , k

)
andu2 ≤ k, whereu2 = ‖B1/2 a‖2). Bounds of

the form‖U a‖2 ≤ kN (U B−1U�) follow for anyU and anyN (·) for whichN (v v�) = ‖v‖2,
e.g. L2 norm, trace, Frobenius norm.
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cost model in whichδg is globally bounded, this already gives asymptotic bounds of
orderO(‖H−1‖‖δg‖) ∼ O(‖δg‖/√nz − nx) for the state perturbation, regardless of
whether an outlier occurred. For non-robust cost models we have to use an inlier criterion
to limit δg. For the least squares observation model with rejection test (42),�z�z� �
α
(
Wi ±Wi J�

i H−1
∓ Ji Wi

)−1
and hence the maximum state perturbation due to a declared-

inlying observationzi is:

δx δx� � αH−1
∓ Ji Wi

(
Wi ±Wi J�

i H−1
∓ Ji Wi

)−1
Wi J�

i H−1
∓

= α
(
H−1

− − H−1
+
)

(44)

≈ αH−1
± Ji W−1

i J�
i H−1

± (45)

so, e.g., δx� H± δx ≤ αTrace
(
Ji H−1

± J�
i W−1

i

)
and ‖U δx‖2 ≤ αTrace

Ji H−1
± U� U H−1

± J�
i W−1

i , whereW
−1
i is the nominal covariance ofzi. Note that these bounds

are based on changes in theestimatedstatex±. They do not directly control perturbations
w.r.t. thetrue onex0. The combined influence of several (k � nz − nx) observations is
given by summing theirδg’s.

10.4 Sensitivity Analysis

This section gives some simple figures of merit that can be used to quantify network
redundancy and hence reliability. First, inδf(x0) ≈ δf(x+) + 1

2 δg(x+)� H−1
− δg(x+),

each cost contributionδf(x0) is split into two parts: thevisible residualδf(x+) at the fitted
statex+ ; and 1

2 δx� H− δx, thechange in the base costf−(x) due to the state perturbation
δx = H−1

− δg(x+) induced by the observation. Ideally, wewould like the state perturbation
to be small (for stability) and the residual to be large (for outlier detectability). In other
words, we would like the followingmasking factor to be small (mi � 1) for each
observation:

mi ≡
δg(x+)� H−1

− δg(x+)
2 δf(x+) + δg(x+)� H−1

− δg(x+)
(46)

=
�zi(x+)� Wi Ji H−1

− J�
i Wi�zi(x+)

�zi(x+)�
(
Wi + Wi Ji H−1

− J�
i Wi

)�zi(x+)
(47)

(Here,δf should be normalized to have minimum value0 for an exact fit). Ifmi is known,
the outlier test becomesδf(x+)/(1 −mi) ≥ α. The maskingmi depends on the relative
size ofδg andδf, which in general depends on the functional form ofδf and the specific
deviation involved. For robust cost models, a bound onδg may be enough to boundmi

for outliers. However, for least squares case (�z form), and more generally for quadratic
cost models (such as robust models near the origin),mi depends only on the direction of
�zi, not on its size, and we have a globalL2 matrix norm based boundmi ≤ ν

1+ν where
ν = ‖L� Ji H−1

− J�
i L‖2 ≤ Trace

(
Ji H−1

− J�
i W
)
andL L� = Wi is aCholesky decomposition

ofWi. (These bounds become equalities for scalar observations).
The stability of the state estimate is determined by the total cost Hessian (information

matrix)H. A largeH implies a small state estimate covarianceH−1and also small responses
δx ≈ −H−1δg to cost perturbationsδg. Thesensitivity numberssi ≡ Trace

(
H−1

+δHi

)
are a useful measure of the relative amount of information contributed toH+ by each
observation. They sum to the model dimension —

∑
i si = nx because

∑
i δHi = H+
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— so they count “how many parameters worth” of the total information the observation
contributes. Some authors prefer to quoteredundancy numbersri ≡ ni − si, where
ni is the effective number of independent observations contained inzi. The redundancy
numbers sum tonz − nx, the total redundancy of the system. In the least squares case,
si = Trace

(
Ji H−1

+ J�
i W

)
andmi = si for scalar observations, so the scalar outlier test

becomesδf(x+)/ri ≥ α. Sensitivity numbers can also be defined for subgroups of the
parameters in the form Trace(U H−1δH), whereU is an orthogonal projection matrix that
selects the parameters of interest. Ideally, the sensitivities of each subgroup should be
spread evenly across the observations: a largesi indicates a heavily weighted observation,
whose incorrectness might significantly compromise the estimate.

10.5 Model Selection

It is often necessary to chose between several alternative models of the cameras or scene,
e.g. additional parameters for lens distortion, camera calibrations that may ormay not have
changed between images, coplanarity or non-coplanarity of certain features. Over-special
models give biased results, while over-general ones tend to be noisy and unstable. We
will consider onlynested models, for which a more general model is specialized to a
more specific one by freezing some of its parameters at default values (e.g. zero skew or
lens distortion, equal calibrations, zero deviation from a plane). Let:x be the parameter
vector of the more general model;f(x) be its cost function;c(x) = 0 be the parameter
freezing constraints enforcing the specialization;k be the number of parameters frozen;x0
be the true underlying state;xg be the optimal state estimate for the general model (i.e. the
unconstrained minimum off(x)); andxs be the optimal state estimate for the specialized
one (i.e. the minimum off(x) subject to the constraintsc(x) = 0). Then, under the
null hypothesis that the specialized model is correct,c(x0) = 0, and in the asymptotic
limit in which xg − x0 andxs − x0 become Gaussian and the constraints become locally
approximately linear across the width of this Gaussian, the difference in fitted residuals
2 (f(xs)− f(xg)) has aχ2

k distribution
24. So if2 (f(xs)− f(xg)) is less than some suitable

χ2
k decision thresholdα, we can accept the hypothesis that the additional parameters take
their default values, and use the specialized model rather than the more general one25.
As before, we can avoid fitting one of the models by using a linearized analysis. First

suppose that we start with a fit of the more general modelxg. Let the linearized constraints

at xg be c(xg + δx) ≈ c(xg) + C δx, whereC ≡ dc
dx . A straightforward Lagrange

multiplier calculation gives:

2 (f(xs)− f(xg)) ≈ c(xg)� (C H−1C�)−1 c(xg)

xs ≈ xg − H−1C� (C H−1C�)−1 c(xg)
(48)

Conversely, starting fromafit of themorespecializedmodel, theunconstrainedminimum is
given by theNewton step:xg ≈ xs−H−1g(xs), and2 (f(xs)− f(xg)) ≈ g(xs)� H−1g(xs),
whereg(xs) is the residual cost gradient atxs. This requires the general-model covariance
24 This happens irrespective of the observation distributions because — unlike the case of adding
an observation — the same observations and cost function are used for both fits.

25 In practice, small models are preferable as they have greater stability and predictive power and
less computational cost. So the thresholdα is usually chosen to be comparatively large, to ensure
that the more general model will not be chosen unless there is strong evidence for it.
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H−1 (or an equivalent factorization ofH), which may not have been worked out. Suppose
that the additional parameters were simply appended to the model,x→ (x, y) wherex is
now the reduced parameter vector of the specialized model andy contains the additional
parameters. Let the general-model cost gradient at(xs, ys) be( 0

h ) whereh = df
dy , and

its Hessian be
(

H A�
A B

)
. A straightforward calculation shows that:

2 (f(xs, ys)− f(xg, yg)) ≈ h� (B− A H−1A�)−1 h( xg
yg

)
≈ ( xs

ys ) +
(

H−1A�
−1

)
(B− A H−1A�)−1 h

(49)

GivenH−1 or an equivalent factorization ofH, these tests are relatively inexpensive for
smallk. They amount respectively to one step of Sequential Quadratic Programming and
oneNewton step, so the results will only be accurate when thesemethods converge rapidly.
Another, softer, way to handle nested models is to apply a priorδfprior(x) peaked at the

zero of the specialization constraintsc(x). If this is weak the data will override it when
necessary, but the constraints may not be very accurately enforced. If it is stronger, we
can either apply an ‘outlier’ test (39, 41) to remove it if it appears to be incorrect, or use
asticky prior — a prior similar to a robust distribution, with a concentrated central peak
and wide flat tails, that will hold the estimate near the constraint surface for weak data, but
allow it to ‘unstick’ if the data becomes stronger.
Finally, more heuristic rules are often used for model selection in photogrammetry,

for example deleting any additional parameters that are excessively correlated (correlation
coefficient greater than∼ 0.9) with other parameters, or whose introduction appears to
cause an excessive increase in the covariance of other parameters [49, 50].

11 Network Design

Network design is the problem of planning camera placements and numbers of images
before a measurement project, to ensure that sufficiently accurate and reliable estimates
of everything that needs to be measured are found. We will not say much about design,
merely outlining the basic considerations and giving a few useful rules of thumb. See [5,
chapter 6], [79, 78], [73, Vol.2§4] for more information.
Factors to be considered in network design include: scene coverage, occlusion / vis-

ibility and feature viewing angle; field of view, depth of field, resolution and workspace
constraints; and geometric strength, accuracy and redundancy. The basic quantitative aids
to design are covariance estimation in a suitably chosen gauge (see§9) and the quality
control tests from§10. Expert systems have been developed [79], but in practice most
designs are still based on personal experience and rules of thumb.
In general, geometric stability is best for ‘convergent’ (close-in, wide baseline, high

perspective) geometries, usingwide angle lenses to cover asmuch of the object as possible,
and large film or CCD formats to maximize measurement precision. The wide coverage
maximizes the overlap between different sub-networks and hence overall network rigidity,
while the wide baselines maximize the sub-network stabilities. The practical limitations
on closeness are workspace, field of view, depth of field, resolution and feature viewing
angle constraints.
Maximizing the overlap between sub-networks is very important. For objects with

several faces such as buildings, images should be taken from corner positions to tie the
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face sub-networks together. For large projects, large scale overview images can be used to
tie together close-in densifying ones. When covering individual faces or surfaces, overlap
andhencestability are improvedby taking imageswitha rangeof viewingangles rather than
strictly fronto-parallel ones (e.g., for the same number of images, pan-move-pan-move or
interleaved left-looking and right-looking images are stabler than a simple fronto-parallel
track). Similarly, for buildings or turntable sequences, using a mixture of low and high
viewpoints helps stability.
For reliability, one usually plans to see each feature point in at least four images.

Although two images in principle suffice for reconstruction, they offer little redundancy
and no resistance against feature extraction failures. Even with three images, the internal
reliability is still poor: isolated outliers can usually be detected, but it may be difficult to
say which of the three images they occurred in. Moreover, 3–4 image geometries with
widely spaced (i.e. non-aligned) centres usually give much more isotropic feature error
distributions than two image ones.
If the bundle adjustment will include self-calibration, it is important to include a range

of viewing angles. For example for a flat, compact object, viewsmight be taken at regularly
spaced points along a 30–45◦ half-angle cone centred on the object, with 90◦ optical axis
rotations between views.

12 Summary and Recommendations

This survey was written in the hope of making photogrammetric know-how about bundle
adjustment — the simultaneous optimization of structure and camera parameters in visual
reconstruction — more accessible to potential implementors in the computer vision com-
munity. Perhaps the main lessons are the extraordinary versatility of adjustment methods,
the critical importance of exploiting the problem structure, and the continued dominance
of second order (Newton) algorithms, in spite of all efforts to make the simpler first order
methods converge more rapidly.
We will finish by giving a series of recommendations for methods. At present, these

must be regarded as very provisional, and subject to revision after further testing.

Parametrization: (§2.2, 4.5) During step prediction, avoid parameter singularities, infini-
ties, strong nonlinearities and ill-conditioning. Use well-conditioned local (current value
+ offset) parametrizations of nonlinear elements when necessary to achieve this: the local
step prediction parametrization can be different from the global state representation one.
The ideal is to make the parameter space error function as isotropic and as near-quadratic
as possible. Residual rotation or quaternion parametrizations are advisable for rotations,
and projective homogeneous parametrizations for distant points, lines and planes (i.e. 3D
features near the singularity of their affine parametrizations, affine infinity).

Cost function: (§3) The cost should be a realistic approximation to the negative log
likelihood of the total (inlier + outlier) error distribution. The exact functional form of the
distribution is not too critical, however: (i) Undue weight should not be given to outliers
by making the tails of the distribution (the predicted probability of outliers) unrealistically
small. (NB:Compared tomost real-worldmeasurementdistributions, the tails of aGaussian
areunrealistically small). (ii ) Thedispersionmatrix or inlier covarianceshouldbea realistic
estimate of the actual inlier measurement dispersion, so that the transition between inliers
and outliers is in about the right place, and the inlier errors are correctly weighted during
fitting.
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Optimization method: (§4, 6, 7) Forbatch problemsuse a second order Gauss-Newton
method with sparse factorization (see below) of the Hessian, unless:
• Theproblem is so large that exact sparse factorization is impractical. In this case consider
either iterative linear system solvers such as Conjugate Gradient for the Newton step,
or related nonlinear iterations such as Conjugate Gradient, or preferably Limited Mem-
ory Quasi-Newton or (if memory permits) full Quasi-Newton (§7, [29, 93, 42]). (None
of these methods require the Hessian). If you are in this case, it would pay to investi-
gate professional large-scale optimization codes such as MINPACK-2, LANCELOT, or
commercial methods from NAG or IMSL (see§C.2).
• If the problem is medium or large but dense (which is unusual), and if it has strong
geometry, alternation of resection and intersection may be preferable to a second order
method. However, in this case Successive Over-Relaxation (SOR) would be even better,
and Conjugate Gradient is likely to be better yet.
• In all of the above cases, good preconditioning is critical (§7.3).
For on-line problems (rather than batch ones), use factorization updating rather than
matrix inverse updating or re-factorization (§B.5). In time-series problems, investigate the
effect of changing the time window (§8.2, [83, 84]), and remember that Kalman filtering
is only the first half-iteration of a full nonlinear method.
Factorization method: (§6.2, B.1) For speed, preserve the symmetry of the Hessian dur-
ing factorization by using: Cholesky decomposition for positive definite Hessians (e.g.
unconstrained problems in a trivial gauge); pivoted Cholesky decomposition for positive
semi-definite Hessians (e.g. unconstrained problems with gauge fixing by subset selec-
tion §9.5); and Bunch-Kauffman decomposition (§B.1) for indefinite Hessians (e.g. the
augmented Hessians of constrained problems,§4.4). Gaussian elimination is stable but a
factor of two slower than these.
Variable ordering: (§6.3) The variables can usually be ordered by hand for regular net-
works, but for more irregular ones (e.g. close range site-modelling) some experimentation
may be needed to find the most efficient overall ordering method. If reasonably compact
profiles can be found, profile representations (§6.3, B.3) are simpler to implement and
faster than general sparse ones (§6.3).
• For dense networks use a profile representation and a “natural” variable ordering: either
features then cameras, or cameras then features, with whichever has the fewest param-
eters last. An explicit reduced system based implementation such as Brown’s method
[19] can also be used in this case (§6.1, A).
• If the problem has some sort of 1D temporal or spatial structure (e.g. image streams,
turntable problems), try a profile representation with natural (simple connectivity) or
Snay’s banker’s (more complex connectivity) orderings (§6.3, [101, 24]). A recursive
on-line updating method might also be useful in this case.
• If the problem has 2D structure (e.g. cartography and other surface coverage problems)
try nested dissection, with hand ordering for regular problems (cartographic blocks),
and a multilevel scheme for more complex ones (§6.3). A profile representation may or
may not be suitable.
• For less regular sparse networks, the choice is not clear. Try minimum degree ordering
with a general sparse representation, Snay’s Banker’s with a profile representation, or
multilevel nested dissection.

For all of the automatic variable ordering methods, try to order any especially highly
connected variables last by hand, before invoking the method.
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Gauge fixing:(§9) For efficiency, use either a trivial gauge or a subset selectionmethod as
aworking gauge for calculations, and project the results intowhatever gauge youwant later
by applying a suitable gauge projectorPG (32). Unless you have a strong reason to use an
external reference system, the output gauge should probably be an inner gauge centred on
the network elements you care most about,i.e. the observed features for a reconstruction
problem, and the cameras for a navigation one.

Quality control and network design: (§10) A robust cost function helps, but for overall
system reliability you still need to plan your measurements in advance (until you have
developed a good intuition for this), and check the results afterwards for outlier sensitivity
and over-modelling, using a suitable quality control procedure. Do not underestimate the
extent to which either low redundancy, or weak geometry, or over-general models can
make gross errors undetectable.

A Historical Overview

This appendix gives a brief history of the main developments in bundle adjustment, in-
cluding literature references.

Least squares:The theory of combining measurements by minimizing the sum of their
squared residualswas developed independently byGauss and Legendre around 1795–1820
[37, 74], [36, Vol.IV, 1–93], about 40 yearsafter robustL1 estimation [15]. Least squares
was motivated by estimation problems in astronomy and geodesy and extensively applied
to both fields by Gauss, whose remarkable 1823 monograph [37, 36] already contains
almost the complete modern theory of least squares including elements of the theory of
probability distributions, the definition and properties of the Gaussian distribution, and a
discussion of bias and the “Gauss-Markov” theorem, which states that least squares gives
the Best Linear Unbiased Estimator (BLUE) [37, 11]. It also introduces theLDL� form of
symmetric Gaussian elimination and the Gauss-Newton iteration for nonlinear problems,
essentially in their modern forms although without explicitly using matrices. The 1828
supplement on geodesy introduced the Gauss-Seidel iteration for solving large nonlinear
systems. The economic andmilitary importance of surveying lead to extensive use of least
squares and several further developments: Helmert’s nested dissection [64]—probably the
first systematic sparse matrix method — in the 1880’s, Cholesky decomposition around
1915, Baarda’s theory of reliability of measurement networks in the 1960’s [7, 8], and
Meissl [87, 89] and Baarda’s [6] theories of uncertain coordinate frames and free networks
[22, 25]. We will return to these topics below.

Second order bundle algorithms:Electronic computers capable of solving reasonably
large least squares problems first becameavailable in the late 1950’s. The basic photogram-
metric bundle method was developed for the U.S. Air Force by Duane C. Brown and his
co-workers in 1957–9 [16, 19]. The initial focus was aerial cartography, but by the late
1960’s bundle methods were also being used for close-range measurements26. The links
with geodesic least squares and the possibility of combining geodesic and other types
of measurements with the photogrammetric ones were clear right from the start. Initially

26 Close rangemeans essentially that the object has significant depth relative to the camera distance,
i.e. that there is significant perspective distortion. For aerial images the scene is usually shallow
compared to the viewing height, so focal length variations are very difficult to disentangle from
depth variations.
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Fig. 9.A schematic history of bundle adjustment.

the cameras were assumed to be calibrated27, so the optimization was over object points
and camera poses only.Self calibration (the estimation of internal camera parameters
during bundle adjustment) was first discussed around 1964 and implemented by 1968
[19]. Camera models were greatly refined in the early 1970’s, with the investigation of
many alternative sets ofadditional (distortion) parameters [17–19]. Even with stable
and carefully calibrated aerial photogrammetry cameras, self calibration significantly im-
proved accuracies (by factors of around 2–10). This lead to rapid improvements in camera
design as previously unmeasurable defects like film platten non-flatness were found and
corrected. Much of this development was lead by Brown and his collaborators. See [19]
for more of the history and references.
Brown’s initial 1958 bundle method [16, 19] uses block matrix techniques to elimi-

nate the structure parameters from the normal equations, leaving only the camera pose
parameters. The resultingreduced camera subsystemis then solved by dense Gaussian
elimination, and back-substitution gives the structure. For self-calibration, a second reduc-
tion from pose to calibration parameters can be added in the same way. Brown’s method is
probably what most vision researchers think of as ‘bundle adjustment’, following descrip-
tions by Slama [100] and Hartley [58, 59]. It is still a reasonable choice for small dense
networks28, but it rapidly becomes inefficient for the large sparse ones that arise in aerial
cartography and large-scale site modelling.
For larger problems, more of the natural sparsity has to be exploited. In aerial cartog-

raphy, the regular structure makes this relatively straightforward. The images are arranged
in blocks— rectangular or irregular grids designed for uniform ground coverage, formed
from parallel 1Dstrips of images with about 50–70% forward overlap giving adjacent
stereo pairs or triplets, about 10–20% side overlap, and a few known ground control points

27 Calibration always denotesinternal camera parameters (“interior orientation”) in photogram-
metric terminology. External calibration is calledposeor (exterior) orientation .

28 A photogrammetric network isdenseif most of the 3D features are visible in most of the images,
andsparseif most features appear in only a few images. This corresponds directly to the density
or sparsity of the off-diagonal block (feature-camera coupling matrix) of the bundle Hessian.
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sprinkled sparsely throughout the block. Features are shared only between neighbouring
images, and images couple in the reduced camera subsystem only if they share common
features. So if the images are arranged in strip or cross-strip ordering, the reduced cam-
era system has a triply-banded block structure (the upper and lower bands representing,
e.g., right and left neighbours, and the central band forward and backward ones). Several
efficient numerical schemes exist for suchmatrices. The first wasGyer &Brown’s 1967re-
cursive partitioning method [57, 19], which is closely related to Helmert’s 1880 geodesic
method [64]. (Generalizations of these have become one of the major families of modern
sparsematrix methods [40, 26, 11]). The basic idea is to split the rectangle into two halves,
recursively solving each half and gluing the two solutions together along their common
boundary. Algebraically, the variables are reordered into left-half-only, right-half-only and
boundary variables, with the latter (representing the only coupling between the two halves)
eliminated last. The technique is extremely effective for aerial blocks and similar problems
where smallseparating setsof variables can be found. Brown mentions adjusting a block
of 162 photos on a machine with only 8k words of memory, and 1000 photo blocks were
already feasible by mid-1967 [19]. For less regular networks such as site modelling ones
it may not be feasible to choose an appropriate variable ordering beforehand, but efficient
on-line ordering methods exist [40, 26, 11] (see§6.3).
Independent model methods:These approximate bundle adjustment by calculating a
number of partial reconstructions independently and merging them by pairwise 3D align-
ment. Even when the individual models and alignments are separately optimal, the result
is suboptimal because the the stresses produced by alignment are not propagated back
into the individual models. (Doing so would amount to completing one full iteration of
an optimal recursive decomposition style bundle method— see§8.2). Independent model
methods were at one time the standard in aerial photogrammetry [95, 2, 100, 73], where
they were used to merge individual stereo pair reconstructions within aerial strips into
a global reconstruction of the whole block. They are always less accurate than bundle
methods, although in some cases the accuracy can be comparable.

First order & approximate bundle algorithms: Another recurrent theme is the use of
approximations or iterative methods to avoid solving the full Newton update equations.
Most of the plausible approximations have been rediscovered several times, especially
variants of alternate stepsof resection (finding thecameraposes fromknown3Dpoints) and
intersection (finding the 3Dpoints fromknowncamera poses), and the linearized version of
this, the blockGauss-Seidel iteration. Brown’s group had already experimentedwith Block
Successive Over-Relaxation (BSOR — an accelerated variant of Gauss-Seidel) by 1964
[19], before they developed their recursive decomposition method. Both Gauss-Seidel and
BSORwere also applied to the independent model problem around this time [95, 2]. These
methods are mainly of historical interest. For large sparse problems such as aerial blocks,
they can not compete with efficiently organized second order methods. Because some
of the inter-variable couplings are ignored, corrections propagate very slowly across the
network (typically one step per iteration), andmany iterations are required for convergence
(see§7).
Quality control: In parallel with this algorithmic development, two important theoretical
developments took place. Firstly, the Dutch geodesist W. Baarda led a long-running work-
ing group that formulated a theory of statistical reliability for least squares estimation [7,
8]. This greatly clarified the conditions (essentiallyredundancy) needed to ensure that
outliers could be detected from their residuals (inner reliability ), and that any remaining
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undetected outliers had only a limited effect on the final results (outer reliability ). A. Grün
[49, 50] and W. F̈orstner [30, 33, 34] adapted this theory to photogrammetry around 1980,
and also gave some early correlation and covariance based model selection heuristics de-
signed to control over-fitting problems caused by over-elaborate camera models in self
calibration.

Datum / gauge freedom:Secondly, as problem size and sophistication increased, it
became increasingly difficult to establish sufficiently accurate control points for large
geodesic and photogrammetric networks. Traditionally, the network had been viewed as
a means of ‘densifying’ a fixed control coordinate system — propagating control-system
coordinates from a few known control points to many unknown ones. But this viewpoint
is suboptimal when the network is intrinsically more accurate than the control, because
most of the apparent uncertainty is simply due to the uncertain definition of the control
coordinate system itself. In the early 1960’s,Meissl studied this problemand developed the
first free network approach, in which the reference coordinate system floated freely rather
than being locked to any given control points [87, 89]. More precisely, the coordinates
are pinned to a sort of average structure defined by so-calledinner constraints. Owing
to the removal of control-related uncertainties, the nominal structure covariances become
smaller and easier to interpret, and the numerical bundle iteration also converges more
rapidly. Later, Baarda introduced another approach to this theory based onS-transforms
— coordinate transforms between uncertain frames [6, 21, 22, 25].

Least squares matching:All of the above developments originally used manually ex-
tracted image points. Automated image processing was clearly desirable, but it only grad-
ually became feasible owing to the sheer size and detail of photogrammetric images. Both
feature based,e.g. [31, 32], and direct (region based) [1, 52, 55, 110]methodswere studied,
the latter especially for matching low-contrast natural terrain in cartographic applications.
Both rely on some form ofleast squares matching(as image correlation is called in pho-
togrammetry). Correlation based matching techniques remain the most accurate methods
of extracting precise translations from images, both for high contrast photogrammetric
targets and for low contrast natural terrain. Starting from around 1985, Grün and his co-
workers combined region based least squaresmatchingwith various geometric constraints.
Multi-photo geometrically constrainedmatchingoptimizes thematch overmultiple im-
ages simultaneously, subject to the inter-image matching geometry [52, 55, 9]. For each
surface patch there is a single search over patch depth and possibly slant, whichsimulta-
neouslymoves it along epipolar lines in the other images. Initial versions assumed known
camera matrices, but a full patch-based bundle method was later investigated [9]. Related
methods in computer vision include [94, 98, 67].Globally enforced least squaresmatch-
ing [53, 97, 76] further stabilizes the solution in low-signal regions by enforcing continuity
constraints between adjacent patches. Patches are arranged in a grid and matched using
local affine or projective deformations, with additional terms to penalize mismatching at
patch boundaries. Related work in vision includes [104, 102]. The inter-patch constraints
give a sparsely-coupled structure to the least squares matching equations, which can again
be handled efficiently by recursive decomposition.
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B Matrix Factorization

This appendix covers some standard material on matrix factorization, including the tech-
nical details of factorization, factorization updating, and covariance calculation methods.
See [44, 11] for more details.

Terminology: Depending on the factorization, ‘L’ stands for lower triangular, ‘U’ or ‘R’
for upper triangular, ‘D’ or ‘S’ for diagonal, ‘Q’ or ‘U’,‘V’ for orthogonal factors.

B.1 Triangular Decompositions

Any matrixA has a family of block (lower triangular)*(diagonal)*(upper triangular) fac-
torizationsA = L D U:

A = L D U(
A11 A12 ··· A1n
A21 A22 ··· A2n...

...
...
...

Am1 Am2 ··· Amn

)
=




L11
L21 L22...

...
...

...
...

...
Lm1 Lm2 ··· Lmr



(

D1
D2 ...

Dr

)(
U11 U12 ··· ··· U1n

U22 ··· ··· U2n...
...

··· Urn

)

(50)

Lii Di Uii = Aii , i = j

Lij ≡ Aij U−1
jj D−1

j , i > j

Uij ≡ D−1
i L−1

ii Aij , i < j




Aij ≡ Aij −
∑

k<min(i,j) Lik Dk Ukj

= Aij −
∑

k<min(i,j) Aik A
−1

kk Akj

(51)

Here, the diagonal blocksD1 . . .Dr−1 must be chosen to be square and invertible, andr
is determined by the rank ofA. The recursion (51) follows immediately from the product
Aij = (L D U)ij =

∑
k≤min(i,j) Lik Dk Ukj . Given such a factorization, linear equations

can be solved by forwards and backwards substitution as in (22–24).
The diagonal blocks ofL,D,U can be chosen freely subject toLii Dii Uii = Aii,

but once this is done the factorization is uniquely defined. ChoosingLii = Dii = 1 so
thatUii = Aii gives the (block)LU decompositionA = L U, the matrix representation
of (block) Gaussian elimination. ChoosingLii = Uii = 1 so thatDi = Aii gives the
LDU decomposition. If A is symmetric, the LDU decomposition preserves the symmetry
and becomes theLDL� decompositionA = L D L� whereU = L� andD = D�. If A
is symmetric positive definite we can setD = 1 to get theCholesky decomposition
A = L L�, whereLii L�

ii = Aii (recursively) defines the Cholesky factorLii of the positive
definite matrixAii. (For a scalar, Chol(a) =

√
a). If all of the blocks are chosen to be

1×1, we get the conventional scalar forms of these decompositions. These decompositions
are obviously equivalent, but for speed and simplicity it is usual to use the most specific
one that applies: LU for general matrices, LDL� for symmetric ones, and Cholesky for
symmetric positive definite ones. For symmetric matrices such as the bundle Hessian,
LDL� / Cholesky are 1.5–2 times faster than LDU / LU. We will use the general form (50)
below as it is trivial to specialize to any of the others.

Loop ordering: From (51), theij block of the decomposition depends only on the the
upper left(m− 1)× (m− 1) submatrix and the firstm elements of rowi and columnj of
A, wherem = min(i, j). This allows considerable freedom in the ordering of operations
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during decomposition,which canbeexploited to enhanceparallelismand improvememory
cache locality.

Fill in: If A is sparse, itsL andU factors tend to become ever denser as the decomposition
progresses. Recursively expandingAik andAkj in (51) gives contributions of the form
±Aik A

−1

kk Akl · · ·Apq A
−1

qq Aqj for k, l . . . p, q < min(i, j). So even ifAij is zero, if there
is any path of the formi → k → l → . . . → p → q → j via non-zeroAkl with
k, l . . . p, q < min(i, j), theij block of the decomposition will genericallyfill-in (become
non-zero). The amount of fill-in is strongly dependent on the ordering of the variables
(i.e. of the rows and columns ofA). Sparse factorization methods (§6.3) manipulate this
ordering to minimize either fill-in or total operation counts.

Pivoting: For positive definite matrices, the above factorizations are very stable because
thepivots Aii must themselves remain positive definite. More generally, the pivots may
become ill-conditioned causing the decomposition to break down. To deal with this, it is
usual to search the undecomposed part of the matrix for a large pivot at each step, and
permute this into the leadingpositionbeforeproceeding. Thestablest policy isfull pivoting
which searches the whole submatrix, but usually a less costlypartial pivoting search
over just the current column (column pivoting) or row (row pivoting ) suffices. Pivoting
ensures thatL and/orU are relatively well-conditioned and postpones ill-conditioning in
D for as long as possible, but it can not ultimately makeD any better conditioned thanA is.
Column pivoting is usual for the LU decomposition, but if applied to a symmetric matrix
it destroys the symmetry and hence doubles the workload.Diagonal pivoting preserves
symmetry by searching for the largest remaining diagonal element and permuting both
its row and its column to the front. This suffices for positive semidefinite matrices (e.g.
gauge deficient Hessians). For general symmetric indefinite matrices (e.g. the augmented
Hessians

(
H C

C� 0

)
of constrained problems (12)), off-diagonal pivots can not be avoided29,

but there are fast, stable, symmetry-preserving pivoted LDL� decompositions with block
diagonalD having 1 × 1 and 2 × 2 blocks. Full pivoting is possible (Bunch-Parlett
decomposition), butBunch-Kaufman decompositionwhich searches the diagonal and
only one or at most two columns usually suffices. This method is nearly as fast as pivoted
Cholesky decomposition (to which it reduces for positive matrices), and as stable LU
decomposition with partial pivoting.̊Asen’s methodhas similar speed and stability but
produces a tridiagonalD. The constrained Hessian

(
H C

C� 0

)
has further special properties

owing to its zero block, but we will not consider these here — see [44,§4.4.6 Equilibrium
Systems].

B.2 Orthogonal Decompositions

For least squares problems, there is an alternative family of decompositions based on
orthogonal reduction of the JacobianJ = dz

dx . Given any rectangular matrixA, it can be
decomposed asA = Q RwhereR is upper triangular andQ is orthogonal (i.e., its columns
are orthonormal unit vectors). This is called theQR decompositionof A. R is identical
to the right Cholesky factor ofA� A = (R� Q�)(Q R) = R� R. The solution of the linear
29 The archetypical failure is the unstable LDL� decomposition of the well-conditioned symmetric

indefinite matrix( ε 1
1 0 ) =

( 1 0
1/ε 1

)(
ε 0
0 −1/ε

)(
1 1/ε
0 1

)
, for ε → 0. Fortunately, for small

diagonal elements, permuting the dominant off-diagonal element next to the diagonal and leaving
the resulting2 × 2 block undecomposed inD suffices for stability.
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least squares problemminx ‖A x−b‖2 is x = R−1Q� b, andR−1Q� is the Moore-Penrose
pseduo-inverse ofA. The QR decomposition is calculated by finding a series of simple
rotations that successively zero below diagonal elements ofA to formR, and accumulating
the rotations inQ, Q� A = R. Various types of rotations can be used.Givens rotations
are the fine-grained extreme: one-parameter2× 2 rotations that zero a single element of
A and affect only two of its rows.Householder reflectionsare coarser-grained reflections
in hyperplanes1 − 2 v v�

‖v‖2 , designed to zero an entire below-diagonal column ofA and
affecting all elements ofA in or below the diagonal row of that column. Intermediate
sizes of Householder reflections can also be used, the2 × 2 case being computationally
equivalent, and equal up to a sign, to the corresponding Givens rotation. This is useful for
sparseQRdecompositions,e.g. multifrontalmethods (see§6.3 and [11]). TheHouseholder
method is the most common one for general use, owing to its speed and simplicity. Both
theGivens andHouseholdermethods calculateR explicitly, butQ is not calculated directly
unless it is explicitly needed. Instead, it is stored in factorized form (as a series of2 × 2
rotations or Householder vectors), and applied piecewise when needed. In particular,Q� b
is needed to solve the least squares system, but it can be calculated progressively as part of
the decomposition process. As for Cholesky decomposition, QR decomposition is stable
without pivoting so long asA has full column rank and is not too ill-conditioned. For
degenerateA, Householder QR decomposition with column exchange pivoting can be
used. See [11] for more information about QR decomposition.
Both QR decomposition ofA and Cholesky decomposition of the normal matrixA� A

can be used to calculate the Cholesky / QR factorR and to solve least squares problems
with designmatrix / JacobianA. TheQRmethod runs about as fast as the normal / Cholesky
one for squareA, but becomes twice as slow for long thinA (i.e. many observations in
relatively few parameters). However, the QR is numerically much stabler than the normal /
Cholesky one in the following sense: ifA has condition number (ratio of largest to smallest
singular value)c and the machine precision isε, the QR solution has relative errorO(cε),
whereas the normal matrixA� A has condition numberc2 and its solution has relative error
O(c2ε). This matters only ifc2ε approaches the relative accuracy to which the solution
is required. For example, even in accurate bundle adjustments, we do not need relative
accuracies greater than about1 : 106. As ε ∼ 10−16 for double precision floating point,
we can safely use the normal equation method forc(J) � 105, whereas the QR method is
safe up toc(J) � 1010, whereJ is the bundle Jacobian. In practice, the Gauss-Newton /
normal equation approach is used in most bundle implementations.
Individual Householder reflections are also useful for projecting parametrizations of

geometric entities orthogonal to some constraint vector. For example, for quaternions
or homogeneous projective vectorsX, we often want to enforce spherical normalization
‖X‖2 = 1. To first order, only displacementsδXorthogonal toXareallowed,X� δX = 0.
To parametrize the directions we can move in, we need a basis for the vectors orthogonal
toX. A Householder reflectionQ based onX convertsX to (1 0 . . . 0)� and hence the
orthogonal directions to vectors of the form(0 ∗ . . . ∗)�. So ifU contains rows 2–n of Q,
we can reduce JacobiansddX to then − 1 independent parametersδu of the orthogonal
subspace by post-multiplying byU�, and once we have solved forδu, we can recover
the orthogonalδX ≈ U δu by premultiplying byU. Multiple constraints can be enforced
by successiveHouseholder reductionsof this form. This corresponds exactly to theLQ
method for solving constrained least squares problems [11].
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L = profile cholesky decomp(A)
for i = 1 to n do
for j = first(i) to i do

a = Aij −
j−1∑

k=max(first(i),first(j))

Lik Ljk

Lij = (j < i) ? a / Ljj :
√
a

x = profile cholesky forward subs(A, b)
for i = first(b) to n do

xi =
(

bi −
i−1∑

k=max(first(i),first(b))

Lik xk

)
/ Lii

y = profile cholesky back subs(A, x)
y = x
for i = last(b) to 1 step−1 do

for k = max(first(i), first(y)) to i do
yk = yk − yi Lik

yi = yi / Lii

Fig. 10.A complete implementation of profile Cholesky decomposition.

B.3 Profile Cholesky Decomposition

One of the simplest sparse methods suitable for bundle problems isprofile Cholesky
decomposition. With natural (features then cameras) variable ordering, it is as efficient
as any method for dense networks (i.e. most features visible in most images, giving dense
camera-feature coupling blocks in the Hessian).With suitable variable ordering30, it is also
efficient for some types of sparse problems, particularly ones with chain-like connectivity.
Figure 10 shows the complete implementation of profile Cholesky, including decom-

positionL L� = A, forward substitutionx = L−1b, and back substitutiony = L−� x.
first(b), last(b) are the indices of the first and last nonzero entries ofb, and first(i) is the
index of the first nonzero entry in rowi of A and henceL. If desired,L, x, y can overwrite
A,b, x during decomposition to save storage. As always with factorizations, the loops can
be reordered in several ways. These have the same operation counts but different access
patterns and hence memory cache localities, which on modern machines can lead to sig-
nificant performance differences for large problems. Here we store and accessA andL
consistently by rows.

B.4 Matrix Inversion and Covariances

When solving linear equations, forward-backward substitutions (22, 24) are much faster
than explicitly calculating and multiplying byA−1, and numerically stabler too. Explicit
inverses are only rarely needed,e.g. to evaluate the dispersion (“covariance”) matrixH−1.
Covariance calculation is expensive for bundle adjustment: nomatter howsparseHmaybe,
H−1 is always dense. Given a triangular decompositionA = L D U, the most obvious way
to calculateA−1 is via the productA−1 = U−1D−1L−1, whereL−1 (which is lower triangular)
is found using a recurrence based on eitherL−1L = 1 orL L−1 = 1 as follows (and similarly
but transposed forU):

(L−1)ii = (Lii)−1, (L−1)ji = −L−1
jj

(
j−1∑
k=i

Ljk (L−1)ki

)
= −

(
j∑

k=i+1

(L−1)jk Lki

)
L−1

ii

i=1...n , j=i+1...n i=n...1 , j=n...i+1

(52)
30 Snay’s Banker’s strategy (§6.3, [101, 24]) seems to be one of themost effective ordering strategies.
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Alternatively [45, 11], the diagonal and the (zero) upper triangle of the linear system
U A−1 = D−1L−1 can be combined with the (zero) lower triangle ofA−1L = U−1D−1 to give
the direct recursion (i = n . . . 1 andj = n . . . i + 1):

(A−1)ji = −
(

n∑
k=i+1

(A−1)jk Lki

)
L−1

ii , (A−1)ij = −U−1
ii

(
n∑

k=i+1

Uik (A−1)kj

)

(A−1)ii = U−1
ii

(
D−1

i L−1
ii −

n∑
k=i+1

Uik (A−1)ki

)
=

(
U−1

ii D−1
i −

n∑
k=i+1

(A−1)ik Lki

)
L−1

ii

(53)

In the symmetric case(A−1)ji = (A−1)ij so we can avoid roughly half of the work. If only a
few blocks ofA−1 are required (e.g. the diagonal ones), this recursion has the property that
the blocks ofA−1 associated with the filled positions ofL andU can be calculated without
calculating any blocks associated with unfilled positions. More precisely, to calculate
(A−1)ij for which Lji (j > i) or Uji (j < i) is non-zero, we do not need any block
(A−1)kl for which Llk = 0 (l > k) or Ulk = 0 (l < k) 31. This is a significant saving if
L,U are sparse, as in bundle problems. In particular, given the covariance of the reduced
camera system, the 3D feature variances and feature-camera covariances can be calculated
efficiently using (53) (or equivalently (17), whereA ← Hss is the block diagonal feature
Hessian andD2 is the reduced camera one).

B.5 Factorization Updating

For on-line applications (§8.2), it is useful to be able toupdate the decompositionA =
L D U to account for a (usually low-rank) changeA → A ≡ A ± B W C. Let B ≡ L−1B
andC ≡ C U−1 so thatL−1A U−1 = D ± B W C. This low-rank update ofD can be LDU
decomposed efficiently. Separating the first block ofD from the others we have:

(
D1

D2

)
±
(

B1

B2

)
W ( C1 C2 ) =

(
1

±B2 W C1 D
−1
1 1

)(
D1

D2

)(
1 ±D

−1
1 B1 W C2

1

)
D1 ≡ D1 ± B1 W C1 D2 ≡ D2 ± B2

(
W ∓W C1 D

−1

1 B1 W
)

C2

(54)

D2 is a low-rank update ofD2 with the sameC2 andB2 but a differentW. Evaluating
this recursively and merging the resulting L and U factors intoL andU gives the updated

31 This holds because of the way fill-in occurs in the LDU decomposition. Suppose that we want to
find (A−1)ij , wherej > i andLji �= 0. For this we need(A−1)kj for all non-zeroUik, k > i. But
for theseAjk = Lji Di Uik + . . .+ Ajk �= 0, so(A−1)kj is associated with a filled position and
will already have been evaluated.
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decomposition32 A = L D U :

W(1) ← ±W ; B(1) ← B ; C(1) ← C ;
for i = 1 to n do

Bi ← B(i)
i ; Ci ← C(i)

i ; Di ← Di + Bi W(i) Ci ;

W(i+1) ← W(i) −W(i) Ci D
−1

i Bi W(i) =
(
(W(i))−1 + Ci D−1

i Bi

)−1

;

for j = i + 1 to n do

B(i+1)
j ← B(i)

j − Lji Bi ; Lji ← Lji + B(i+1)
j W(i+1) Ci D−1

i ;
C(i+1)

j ← C(i)
j − Ci Uij ; Uij ← Uij + D−1

i Bi W(i+1) C(i+1)
j ;

(55)

TheW−1 form of theW update is numerically stabler for additions (‘+’ sign inA±B W C
with positiveW), but is not usable unlessW(i) is invertible. In either case, the update
takes timeO((k2 + b2)N2

)
whereA isN×N ,W is k×k and theDi areb×b. So other

things being equal,k should be kept as small as possible (e.g. by splitting the update into
independent rows using an initial factorization ofW, and updating for each row in turn).
The scalar Cholesky form of this method for a rank one updateA→ A + w b b� is:

w(1) ← w ; b(1) ← b ;
for i = 1 to n do

bi ← b(i)
i /Lii ; di ← 1 + w(i) b

2
i ; Lii ← Lii

√
di ;

w(i+1) ← w(i)/di ;
for j = i + 1 to n do

b(i+1)
j ← b(i)

j − Lji bi ; Lji ←
(

Lji + b(i+1)
j w(i+1) bi

)√
di ;

(56)

This takesO(n2
)
operations. The same recursion rule (and several equivalent forms) can

be derived by reducing(L b)� to an upper triangular matrix using Givens rotations or
Householder transformations [43, 11].

C Software

C.1 Software Organization

For a general purpose bundle adjustment code, an extensible object-based organization is
natural. The measurement network can be modelled as a network of objects, representing
measurements and their error modelsand the different types of3D featuresandcamera
modelsthat they depend on. It is obviously useful to allow the measurement, feature and
camera types to be open-ended. Measurements may be 2D or 3D, implicit or explicit, and
many different robust error models are possible. Features may range from points through
curves and homographies to entire 3D object models. Many types of camera and lens

32 Here, B(i)
j = Bj − ∑i−1

k=1 Ljk Bk =
∑j

k=i Ljk Bk and C(i)
j = Cj − ∑i−1

k=1 Ck Lkj =∑j
k=i Ck Ukj accumulateL−1BandC U−1. For theL,UupdatesonecanalsouseW(i+1) Ci D−1

i =
W(i) Ci D

−1
i andD

−1
i Bi W(i+1) = D

−1
i Bi W(i).
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distortionmodels exist. If the scene is dynamic or articulated, additional nodes representing
3D transformations (kinematic chains or relative motions) may also be needed.
Themain purposeof the network structure is to predict observations and their Jacobians

w.r.t. the free parameters, and then to integrate the resulting first order parameter updates
back into the internal 3D feature and camera state representations. Prediction is essentially
a matter of systematically propagating values through the network, with heavy use of the
chain rule for derivative propagation. The network representation must interface with a
numerical linear algebra one that supports appropriatemethods for forming and solving the
sparse, damped Gauss-Newton (or other) step prediction equations. A fixed-order sparse
factorizationmay suffice for simple networks, while automatic variable ordering is needed
for more complicated networks and iterative solution methods for large ones.
Several extensible bundle codes exist, but as far as we are aware, none of them are

currently available as freeware. Our own implementations include:
• Carmen [59] is a program for camera modelling and scene reconstruction using itera-
tive nonlinear least squares. It has a modular design that allows many different feature,
measurement and camera types to be incorporated (including some quite exotic ones
[56, 63]). It uses sparse matrix techniques similar to Brown’s reduced camera system
method [19] to make the bundle adjustment iteration efficient.

• Horatio (http://www.ee.surrey.ac.uk/Personal/P.McLauchlan/horatio/html, [85], [86],
[83], [84]) is a C library supporting the development of efficient computer vision ap-
plications. It contains support for image processing, linear algebra and visualization,
and will soon be made publicly available. The bundle adjustment methods in Horatio,
which are based on the Variable State Dimension Filter (VSDF) [83, 84], are being
commercialized. These algorithms support sparse block matrix operations, arbitrary
gauge constraints, global and local parametrizations, multiple feature types and camera
models, as well as batch and sequential operation.

• vxl: This modular C++ vision environment is a new, lightweight version of the Tar-
getJr/IUE environment, which is being developed mainly by the Universities of Oxford
and Leuven, and General Electric CRD. The initial public release on
http://www.robots.ox.ac.uk/∼vxl will include an OpenGL user interface and classes
for multiple view geometry and numerics (the latter being mainly C++ wrappers to well
established routines from Netlib — see below). A bundle adjustment code exists for it
but is not currently planned for release [28, 62].

C.2 Software Resources

A great deal of useful numerical linear algebra and optimization software is available on
the Internet, although more commonly inFortran than in C/C++. The main reposi-
tory isNetlib at http://www.netlib.org/. Other useful sites include: the ‘Guide to Avail-
ableMathematical Software’ GAMSat http://gams.nist.gov; theNEOSguide http://www-
fp.mcs.anl.gov/otc/Guide/, which is based in part onMoré &Wright’s guidebook [90]; and
the Object Oriented Numerics page http://oonumerics.org. For large-scale dense linear al-
gebra, LAPACK (http://www.netlib.org/lapack, [3]) is the best package available. However
it is optimized for relatively largeproblems (matricesof size100ormore), so if youaresolv-
ingmany small ones (size less than 20 or so) it may be faster to use the older LINPACKand
EISPACK routines. These libraries all use the BLAS (Basic Linear Algebra Subroutines)
interface for low levelmatrixmanipulations,optimizedversionsofwhichareavailable from
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most processor vendors. They are allFortran based, but C/C++ versions and interfaces
exist (CLAPACK,
http://www.netlib.org/clapack; LAPACK++, http://math.nist.gov/lapack++). For sparse
matrices there is a bewildering array of packages. One good one is Boeing’s SPOOLES
(http://www.netlib.org/linalg/spooles/spooles.2.2.html) which implements sparse Bunch-
Kaufman decomposition in C with several ordering methods. For iterative linear system
solvers implementation is seldom difficult, but there are again many methods and imple-
mentations. The ‘Templates’ book [10] contains potted code. For nonlinear optimization
there are various older codes such as MINPACK, and more recent codes designed mainly
for very large problems such as MINPACK-2 (ftp://info.mcs.anl.gov/pub/MINPACK-2)
and LANCELOT (http://www.cse.clrc.ac.uk/Activity/LANCELOT). (Both of these latter
codes have good reputations for other large scale problems, but as far as we are aware they
have not yet been tested on bundle adjustment). All of the above packages are freely avail-
able.Commercial vendors suchasNAG (ttp://www.nag.co.uk) and IMSL (www.imsl.com)
have their own optimization codes.

Glossary

This glossary includes a few common terms from vision, photogrammetry, numerical optimization
and statistics, with their translations.

Additional parameters: Parameters added to the basic perspective model to represent lens distor-
tion and similar small image deformations.

α-distribution: A family of wide tailed probability distributions, including theCauchy distribu-
tion (α = 1) and the Gaussian (α = 2).

Alternation: A family of simplistic and largely outdated strategies for nonlinear optimization (and
also iterative solution of linear equations). Cycles through variables or groups of variables, opti-
mizing over each in turn while holding all the others fixed. Nonlinear alternation methods usually
relinearize the equations after each group, whileGauss-Seidelmethods propagate first order cor-
rections forwards and relinearize only at the end of the cycle (the results are the same to first
order).Successive over-relaxationadds momentum terms to speed convergence. Seesepara-
ble problem. Alternation ofresectionandintersection is a näıve and often-rediscovered bundle
method.

Asymptotic limit: In statistics, the limit as the number of independent measurements is increased
to infinity, or as the second order moments dominate all higher order ones so that the posterior
distribution becomes approximately Gaussian.

Asymptotic convergence: In optimization, the limit of small deviations from the solution,i.e. as
the solution is reached.Second orderor quadratically convergentmethods such asNewton’s
method squarethe norm of the residual at each step, whilefirst order or linearly convergent
methods such asgradient descentandalternation only reduce the error by a constant factor at
each step.

Banker’s strategy: Seefill in , §6.3.
Block: A (possibly irregular) grid of overlapping photos in aerial cartography.
Bunch-Kauffman: A numerically efficient factorizationmethod for symmetric indefinitematrices,

A = L D L� whereL is lower triangular andD is block diagonal with1 × 1 and2 × 2 blocks
(§6.2, B.1).

Bundle adjustment: Any refinementmethod for visual reconstructions that aims to produce jointly
optimal structure and camera estimates.
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Calibration: In photogrammetry, this always meansinternalcalibration of the cameras. Seeinner
orientation.

Central limit theorem: States thatmaximum likelihoodandsimilar estimators asymptotically have
Gaussian distributions. The basis of most of our perturbation expansions.

Cholesky decomposition:Anumerically efficient factorizationmethod for symmetric positive def-
inite matrices,A = L L�whereL is lower triangular.

Close Range:Any photogrammetric problem where the scene is relatively close to the camera,
so that it has significant depth compared to the camera distance. Terrestrial photogrammetry as
opposed toaerial cartography.

Conjugate gradient: A cleverly accelerated first order iteration for solving positive definite linear
systems or minimizing a nonlinear cost function. SeeKrylov subspace.

Cost function: The function quantifying the total residual error that is minimized in an adjustment
computation.

Cramér-Rao bound: SeeFisher information .
Criterion matrix: In network design, an ideal or desired form for a covariance matrix.
Damped Newton method: Newton’s methodwith a stabilizing step control policy added. See

Levenberg-Marquardt .
Data snooping: Elimination of outliers based on examination of their residual errors.
Datum: A reference coordinate system, against which other coordinates and uncertainties are mea-
sured. Our principle example of agauge.

Dense: A matrix or system of equations with so few known-zero elements that it may as well be
treated as having none. The opposite ofsparse. For photogrammetric networks,densemeans that
the off-diagonal structure-camera block of the Hessian is dense,i.e. most features are seen in most
images.

Descent direction: In optimization, anysearchdirectionwithadownhill component,i.e. that locally
reduces the cost.

Design: The process of defining ameasurement network (placement of cameras, number of images,
etc.) to satisfy given accuracy and quality criteria.

Design matrix: The observation-state JacobianJ = dz
dx .

Direct method: Dense correspondence or reconstruction methods based directly on cross-correlat-
ing photometric intensities or related descriptor images, without extracting geometric features.
Seeleast squares matching, feature based method.

Dispersion matrix: The inverse of the cost functionHessian, a measure of distribution spread. In
theasymptotic limit , the covariance is given by the dispersion.

Downdating: On-the-fly removal of observations, without recalculating everything from scratch.
The inverse ofupdating.

Elimination graph: A graph derived from thenetwork graph, describing the progress offill in
during sparse matrix factorization.

Empirical distribution: A set of samples from some probability distribution, viewed as an sum-
of-delta-function approximation to the distribution itself. Thelaw of large numbersasserts that
the approximation asymptotically converges to the true distribution in probability.

Fill-in: The tendency of zero positions to become nonzero as sparsematrix factorization progresses.
Variable ordering strategiesseek to minimize fill-in by permuting the variables before factor-
ization. Methods includeminimum degree, reverse Cuthill-McKee, Banker’s strategies, and
nested dissection. See§6.3.

Fisher information: In parameter estimation, the mean curvature of the posterior log likelihood
function, regarded as ameasure of the certainty of an estimate. TheCramér-Rao boundsays that
any unbiased estimator has covariance≥ the inverse of the Fisher information.
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Free gauge / free network: A gaugeor datum that is defined internally to the measurement net-
work, rather than being based on predefined reference features like afixed gauge.

Feature based: Sparse correspondence / reconstructionmethodsbasedongeometric image features
(points, lines, homographies. . . ) rather than direct photometry. Seedirect method.

Filtering: In sequential problems such as time series, the estimation of a current value using all
of the previous measurements.Smoothing can correct this afterwards, by integrating also the
information from future measurements.

First order method / convergence: Seeasymptotic convergence.
Gauge: An internal or external referencecoordinate systemdefined for the current state and (at least)
small variations of it, against which other quantitiesand their uncertaintiescan be measured. The
3D coordinate gauge is also called thedatum. A gauge constraint is any constraint fixing a
specific gauge,e.g. for the current state and arbitrary (small) displacements of it. The fact that
the gauge can be chosen arbitrarily without changing the underlying structure is calledgauge
freedomorgauge invariance. The rank-deficiency that this transformation-invariance of the cost
function induces on the Hessian is calledgauge deficiency. Displacements that violate the gauge
constraints can be corrected by applying anS-transform, whose linear form is agauge projection
matrix PG .

Gauss-Markov theorem: This says that for a linear system, least squares weighted by the true
measurement covariancesgives theBest (minimumvariance)LinearUnbiasedEstimatororBLUE.

Gauss-Newton method:ANewton-like method for nonlinear least squares problems, in which the
Hessian is approximated by the Gauss-Newton oneH ≈ J� W J whereJ is thedesign matrix
andW is a weight matrix. Thenormal equationsare the resulting Gauss-Newton step prediction
equations(J� W J) δx = −(J W �z).

Gauss-Seidel method:Seealternation.
Givens rotation: A 2 × 2 rotation used to as part of orthogonal reduction of a matrix,e.g. QR,
SVD. SeeHouseholder reflection.

Gradient: The derivative of the cost function w.r.t. the parametersg = df
dx .

Gradient descent: Näıve optimization method which consists of steepest descent (in some given
coordinate system) down the gradient of the cost function.

Hessian: Thesecondderivativematrix of the cost functionH = d2f
dx2 . Symmetric andpositive (semi-

)definite at a cost minimum. Measures how ‘stiff’ the state estimate is against perturbations. Its
inverse is thedispersion matrix.

Householder reflection: A matrix representing reflection in a hyperplane, used as a tool for or-
thogonal reduction of a matrix,e.g. QR, SVD. SeeGivens rotation.

Independent model method: A suboptimal approximation to bundle adjustment developed for
aerial cartography. Small local 3D models are reconstructed, each from a few images, and then
glued together viatie featuresat their common boundaries, without a subsequent adjustment to
relax the internal stresses so caused.

Inner: Internal or intrinsic.
Inner constraints: Gauge constraintslinking the gauge to some weighted average of the recon-
structed features and cameras (rather than to an externally supplied reference system).

Inner orientation: Internal camera calibration, including lens distortion,etc.

Inner reliability: Theability to either resist outliers, or detect and reject thembasedon their residual
errors.

Intersection: (of optical rays). Solving for 3D feature positions given the corresponding image
features and known 3D camera poses and calibrations. Seeresection, alternation.

Jacobian: Seedesign matrix.
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Krylov subspace: The linear subspace spanned by the iterated products{Ak b|k = 0 . . . n} of
somesquarematrixAwith somevectorb, used as a tool for generating linear algebra and nonlinear
optimization iterations.Conjugate gradient is the most famous Krylov method.

Kullback-Leibler divergence: Seerelative entropy.
Least squares matching: Image matching based on photometric intensities. Seedirect method.
Levenberg-Marquardt: A common damping (step control) method for nonlinear least squares
problems, consisting of adding a multipleλD of some positive definite weight matrixD to the
Gauss-Newton Hessian before solving for the step. Levenberg-Marquardt uses a simple rescaling
based heuristic for settingλ, while trust region methods use a more sophisticated step-length
based one. Such methods are calleddamped Newtonmethods in general optimization.

Local model: In optimization, a local approximation to the function being optimized, which is easy
enough to optimize that an iterative optimizer for the original function can be based on it. The
second order Taylor series model givesNewton’s method.

Local parametrization: Aparametrization of a nonlinear space based on offsets from some current
point. Used during an optimization step to give better local numerical conditioning than a more
global parametrization would.

LU decomposition: The usual matrix factorization form of Gaussian elimination.
Minimum degree ordering: One of themost widely used automatic variable orderingmethods for
sparse matrix factorization.

Minimum detectable gross error: Thesmallest outlier that canbedetectedonaveragebyanoutlier
detection method.

Nested dissection:A top-down divide-and-conquervariable ordering method for sparse matrix
factorization.Recursively splits the problem into disconnected halves, dealingwith theseparating
setof connecting variables last. Particularly suitable for surface coverage problems. Also called
recursive partitioning .

Nested models:Pairs of models, of which one is a specialization of the other obtained by freezing
certain parameters(s) at prespecified values.

Network: The interconnection structure of the 3D features, the cameras, and themeasurements that
are made of them (image points,etc.). Usually encoded as a graph structure.

Newton method: The basic iterative second order optimization method. TheNewton stepstate
updateδx = −H−1g minimizes a local quadratic Taylor approximation to the cost function at
each iteration.

Normal equations: SeeGauss-Newton method.
Nuisance parameter: Any parameter that had to be estimated as part of a nonlinear parameter
estimation problem, but whose value was not really wanted.

Outer: External. Seeinner.
Outer orientation: Camera pose (position and angular orientation).
Outer reliability: The influence of unremoved outliers on the final parameter estimates,i.e. the
extent to which they are reliable even though some (presumably small or lowly-weighted) outliers
may remain undetected.

Outlier: An observation that deviates significantly from its predicted position. More generally,
any observation that does not fit some preconceived notion of how the observations should be
distributed, and which must therefore be removed to avoid disturbing the parameter estimates.
Seetotal distribution .

Pivoting: Row and/or column exchanges designed to promote stability during matrix factorization.
Point estimator: Any estimator that returns a single “best” parameter estimate,e.g. maximum
likelihood, maximum a posteriori.

Pose: 3D position and orientation (angle),e.g. of a camera.
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Preconditioner: A linear change of variables designed to improve the accuracy or convergence rate
of a numerical method,e.g. a first order optimization iteration.Variable scaling is the diagonal
part of preconditioning.

Primary structure: The main decomposition of the bundle adjustment variables into structure and
camera ones.

Profile matrix: A storage scheme for sparse matrices in which all elements between the first and
the last nonzero one in each row are stored, even if they are zero. Its simplicity makes it efficient
even if there are quite a few zeros.

Quality control: The monitoring of an estimation process to ensure that accuracy requirements
were met, that outliers were removed or down-weighted, and that appropriate models were used,
e.g. for additional parameters.

Radial distribution: An observation error distribution which retains the Gaussian dependence on
a squared residual errorr = x� W x, but which replaces the exponentiale−r/2 form with a more
robust long-tailed one.

Recursive: Used of filtering-based reconstruction methods that handle sequences of images or
measurements by successive updating steps.

Recursive partitioning: Seenested dissection.
Reduced problem: Any problem where some of the variables have already been eliminated by
partial factorization, leaving only the others. Thereduced camera system(20) is the result of
reducing the bundle problem to only the camera variables. (§6.1, 8.2, 4.4).

Redundancy: The extent to which any one observation has only a small influence on the results,
so that it could be incorrect or missing without causing problems. Redundant consenses are the
basis of reliability.Redundancy numbersr are a heuristic measure of the amount of redundancy
in an estimate.

Relative entropy: An information-theoretic measure of how badly a model probability densityp1
fits an actual onep0 : the mean (w.r.t.p0) log likelihood contrast ofp0 to p1, 〈log(p0/p1)〉p0 .

Resection: (of optical rays). Solving for 3D camera poses and possibly calibrations, given image
features and the corresponding 3D feature positions. Seeintersection.

Resection-intersection:Seealternation.
Residual: The error�z in a predicted observation, or its cost function value.
S-transformation: A transformation between twogauges, implemented locally by agauge pro-

jection matrix PG .
Scaling: Seepreconditioner.

Schur complement: Of A in ( A B
C D ) isD − C A−1B. See§6.1.

Second order method / convergence:Seeasymptotic convergence.
Secondary structure: Internal structure or sparsity of the off-diagonal feature-camera coupling
block of the bundle Hessian. Seeprimary structure .

Self calibration: Recovery of camera (internal) calibration during bundle adjustment.
Sensitivity number: A heuristic numbers measuring the sensitivity of an estimate to a given
observation.

Separable problem: Any optimization problem in which the variables can be separated into two
or more subsets, for which optimization over each subset given all of the others is significantly
easier than simultaneous optimization over all variables. Bundle adjustment is separable into 3D
structure and cameras.Alternation (successive optimization over each subset) is a naı̈ve approach
to separable problems.

Separating set: Seenested dissection.
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Sequential Quadratic Programming (SQP): An iteration for constrained optimization problems,
the constrained analogue ofNewton’s method. At each step optimizes alocal modelbased on a
quadratic model function with linearized constraints.

Sparse: “Any matrix with enough zeros that it pays to take advantage of them” (Wilkinson).
State: The bundle adjustment parameter vector, including all scene and camera parameters to be
estimated.

Sticky prior: A robust prior with a central peak but wide tails, designed to let the estimate ‘unstick’
from the peak if there is strong evidence against it.

Subset selection:The selection of a stable subset of ‘live’ variables on-line during pivoted factor-
ization.E.g., used as a method for selecting variables to constrain with trivial gauge constraints
(§9.5).

Successive Over-Relaxation (SOR):Seealternation.
Sum of Squared Errors (SSE): Thenonlinear least squares cost function. The (possiblyweighted)
sum of squares of all of the residual feature projection errors.

Total distribution: The error distribution expected forall observations of a given type, including
both inliers andoutliers.I.e. the distribution that should beused inmaximum likelihoodestimation.

Trivial gauge: A gaugethat fixes a small set of predefined reference features or cameras at given
coordinates, irrespective of the values of the other features.

Trust region: SeeLevenberg-Marquardt .
Updating: Incorporation of additional observations without recalculating everything from scratch.
Variable ordering strategy: Seefill-in .
Weight matrix: An information (inverse covariance) like matrix matrixW, designed to put the
correct relative statistical weights on a set of measurements.

Woodbury formula: The matrix inverse updating formula (18).
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factorization.Bulletin Géod́esique, 66:296–305, 1992.
[25] A.Dermanis. The photogrammetric inner constraints.J. Photogrammetry & Remote Sensing,

49(1):25–39, 1994.
[26] I. Duff, A.M.Erisman, and J. K.Reid.DirectMethods forSparseMatrices. OxfordUniversity

Press, 1986.
[27] O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In

G.Sandini, editor,European Conf. Computer Vision, Santa Margherita Ligure, Italy, May
1992. Springer-Verlag.

[28] A.W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or open image
sequences. InEuropean Conf. Computer Vision, pages 311–326, Freiburg, 1998.

[29] R. Fletcher.Practical Methods of Optimization. John Wiley, 1987.
[30] W. Förstner. Evaluation of block adjustment results.Int. Arch. Photogrammetry, 23-III, 1980.
[31] W. Förstner. On the geometric precision of digital correlation.Int. Arch. Photogrammetry &

Remote Sensing, 24(3):176–189, 1982.
[32] W. Förstner. A feature-based correspondence algorithm for image matching.

Int. Arch. Photogrammetry & Remote Sensing, 26 (3/3):150–166, 1984.
[33] W. Förstner. The reliability of block triangulation.Photogrammetric Engineering & Remote

Sensing, 51(8):1137–1149, 1985.
[34] W. Förstner. Reliability analysis of parameter estimation in linear models with applications to

mensuration problems in computer vision.Computer Vision, Graphics & Image Processing,
40:273–310, 1987.

[35] D. A. Forsyth, S. Ioffe, and J.Haddon. Bayesian structure frommotion. InInt. Conf. Computer
Vision, pages 660–665, Corfu, 1999.



370 B. Triggs et al.

[36] C. F. Gauss.Werke. Königlichen Gesellschaft der Wissenschaften zu Göttingen, 1870–1928.
[37] C. F. Gauss.Theoria Combinationis Observationum Erroribus Minimis Obnoxiae (Theory

of the Combination of Observations Least Subject to Errors). SIAM Press, Philadelphia,
PA, 1995. Originally published inCommentatines Societas Regiae Scientarium Gottingensis
Recentiores5, 1823 (Pars prior, Pars posterior), 6, 1828 (Supplementum). Translation and
commentary by G.W.Stewart.

[38] J. A. George. Nested dissection of a regular finite element mesh.SIAM J. Numer. Anal.,
10:345–363, 1973.

[39] J. A. George, M. T. Heath, and E.G. Ng. A comparison of some methods for solving sparse
linear least squares problems.SIAM J. Sci. Statist. Comput., 4:177–187, 1983.

[40] J. A. George and J.W.-H. Liu.Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, 1981.

[41] J. A. George and J.W.-H. Liu. Householder reflections versus Givens rotations in sparse
orthogonal decomposition.Lin. Alg. Appl., 88/89:223–238, 1987.

[42] P.Gill, W.Murray, and M.Wright.Practical Optimization. Academic Press, 1981.
[43] P. E. Gill, G.H. Golub, W.Murray, and M.Saunders. Methods for modifying matrix factor-

izations.Math. Comp., 28:505–535, 1974.
[44] G.Golub and C. F. Van Loan.Matrix Computations. Johns Hopkins University Press,3rd

edition, 1996.
[45] G.Golub and R.Plemmons. Large-scale geodetic least squares adjustment by dissection and

orthogonal decomposition.Linear Algebra Appl., 34:3–28, 1980.
[46] S.Granshaw. Bundle adjustment methods in engineering photogrammetry.Photogrammetric

Record, 10(56):181–207, 1980.
[47] A.Greenbaum. Behaviour of slightly perturbed Lanczos and conjugate-gradient recurrences.

Linear Algebra Appl., 113:7–63, 1989.
[48] A.Greenbaum.Iterative Methods for Solving Linear Systems. SIAM Press, Philadelphia,

1997.
[49] A.Grün. Accuracy, reliability and statistics in close range photogrammetry. InInter-Congress

Symposium of ISP Commission V, page Presented paper. Unbound paper No.9 (24 pages),
Stockholm, 1978.

[50] A.Grün. Precision and reliability aspects in close range photogrammetry.
Int. Arch. Photogrammetry, 11(23B):378–391, 1980.

[51] A.Grün. An optimum algorithm for on-line triangulation. InSymposium of Commission III
of the ISPRS, Helsinki, 1982.

[52] A.Grün. Adaptive least squares correlation—concept and first results. IntermediateResearch
Report to Helava Associates, Ohio State University. 13 pages, March 1984.

[53] A.Grün. Adaptive kleinste Quadrate Korrelation and geometrische Zusatzinformationen.
Vermessung, Photogrammetrie, Kulturtechnik, 9(83):309–312, 1985.

[54] A.Grün. Algorithmic aspects of on-line triangulation.Photogrammetric Engineering &
Remote Sensing, 4(51):419–436, 1985.

[55] A.Grün and E. P. Baltsavias. Adaptive least squares correlation with geometrical constraints.
In SPIE Computer Vision for Robots, volume 595, pages 72–82, Cannes, 1985.

[56] R.Gupta and R. I. Hartley. Linear pushbroom cameras.IEEE Trans. Pattern Analysis &
Machine Intelligence, September 1997.

[57] M.S. Gyer. The inversion of the normal equations of analytical aerotriangulation by the
method of recursive partitioning. Technical report, Rome Air Development Center, Rome,
New York, 1967.

[58] R.Hartley. Euclidean reconstruction from multiple views. In2nd Europe-U.S. Workshop on
Invariance, pages 237–56, Ponta Delgada, Azores, October 1993.

[59] R.Hartley. An object-oriented approach to scene reconstruction. InIEEEConf. Systems, Man
& Cybernetics, pages 2475–2480, Beijing, October 1996.

[60] R.Hartley. Lines and points in three views and the trifocal tensor.Int. J. Computer Vision,
22(2):125–140, 1997.



Bundle Adjustment — A Modern Synthesis 371

[61] R.Hartley, R.Gupta, and T.Chang. Stereo from uncalibrated cameras. InInt. Conf. Computer
Vision & Pattern Recognition, pages 761–4, Urbana-Champaign, Illinois, 1992.

[62] R.Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[63] R. I. Hartley and T. Saxena. The cubic rational polynomial camera model. InImage Under-
standing Workshop, pages 649–653, 1997.

[64] F.Helmert.DieMathematischen undPhysikalischen Theorien der höherenGeod̈asie, volume
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messungswesen, 50(5): 159–165 and 50(6): 186–194, 1962.

[88] E.Mikhail and R.Helmering. Recursive methods in photogrammetric data reduction.Pho-
togrammetric Engineering, 39(9):983–989, 1973.

[89] E.Mittermayer. Zur Ausgleichung freier Netze.Zeitschrift f̈ur Vermessungswesen,
97(11):481–489, 1962.
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