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Abstract

Maximum margin clustering (MMC) is a re-
cent large margin unsupervised learning ap-
proach that has often outperformed conven-
tional clustering methods. Computationally,
it involves non-convex optimization and has
to be relaxed to different semidefinite pro-
grams (SDP). However, SDP solvers are com-
putationally very expensive and only small
data sets can be handled by MMC so far. To
make MMC more practical, we avoid SDP
relaxations and propose in this paper an effi-
cient approach that performs alternating op-
timization directly on the original non-convex
problem. A key step to avoid premature con-
vergence is on the use of SVR with the Lapla-
cian loss, instead of SVM with the hinge loss,
in the inner optimization subproblem. Ex-
periments on a number of synthetic and real-
world data sets demonstrate that the pro-
posed approach is often more accurate, much
faster and can handle much larger data sets.

1. Introduction

Clustering has long been an active research area in ma-
chine learning (Jain & Dubes, 1988). Given a set of
observations, clustering aims at identifying dominant
structures in the data and grouping similar instances
together. This is extremely valuable for data analysis
in practice, and has been widely used in diverse do-
mains such as information retrieval, computer vision,
and bioinformatics.

Over the decades, a battery of clustering approaches
have been developed, such as the k-means clustering
algorithm, mixture models, and spectral clustering.
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Recently, motivated by the success of large margin
methods in supervised learning (Schölkopf & Smola,
2002), there is growing interest in extending large
margin methods to unsupervised learning. Xu et al.
(2005) proposed a novel approach called maximum
margin clustering (MMC), which performs cluster-
ing by simultaneously finding maximum margin hy-
perplanes in the data. Experimental results showed
that this can often outperform conventional cluster-
ing methods. Moreover, it can also be extended to
a general framework for both unsupervised and semi-
supervised learning (Xu & Schuurmans, 2005).

While large margin supervised learning methods are
usually formulated as convex optimization problems
(notably, quadratic programs for support vector ma-
chines), large margin unsupervised learning is much
more difficult and leads to non-convex integer pro-
grams. Existing maximum margin clustering methods
(Xu et al., 2005; Xu & Schuurmans, 2005; Valizadegan
& Jin, 2007) all rely on reformulating and relaxing the
non-convex optimization problem as semidefinite pro-
grams (SDP) (Boyd & Vandenberghe, 2004), which
can then be solved by standard SDP solvers such as
SDPT3 and SeDuMi. In particular, the generalized
maximum margin clustering (GMMC) method (Val-
izadegan & Jin, 2007) reduces the number of parame-
ters in the SDP formulation from n2 in (Xu et al.,
2005) to n, where n is the number of samples. This
leads to significant computational savings.

However, even with the recent advances in interior
point methods, solving SDPs is still computationally
very expensive. Thus, maximum margin clustering is
often not viable in practice and the data sets that
can be handled are very small (the largest data set
reported in the literature has only 360 examples). On
the other hand, there can be an enormous amount of
data available in many real-world learning problems.
For example, in image segmentation, a small 200×200
image already has 40,000 pixels (examples) to be clus-
tered. In web and data mining, even medium-sized
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data sets have at least tens/hundreds of thousands of
patterns. How to scale up the clustering methods to
cater large scale problems and turn them into practical
tools is thus a very challenging research topic.

In this paper, we perform maximum margin clustering
by avoiding the use of SDP relaxations. Instead, we re-
visit a natural approach that was considered ineffective
(Xu et al., 2005), namely, by performing alternating
optimization (Bezdek & Hathaway, 2003) directly on
the original non-convex problem. While a straightfor-
ward implementation easily gets stuck in poor locally
optimal solutions, our key modification is to replace
SVM by support vector regression with the Laplacian
loss. As will be seen, this discourages premature con-
vergence and allows greater flexibility in exploring the
search space. Computationally, the proposed proce-
dure involves only a sequence of quadratic programs
for SVR training. The resultant implementation is fast
and scales well compared to existing approaches.

The rest of the paper is organized as follows. Section 2
gives a brief review on maximum margin clustering.
Section 3 then describes the proposed method. Ex-
perimental results are presented in Section 4, and the
last section gives some concluding remarks.

2. Maximum Margin Clustering

Large margin methods, notably the support vector ma-
chines (SVM), has been highly successful in supervised
learning. Given a training set {(xi, yi)}

n
i=1

, where xi is
the input and yi ∈ {±1} is the output, the SVM finds
a large margin hyperplane f(x) = w⊤ϕ(x) + b (where
ϕ is the mapping induced by a kernel k) by solving the
following optimization problem:

minw,b,ξi
‖w‖2 + 2Cξ⊤e

s.t. yi(w
⊤ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0.

Here, ξi’s are slack variables for the errors, C > 0 is a
regularization parameter and e is the vector of ones.

Motivated by its success in supervised learning, max-
imum margin clustering (Xu et al., 2005) aims at ex-
tending large margin methods to unsupervised learn-
ing. However, as the class labels y = [y1, . . . , yn]⊤

are unknown, a trivially “optimal” solution is to as-
sign all patterns to the same class, and the resultant
margin will be infinite. To prevent such a meaningless
solution, Xu et al. (2005) introduced a class balance
constraint that requires y to satisfy

−ℓ ≤ e⊤y ≤ ℓ, (1)

where ℓ ≥ 0 is a constant controlling the class imbal-
ance. Then, the margin can be maximized by opti-

mizing both the unknown y and the unknown SVM
parameter (w, b) together, as:

miny minw,b,ξi
‖w‖2 + 2Cξ⊤e (2)

s.t. yi(w
⊤ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0.

yi = {±1}, −ℓ ≤ e⊤y ≤ ℓ.

Recall that the dual of the SVM is

maxλ 2λ⊤e − λ⊤(K ◦ yy⊤)λ (3)

s.t. λ⊤y = 0, Ce ≥ λ ≥ 0,

where λ = [λ1, . . . , λn]⊤, 0 is the zero vector, K is the
kernel matrix, and ◦ denotes the elementwise product
between matrices. Hence, (2) can also be written as

miny maxλ 2λ⊤e − λ⊤(K ◦ yy⊤)λ (4)

s.t. λ′y = 0, Ce ≥ λ ≥ 0,

yi = {±1}, −ℓ ≤ e⊤y ≤ ℓ.

As (4) is non-convex and thus difficult to solve, Xu
et al. (2005) relaxed it as a convex integer problem,
and then further turned this into an equivalent semi-
definite program (SDP) as in (Lanckriet et al., 2004):

minM,δ,µ,ν δ (5)

s.t.

[

M ◦ K e + µ − ν

(e + µ − ν)⊤ δ − 2Cν ′e

]

� 0,

diag(M) = e,M � 0,−ℓe ≤ Me ≤ ℓe.

Here, M ∈ R
n×n,µ,ν ∈ R

n and the symbol � 0 de-
notes positive semidefinite. The class labels can then
be recovered from M by eigen-decomposition. While
initially developed for this two-class case, MMC has
also been extended to the multi-class formulation (Xu
& Schuurmans, 2005), and again leads to a SDP.

Note that as M ∈ R
n×n, the number of parameters in

(5) scales quadratically with n, the number of exam-
ples. Another deficiency of (Xu et al., 2005) is that
the bias b is assumed to be zero. Very recently, these
problems are alleviated by the generalized maximum
margin clustering (GMMC) (Valizadegan & Jin, 2007).
The bias term can now be included in the classifica-
tion boundary. Moreover, the number of parameters
in the SDP is reduced from n2 to n, which leads to
significant computational savings.

3. Proposed Procedure

In this section, we first revisit the use of alternating
optimization to solve the un-relaxed non-convex MMC
problem (Section 3.1). Computationally, this allows
the problem to be solved as quadratic programs which
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are much more efficient. However, empirically, it suf-
fers from premature convergence and easily gets stuck
in poor local optima. Our key proposal, which is to
replace SVM by SVR with the Laplacian loss, is then
introduced in Section 3.2. An efficient procedure to
enforce the class balance constraint in the proposed
method is discussed in Section 3.3, and finally some
complexity analysis is in Section 3.4.

3.1. Approach 1: Iterative SVM

A natural way to solve (2) is by using a simple iterative
approach based on alternating optimization (Bezdek &
Hathaway, 2003), similar to the one proposed in (Xu
et al., 2006). First, fix y and maximize (3) w.r.t. λ,
which is just standard SVM training. Then, fix λ and
minimize (2) w.r.t. y. Note that with a fixed λ, both
w and b can be determined from the KKT conditions,
so the second step reduces to

miny,ξi
ξ⊤e

s.t. yi(w
⊤ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0.

Obviously, this yields yi = sign(w⊤ϕ(xi)+b) and ξi =
1− yi(w

⊤ϕ(xi) + b). The two steps are then repeated
until convergence (Algorithm 1).

Algorithm 1 Iterative SVM procedure.

1: Initialize the labels y by simple clustering method.
2: Fix y and perform standard SVM training.
3: Compute w and b from the KKT conditions.
4: Assign the labels as yi = sign(w⊤ϕ(xi) + b).
5: Repeat steps 2-4 until convergence.

3.1.1. Poor Empirical Performance

In practice, the performance of the iterative SVM is
not satisfactory, since its improvement over the initial
labeling is usually insignificant. An example is shown
in Figure 1. Here, the task is to separate digits 3 and
9 (from the UCI optdigits data set). Each digit has
about 390 samples. We initialize with the normalized
cut algorithm (Shi & Malik, 2000), which yields an
error rate of 19.46%. Figure 1 shows that both the
objective value and the clustering quality change little
during the iterations.

3.1.2. Premature Convergence

To understand this poor performance, we consider the
hinge loss (Figure 2(a)) used by the SVM:

Lh =

{

0 if yifi ≥ 1,
1 − yifi otherwise,

where fi = f(xi). Because of this loss, SVM tries
to push the yifi’s to the right of the elbow (i.e., the
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Figure 1. Poor performance of the iterative SVM proce-
dure in Algorithm 1.

point where yifi = 1), as is evidenced from the em-
pirical distribution of yifi’s on the task shown earlier
(Figure 2(b)). If we want to flip the label of a sample,
the loss changes from the blue line to the red line in
Figure 3. This will be very large as most of them are
far away from the elbow (e.g., point “b”). Therefore,
the SVM is unwilling to flip the class labels. In other
words, the procedure over-commits to the initial label
estimates, and thus easily gets stuck in local optima.
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Figure 2. Loss function and empirical distribution of yifi’s
on the digits task for SVM.
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Figure 3. Flipping the labels.

3.2. Approach 2: Iterative SVR

3.2.1. Discouraging Premature Convergence

To solve this problem, we have to change the loss func-
tion to discourage yifi’s from lying on the far right of
the elbow. This can be done by using the ǫ-insensitive
loss used in support vector regression (SVR). In par-
ticular, when ǫ = 0, it reduces to the Laplacian loss
(Figure 4(a)) Ls = |fi − yi|. In this case, points with
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yifi < 1 receive the same loss value as the hinge loss;
while points with yifi > 1 are penalized as desired. As
Ls is symmetric around the point where yifi = 1, the
yifi’s will tend to lie around this point in order to re-
duce the loss. Figure 4(b) plots the resultant empirical
distribution of yifi’s on the same digits task. Because
the yifi values are now closer to the origin (e.g., point
“a” in Figure 3), it is easier to flip the labels if needed,
and so SVR can more easily get out of a poor solution.
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Figure 4. Loss function and empirical distribution of yifi’s
on the digits task for SVR with the Laplacian loss.

A common objection to the Laplacian loss is that the
resultant SVR solution will not be sparse. However,
typically we are only interested in the clustering solu-
tion in this MMC setting. Besides, after the clustering
solution has been obtained, one can still run the SVM
to obtain a sparse, classification model of the data.

3.2.2. Relaxing the Constraint

Another motivation for using SVR with the Laplacian
loss is that it can be regarded as SVM training with
relaxed constraints. This enables SVR to have greater
flexibility than SVM in exploring the search space.

Recall that the primal of SVR, with the use of the
Laplacian loss, is (Schölkopf & Smola, 2002):

minw,b,ξi,ξ
∗

i

1

2
‖w‖2 + C

n
∑

i=1

(ξi + ξ∗i )

s.t. yi − (w⊤ϕ(xi) + b) ≤ ξi,

−yi + (w⊤ϕ(xi) + b) ≤ ξ∗i ,

ξi ≥ 0, ξ∗i ≥ 0,

where ξi, ξ
∗

i are the slack variables. Its dual is:

max
α,α∗

(α − α∗)⊤y −
1

2
(α−α∗)⊤K(α−α∗) (6)

s.t. (α − α∗)⊤e = 0, Ce ≥ α,α∗ ≥ 0,

where α = [α1, . . . , αn]⊤ and α∗ = [α∗
1, . . . , α

∗
n]⊤.

From the KKT conditions, αi and α∗

i (which are non-
negative) cannot be both zero. Thus, we can treat α

and α∗ as the positive and negative parts of a variable

u, i.e., u = α − α∗ and |u| = α + α∗. Then (6) can
be rewritten as

maxu u⊤y −
1

2
u⊤Ku (7)

s.t. u⊤e = 0, Ce ≥ u ≥ −Ce.

As the targets are binary (yi ∈ {±1}) in this regression
problem, we can factorize ui as ui = uiy

2
i = λiyi where

λi = uiyi and C ≥ λi ≥ −C. Then, (7) becomes

maxλ 2λ⊤e − λ⊤(K ◦ yy⊤)λ

s.t. λ⊤y = 0, Ce ≥ λ ≥ −Ce.

This is very similar to SVM’s dual in (3), except that
the constraint Ce ≥ λ ≥ 0 in (3) is relaxed to Ce ≥
λ ≥ −Ce.

3.2.3. Demonstration

Here, we first demonstrate the efficacy of the proposed
modification. We follow the same algorithm shown in
Algorithm 1, except that SVM training in Step 2 is
now changed to SVR training. Besides using ǫ = 0 in
the ǫ-insensitive loss, we also experiment with different
values of ǫ. Experiment is performed on the same digit
task as in Section 3.1.1.

Figure 5 plots the evolutions of the objective value1 in
(2) and the clustering error. As can be seen, SVR using
the Laplacian loss leads to better objective values and
clustering performance; while SVR using a large ǫ has
poor performance similar to the SVM.
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Figure 5. Comparing iterative SVM and SVR procedures.

3.3. Enforcing the Class Balance Constraint

As discussed in Section 2, one has to enforce the
class balance constraint (1) to avoid trivially “opti-
mal” MMC solutions. Hence, we require each of the
y’s obtained throughout the proposed iterative process
to satisfy (1). To guarantee this, we cannot compute

1For the SVR case, this objective value is computed by
first training a SVM using the label y obtained by SVR.
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the bias b of the SVR model from the KKT conditions
as usual. Instead, we obtain b (and y) by minimizing

miny,b,ξi,ξ
∗

i
‖w‖2 + 2C

n
∑

i=1

(ξi + ξ∗i )

s.t. yi − (w⊤ϕ(xi) + b) ≤ ξi,

−yi + (w⊤ϕ(xi) + b) ≤ ξ∗i ,

ξi ≥ 0, ξ∗i ≥ 0, yi ∈ {±1},

−ℓ ≤ e⊤y ≤ ℓ.

With w at hand, this can be reduced to

miny,b

n
∑

i=1

∣

∣w⊤ϕ(xi) + b − yi

∣

∣ (8)

s.t. yi ∈ {±1}, −ℓ ≤ e⊤y ≤ ℓ.

This optimization problem can be solved easily, based
on the observation that b influences the assignment of
yi’s by effectively defining a boundary on the sorted
list of w⊤ϕ(xi)’s. Patterns whose f(xi) values are
smaller than this boundary should be labeled nega-
tive, while the rest are labeled positive.2 Thus, we can
simply shift b in the range such that the class balance
constraint is satisfied, compute at each position the
corresponding objective value in (8), and set b to be
the position with the minimum objective. Now, sort-
ing takes O(n log(n)) time, and the search takes O(ℓn)
time. So this procedure takes O(n log(n) + ℓn) time.
The complete procedure is shown in Algorithm 2.

Algorithm 2 Iterative SVR.

1: Initialize the labels y by simple clustering method.
2: Fix y, and perform SVR with Laplacian loss (6).
3: Compute w from the KKT condition.
4: Compute the bias b as described in Section 3.3.
5: Assign the labels as yi = sign(w⊤ϕ(xi) + b).
6: Repeat steps 2–5 until convergence.

3.4. Time Complexities

Consider a SDP problem of the form: minx fT x sub-
ject to

∑l
j=1

xjA
i
j � 0, i = 1, . . . , l, where x ∈ R

l, f ∈

R
l and Ai

j ∈ R
ni×ni . On using primal-dual methods

to solve such SDPs, it is known that the time complex-
ity per iteration is O(l2

∑m
i=1

n2
i ) (Lobo et al., 1998),

and the number of iterations is usually O(
√

∑

i ni)
(Nesterov & Nemirovskii, 1994).

2Here, we outline the proof. Suppose that there are two
points xj ,xk with f(xj) ≥ 0 ≥ f(xk), but the prediction is
yj = −1 and yk = 1. Then objective in (8) is non-optimal
because |f(xj) + 1| + |f(xk) − 1| +

P
i6=j,k |f(xi) − yi| >

|f(xj) − 1| + |f(xk) + 1| +
P

i6=j,k |f(xi) − yi|.

With n examples to be clustered, l = n2 and ni = n
for MMC. So the total time complexity is O(n6 · n) =
O(n7). Similarly, for GMMC, the time complexity is
O(n4 · n0.5) = O(n4.5). Thus, both methods are com-
putationally expensive even on small data sets.

On the other hand, the iterSVR algorithm involves
only a sequence of QPs. Modern SVM implemen-
tations typically have an empirical time complexity
that scales between O(n) and O(n2.3) (for solving one
such QP) (Platt, 1999). The number of iterations
in iterSVR is usually small (around 10) in practice.
Hence, iterSVR is computationally very efficient.

4. Experiments

In this section, experiments are performed on a
number of data sets from the UCI repository
(ionosphere, digits, letter and satellite), the LIBSVM
data3 (svmguide1-a and w1b) and another benchmark
repository4 (ringnorm and image). For the digits data,
we follow (Valizadegan & Jin, 2007) and focus on those
pairs (3 vs 8, 1 vs 7, 2 vs 7, and 8 vs 9) that are difficult
to differentiate. For the letter and satellite data sets,
there are multiple classes and we use their first two
classes only (A vs B, and C1 vs C2, respectively). Fi-
nally, the w1b, svmguide1-a and ringnorm data sets are
relatively large. So a subset, with 500 samples ran-
domly selected from both the positive and negative
classes, is used for each data.

We use the LIBSVM package for implementing the
iterSVR. The regularization parameter C is fixed at
500 and the Gaussian kernel exp

(

−‖z‖2/σ2
)

is used.
To choose the kernel width σ, we first obtain a crude
estimate5 (D) on the maximum distance between sam-
ples, and then set σ to be 2 to 5 times of D. The
initial y labels are obtained from k-means clustering
(with k = 2). Experiments are run on a 2.13GHz Intel
CoreTM2 Duo PC running Windows XP.

4.1. Importance of Class Balance Constraint

Before a comprehensive comparison of the methods,
we first demonstrate the importance of the class bal-
ance constraint as discussed in Section 3.3. We use the
same data set as in Section 3.1, but this time with a
suboptimal kernel width for the normalized cut. This
produces a very poor clustering result (with 24.5% er-
ror) for initializing iterSVR. As can be seen from Fig-
ure 6, the absence of the class balance constraint leads

3
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

4
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

5We set D = (
Pd

k=1
[max{Xk}−min{Xk}]2)1/2, where

{Xk} is the kth attribute values of the data set.
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Figure 6. Iterative SVR with/without the class balance
constraint. The patterns are ordered along the x-axis,
and the y-axis is the prediction. Here, a perfect predictor
should produce a (minus) sign curve. From left to right is
in the order of iterations.

to a confusion of the two classes. After adding the
constraint, iterSVR can separate the two classes well.
In the experiments, the balance parameter is chosen
as ℓ = 0.03n for balanced data, and ℓ = 0.3n for un-
balanced data.

4.2. Clustering Accuracy

The following methods are compared: (1) k-means
clustering (KM); (2) normalized cut (NC) (Shi & Ma-
lik, 2000), using the Gaussian affinity function and
with all points included in the neighborhood; (3) MMC
(Xu et al., 2005); (4) GMMC (Valizadegan & Jin,
2007); (5) iterSVM; (6) iterLS-SVM; (7) iterSVR. The
last three methods follow basically the same procedure
and only differ on the choice of loss function: iterSVM
uses the hinge loss, iterSVR uses the Laplacian loss;
while iterLS-SVM uses the square loss. The iterLS-
SVM is modified from the least-square SVM (Suykens
& Vandewalle, 1999)6 and serves to demonstrate the
importance of the loss function.

Recall that the initial class labels for the iterative
SVM/LS-SVM/SVR are obtained from the k-means
clustering procedure. Hence, these local optimization
methods, along with the k-means clustering proce-
dure, are susceptible to the problem of local minimum;
while NC/MMC/GMMC do not. In the implementa-
tion, this problem is alleviated by requiring the initial
prototypes of k-means clustering to be sufficiently far
away. To demonstrate the effect, these local optimiza-
tion methods are run 10 times on each data set, with
different initial seeds for the k-means clustering, and
then the averaged results reported.

Parameters of NC, iterSVM/LS-SVM are chosen from

6http://www.esat.kuleuven.ac.be/sista/lssvmlab/

a set of candidates that gives the best performance.
For NC/MMC/GMMC, results on the digits and
ionosphere data are simply copied from (Valizadegan
& Jin, 2007). As for the other data sets, because they
are large and both MMC/GMMC are very slow, the
results of these two methods will not be reported.

Results are shown in Table 1. Due to the extra care
taken in initializing the k-means clustering, in most
cases, all the local optimization procedures consis-
tently yield the same clustering result over the 10 runs.
Moreover, iterSVR is the most accurate in most cases.

Following (Valizadegan & Jin, 2007), we have only fo-
cused on several digit pairs above. Here, we give a
more thorough comparison by considering all 45 pairs
of digits 0–9. This experiment is also repeated with
the MNIST digits7 (of image size 28 × 28 and pixel
values in [0, 2]). The best tuned kernel width parame-
ter is used for the NC. Again, MMC and GMMC are
not run because they are too slow.

Figure 7 plots the clustering errors on the 45 clustering
tasks. As can be seen, iterSVR works well even on the
difficult tasks. Table 2 reports the average clustering
error of the algorithms. Again, iterSVR is the best.
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Figure 7. Comparison using all digit pairs from the UCI
and MNIST data sets. The 45 clustering tasks are ordered
along the x-axis so that the clustering errors obtained by
iterSVR are increasing.

Table 2. Average clustering error (%) over all pairs of UCI
and MNIST digits.

Data KM NC iterSVM iterSVR

UCI 3.62 2.43 3.49 1.82
MNIST 10.79 10.08 9.49 7.59

4.3. Speed

The main problem with both MMC and GMMC is
that they are based on SDPs and are very slow. In

7http://yann.lecun.com/exdb/mnist/
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Table 1. Clustering errors (%) on the various data sets.

Data size KM NC MMC GMMC iterSVM iterLS-SVM iterSVR

digits 3–8 357 5.32 ± 0 35 10 5.6 4.2 ± 0 3.92 ± 0 3.36 ± 0
digits 1–7 361 0.55 ± 0 45 31.25 2.2 0.55 ± 0 0.55 ± 0 0.55 ± 0
digits 2–7 356 3.09 ± 0 34 1.25 0.5 3.09 ± 0 2.25 ± 0 0.0 ± 0
digits 8–9 354 9.32 ± 0 48 3.75 16.0 9.6 ± 0 8.76 ± 0 3.67 ± 0
ionosphere 351 32±17.9 25 21.25 23.5 31.6± 24.9 24.4 ± 2.83 32.3±16.6

w1b 1000 44.1 ± 0 41.8 - - 39.4 ± 0 - 36 ± 0
svmguide1-a 1000 23.5 ± 0 12.5 - - 23.6 ± 0 6.8 ± 0 6.8 ± 0

letter 1555 17.94 ± 0 23.2 - - 14.6 ± 0 7.33 ± 0 7.2 ± 0
satellite 2236 4.07 ± 0 4.21 - - 4.05 ± 0 3.7 ± 0 3.18 ± 0
image 1010 43.5 ± 0 41.2 - - 38.08 ± 0 41.2 ± 0 28.6 ± 0

ringnorm 1000 24±5.83 22.3 - - 27.2 ± 6.43 29.8 ± 11.3 9.3 ± 5.87

this section, we demonstrate the speed advantage of
iterSVR. Because of the need to run MMC, we only
use 4 small data subsets, which are obtained by sam-
pling 50 samples for each class. The other settings
are the same as in (Xu et al., 2005). From Table 3,
iterSVR is thousands of times faster than MMC. As re-
ported in (Valizadegan & Jin, 2007), GMMC is about
< 100 times faster than MMC on data sets of this
size. Hence, iterSVR is still faster than GMMC by
about one to two orders of magnitude.

Table 3. Wall clock time (in seconds) and clustering error
(%) for the various methods. Number in brackets is the
speedup of iterSVR relative to MMC.

Data NC MMC iterSVR

Time digits 3–9 0.05 1218 0.2 (6090)
digits 8–9 0.09 957 0.3 (3190)
digits 2–7 0.08 1079 0.14 (7707)
ionosphere 0.11 764 0.12 (6367)

Error digits 3–9 21 7 3
(%) digits 8–9 9 3 3

digits 2–7 6 15 8
ionosphere 29 25 25

4.4. Image Segmentation

In this section, we use the proposed clustering algo-
rithm for color image segmentation. Experiments are
performed on five images8 (Figure 8), with the RGB
values ([0, 255]) as features. A fixed σ = 500 is used
for all images. For comparison, we run the k-means
clustering algorithm and an approach9 (Figueiredo &
Jain, 2002) based on the Expectation-Maximization

8bird, palace and horse are from Berkeley image data-
base (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/),
zebra and squirrel are commonly used in vision literature.

9Code is from http://www.lx.it.pt/˜mtf/mixturecode.zip.

(EM) algorithm. MMC, GMMC and NC (which re-
quires storing an n× n affinity matrix) cannot handle
such large data sets and so are not compared.

Figure 8. Segmentation results obtained by k-means clus-
tering (2nd row), EM algorithm (3rd row), and iterSVR
(bottom row).

Due to lack of space, segmentation results for only
three of five images are shown in Figure 8. As can
be seen, segmentation results of iterSVR are visually
more satisfactory than k-means clustering and EM al-
gorithms. The time required for iterSVR is reported
in Table 4.

The algorithm can be extended for multi-class prob-
lems by performing binary clustering recursively, in the
same manner as (Shi & Malik, 2000). As an example,
we perform segmentation on the 261× 116 woman im-
age. Figure 9 shows the segmentation results. From
left to right, the woman is segmented out from the
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Table 4. Wall clock time (in minutes) for segmentation.

bird palace horse zebra squirrel

time 6.9 19.5 43.6 37.8 58.5
size 240×160 240×160 240×160 214×160 288×209

background, then the skin and clothes, and so on.

Figure 9. Recursive segmentation results by iterSVR.

5. Conclusion

In this paper, we propose an efficient approach for solv-
ing maximum margin clustering via alternating opti-
mization. The key step is on the use of SVR with the
Laplacian loss, instead of SVM with the hinge loss,
in the inner optimization subproblem. While existing
MMC algorithms are very computationally expensive
and can only handle very small data sets, our algo-
rithm is often more accurate, much faster (by thou-
sands of times compared with MMC) and can handle
much larger data sets (hundreds of times larger than
the largest data set reported in the MMC literature).
In the future, we will investigate how the learning pa-
rameters (C and σ) can be determined in a more dis-
ciplined manner.
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