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Abstract

This paper introduces a new method of registering point sets. The registration error is directly minimized using general-purpose non-linear

optimization (the Levenberg–Marquardt algorithm). The surprising conclusion of the paper is that this technique is comparable in speed to

the special-purpose Iterated Closest Point algorithm, which is most commonly used for this task. Because the routine directly minimizes an

energy function, it is easy to extend it to incorporate robust estimation via a Huber kernel, yielding a basin of convergence that is many times

wider than existing techniques. Finally, we introduce a data structure for the minimization based on the chamfer distance transform,

which yields an algorithm that is both faster and more robust than previously described methods.

q 2003 Published by Elsevier B.V.
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1. Introduction

A common problem in computer vision is the registration

of 2D and 3D point sets [1,5,7,8,21,28]. Applications include

the integration of range datasets [14,25], and alignment of

MRI/CAT scans [9,22]. Typically, a cloud of point samples

from the surface of an object is obtained from two or more

points of view, in different reference frames. The task of

registration is to place the data into a common reference

frame by estimating the transformations between the

datasets. What makes the problem difficult is that

correspondences between the point sets are unknown a

priori. A popular approach to solving the problem is the class

of algorithms based on the Iterated Closest Point (ICP)

technique introduced by Besl [1] and Zhang [28]. ICP is

attractive because of its simplicity and its performance.

Although the initial estimate does need to be reasonably

good, the algorithm converges relatively quickly.

This paper abandons one of the basic characteristics of

ICP—its closed-form inner loop—and employs instead a

standard iterative non-linear optimizer, the Levenberg–

Marquardt (LM) algorithm [19]. This approach, perhaps

surprisingly, incurs no significant loss of speed, but allows

the extension of ICP to use truly robust statistics, with a

concomitant reduction of dependence on the initial

estimate. In contrast, existing ways of introducing

robustness [4,24,28] are often many times slower than the

proposal of this paper.

The paper is in several sections. Section 2 defines the

problem and the notation used in the rest of the paper.

In Section 3, we review existing work on point-set

registration, ICP and otherwise, and also summarize the

key ideas in non-linear optimization that will be required.

Section 4 redefines registration as a non-linear optimization

problem. This approach is compared with traditional ICP in

2D and 3D experiments. The second half of the paper,

beginning in Section 5, exploits the simplicity of the new

approach to develop a robust error function, which greatly

increases the radius of convergence on supplied examples,

again with no significant loss in speed.

In all the above examples, closest point computations are

based on explicit Delaunay simplicization of the point set,

allowing Oðlog nÞ closest point computations. In Section 6,

we show how both the new and traditional procedures can

be modified to use a fast lookup based on the distance

transform. This speeds up both algorithms significantly, but

the proposed technique benefits more, resulting in an

algorithm which is faster and more accurate than traditional

ICP, with a wider basin of convergence.

More generally, the message of the paper is that

specialized ‘home-grown’ strategies for function

minimization (of which ICP is one example) do not

necessarily outperform more general—but more sophisti-

cated—non-linear optimization algorithms.
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2. Problem statement and definitions

The paper deals exclusively with the two-frame case,

although multiple-frame approaches [8,21] should immedi-

ately benefit. We are given two sets of points inRn;which for

convenience we shall denote by model and data, with their

elements being denoted by {mi}
Nm

i¼1 and {di}
Nd

i¼1: The task of

registration is to determine the parameters of a transform-

ation T which, when applied to the data points, best aligns

model and data. The parameters of T are represented by a

p-vector a: Common transformations and corresponding

values of p are listed in Table 1.

For 2D registration (see Fig. 1 for an example problem

and Fig. 2 for an example of LM-ICP output) under

Euclidean transformations, the number of parameters p ¼ 3

comprising rotation angle u and translation vector ðtx; tyÞ:

Collecting the parameters into a parameter vector

a ¼ ½u; tx; ty�; we define

T2Dða;xÞ ¼ Tðu; tx; ty;xÞ ¼
cos u sinu

2sin u cos u

 !
xþ

tx

ty

 !

for x[R2

ð1Þ

Alignment is measured by an error function e2ðlxlÞ; and a

typical choice is to define

e2ðlxlÞ ¼ kxk2

In order to measure alignment, we require that

correspondence between the model and data points is

specified. This correspondence is denoted by the function

fðiÞ; which selects, for each data point, the corresponding

model point. In order to cope with data points for which no

correspondent is found, we also introduce weights wi;

which are set to zero for points with no match, and one

otherwise. Thus, the error to be minimized is

Eða;fÞ ¼
XNd

i¼1

wie
2ðlmfðiÞ2Tða;dilÞ ð2Þ

In general, the function f is considered part of the

minimization process: in ICP-like algorithms fðiÞ is chosen

as the point which minimizes the distance between model

and data, yielding the error function

EðaÞ ¼
XNd

i¼1

wi min
j
e2ðlmj 2Tða;diÞlÞ ð3Þ

and finally the estimate of the optimal registration is given

by minimizing over a:

â¼ argmin
a

XNd

i¼1

wi min
j
e2ðlmj 2Tða;diÞlÞ

2.1. The ICP algorithm

In its simplest form, the ICP algorithm iterates two steps.

Beginning with an initial estimate of the registration

parameters, a0; the algorithm forms a sequence of estimates

Table 1

Transformations commonly occurring in registration problems

nD transformation p Parameters

2D Euclidean 3 Rotation u; 2D translation ðtx; tyÞ

2D Affine 6 2 £ 3 matrix

2D Projective 8 3 £ 3 homography matrix (defined up to scale)

3D Euclidean 6 3 rotation, 3 translation

3D Similarity 7 3 rotation, 3 translation, 1 scale

3D Affine 12 3 £ 4 matrix

3D Projective 15 4 £ 4 matrix (defined up to scale)

Fig. 1. 2D curves to be registered. The curves are subsets of the output of an

edge detector applied to the image. Synthetic rotations and translations of

the lower-right ‘C’ are registered to the upper left one.

Fig. 2. Convergence of LM-ICP with Lorentzian kernel eðrÞ ¼ logð1 þ r2Þ

from a 408 rotation.
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ak, which progressively reduce the error EðaÞ: Each iteration

of the algorithm comprises the following two steps, labelled

C and T:

C: Compute correspondences, f : Set

fðiÞ ¼ argmin
j[{1;…;Nm}

e2ðlmj 2 Tðak; diÞlÞ i ¼ 1;…;Nd

so that mfðiÞ is the closest model point to the datum di

transformed by the current estimate ak:

T: Update transformation, a : Set

akþ1 ¼ argmin
a

XNd

i¼1

e2ðlmfðiÞ 2 Tða; diÞlÞ

In many common cases, step T can be performed in closed

form, or via well understood, numerically stable, procedures

such as singular value decomposition.

It is easy to see that both steps must reduce the error, and

that the error is bounded below. Thus convergence to a local

minimum is guaranteed. Furthermore, it is straightforward

to discern a termination criterion: when the set of

correspondences does not change in step C, the value of

akþ1 will be set equal to ak in the T step, so no further

change is possible.

2.2. The Levenberg–Marquardt algorithm

The proposal of this paper is to directly minimize the

model-data fitting error (3) via non-linear minimization.

The LM algorithm is an optimization procedure, that is

particularly suited to functions such as E which are

expressed as a sum of squared residuals, but alternative

procedures such as conjugate gradients or even a pure

Gauss–Newton algorithm could be used, and similar results

would be expected. In this paper, only LM was tested.

2.2.1. Computing derivatives of E

The question that will immediately arise regarding the

application of LM to the ICP problem is how the

derivatives of E may be computed. Indeed the requirement

for first derivatives might be seen as immediately

disqualifying E from LM optimization, given the discrete

minimization over j within the summation. However, it

will be seen in Section 6 that in fact the derivatives of E

may be easily and efficiently obtained, and that they are, or

can be made, smooth.

For the moment, we shall assume they behave smoothly,

and compute them via finite differencing [13,19], at a cost of

p extra function evaluations per inner loop. This means that

each iteration’s cost is increased by a factor of 1 þ p; for the

simplest form of LM-ICP. However, in typical cases,

where LM requires fewer iterations to achieve a certain

accuracy, this factor is an upper bound. In many cases, the

reduction in number of iterations will exceed the increase in

per-iteration cost. Finally, it must be emphasized that an

implementer concerned with speed should read Section 6.

If the techniques of that section are impossible to implement

in a given application, there are better ways to use function

evaluations than to compute finite-difference derivatives as

suggested above. See Brent. [3] for a detailed discussion of

derivative-free minimization strategies. One further note:

if derivatives are computed via finite differences,

calculations of the form ðEða þ dÞ2 EðaÞÞ=kdk are required.

It is important that the closest point computations are

repeated when making these calculations. It might be

thought more efficient to compute closest points once, when

calculating EðaÞ; and to use the same values of f to compute

Eða þ dÞ: However, this will compute the derivatives with

fixed correspondences, and the gradient descent direction

will then be towards the same optimum as would be

attained by the basic ICP algorithm. It is better, particularly

with a robust kernel, to allow the correspondences to change

for each d:

2.2.2. The LM algorithm in detail

There now follows a derivation of the LM algorithm.

Readers who are familiar with its operation may wish to

skim this description in order to synchronize notation,

and proceed to Section 3. The error function EðaÞ can be

written as the sum of Nd residuals as follows

EðaÞ ¼
XNd

i¼1

E2
i ðaÞ

where the residual for the ith data point is given by

EiðaÞ ¼
ffiffiffi
wi

p
min

j
eðlmj 2 Tða; diÞlÞ

An important concept in the derivation of LM will be the

vector of residuals

eðaÞ ¼ {EiðaÞ}
Nd

i¼1

in terms of which the error function becomes EðaÞ ¼ keðaÞk2:
The LM algorithm combines the gradient descent and

Gauss–Newton approaches to function minimization.

Using the above notation, the goal at each iteration is to

choose an update to the current estimate ak; say x; so

that setting akþ1 ¼ ak þ x reduces the error EðaÞ: Expanding

Eða þ xÞ around a; we obtain

Eða þ xÞ ¼ EðaÞ þ ð7EðaÞ·xÞ þ
1

2!
ðð72EðaÞ·xÞ·xÞ þ h:o:t:

Expressing this in terms of e; we have

EðaÞ ¼ eTe ð4Þ

7EðaÞ ¼ 2ð7eÞTe ð5Þ

72EðaÞ ¼ 2ð72eÞe þ 2ð7eÞT7e ð6Þ

We shall denote the Nd £ p Jacobian matrix 7e by J,

with ijth entry Jij ¼ ›Ei=›aj: Introducing the Gauss–New-

ton approximation [19], i.e. ð72eÞe < 0; we arrive at

Eða þ xÞ < eTe þ 2xTJTe þ xTJTJx
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The task at each iteration is to determine a step x; which will

minimize Eða þ xÞ: Using the approximation to E that we

have just derived, we differentiate with respect to x and

equate with zero, yielding

7xEða þ xÞ ¼ 2JTe þ 2JTJx ¼ 0

Solving this equation for x yields the Gauss–Newton

update, and gives the algorithm for one iteration of Gauss–

Newton ICP:

1. Compute the vector of residuals eðakÞ; and its Nd £ p

matrix of derivatives J with respect to the components of

a: (For a 2D rigid-body transformation, a has three

components, and J is Nd £ 3Þ:

2. Compute the update x ¼ 2ðJTJÞ21JTe:

3. Set akþ1 ¼ ak þ x:

Of course, the above strategy does not guarantee that the

step taken will result in a reduced error at Eðakþ1Þ:

Whether or not it does so depends on the accuracy of the

second-order Taylor series expansion at ak; and on the

validity of the Gauss–Newton approximation. However, it

can be shown that when these approximations are good,

as they tend to be when near the minimum, convergence is

rapid and reliable.

By comparison, an accelerated gradient descent approach

as used by some previous registration algorithms [1,8,20] is

obtained by replacing step 2 with

2. Compute the update x ¼ 2l21JTe; where the value of

l controls the distance travelled along the gradient

direction. For small l; the iteration moves a long way

along the downhill direction; large l implies a short step.

In contrast to Gauss–Newton, gradient descent does

guarantee to reduce E; providing l is sufficiently

large. However, its convergence near the optimum is

dismally slow.

The LM algorithm combines both updates in a relatively

simple way in order to achieve good performance in all

regions. Step 2 is replaced by

20. Compute the update x ¼ 2ðJTJ þ lIÞ21JTe:

Now large l corresponds to small, safe, gradient descent

steps, while small l allows fast convergence near the

minimum. The art of a good LM implementation is in

tuning l after each iteration to ensure rapid progress even

where the Gauss – Newton approximations are poor.

Details of such strategies may be found in Refs. [16,19].

We have therefore derived this paper’s first proposal,

the LM-ICP algorithm, summarized in Fig. 3.

3. Previous work

Having defined the problem and thus introduced our

notation (Table 2), we are in a position to compare existing

work on point-set registration. Besl [1] introduced the name

ICP, and provided enough examples of the performance of

the basic algorithm to ensure its enduring popularity.

Zhang [28] enhanced the basic technique by replacing

the error function e2ðlxlÞ ¼ x2 by a robust kernel [12,19].

Chen and Medioni [5] assume the model points mi can be

supplied with surface normals ni; which allows the point-to-

point distance to be replaced by a point-to-tangent plane.

Both of these extensions confer improved convergence

properties on the basic algorithm without a significant

increase in computational cost.

The problem of multiple local minima has been

addressed by using colour [15] and curvature [9] properties

to improve, the correspondence step—points are allowed to

match based not just on proximity, but also on similarity of

surface shape or texture. These extensions are as easily

included in this paper’s algorithm as in the original, but are

not investigated here, as they would be expected to favour

both old and new approaches equally. Extensions to

non-Euclidean and non-rigid registration [9,22], replace

the rigid-body computation in the T step with more general

parameterized transformations. Again, the modifications to

LM-ICP which would incorporate these extensions are

straightforward.

The extensions to multiple-view reconstructions [8,21]

necessitated the introduction of non-linear optimization

strategies, although these were essentially limited to

variations on gradient descent. Grimson [11] explicitly

minimizes EðaÞ again using a non-linear optimizer.

However, the important distinction between these efforts

and the current work is that they retain lock-step:

the separation of the correspondence and update steps, and

the concomitant sluggish convergence near the minimum.

The separation of correspondence and update remains

true of EM-based approaches [6,17,27]. Although

Table 2

Notation summary for the paper

Notation summary

Nm model points mj

Nd data points dj

Data point $ closest model point: i $ fðiÞ

Transformation Tða; xÞ; parameters a [ Rp

Error DiðaÞ ¼ mfðiÞ 2 Tða;diÞ

Residuals e [ RNd ; elements Ei ¼ e2ðlDiðaÞlÞ
Jacobian J, size Nd £ p; ijth element ¼ ›Ei=›aj

Fig. 3. The basic LM-ICP algorithm. No data structure is implied for the

closest point computations, see Section 6 for a fast LM-ICP.
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the correspondence is ‘soft’, it is still computed in a

separate step, meaning that there is no opportunity to

simultaneously adjust correspondence and transform

parameters. In medical imaging problems [22,26,27],

particularly the registration of MRI or CT scans, explicit

minimization over registration parameters is common-

place, as the problems solved there (maximization of

mutual information for example), do not admit a closed-

form optimization step. However, there the problems do

not generally allow for the computation of derivatives, so

simple adaptation to 3D point-set registration would not

yield the improvements shown in this paper.

The closest work to that reported here is the paper of

Champleboux et al. [4], who use LM and the distance

transform. However, the work assumes no outliers in the

data, reverting to an explicit lock-step in order to reject

gross errors. However, for the non-robust case, part of

this paper’s contribution is the comparison of the

Champleboux and Besl approaches with the result that

the former is found to be significantly faster and more

accurate.

4. Experiments: LM-ICP

In this section, we compare the simplest case of point

registration: minimizing the distance between two pointsets

where the data are almost entirely a subset of the model.

This is the case to which the simplest forms of ICP and

LM-ICP apply. In this simple case, LM derivatives are

computed using finite differences, which means each LM

iteration is a factor of p more expensive than the ICP

iteration. However, in Section 6, this cost will disappear,

so that iteration counts are indeed the correct abscissae in

this section.

4.1. 2D curve matching

The first experiment investigates the registration of 2D

curves under Euclidean transformations. Fig. 1 shows a

section of an image of a book cover, with overlaid

edge-detected curves. The task is to register two curves.

The curves to be registered were chosen from different parts

of the image in order to obtain a realistic variation in arc-

length and sampling artefacts. The curves were subjected to

synthetic rotations in order to test the algorithms over a

range of initial conditions. Results are displayed graphically

in Figs. 4 and 5. The summary of these results is that

LM-ICP has a slightly larger basin of convergence, and can

find an optimum with slightly reduced error. The LM

algorithm requires 50% fewer iterations on average,

but unless speedups such as those in Section 6 are

employed, this advantage will be lost in the computation

of finite-difference derivatives. Even in this case, it might be

thought surprising that the general-purpose LM approach is

Fig. 4. (a) Basins of convergence of basic ICP and basic LM-ICP are similar. The graph is as a function of starting position, so the error at X ¼ 0 is near to that

corresponding to the global optimum. All solutions with this error were visually confirmed to be at the global optimum. LM-ICP has a slightly wider basin of

convergence, and achieves a slightly lower error (because ICP has more local minima near the solution). (b) Ratio of number of iterations. Numbers greater

than 1 imply LM-ICP required fewer iterations, less than 1 implies fewer ICP iterations. The algorithms are comparable, with LM-ICP slightly better. The ratio

of the means is 1.52. This is before the speedups in Section 6 are applied, and before robust kernels are introduced, both of which accentuate the difference.
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even comparable with ICP’s closed-form inner optimiz-

ation, and this is really the key message of this paper.

4.2. 3D point matching

The extension of the algorithm to 3D is extremely

straightforward, and an example is shown in Fig. 6b.

Frames bun000 and bun045 of the Stanford ‘bunny’

dataset [25] were presented to LM–Huber (see Section 5),

with the identity transformation as initial guess. ICP failed

to converge, while LM–Huber produced the visually

correct solution in the figure.

5. Robust estimation

Many attempts have been made to widen the basin of

convergence of the ICP algorithm, and these largely amount

to introducing robust estimation. This is difficult with

standard ICP, as no closed-form robust estimate of the T

step is known, so authors have used either a non-linear or

RANSAC-based estimator [20,24,28], or exclude

(Winsorise) points with large errors at the C step [4].

With LM-ICP, it is trivial to modify the error function to

include a robust kernel. One must take a little care to ensure

that the LM algorithm behaves well if the kernel chosen is

not smooth, but without going into the details, the examples

here use either of the following kernels

Lorentzian : eðrÞ ¼ log 1 þ
r2

s

 !

or

Huber : eðrÞ ¼
r2 r , s

2slrl2 s2 otherwise

(

LM-ICP using these kernels is compared against ICP with

Winsorised residuals [4], as this is the most common way of

robustifying ICP. Fig. 5 shows that LM-ICP with the Huber

kernel has a basin of convergence twice as large as that of

Winsorised ICP.

6. Fast ICP using the distance transform

The Euclidean distance transform [2] of a set of points

M ¼ {mj}
Nm

j¼1 is defined as

DEðxÞ ¼ min
j

kmj 2 xk ð7Þ

Algorithms exist for its computation on a discrete grid [2],

which are extremely efficient, taking time which is a small

constant number of machine instructions times the number

of points plus the resolution of the grid. In 3D, the signed

distance transform is the preeminent data structure for

merging 3D models [14], meaning that it is readily available

for the registration step.

We can analogously define the e-distance transform De

by

De ðxÞ ¼ min
j

e2ðlmj 2 xlÞ ð8Þ

and if the mapping kxk 7! e2ðlxlÞ is monotonic, we obtain

that De ðxÞ ¼ e2ðlDEðxÞlÞ; so that existing algorithms to

compute DE may be used to compute De ; without

requiring knowledge of the form of e : In this section, we

write D for De :

Now, the relationship between the distance transform

and the registration problem is easily noted. Combining the

definitions of D (Eqs. (7) and (8)) and of the error (3)

we obtain

EðaÞ ¼
XNd

i¼1

wiDðTða; diÞÞ ð9Þ

Furthermore, we are now in a position to compute

derivatives of E. We compute a discretization of D

(Fig. 7a), from which we can immediately compute

finite-difference derivatives (Fig. 7b and c). For example,

the x derivative image Dx can be given by convolution of D

with the discrete kernel [1,0, 2 1]. Thus, we have ready

access to 7xD; which remains constant throughout the

minimization. Differentiating Eq. (9) and applying the chain

rule, we obtain

7aEðaÞ ¼
XNd

i¼1

wi7aDðTða;diÞÞ ð10Þ

7aEðaÞ ¼
XNd

i¼1

wi7aTða; diÞ·7xDðTða; diÞÞ ð11Þ

As a specific example, consider the case of 2D Euclidean

registration. The transformation Tða; ðx; yÞÞ is given by

Fig. 5. Basins of convergence: robust kernels. Algorithms are initialized at

18 intervals between ^1208 of the true solution, and the value of the

minimum is plotted as a function of initial guess. LM–Huber is

significantly wider than all others, at a cost of a factor of 2 in number of

iterations.
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Tðu; tx; ty; x; yÞ from Eq. (1). Then 7aTða; ðxi; yiÞÞ is the 3 £ 2

matrix

M¼

2xi sinuþ yi cos u 2xi cos u2 yi sin u

1 0

0 1

0
BB@

1
CCA ð12Þ

and the gradient vector 7aEðaÞ becomes (with di ¼ ðxi;yiÞÞ

7aEðu;tx;tyÞ

¼
XNd

i¼1

wiM
Dxðxi cosuþyi sinuþtx;2xi sinuþyi cosuþtyÞ

Dyðxi cosuþyi sinuþtx;2xi sinuþyi cosuþtyÞ

0
@

1
A

Implementation of 2D LM-ICP bilinearly interpolating a

discrete distance transform reduced the elapsed time for

Fig. 6. 3D example. Top: initial alignment for 3D registration. Bottom: LM–Huber optimum.
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registration (the average described in Fig. 4) from 13 to

0.37 s (MATLAB on a 650 MHz Pentium III).

Traditional ICP can benefit from the distance transform by

storing, at each point, the integer label of the closest point

rather than the point itself. This makes each iteration of ICP

almost exactly the same cost as those of LM-ICP—the time

taken to compute T is similar to the cost of the LM update.

However, in this case, the LM algorithm’s superior

convergence means the overall runtime is reduced.

7. Discussion

I propose that point-set registration is better performed

using a general-purpose non-linear optimization procedure

than via the popular ICP algorithm. The general-purpose

routine is faster, and much simpler to program. Because it is

simpler to program, it may be enhanced to incorporate

robust estimation, without loss in speed. In contrast,

standard ICP suffers a significant speed penalty when robust

metrics are introduced [24]. In fact, standard ICP cannot

minimize a robust kernel unless an iterative approach is

used in the T step. This paper shows that pulling the

iteration outside both C and T steps leads to a faster

algorithm.

It can be shown, although it is omitted here, that LM-ICP

must require, at worst, p times as many function evaluations

as regular ICP. In practice this limit was never met.

The more general conclusion of this work is that

specialized algorithms such as ICP are not always to be

preferred to general-purpose techniques. This is true in this

paper, and concurs with similar observations which have

been made in neural network learning [18], curve fitting [10]

and photogrammetry [23]. MATLAB source code for the

algorithm is available from the author’s website [29].
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