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Abstract
This thesis explores a number of parameter estimation techniques for con-

ditional random fields, a recently introduced [31] probabilistic model for la-

belling and segmenting sequential data. Theoretical and practical disadvan-

tages of the training techniques reported in current literature on CRFs are dis-

cussed. We hypothesise that general numerical optimisation techniques result

in improved performance over iterative scaling algorithms for training CRFs.

Experiments run on a a subset of a well-known text chunking data set [28]

confirm that this is indeed the case. This is a highly promising result, indi-

cating that such parameter estimation techniques make CRFs a practical and

efficient choice for labelling sequential data, as well as a theoretically sound

and principled probabilistic framework.
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Chapter 1

Introduction

The task of assigning label sequences to a set of observation sequences arises

in many fields, including bioinformatics, computational linguistics, speech

recognition and information extraction. As an example, consider the natural

language processing (NLP) task of labelling the words in a sentence with their

corresponding part-of-speech (POS) tags. In this task, each word is labelled

with a tag or indicating its appropriate part of speech, resulting in annotated

text, such as:

(1.1)
�
PRP He � �

VBZ reckons � �
DT the � �

JJ current � �
NN account � �

NN deficit ��
MD will � �

VB narrow � �
TO to � �

RB only � �
# # � �

CD 1.8 � �
CD billion � �

IN

in � �
NNP September � �

. . �

Labelling sentences in this way is a useful preprocessing step for higher level

natural processing tasks: POS tags augment the information contained within

words alone by explicitly indicating some of the structure inherent in lan-

guage. Another NLP task involving sequential data is that of text chunking,

or shallow parsing. Text chunking involves the segmentation of natural sen-

tences (usually augmented with POS tags) into non-overlapping phrases, such

that syntactically related words are grouped together in the same phrase. For

example, the sentence used in the POS tagging example may be divided as

follows:

1



2 Chapter 1. Introduction

(1.2)
�
NP He � �

VP reckons � �
NP the current account deficit � �

VP will narrow ��
PP to � �

NP only # 1.8 billion � �
PP in � �

NP September � �
O . � .

Like POS tagging, which is used as a preprocessing step for tasks such as

text chunking, shallow parsing provides a useful intermediate step when fully

parsing natural language data – a task that is highly complex and benefits from

as much additional information as possible.

One of the most common methods for performing such labelling and segmen-

tation tasks is that of employing hidden Markov models [45] (HMMs) or prob-

abilistic finite state automata [40] to identify the most likely sequence of la-

bels for the words in any given sentence. HMMs are a form of generative

model, that assign a joint probability p � x � y � to pairs of observation and label

sequences, x and y respectively. In order to define a joint probability of this

nature, generative models must enumerate all possible observation sequences

– a task which, for most domains, is intractable unless observation elements

are represented as isolated units, independent from the other elements in an

observation sequence. This is an appropriate assumption for a few simple data

sets, however most real-world observation sequences are best represented in

terms of multiple interacting features and long-range dependencies between

observation elements.

This representation issue is one of the most fundamental problems when la-

belling sequential data. Clearly, a model that supports tractable inference is

necessary, however a model that represents the data without making unwar-

ranted independence assumptions is also desirable. One way of satisfying both

these criteria is to use a model that defines a conditional probability p � y � x � over

label sequences given a particular observation sequence, rather than a joint dis-

tribution over both label and observation sequences. Conditional models are

used to label a novel observation sequence x by selecting the label sequence

y that maximises the conditional probability p � y � x � . The conditional nature

of such models means that no effort is wasted on modelling the observation

sequences. Furthermore, by specifying the conditional model in terms of a
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log-linear distribution, one is free from making unwarranted independence

assumptions. Arbitrary facts about the observation data can be captured with-

out worrying about how to ensure that the model is correct.

A number of conditional probabilistic models have been recently developed

for use instead of generative models when labelling sequential data. Some of

these models [12, 33] fall into the category of non-generative Markov models,

while others [31] define a single probability distribution for the joint probabil-

ity of an entire label sequence given an observation sequence. As expected,

the conditional nature of models such as McCallum et al.’s maximum entropy

Markov models (MEMMs) [33], a form of next-state classifier, result in im-

proved performance on a variety of well-known NLP labelling tasks. For in-

stance, a comparison of HMMs and MEMMs for POS tagging [31] showed that

use of conditional models such as MEMMs resulted in a significant reduction

in the per-word error rate from that obtained using HMMs. In particular, use

of an MEMM that incorporated a small set of orthographic features reduced

the overall per-word error rate by around 25% and the out-of-vocabulary error

rate by around 50%.

Unfortunately, non-generative finite-state models are susceptible to a weak-

ness known as the label bias problem [31]. This problem, discussed in detail in

Chapter 2, arises from the per-state normalisation requirement of next-state

classifiers – the probability transitions leaving any given state must sum to

one. Each transition distribution defines the conditional probabilities of possi-

ble next states given the current state and next observation element. Therefore,

the per-state normalisation requirement means that observations are only able

to affect which successor state is selected, and not the probability mass passed

onto that state. This results in an bias towards states with low entropy transi-

tion distributions and, in the case of states with a single outgoing transition,

causes the observation to be effectively ignored. The label bias problem can

significantly undermine the benefits of using a conditional model to label se-

quences, as indicated by experiments performed by Lafferty et al. [31]. These

experiments show that simple MEMMs, equivalent to HMMs in the observa-
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tion representation used, perform considerably worse than HMMs on POS tag-

ging tasks as a direct consequence of the label bias problem.

To reap the benefits of using a conditional probabilistic framework for labelling

sequential data and simultaneously overcome the label bias problem, Lafferty

et al. [31] introduced conditional random fields (CRFs), a form of undirected

graphical model that defines a single log-linear distribution over for the joint

probability of an entire label sequence given a particular observation sequence.

This single distribution neatly removes the per-state normalisation require-

ment and allows entire state sequences to be accounted for at once by letting

individual states pass on amplified or dampened probability mass to their suc-

cessor states. Sure enough, when simple CRFs are compared with the MEMMs

and HMMs used to demonstrate the performance effects of the label bias prob-

lem, CRFs outperform both MEMMs and HMMs, indicating that a using a

principled method of dealing with the label bias problem is highly advanta-

geous.

Lafferty et al. propose two algorithms for estimating the parameters of CRFs.

These algorithms are based on improved iterative scaling (IIS) and generalised

iterative scaling (GIS) – two techniques for estimating the parameters of non-

sequential maximum entropy log-linear models. Unfortunately, careful analy-

sis (described in Chapter 3) reveals Lafferty et al.’s GIS-based algorithm to be

intractable1 and their IIS-based algorithm to make a mean-field approximation

in order to deal with the sequential nature of the data being modelled that may

result in slowed convergence. Lafferty et al.’s experimental results involving

CRFs for POS tagging indicate that convergence of their IIS variant is very slow

indeed – when attempting to train a CRF initialised with an all zero parameter

vector, Lafferty et al. found that convergence had not been reached even after

2000 iterations. To deal with this very slow convergence, Lafferty et al. train a

MEMM to convergence, taking 100 iterations, and then use its parameters as

1Calculating the expected value of each correction feature (necessary to enable analytic
calculation of parameter update values) is intractable due to the global nature of the correction
features.
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the initial parameter vector for the CRF. Convergence of the IIS-variant for CRF

parameter estimation then converged in around 1000 iterations. Although this

technique enabled Lafferty et al. to train CRFs in a reasonable time, this is not

a principled technique and is entirely dependent on the availability of trained

MEMMs that are structurally equivalent to the CRF being trained. Addition-

ally, a recent study by Bancarz and Osborne [4] has shown that IIS can yield

multiple globally optimal models that result in radically differing performance

levels, depending on initial parameter values. This observation may mean that

the decision to start CRF training using the trained parameters of an MEMM

is in fact biasing the performance of CRFs reported in the current literature.

These theoretical and practical problems with the parameter estimation meth-

ods currently proposed for CRFs provide significant impetus for investigat-

ing alternative parameter estimation algorithms that are easy to implement

and efficient. Interestingly, recent experimental work of Malouf [32] indicated

that despite widespread use of iterative scaling algorithms for training (non-

sequential) conditional maximum entropy models, general numerical optimi-

sation techniques outperform iterative scaling by a wide margin on a num-

ber of NLP datasets. The functional form of the distribution over label se-

quences given an observation sequence defined by a CRF is very similar to

that of a non-sequential conditional maximum entropy model. This functional

correspondence suggests that use of general optimisation techniques for CRF

parameter estimation is highly likely to result in similar performance advan-

tages to those obtained by using general numerical optimisation techniques for

estimating the parameters of a non-sequential conditional maximum entropy

model.

This thesis explores a number of parameter estimation techniques for condi-

tional random fields, highlighting theoretical and practical disadvantages of

the training techniques reported in current literature on CRFs and confirming

that general numerical optimisation techniques do indeed result in improved

performance over Lafferty et al.’s iterative scaling algorithm. To compare per-

formance of the parameter estimation algorithms considered, a subset of a
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well-known text chunking data set [28] was used to train a number of CRFs,

each with a different parameter estimation technique. Although the particular

subset of data chosen was not representative of the size and complexity of the

data sets found in most NLP tasks, the experiments performed did indicate

that numerical optimisation techniques for CRF parameter estimation result in

faster convergence than iterative scaling. This is a highly promising result, in-

dicating that such parameter estimation techniques make CRFs a practical and

efficient choice for labelling sequential data, as well as a theoretically sound

and principled probabilistic framework.

The structure of this thesis is as follows: In Chapter 2, generative and condi-

tional data labelling techniques based on directed graphical models are intro-

duced and a thorough description of HMMs, MEMMs and the label bias prob-

lem is given. Chapter 3 addresses the theoretical framework underlying con-

ditional random fields, including parameter estimation algorithms described

in current literature and their theoretical and practical limitations. In Chap-

ter 4, a number of first- and second-order numerical optimisation techniques

are discussed and an outline of how such techniques may be applied to the

task of estimating the parameters of a CRF is given. Following this, the soft-

ware implemented to perform CRF parameter estimation is described, and the

experimental data used to compare the algorithms is presented. Finally, the re-

sults of the experiments and their implications are detailed, before a summary

of the work covered in this thesis is presented in Chapter 5.



Chapter 2

Directed Graphical Models

Hidden Markov models [45], probabilistic finite-state automata [40] and max-

imum entropy Markov models [33] may all be represented as directed graphical

models [26]. Directed graphical models are a framework for explicating the in-

dependence relations between a set of random variables, such as the variables

S1 ������� � Sn representing the state of a HMM at times t � 1 through to t � n. These

independence relations may then be used to construct a concise factorisation

of the joint distribution over the states in a Markovian model (and in the case

of HMMs, over the observations also). When labelling sequential data using

a HMM or MEMM, each of the labels is represented by one or more states in

the Markov model, so defining a probability distribution over state sequences

is equivalent to defining a distribution over possible sequences of labels.

This chapter introduces the theory underpinning directed graphical models

and explains how they may be used to identify a probability distribution over

a set of random variables. A description of hidden Markov models and their

uses in natural language processing is presented, along with a discussion of

the limitations of using generative models for labelling sequential data. Max-

imum entropy Markov models [33], a form of conditional next-state classifier,

are introduced in the context of a solution to the problems encountered when

using generative models for segmentation of sequence data. Finally, the la-

7
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bel bias problem [31], a fundamental weakness of non-generative finite-state

models, is described, motivating the need for a conditional model that also

provides a principled method of overcoming this problem.

2.1 Directed Graphical Models

A directed graphical model consists of an acyclic directed graph G � � V � E �
where V is the set of nodes belonging to G and E is the set of directed edges be-

tween the nodes in V . Every node Vi in the set of nodes V is in direct one-to-one

correspondence with a random variable, also denoted as Vi
1. This correspon-

dence between nodes and random variables enables every directed graphical

model to represent a class of joint probability distributions over the random

variables in V .

The directed nature of G means that every node Vi has a set of parent nodes Vπi ,

where πi is the set of indices of the parents of node Vi. The relationship between

a node and its parents enables the expression for the joint distribution defined

over the random variables V to be concisely factorised into a set of functions

that depend on only a subset of the nodes in G. Specifically, we allow the joint

distribution to be expressed as the product of a set of local functions, such

that every node in G is associated with a distinct function fi � vi � vπi � in this set

defined over the node and its parents:

p � v1 � v2 ������� � vn � � n

∏
i � 1

fi � vi � vπi � � (2.1)

To identify the functional form of each of these fi, we turn to the notion of

conditional independence. In particular, we observe that the structure of a di-

rected graphical model embodies specific conditional independence assump-

tions which can be used to factor the joint distribution such that a natural prob-

abilistic interpretation of each fi emerges. Given three non-overlapping sets

1This one-to-one correspondence means that we ignore any distinction between nodes and
random variables, and use the terms “node” and “random variable” interchangeably.
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of nodes VA, VB and VC the definition of conditional independence states that

nodes VA and VC are conditionally independent given the nodes in VB if and

only if the probability of vA given vC and vB can be is given by

p � vA � vB � vC � � p � vA � vB � � (2.2)

To relate the concept of conditional independence to the structure of a directed

graphical model, we define a topological ordering of the nodes V in G, such

that the nodes in Vπi appear before Vi in the ordering for all Vi. Having cho-

sen an ordering of the nodes, all conditional independence relations between

random variables in G can be expressed by the statement

node Vi is conditionally independent of VVi given Vπi

where VVi is the set of nodes that appear before Vi in the topological ordering

exclusive of the parents Vπi of Vi. This conditional independence statement al-

lows the joint probability distribution over the random variables in a directed

graphical model to be factorised using the probability chain rule, giving an

explicit probabilistic interpretation of each local function fi � vi � vπi � . More pre-

cisely, each fi is in fact the conditional probability of vi given vπi

fi � vi � vπi � � p � vi � vπi � (2.3)

which enables the the joint distribution to be defined as

p � v1 � v2 ������� � vn � �

n

∏
i � 1

p � vi � vπi � � (2.4)

To see how this method of factorising a joint distribution over random vari-

ables may be used to concisely express the probability distribution over a se-

quence of labels, we look at two forms of Markovian model – hidden Markov

models [45] and maximum entropy Markov models [33].

2.2 Hidden Markov Models

Hidden Markov models have been successfully applied to many data labelling

tasks including POS tagging [30], shallow parsing [43, 51, 34], speech recogni-
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tion [44? ] and gene sequence analysis [18]. Revisiting the part-of-speech

tagging scenario introduced in Chapter 1, we illustrate the use of HMMs for

labelling and segmenting sequential data using the task of annotating words

in a body of text with appropriate part-of-speech tags, producing labelled sen-

tences of the form:

(2.5)
�
PRP He � �

VBZ reckons � �
DT the � �

JJ current � �
NN account � �

NN deficit ��
MD will � �

VB narrow � �
TO to � �

RB only � �
# # � �

CD 1.8 � �
CD billion � �

IN

in � �
NNP September � �

. . �

HMMs are probabilistic finite state automata [40, 22] that model generative

processes by defining joint probabilities over observation and label sequences

[45]. Each observation sequence is considered to have been generated by a

sequence of state transitions, beginning in some start state and ending when

some predesignated final state is reached. At each state an element of the ob-

servation sequence is stochastically generated, before moving to the next state.

In the context of POS tagging, each state of the HMM is associated with a POS

tag. A one-to-one relationship between tags and states is not necessary, how-

ever, to simplify matters we consider this to be the case. Although POS tags do

not generate words, the tag associated with any given word can be considered

to account for that word in some fashion. It is, therefore, possible to find the

sequence of POS tags that best accounts for any given sentence by identifying

the sequence of states most likely to have been traversed when “generating”

that sequence of words.

The states in an HMM are considered to be hidden because of the doubly

stochastic nature of the process described by the model. For any observa-

tion sequence, the sequence of states that best accounts for that observation se-

quence is essentially hidden from an observer and can only be viewed through

the set of stochastic processes that generate an observation sequence. Return-

ing to the POS tagging example, the POS tags associated with any sequence of

words and may must identified by inspecting the process by which the words

were “generated”. The principle of identifying the most state sequence that



2.2. Hidden Markov Models 11

best accounts for an observation sequence forms the foundation underlying

the use of finite-state models for labelling sequential data.

Formally, an HMM is fully defined by

� A finite set of states S .

� A finite output alphabet X .

� A conditional distribution P � s � � s � representing the probability of moving

from state s to state s
�
, where s � s

���
S .

� An observation probability distribution P � x � s � representing the probabil-

ity of emitting observation x when in state s, where x
�

X and s
�

S .

� An initial state distribution P � s � , s
�

S .

Returning to the notion of a directed graphical model as an expression of the

conditional independence relationships between a set of random variables, a

HMM may be represented as a directed graph G with nodes St and Xt rep-

resenting the state of the HMM (or label) at time t and the observation at

time t, respectively. This structure is shown in Figure 2.1. This representation

S1 S2 S3

�����

Sn � 1 Sn

X1 X2 X3

�����

Xn � 1 Xn

Figure 2.1: Dependency graph structure for first-order HMMs for sequences.

of a HMM clearly highlights the conditional independence relations within a

HMM. Specifically, the probability of the state at time t depends only on the

state at time t � 1. Similarly, the observation generated at time t only depends

on the state of the model at time t. In the POS tagging application, this means

that we are considering the tag yt (recall that we are assuming a one-to-one cor-

respondence between states and tags) of each word xt to depend only on the
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tag assigned to the previous word yt � 1, and each word xt to depend only on

the current POS tag yt . These conditional independence relations, combined

with the probability chain rule, may be used to factorise the joint distribution

over a state sequence s and observation sequence x into the product of a set of

conditional probabilities:

p � s � x � � p � s1 � p � x1 � s1 �
n

∏
t � 2

p � st � st � 1 � p � xt � st � � (2.6)

2.2.1 Labelling Sequential Data

As stated above, labelling an observation sequence is the task of identifying

the sequence of labels that best accounts for the observation sequence. In other

words, when choosing the most appropriate label sequence for an observation

sequence x we want to choose the label sequence y � that maximises the condi-

tional probability of the label sequence given the observation sequence:

y � � argmaxy p � y � x � (2.7)

However, since the distribution defined by an HMM is a joint distribution

p � x � s � over observation and state sequences, the most appropriate label se-

quence for any observation sequence is obtained by finding the finding se-

quence of states s � that maximises the conditional probability of the state se-

quence given the observation sequence, which may be calculated from the joint

distribution using Bayes’ rule:

s � � argmaxs
p � x � s �
p � x � � (2.8)

and then reading off the labels y associated with the states in this sequence.

Finding the optimal state sequence is most efficiently performed using a dy-

namic programming technique known as Viterbi alignment. The Viterbi algo-

rithm is described in [45].



2.2. Hidden Markov Models 13

2.2.2 Limitations of Generative Models

Despite their widespread use, HMMs and other generative models are not the

most appropriate sort of model for the task of labelling sequential data. Gen-

erative models define a joint probability distribution p � x � y � over observation

and label sequences. This is useful if the trained model is to be used to gener-

ate data, however, the distribution of interest when labelling data is the condi-

tional distribution p � y � x � over label sequences given the observation sequence

in question. Defining a joint distribution over label and observation sequences

means that all possible observation sequences must be enumerated – a task

which is hard if observations elements are assumed to have long-distance de-

pendencies. Therefore, generative models must make strict independence as-

sumptions in order to make inference tractable. In the case of an HMM, the

observation at time t is assumed to depend only on the state at time t, ensuring

that each observation element is treated as an isolated unit, independent from

all other elements in the sequence.

In fact, most sequential data cannot be accurately represented as a set of iso-

lated elements. Such data contain long-distance dependencies between ob-

servation elements and benefit from being represented in by a model that al-

lows such dependencies and enables observation sequences to be represented

by non-independent overlapping features. For example, when assigning POS

tags to words, performance is improved significantly by assigning tags on the

basis of complex feature sets that utilise information such as the identity of

the current word, the identity of surrounding words, the previous two POS

tags, whether a word starts with a number or upper case letter, whether the

word contains a hyphen, and the suffix of the word [46, 31]. These features are

not independent (for example, the suffix of the current word is entirely depen-

dent on the identity of the word) and contain dependencies other than those

between the current and previous tags, and the current word and current tag.

Fortunately, the use of conditional models for labelling data sequences pro-

vides a convenient method of overcoming the strong independence assump-
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tions required by practical generative models. Rather than modelling the joint

probability distribution p � x � s � over observations and states, conditional mod-

els define a conditional distribution p � s � x � over state sequences given a partic-

ular observation sequence. This means that when identifying the most likely

state sequence for a given observation sequence, the conditional distribution

may be used directly, rather than using

s � � argmaxs p � s � x � � argmaxs
p � x � s �
p � x � � (2.9)

which requires enumeration of all possible observation sequences so that the

marginal probability p � x � can be calculated.

2.3 Maximum Entropy Markov Models

Maximum entropy Markov models [33] are a form of conditional model for

labelling sequential data designed to address the problems that arise from the

generative nature and strong independence assumptions of hidden Markov

models. MEMMs have been applied to a number of labelling and segmenta-

tion tasks including POS tagging [31] and the segmentation of text documents

[33].

Like HMMs, MEMMs are also based on the concept of a probabilistic finite

state model, however, rather generating observations the model is a proba-

bilistic finite state acceptor [40] that outputs label sequences when presented

with an observation sequence. MEMMs consider observation sequences to be

events to be conditioned upon rather than generated. Therefore, instead of

defining two types of distribution – a transition distribution P � s � � s � represent-

ing the probability of moving from state s to state s
�

and an observation dis-

tribution P � x � s � representing the probability of emitting observation x when in

state s – a MEMM has only a single set of � S � separately trained distributions of

the form

Ps � s � � x � � P � s � � s � x � (2.10)
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which represent the probability of moving from state s to s
�

on observation x.

The fact that each of these functions is specific to a given state means that the

choice of possible states at any given instant in time t
�

1 depends only on the

state of the model at time t. The use of state-observation transition functions

which are conditioned on the observations means that the dependency graph

for a MEMM takes the form shown in Figure 2.2. Note that the observation

S1 S2 S3

�����

Sn � 1 Sn

X1 X2 X3

�����

Xn � 1 Xn

Figure 2.2: Graphical structure of first-order MEMMs for sequences. The variables

corresponding to unshaded nodes are not generated by the model.

sequence is being conditioned upon rather than generated, and so the distri-

bution associated with the graph is the joint distribution of only those random

variables St representing the state of the MEMM at time t. Assuming that each

state corresponds to a particular label, the chain rule of probability and the

conditional independences embodied in the MEMM dependency graph struc-

ture may be used to factorise the joint distribution over label sequences y given

the observation sequence x as:

p � yx � � p � y1 � x1 �
n

∏
t � 2

p � yt � yt � 1 � xt � (2.11)

Treating observations as events to be conditioned upon rather than generated

means that the probability of each transition may depend on non-independent,

interacting features of the observation sequence. McCallum et al. [33] do this

by making use of the maximum entropy framework, which is discussed in

detail in Chapter 3, and defining each state-observation transition function to
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be a log-linear model:

Ps � s � � x � �
1

Z � s � x � exp

�
∑
k

λk fk � s � � x ��� (2.12)

where Z � s � x � is a normalisation factor, each λk are parameters to be estimated

and each fk is a feature function that takes two arguments, the current obser-

vation and a potential next state. The free parameters of each log-linear model

can be estimated using Generalised Iterative Scaling [17]. Iterative scaling is

also covered in Chapter 3. Each feature function makes use of a binary feature

b of the observation which expresses some characteristic of the empirical train-

ing distribution that should hold of the trained model distribution also. An

example of such a feature is

b � x � � ���� 1 if the observation is the word “the”

0 otherwise �

(2.13)

Each feature function fk indicates whether a particular boolean feature b is true

of the observation, and whether the possible next state takes on a particular

value:

f � b � s 	 � s � � x � � �� � 1 if b � x � is true and s � s
�

0 otherwise �

(2.14)

2.3.1 Labelling Sequential Data

Like HMMs, MEMMs are used to label novel data by identifying the state se-

quence that best describes the observation sequence to be labelled. Each state

has a label associated with it and so the most probable label sequence for that

observation sequence may be trivially identified once the most likely state se-

quence has been calculated. To find the most probable state sequence s � , where

s � � argmaxs p � s � x � � (2.15)

it is desirable to use some form of dynamic programming algorithm. McCal-

lum et al. [33] present a brief overview of a variant on Viterbi alignment that

enables the this state sequence to be efficiently identified.
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2.3.2 The Label Bias Problem

Maximum entropy Markov models and other discriminative finite-state mod-

els that define a set of separately trained per-state probability distributions

[40, 12] exhibit undesirable behaviour in certain situations, termed label bias by

Lafferty et al. [31]. The label bias problem is best described by through use of

an example. Consider the MEMM in Figure 2.3. This finite-state acceptor is

0

[B-NP]

1

[I-NP]

2

[B-VP]

3

[I-NP]

7

[B-NP]

4

[B-VP]

8

[B-ADJP]

9

[B-PP]

5

6
The robot

whee
ls Fred round

wheels
are round

Figure 2.3: Finite-state acceptor for shallow parsing two sentences.

designed to shallow parse the sentences

(2.16) the robot wheels Fred round

(2.17) the robot wheels are round

by segmenting them into into non-overlapping chunks or phrases such that

syntactically related words are grouped together.

Suppose we wish to determine the most likely chunk sequence for observation

sentence 2.17. This is done by identifying the state sequence that best accounts

for the observation sequence and then reading the chunk labels off the states

in the sequence chosen. Recalling that the joint probability of a state sequence

s given an observation sequence x may be decomposed so that

p � s � x � �

n

∏
t � 1

p � st � st � 1 � xt � � (2.18)
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we must calculate p � st � st � 1 � st � for every st in each of the state sequences that

accounts for the observation sequence. Having done this, establishing which

which state sequence results in the highest conditional probability p � s � x � is

trivial.

At the first and second time steps, the observation words “the” and “robot”

match the transitions from state 0 to state 1 and state 1 to state 2 respectively.

So far, the joint probability of the only possible state sequence given the obser-

vations so far is

p � 1 � 2 � the robot � � p � 1 � 0 � the � p � 2 � 1 � robot � � (2.19)

Moving on, the observation element “wheels” matches both transitions from

state 2 and so the probability mass accumulated so far must be distributed

between states 3 and 7. This conservation of probability mass arises from the

fact that the probability transitions leaving any given state must sum to one.

There are now two possible state sequences given the observation sequence so

far – 0123 and 0127. To determine which of these sequences best accounts for

the observation sequence, we must observe how each of these sequences can

be extended to account for the rest of the observation sequence, and compare

the probabilities of the state sequences that result.

States 3 and 7 both have a single outgoing transition and so each one must

pass the probability mass accumulated so far to its successor to ensure that the

distribution over all possible state sequences given this observation sequence

sums to one. This per-state normalisation requirement that arises from the fact

that the joint distribution over state sequences is decomposed to a product of

conditional probabilities of next states given the current states and the next

observation. We therefore assume that

p � 4 � 3 � Fred � � p � 8 � 7 � Fred � � 1 � (2.20)

However, closer inspection reveals that this assumption is entirely unwar-

ranted by the data used to train the MEMM – the training data never contained

a transition from state 7 to state 8 on the observation word “Fred”. Ideally, we
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would like to a low probability to this event given that it never occurred in

the data used to train the model, however, the per-state normalisation require-

ment means we have no choice but to ignore the observation and and respect

the fact that

∑
all states s

reachable from 7

p � s � 7 � Fred � � 1 (2.21)

Essentially, states with a single outgoing transition are forced to ignore obser-

vations. This may be generalised to a tendency for states with low-entropy

next-state distributions to take little notice of observations.

Continuing to identify state sequences that account for the observation se-

quence in question, we end up with two possible state sequences: 0123456

and 0127896 corresponding to the chunk labels “B-NP I-NP B-VP B-NP B-PP”

and “B-NP I-NP I-NP B-VP B-ADJP” respectively. Assuming the probabilities

of each of the transitions out of state 2 are approximately equal, the label bias

problem means that the probability of each of these chunk sequences given an

observation sequence x will also be roughly equal irrespective of the observa-

tion sequence x.

On a related note, had one of the transitions out of state 2 occurred more fre-

quently in the training data set, the probability of that transition would always

be greater, causing state 2 to pass more of its probability mass to the succes-

sor state associated with that transition. This situation would result in the se-

quence of chunk tags associated with that path being preferred irrespective of

the observation sentence. This consequence of the label bias problem is likely

to be a significant problem for natural language data – for example, consider

a situation in which a word is almost always associated with a particular part-

of-speech tag. When labelling a sentence for which the rarer interpretation of

that word is the correct one, the word will be assigned the more common POS

tag irrespective of the context contained in the rest of the sentence.

Generative models such as HMMs do not suffer from the label bias problem.

This is because the Viterbi algorithm used to identify the most likely state
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sequence given an observation sequence is able to down-weight a possible

branch of a state sequence on the basis of observations that appear after the

branch point.

2.4 Performance of HMMs and MEMMs

To compare the performance of MEMMs and HMMs, McCallum et al. [33] per-

formed a number of experiments involving the segmentation of Usenet multi-

part FAQs. Three HMM variants (see [33] for details) and a simple MEMM

were trained on trained on a single document in a group of FAQs and tested

on the remaining documents. The features used in the MEMM transition func-

tions were all formatting features such as indentation, numbered questions

and styles of paragraph breaks. Such features are not necessarily independent.

The results of these experiments are summarised in Table 2.1. This table clearly

indicates that MEMMs outperform HMMs when non-independent salient fea-

tures are an appropriate representation of the observation data.

Model COAP Precision Recall

TokenHMM 0.865 0.276 0.140

FeatureHMM 0.941 0.413 0.529

MEMM 0.965 0.867 0.681

Table 2.1: Co-occurance agreement probability (COAP), segmentation precision and

segmentation recall of HMM variants and an MEMM on a text segmentation task [33]

Although MEMMs exhibited good performance on this text segmentation task,

it is possible that they perform worse than HMMs when labelling data that

results in the occurance of the label bias problem. To investigate this, Lafferty

et al. [31] performed a number of experiments comparing HMMs, which do

not suffer from label bias, with MEMMs both for POS tagging and labelling

synthetic data specifically generated to verify the label bias problem. On both

the synthetic and natural language data, MEMMs performed much worse than
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simple HMMs as a direct result of the label bias problem. The results of the

POS tagging task are shown in Table 2.2.

Model Error OOV Error

HMM 5.69% 45.99%

MEMM 6.37% 54.61%

Table 2.2: Per-word error rate and out-of-vocabulary per-word error rate for POS tagging

using HMMs and MEMMs [31].

2.5 Chapter Summary

This chapter introduced the concept of directed graphical models for labelling

sequential data. An overview of hidden Markov models [45] was provided,

and the limitations of such generative models were discussed. Maximum en-

tropy Markov models [33] were introduced as a potential method of over-

coming the strong independence assumptions required by practical generative

models. Finally, the label bias problem [31] was outlined, motivating the need

for a conditional model that does not suffer from this problem.





Chapter 3

Conditional Random Fields

Conditional random fields (CRFs) are a recently introduced [31] form of condi-

tional model that allow the strong independence assumptions of HMMs to be

relaxed, as well as overcoming the label-bias problem exhibited by MEMMs

[33] and other non-generative directed graphical models such as discrimina-

tive Markov models [12]. Like MEMMs, CRFs are conditional probabilistic

sequence models, however, rather than being directed graphical models, CRFs

are undirected graphical models. This allows the specification of a single joint

probability distribution over the entire label sequence given the observation

sequence, rather than defining per-state distributions over the next states given

the current state. The conditional nature of the distribution over label se-

quences allows CRFs to model real-world data in which the conditional proba-

bility of a label sequence can depend on non-independent, interacting features

of the observation sequence. In addition to this, the exponential nature of the

distribution chosen by Lafferty et al. [31] enables features of different states to

be traded off against each other, weighting some states in a sequence as being

more important than others.

In this chapter, an introduction to undirected graphical models is given, fol-

lowed by an explanation of conditional random fields as a form of undirected

graphical model. The maximum entropy principle, which heavily influences

23
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Lafferty et al.’s [31] choice of CRF potential functions, is described, leading to

an explanation of the CRF functional form. Finally, an overview and analysis

of the parameter estimation techniques that are currently used for CRF train-

ing is given, highlighting the theoretical reasons for desiring an alternative

method of training CRFs.

3.1 Undirected Graphical Models

A Markov random field, or undirected graphical model, is an acyclic graph

G � � V � E � where V is a set of nodes and E is a set of undirected edges between

nodes. The nodes V represent a set of continuous or discrete random variables

such that there is a one-to-one mapping between the nodes and variables. Ev-

ery graphical model is associated with a class of joint probability distributions

over the random variables represented by nodes in the graph. The parameter-

isation of these probability distributions depend on conditional independence

relations between the random variables within the graph.

In Section 2.1, we saw that the joint probability distribution associated with a

directed graphical model Gd � � V d � Ed � can be factorised into a product of con-

ditional probabilities once conditional independence relationships between the

topologically ordered set of nodes in Gd has been identified. Specifically, the

joint probability of the random variables represented by nodes V d � V d
1 � V d

2 ��� � � V d
n

can be written as

p � vd
1 � vd

2 ��� ��� � vd
n � �

n

∏
i � 1

p � vd
i � vd

πi
� � (3.1)

where V d
πi

is the set of parent nodes belonging to node V d
i . The parameterisation

of a Markov random field is different to that of a directed graphical model. Al-

though it would be possible to assign each node a conditional probability given

its neighbours, the undirected nature of Markov random fields means that it is

difficult to ensure that the conditional probability of any node given its neigh-

bours is consistent with the conditional probabilities of the other nodes in the
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graph. This potential for inconsistency means we cannot ensure that the condi-

tional probabilities assigned to the nodes yield a single joint distribution over

all random variables in the graph. For this reason, the joint distribution of a

Markov random field is not parameterised in terms of conditional probabili-

ties, but is defined as the product of a set of local functions derived from a set

of conditional independence axioms.

The first step in parameterising an undirected graphical model G � � V � E � is

to identify the sets of nodes upon which each local function should operate.

To do this, we use the notion of conditional independence. Letting A, B and

C represent disjoint index subsets, the random variables represented by nodes

VA are conditionally independent of those represented by VB given the nodes

represented by VC if the set of nodes VB separates VA from VC. For an undirected

graphical model, we utilise a naı̈ve graph theoretic notion of separation, and

say that for VA to be conditionally independent of VC given VB, every path from

a node V� i � i � A � to a node V� j � j � C � must pass through at least one node V � k � k � B � . To

identify the groups of nodes operated on by the set of local functions we note

that according to the conditional independence properties of an undirected

graphical model G, the absence of an edge between two nodes Vi and Vj in

G implies that the nodes must be conditionally independent given all other

nodes in the graph. Therefore, when choosing local functions, we must ensure

that it is possible to factories the joint probability such that Vi and Vj do not

appear in the same local function.

The easiest way to fulfil this factorisation requirement is to assert that each

local function may operate only on a set of nodes that forms a fully connected

subset of nodes, or clique, within G. Clearly, this ensures that no local function

refers to any pair of nodes that are not directly connected, and, if two nodes

appear together in a clique, this dependence is made explicit by defining a local

function on the clique in which they appear. Further refining this concept of a

local function, we observe that if we define each local function to operate on a

maximal clique, or clique that cannot be extended to include additional nodes

and simultaneously remain fully connected, we gain nothing by also defining
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potential functions on any cliques that form subsets of this maximal clique.

Therefore, the simplest set of local functions that equivalently correspond to

the conditional independence properties associated with the graph G are the

set of functions in which each function is defined on the possible realisations vc

of a maximal clique c of G. These local functions ψVc � vc � are known as potential

functions and may have any strictly positive, and real-valued functional form.

Unfortunately, the product of a set of positive, real-valued functions is not

guaranteed to satisfy the axioms of probability. Therefore, to satisfy these ax-

ioms and ensure that the product is indeed a joint probability distribution over

the random variables represented by nodes in G, we define a normalisation

factor Z, given by

Z
�

∑
v1 ������� � vn

∏
c � C

ψVc � vc � (3.2)

where C is the set of all maximal cliques in G. The joint distribution is therefore

given by

p � v1 ��� ��� � vn � � 1
Z ∏

c � C

ψVc � vc � � (3.3)

Equivalence of this parameterisation of the joint distribution with the condi-

tional independence characterisations of the undirected graph is proved using

the Hammersley-Clifford theorem [21, 15].

Even though the joint distribution over the random variables in an undirected

graphical model is written as the product of potential functions, it is important

to note that an isolated potential function does not have an direct probabilis-

tic interpretation, but instead represent constraints on the configurations of the

random variables that the function is defined on. This in turn affects the prob-

ability of global configurations – a global configuration with a high probability

is likely to have satisfied more of these constraints than a global configuration

with a low probability.
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3.2 CRF Graph Structure

A conditional random field is a form of undirected graphical model that can

be used to define the the joint probability distribution over a label sequences

given a set of observation sequences to be labelled. Letting X and Y be jointly

distributed random variables respectively ranging over observation sequences

to be labelled and their corresponding label sequences, a conditional random

field � X � Y � is a an undirected graphical model globally conditioned on X, the

observation sequence [31].

Formally, we define G � � V � E � to be an an undirected graph such that Y �

�
Yv � v

�
V � . In other words, there is a node in the set V corresponding to

each each of the random variables representing a component Yv of the label

sequence. The entire graph, and therefore the class of distributions associated

with it, are considered to be conditioned upon X so the class of joint distri-

butions associated with G will be of the form p � y1 � ����� � yn � x � where y and x are

particular realisations of label and observation sequences, respectively. If each

random variable Yv obeys the Markov property with respect to G – the prob-

ability of a random variable Yv given X and all the other random variables

Y � u � u �� v � � u � v � � V �
p � Yv � X � Yu � u �� v � �

u � v � �
V � (3.4)

is equal to the probability p � Yv � X � Yu � � u � v � � E � of Yv given X and those ran-

dom variables corresponding to nodes neighbouring v in G

p � Yv � X � Yu � � u � v � � E � � (3.5)

then � X � Y � is a conditional random field.

In theory, the structure of the graph G may be arbitrary provided it represents

the conditional independencies in the label sequences being modelled. How-

ever, when modelling sequences, the simplest and most common graph struc-

ture encountered is that in which the nodes corresponding to the elements of Y

form a simple first-order chain structure, as illustrated in Figure 3.1. Note that
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only random variables representing elements of Y are part of the graph G be-

cause we wish to define a probability distribution of the form p � y � x � . Addition-

ally, the absence of any graphical structure between elements of X highlights

the fact that we are merely conditioning upon observation sequences and so

we do not make any independence assumptions about X.

Y1 Y2 Y3

�����

Yn � 1 Yn

X1 X2 X3

�����

Xn � 1 Xn

Figure 3.1: Graphical structure of the chain-structured case of CRFs for sequences.

The variables corresponding to unshaded nodes are not generated by the model.

3.3 The Maximum Entropy Principle

Lafferty et al.’s [31] choice of potential functions for CRFs is based heavily on

the principle of maximum entropy. Maximum entropy is a framework for es-

timating probability distributions from a set of training data that specifies that

any assumptions made in constructing the distribution must by warranted by

the data [23, 24, 47, 10]. Entropy [49] is a measure of uniformity of a proba-

bility distribution, or uncertainty. The conditional entropy H � Y � X � of a model

distribution over label sequences given observation sequences q � y � x � is given

by:

H � Y � X � �

� ∑
x � y p̃ � x � y � logq � y � x � (3.6)

where p̃ � x � y � is the empirical distribution of the training data. This will be

maximised when the distribution over label sequences q � y � x � is as uniform as

possible. The principle of maximum entropy (maxent) asserts that the only

probability distribution that can justifiably constructed from incomplete infor-

mation, such as training data consisting of a set of constraints, is that which
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has maximum entropy subject to constraints representing what is known. Any

other distribution would involve assumptions regarding unknown informa-

tion which are entirely unwarranted. [23, 24]

In order to construct a model that accurately encodes all that we know about

the training data, we need some method of representing this partial informa-

tion. The most appropriate method of doing this is to encode information us-

ing positive valued feature functions. For example, suppose the training data

contains the sentence

(3.7) The robot wheels Fred round.

and its corresponding sequence of chunk labels

(3.8) B-NP I-NP B-VP B-NP B-PP.

To express the information that the second POS tag is I-NP when the second

word is “robot” and the first POS tag is B-BP, we define a feature

f � y1 � y2 � x2 � � �� � 1 if y2
� I-NP, x2

� robot and y1
� B-NP

0 otherwise.
(3.9)

A set of features of this sort can be used to summarise the important informa-

tion contained within the training data. To ensure that the model agrees with

the information encapsulated in the training data, the model distribution is

constrained so that the expectation of each feature f with respect to the train-

ing data, given by

E p̃ � x � y �
�
f � �

∑
x � y p̃ � x � y � f � x � y � � (3.10)

is equal to the expected value of that feature with respect to the model distri-

bution:

Eq
�
f � �

∑
x � y p̃ � x � q � y � x � f � x � y � � E p̃ � x � y �

�
f � � (3.11)

The maximum entropy framework dictates that we must choose the distri-

bution that satisfies all such constraints on feature values, while otherwise

remaining as uniform as possible. Interestingly, this distribution is also the
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maximum likelihood Gibbs distribution, or the distribution that minimises the

Kullback-Leibler divergence between the empirical distribution and the model

distribution.

Identifying the maximum entropy distribution that satisfies the feature con-

straints imposed by the training data is a constrained optimisation problem.

Berger et al. [10], Della Pietra et al. [41] and Ratnaparkhi [47] show that the

parametric form of the maximum entropy constrained distribution is

p � y � x � �
1

Z � x � exp

�
∑
k

λk fk � x � y � � (3.12)

where Z � x � is a normalisation factor, and each λk is the Lagrangian multiplier

associated with feature fk. More intuitively, each parameter λk can also be

considered to be a weighting of indicating the informativeness of feature fk.

3.4 Potential Functions for CRFs

The maximum entropy framework provides significant justification for choos-

ing the potential functions of a conditional random field such that the joint

distribution over label sequences given observation sequences p � y � x � a para-

metric form similar to that given in Equation 3.121 This desideratum may be

satisfied by defining each potential function as

ψYc � yc � � exp

�
∑
k

λk fk � c � y � c � x � � � (3.13)

where c is the set of indices of the nodes belonging to a maximal clique in the

graph G of Y, C is the set of all maximal cliques in G and ψYc � yc � is a strictly pos-

itive, real valued potential function over the set of possible realisations of the

1In fact, it may be possible to choose potential functions for a CRF such that the distribu-
tion over label sequences forms a maximum entropy/minimum divergence (MEMD) model –
a more general distribution for maximum entropy modelling, that incorporates a reference dis-
tribution. When this reference distribution is uniform, MEMD model identical to the maximum
entropy model described in Section 3.3.
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maximal clique Yc in G. In addition to satisfying the requirement that poten-

tial functions must be positive, real-valued functions, this choice of potential

function results in a joint distribution over the label sequence Y given X of the

form

p � y � x � �
1

Z � x � exp

�
∑
c � C

∑
k

λk fk � c � yc � x � � (3.14)

where Z � x � is a normalisation factor, given by

Z � x � � ∑
x � y exp

�
∑
c � C

∑
k

λk fk � c � yc � x � � � (3.15)

In the case of the commonly used graph structure for modelling sequential

data, a first-order chain G � � V � E � , the maximal cliques within G are its edges

E. Therefore, for an edge e � � i � 1 � i � the general form of Equation 3.13 can be

expanded to

ψYe � ye � � exp

�
∑
k

λk fk � yi � 1 � yi � x � � ∑
k

µkgk � yi � x � � � (3.16)

where each fk � i � yi � 1 � yi � x � is some feature of the the entire observation sequence

and the labels at positions i and i � 1 in the corresponding label sequence, and

each gk � i � yi � x � is a feature of label at position i and the observation sequence.

This expansion enables the joint probability of a label sequence given an ob-

servation sequence to be written as

p � y � x � �
1

Z � x � exp

�
∑

i
∑
k

λk fk � yi � 1 � yi � x � � ∑
i

∑
k

µkgk � yi � x � � � (3.17)

As a specific instance of this general situation, it is possible to create a CRF that

takes on HMM-like properties by defining a single feature for each state-state

pair � y � � y � and state-observation pair � y � x � in the data set used to train the CRF:

fy � � y � yu � yv � x � � ���� 1 if yu
� y

�
and yv

� y

0 otherwise
(3.18)
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gy � x � yv � x � � ���� 1 if yv
� y and xv

� x

0 otherwise
(3.19)

In this situation, the parameters λy � � y and µy � x corresponding to these features

are equivalent to the logarithm s of the HMM transition and emission proba-

bilities p � y � � y � and p � x � y � .

3.5 CRFs as a Solution to the Label Bias Problem

The global nature of the distribution defined by a conditional random field

means that CRFs do not suffer from the label bias problem described in Sec-

tion 2.3.2. To understand this, consider a CRF as a probabilistic automata with

unnormalised weights associated with each state transition. The unnormalised

nature of these weights means that transitions are not necessarily assigned

equal importance. Therefore, any given state may amplify or dampen the

probability mass passed on to its successor states, with the caveat that the final

weighting given to any state sequence will be a properly defined probability

due to the global normalisation factor.

3.6 Parameter Estimation for CRFs

There are two frameworks for inferring the structure of a model, including

its parameters, from a set of training data – the frequentist and the Bayesian.

These approaches each give rise a parameter estimation technique – maximum

likelihood estimation (MLE) and maximum a priori estimation (MAP), respectively.

Both techniques can be used to estimate the parameters of a CRF, however,

current literature on CRFs [31] address only MLE parameter estimation.
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3.6.1 Maximum Likelihood Parameter Estimation

The frequentist approach to parameter estimation is based on the use of some

estimator, or function of the observed training data D , to yield a single estimate

of the parameter values Θ for the model in question. The most commonly

used estimator within the frequentist community is the maximum likelihood

estimator. Bayesians assume that all unknown quantities should be as ran-

dom variables, allowing the probability of the training data for fixed theta to

be viewed as a conditional probability distribution p � D � Θ � . However, the fre-

quentist framework does not view Θ as a random variable. Instead, the the

probability of the training data for fixed Θ is to be considered as a family of

distributions over the training data indexed by Θ, written as pθ � D � or (abus-

ing notation) p � D � Θ � . This viewpoint permits the interpretation of p � D � Θ � as

a function of Θ for fixed data values, known as the likelihood:

L � Θ � � p � D � Θ � � (3.20)

If we assume that the training data consists of a set of data points D �

� � x � i � � y � i � � �
�

i � 1 ������� � N, each of which has been generated independently and identically

from the joint empirical distribution p̃ � x � y � , then the likelihood of the training

data according to some conditional model p � y � x � Θ � is

L � Θ � � ∏
x � y log p � y � x � Θ � p̃ � x � y �

� (3.21)

Two properties of the likelihood-function enable it to be used as a measure of

the quality of a model p � y � x � Θ � :

� L � Θ ��� 0 and

� L � Θ � � 0 if and only if p̃ � x � y ��� 0 for all p � y � x � Θ � � 1.

Maximum likelihood estimation therefore uses the likelihood function to rank

possible values of Θ. Specifically, the MLE principle states that the value Θ
should be chosen to maximise the likelihood function

ΘML
� argmaxΘL � Θ � � (3.22)
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thus ensuring that data values that were observed in the training data are as-

signed a high probability. In other words, the parameters that maximise the

likelihood function will result in a model that is as close to the empirical dis-

tribution as is possible given the model framework. The product in (3.22) may

prove difficult to deal with and so, in general, the value of Θ is chosen to max-

imise the logarithm of the likelihood function (which involves a more manage-

able sum rather than a product)

L � Θ � � ∑
x � y p̃ � x � y � log p � y � x � Θ � (3.23)

rather than the likelihood itself. This does not alter the value of Θ chosen, since

the logarithm is a monotonic function.

3.6.2 Maximum Likelihood Estimation for CRFs

The maximum likelihood parameter estimation problem for a CRF that defines

the probability distribution

p � y � x � Θ � �
1

Z � x � exp

�
n � 1

∑
i � 1

∑
k

λk fk � yi � 1 � yi � x � �
n

∑
i � 1

∑
k

µkgk � yi � x � � (3.24)

is the task of estimating the parameters Θ � � λ1 � λ2 ����� � ;µ1 � µ2 ����� � � from a set of

training data points D �

� � y � 1 � � x � 1 � � ������� � � y � N � � x � N � � � independently and identi-

cally generated from the empirical distribution p̃ � x � y � , such that the log-likelihood

of the training data is maximised. Substituting in the value of p � y � x � Θ � for a

conditional random field (Equation 3.24) into the definition of the log-likelihood

(Equation 3.21) gives

L � Θ � � ∑
x � y p̃ � x � y �

�
n � 1

∑
i � 1

λλλ � f
�

n

∑
i � 1

µµµ � g � � ∑
x

p̃ � x � logZ � (3.25)

where λλλ and µµµ are the parameter vectors � λ1 � λ2 ��� ��� � and � µ1 � µ2 ����� � � , respec-

tively; f is the feature vector � f1 � yi � 1 � yi � x � � f2 � yi � 1 � yi � x � ����� � � ; and g is the feature

vector � g1 � yi � x � � g2 � yi � x � ������� � .
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From a numerical optimisation point of view, the log-likelihood function for

a CRF is well-behaved – it is smooth and concave over the entire parameter

space. The concave nature of log-likelihood function means that Θ can be cho-

sen to be to the value for which the global maximum is obtained and the gradi-

ent or vector of partial derivatives with respect to each parameter in Θ is zero.

Differentiating the log-likelihood function with respect to parameter λk gives

∂L � Θ �
∂λk

� ∑
x � y p̃ � x � y �

n

∑
i � 1

fk � yi � 1 � yi � x � (3.26)

� ∑
x � y p̃ � x � p � y � x � Θ �

n � 1

∑
i � 1

fk � yi � 1 � yi � x � (3.27)

� E p̃ � x � y �
�
fk � � Ep � y � x � Θ �

�
fk � � (3.28)

Note that setting this to zero gives the maximum entropy model constraint:

The expectation of feature fk with respect to the distribution p̃ � x � p � y � x � Θ � must

be equal to the expected value of fk with respect to the empirical distribution.

Unfortunately, it is not generally possible to find the value of Θ that maximises

the log-likelihood analytically – setting the gradient of the log-likelihood func-

tion to zero and solving for Θ does not always yield a closed form solution.

Instead, the parameters that maximise the log-likelihood must be chosen us-

ing some form of iterative technique. Currently literature on CRFs [31] covers

two algorithms for parameter estimation, based on Improved Iterative Scaling

(IIS) [42] Generalised Iterative Scaling (GIS) [17].

3.6.3 Iterative Scaling

Iterative scaling is a method of iteratively refining a joint [17] or conditional

[13, 48] model distribution by updating the parameters of a model using the

update rule:

λk � λk
� δλk (3.29)

where the update δλk is chosen such that the new value of λk is closer to the

maximum likelihood solution than the previous value. Lafferty et al. [31] pro-
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pose two iterative scaling algorithms for estimating the maximum likelihood

parameters of a conditional random field – one based on Generalised Iterative

Scaling (GIS) [17] and one based on Improved Iterative Scaling (IIS) [42]. In this

section, an overview of these algorithms is presented, and theoretical problems

with each algorithm are highlighted.

The basic iterative scaling framework assumes that we have a model p � y � x � Θ �
parameterised by Θ � � λ1 � λ2 ����� � ;µ1 � µ2 ����� � � . The aim is to find a new set of

parameters Θ � ∆ where ∆ � � δλ1 � δλ2 ������� ;δµ1 � δµ2 ����� � � which result in a model

with higher log-likelihood. The aim of iterative scaling is to identify a growth

transformation that updates the parameters of our model so as to increase the

log-likelihood by much as possible. The growth transformation can then be

applied iteratively, until convergence is reached. For a CRF, the change in log-

likelihood can be bounded from below by an auxiliary function A � Θ � ∆ � which

is defined as

A � Θ � ∆ � �

∑
x � y �

n � 1

∑
i � 1

∑
k

λk fk � yi � 1 � yi � x � �
n

∑
i � 1

∑
k

µkgk � yi � 1 � yi � x � �
�

1 � ∑
x

p̃ � x � p � y � x � Θ �
�
n � 1

∑
i � 1

∑
k

�
fk � yi � 1 � yi � x �

T � x � y � � exp � δλkT � x � y � �

�
n

∑
i � 1

∑
k

�
gk � yi � x �
T � x � y � � exp � δµkT � x � y � � � (3.30)

Since L � Θ � ∆ � � L � Θ ��� A � Θ � ∆ � , finding the ∆ that maximises A � Θ � ∆ � will

maximise the change in log-likelihood also. This gives rise to an iterative pro-

cedure for calculating the maximum likelihood parameter set ΘML:

� Initialise each λk

� Until converged:

Solve ∂A � Θ � ∆ �
∂δλk

� 0 for each parameter λk

Update each parameter using λk � λk
� δλk

where setting the partial derivative of A � Θ � ∆ � with respect to parameter λk to
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zero yields the equation

E p̃ � x � y �
�
fk � �

∑
x � y p̃ � x � y �

n � 1

∑
i � 1

fk � yi � 1 � yix � (3.31)

� ∑
x � y p̃ � x � p � y � x � Θ �

n � 1

∑
i � 1

fk � yi � 1 � yix � exp � δλkT � x � y � � � (3.32)

from which the update parameters δλk and δµk may be calculated. GIS and IIS

are variants on this basic principle, that employ slightly different techniques

for identifying the update parameters from Equation 3.32.

3.6.3.1 Generalised Iterative Scaling for CRFs

Generalised Iterative Scaling (GIS) is form of iterative scaling that follows the

basic principle outlined in the previous section to update the parameters of a

model so that the model converges towards one in which the expected value

of each feature with respect to the model is equal to the expectation of that

feature with respect to the empirical distribution of the training data:

Emodel
�
fk � � E p̃ � x � y �

�
fk � � (3.33)

To ensure that the updates result in the convergence of parameter values to the

global optimum, GIS constrains the feature set such that for each event in the

training data T � x � y � � C, where C is some constant to ensure the update vector

can be calculated analytically and T � x � y � is defined as the sum of the active

feature values for observation and label sequence pair � x � y � :

T � x � y � � n � 1

∑
i � 1

∑
k

fk � yi � 1 � yi � x � �
n

∑
i � 1

∑
k

gk � yi � x � � (3.34)

Satisfaction of this constraint requires the definition of a global2 correction fea-

ture, given by:

s � x � y � �
C �

n � 1

∑
i � 1

∑
k

fk � yi � 1 � yi � x ���
n

∑
i � 1

∑
k

gk � yi � x � � (3.35)

2This feature is not specific to any particular edge or vertex.
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where C is the maximum value of T � x � y � for all y and x in the training data.

Note that if the features used are binary valued, then T � x � y � will simply be the

number of active features for that event, and C will simply be the maximum

possible number of active features. The addition of this feature to the feature

set ensures that T � x � y � � C as desired. In general, adding new features to the

feature set will alter the model distribution. However, in this case, the new

feature is entirely dependent on the existing features in the feature set and

therefore adds no additional information or constraints on the model. The

trained model will therefore be unchanged by the definition of the correction

feature.

Assuming the features chosen for a CRF sum to the constant C for all events,

Lafferty et al. [31] assert that Equation 3.32 can be solved analytically as fol-

lows. Taking logs of both sides of Equation 3.32

logE p̃ � x � y �
�
fk � � log

�
∑
x � y p̃ � x � p � y � x � Θ �

n � 1

∑
i � 1

fk � yi � 1 � yi � x � exp � δλkC � � (3.36)

� logEp � y � x � Θ �
�
fk � � δkC (3.37)

yields the update

δk
�

1
C

log

�
E p̃ � x � y �

�
fk �

Ep � y � x � Θ �
�
fk � � � (3.38)

The rate of convergence of the GIS algorithm is governed by the step size used

for the updates which, in turn, is dictated by the magnitude of constant C:

Large values of C give rise to a small step size and slow the rate of conver-

gence, while smaller C values yield a larger step size and hence a faster rate of

convergence.

In fact, careful analysis reveals that this algorithm is intractable. Specifically,

the GIS algorithm is dependent on the addition of a global correction feature

s � y � x � to ensure the the active features values for each � x � y � pair sum to a con-

stant. Once added to the feature set, this correction feature is treated identically

to all other features and its parameters are estimated using the update given in

Equation 3.38. For any feature fk, calculating this update requires computation
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of the expectation of fk with respect to the product of the model distribution

and the marginal distribution over observation sequences:

Ep � y � x � Θ �
�
fk � �

∑
x � y p̃ � x � p � y � x � Θ �

n � 1

∑
i � 1

fk � yi � 1 � yix � exp � δλkT � x � y � � (3.39)

In the general case, this is intractable, since it requires the summation over

all possible label sequences – a task that will be exponential in the number

of possible labels. Lafferty et al. note that it is possible to get round this in-

tractability for edge and vertex features, using a dynamic programming tech-

nique described here in Section 4.3.3. However, they neglect to mention that

such a dynamic programming technique is not possible for global features and

so calculating the expectation of the correction feature s � x � y � with respect to

the model distribution, and hence identifying the parameter update for the

correction feature, is intractable. For the GIS algorithm to be applied correctly,

the correction feature must be treated as any other feature in the model. There-

fore, the intractability outlined here means it is not possible to use Lafferty et

al.’s GIS-based algorithm for estimating the parameters of CRF.

3.6.3.2 Improved Iterative Scaling for CRFs

Improved Iterative Scaling [42] is a variant of GIS that eliminates the need

for a correction feature and thus allows faster convergence than the basic GIS

algorithm. Rather than attempting to solve Equation 3.32 for each parameter

analytically, IIS is based on the observation that Equation 3.32 is a polynomial

in exp � δλk � and can therefore be solved for δλk using a simple technique such

as the Newton-Raphson method.

To represent Equation 3.32 as a polynomial in exp � δλk � that may be tractably

solved, Lafferty et al. use the mean field approximation:

T � x � y ��� T � x � �
maxyT � x � y � (3.40)

In other words, they approximate the the sum of the active feature values

for each observation and label sequence pair � x � y � with the maximum pos-
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sible sum of observation features for that observation sequence x. This enables

Equation 3.32 to be rewritten as:

E p̃ � x � y �
�
fk � � ∑

x � y p̃ � x � p � y � x � Θ �
n � 1

∑
i � 1

fk � yi � 1 � yix � exp � δλkT � x � � (3.41)

This equation may be expressed as a polynomial in exp � δλk � by observing that

any set of � x � y � pairs can be partitioned into Tmax non-overlapping subsets,

where Tmax
� maxT � x � , according to their T � x � values. Rewriting Equation 3.41

so that the sum over � x � y � values are split according to T � x � gives

Tmax

∑
m � 0

∑
� x � y � T � x � � m �

p̃ � x � p � y � x � Θ �
n � 1

∑
i � 1

fk � yi � 1 � yix � �
exp � δλk � � m

� (3.42)

Assuming the standard interpretation of the delta function δ � � � , we now define

ak � m to be the expectation of fk given that T � x � � m:

ak � m � ∑
x � y p̃ � x � p � y � x � Θ �

n � 1

∑
i � 1

fk � yi � 1 � yix � δ � m � T � x � � (3.43)

which enables Equation 3.42 to be expressed as a polynomial in exp � δλk � :

Tmax

∑
m � 0

am � k exp � δλk � m � E p̃ � x � y �
�
fk � � (3.44)

This polynomial may now being solved using the Newton-Raphson method.

3.6.4 Efficiency of IIS for CRFs

Although the mean field approximation required to make this IIS variant tractable

merely serves to modify the lower bound on the change in log-likelihood,

A � Θ � ∆ � , it is possible that this changed lower bound may result in slow con-

vergence. Sure enough, Lafferty et al.’s experimental results involving CRFs

for POS tagging indicate that convergence of their IIS variant is very slow.

When estimating parameters for an exponential distribution of the form given

in Equation 3.12, it is usual to initialise parameters so that the training com-

mences with the model being the uniform distribution. However, Lafferty et
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al. were unable to train a CRF initialised to have a uniform distribution to

convergence in 2000 iterations. Instead, they were only able to efficiently train

CRFs by initialising the CRF parameter vector to the parameters of a MEMM

trained to convergence in 100 iterations. When this set of initial parameters

was used, the IIS-based algorithm for CRFs converged in 1000 iterations.

Although using trained MEMM parameters enabled Lafferty et al. to train

CRFs in a reasonable time, this is not an ideal solution since it depends on

the availability of trained MEMMs. In addition to this, recent work of Bancarz

and Osborne [4] indicates that IIS can yield multiple globally optimal models

that yield wildly differing performance levels, depending on the initial param-

eter vector. This observation may mean that the decision to start CRF training

using the trained parameters of an MEMM is in fact biasing the performance

of CRFs reported in the current literature.

3.7 Chapter Summary

This chapter introduced CRFs as an undirected model for labelling and seg-

menting data. The theoretical basis for the functional form of the distribu-

tion defined by a CRF was outlined, and an overview of CRFs as a solution to

the label bias problem was presented. Finally, the parameter estimation algo-

rithms covered in current CRF literature were described and their theoretical

and practical limitations discussed.





Chapter 4

Numerical Optimisation for CRF

Parameter Estimation

The primary justification behind the use of iterative scaling algorithms is con-

siderable ease of implementation and the fact that, unlike other optimisation

techniques, the gradient of the function being optimised (in this case the log-

likelihood function) need not be calculated. Instead, the only computations

required are the required are those necessary to evaluate the expectation of

each feature value with respect to the new model distribution Ep � y � x � Θ �
�
fk � . This

is highly advantageous for model distributions in which calculation of the gra-

dient vector is computationally expensive, however, in the case of conditional

random fields and other maximum entropy models [10], each element of the

gradient vector is given by

∂L � Θ �
∂λk

� E p̃ � x � y �
�
f � � Ep � y � x � Θ �

�
fk � � (4.1)

and so there is likely to be little computational advantage to using iterative

scaling rather than techniques that utilise the gradient directly.

To investigate whether there is any computational advantage to using itera-

tive scaling algorithms when training conditional maximum entropy models,

Malouf [32] compared the performance of a number of algorithms for estimat-

43
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ing parameters of conditional maximum entropy models using a range of NLP

problems. Interestingly, Malouf observed that iterative scaling algorithms per-

formed poorly in comparison with first- and second- order optimisation meth-

ods and, for all the NLP problems considered, a limited memory variable metric

algorithm [7] performed substantially better than any of the other algorithms.

Malouf’s findings for conditional maximum entropy models lend significant

weight to the hypothesis that first- and second-order numerical optimisation

techniques would result in good performance for CRF parameter estimation

also. Lafferty et al.’s [31] choice of potential functions gives

p � y � x � �
1

Z � x � exp

�
n � 1

∑
i � 1

∑
k

λk fk � yi � 1 � yi � x � �
n

∑
i � 1

∑
k

µkgk � yi � x � � (4.2)

as the conditional distribution over label sequences given an observation se-

quence defined by a CRF. The functional form of this equation is very similar

to that of a non-sequential conditional maximum entropy model:

p � y � x � �
1

Z � x � exp

�
∑
k

λk fk � x � y � � � (4.3)

Given this functional similarity and Malouf’s observations that numerical tech-

niques perform better than iterative scaling for parameter estimation of condi-

tional maximum entropy models, I hypothesise that it is likely that such nu-

merical techniques would also improve parameter estimation performance for

conditional random fields. To experimentally investigate this hypothesis, three

numerical optimisation techniques that Malouf found to perform well for es-

timating the parameters of conditional maximum entropy models were com-

pared with with Lafferty et al.’s IIS-variant for CRF parameter estimation.

In this chapter, the first- and second-order numerical optimisation techniques

applied to CRF parameter estimation in this thesis is are described, and im-

plementation details are discussed. Finally, the performance of the numerical

techniques implemented are compared with that of Lafferty et al.’s IIS-based

algorithm on a toy problem based on the NLP task of shallow parsing.
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4.1 First-order Numerical Optimisation Techniques

The numerical optimisation techniques applied to CRF parameter estimation

in the work described in this thesis fall into two categories – first- and second-

order techniques. First-order techniques use the information contained within

the gradient vector G � Θ � of the function being optimised to repeatedly shift

estimates of the parameters towards the point at which the gradient is zero and

the function is at an optimum. Here, two first-order methods were applied to

the task of CRF parameter estimation, both of which are variants of the non-

linear conjugate gradient algorithm.

4.1.1 Non-Linear Conjugate Gradient

Unlike steepest ascent methods, which consider the same search direction sev-

eral times when maximising a function, conjugate direction methods generate

a set of non-zero vectors known as the conjugate set and successively maximise

the function along each of these directions. Non-linear conjugate gradient meth-

ods are a particular form of conjugate direction technique in which each con-

jugate vector, or search direction, is generated from the previous search direc-

tion alone, rather than all previous elements of the conjugate set. Specifically,

each successive search direction p j is selected to be a linear combination of the

steepest ascent direction, or gradient of the function to be maximised, and the

previous search direction p j � 1. Each iteration of the conjugate gradient up-

date algorithm shifts the parameters of the function to be maximised in the

direction of the current conjugate vector p j using the update rule

λ � j � 1 �
k

� λ j
k

� α � j � p j (4.4)

where α � j � is the optimal step size, selected using an approximate line search.

There are several conjugate gradient methods that are appropriate for max-

imising a general convex function such as the log-likelihood of p̃ � x � y � accord-

ing to a conditional model of the form given in Equation 4.2. Here, we consider
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the Fletcher-Reeves and the Polak-Ribière-Positive algorithms. These algorithms

are theoretically equivalent, but may exhibit different numerical properties

due to different methods for choosing the search direction and step size. A

detailed discussion of both algorithms may be found in [37].

4.2 Second-Order Numerical Optimisation Techniques

Second-order optimisation techniques, such as Newton’s method, improve

over first-order techniques such as conjugate gradient, by augmenting the gra-

dient values used in calculating the parameter updates with information re-

garding the curvature, or second order derivatives, of the function to be opti-

mised.

The general second-order update rule is calculated from the second-order Tay-

lor series approximation of L � Θ � ∆ � , given by:

L � Θ � ∆ � � L � Θ � � ∆T G � Θ � � 1
2

∆T H � Θ � ∆ (4.5)

where H � Θ � is the matrix of second partial derivatives with respect to Θ of the

log-likelihood function, or the Hessian matrix. Setting the derivative of this

approximation to zero, results in the update rule:

∆ � k � � H � 1 � Θ � k � � G � Θ � k � � � (4.6)

Although this update rule results in very fast convergence, computation of the

inverse of the Hessian matrix may be prohibitively expensive for large-scale

problems such as those encountered in NLP. Therefore, use of second-order

methods that make direct use of the Hessian when estimating the parameters

of large models is highly impractical.

Variable-metric or quasi-Newton methods are a form of second-order technique,

similar to Newton’s method, but rather than explicitly calculating the inverse

Hessian they rely entirely on information contained within the gradient ob-

jective function. At each iteration, variable-metric methods avoid the use of
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second-derivatives and, instead, build a model of the Hessian by measuring

the change in gradient. This local approximation of the Hessian is empirically

found to be sufficiently good that variable-metric methods often exhibit super-

linear convergence.

The basic principle behind variable-metric methods is to replace the Hessian

matrix in the second order Taylor approximation of L � Θ � ∆ � with B � Θ � , a sym-

metric positive definite matrix that approximates the Hessian. This results in

the revised update rule:

∆ � k � � B � 1 � Θ � k � � G � Θ � k � � � (4.7)

Every iteration, B � Θ � � 1 is updated to reflect the parameter changes that result

from the previous iteration. However, rather than calculating B � Θ � � 1 afresh, it

is simply updated to account for the curvature measured during the previous

iteration – a task which relies only on the current gradient G � Θ � k � � and the

gradient from the previous step G � Θ � k � 1 � � :

B � Θ � k � � � 1 � G � Θ � k � ��� G � Θ � k � 1 � � � ∆ � k � 1 �
� (4.8)

Approximating the Hessian matrix by B � Θ � enables variable-metric methods

to exhibit improved convergence over the traditional Newton method.

4.2.1 Limited-Memory Variable-Metric Methods

Despite the computational improvements obtained by approximating the Hes-

sian by B � Θ � , the approximate Hessian and its inverse prove to be sufficiently

dense that their storage is infeasible for large-scale problems. In the case of

NLP tasks, the number n of parameters to be estimated may be millions, yet

storage of an n � n dense matrix for such tasks is currently impossible. How-

ever, it is possible to modify variable-metric methods to use implicit represen-

tations of Hessian approximations that only require storage of a small number

of vectors of length n, where n is the number of parameters to be estimated.

Such methods are called limited-memory variable-metric methods.
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Limited-memory variable-metric methods make use of the fact that, for itera-

tion k, calculation of the product:

B � Θ � k � � � 1G � Θ � k �
� (4.9)

may be performed using a sequence of inner products and vector summations

involving G � Θ � k � 1 � , and the set of pairs:
�
∆ � i � � G � Θ � i � ��� G � Θ � i � 1 � � � i � k � m ��� ��� � k � 1 � � (4.10)

At each iteration, the oldest pair in the set
�
∆ � i � � G � Θ � i � � � G � Θ � i � 1 � � � is, there-

fore, deleted and replaced with the pair obtained from the current step, en-

suring that only most recent m pairs are stored at any given point in time. In

practice, values of m between 3 and 20 are sufficient to obtain good perfor-

mance, and so the reduction in storage space over variable-metric methods is

significant.

The large-scale nature of the problems for which CRFs may prove useful means

that use of standard variable metric methods for parameter estimation is in-

feasible. However, the space reduction exhibited by limited memory variable

metric methods results in storage requirements that are practical, even for very

large-scale tasks such as those found in NLP. For this reason, we do not attempt

to apply standard variable metric methods to the task of CRF parameter esti-

mation, but consider limited memory variable metric methods instead.

4.3 Implementation

To enable efficient performance, PETSc (the Portable, Extensible Toolkit for Sci-

entific Computation) [2, 3] was used as the implementation basis. PETSc is a

software library that assists development of scientific applications modelled

by partial differential equations by providing a variety of data structures and

routines for storing, manipulating and visualising very large sparse matrices.

All operations required for training CRFs may be expressed in terms of ma-

trix calculations. Framing parameter estimation in this way enables us take
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advantage of utilities offered by the PETSc framework and therefore improve

efficiency.

4.3.1 Representation of Training Data

As we stated in Section 3.4, every potential function in a chain structured CRF

is function of the entire observation sequence being labelled, and the labels of

two adjacent elements in the corresponding label sequence:

ψYe � ye � � exp

�
∑
k

λk fk � i � i � 1 � yi � 1 � yi � x � � ∑
k

µkgk � i � yi � x � � (4.11)

This observation, combined with the nature of the dynamic programming tech-

niques used by Lafferty et al. to enable efficient calculation of feature expec-

tations (outlined in Section 4.3.3), means that the most appropriate method of

representing the data used for training a chain structured CRF is to define a

sparse matrix F , with rows corresponding to particular � x j � y j
i � y j

i � 1 � tuples and

columns to f and g features.

4.3.2 Model Probability as Matrix Calculations

Lafferty et al. observe that for a chain-structured CRF in which each label se-

quence is augmented with a start y0 and stop yn � 1 state, the conditional prob-

ability p � y � x � of a label sequence y given an observation sequence x may be

expressed in terms of matrices. Specifically, if Y is the alphabet from which

labels are drawn, then we define Mi � x � to be a � Y � Y � matrix random variable,

where each element Mi � y � � y � x � of Mi � x � is given by:

Mi � y � � y � x � � exp

�
∑
k

fk � yi � 1
� y

� � yi
� y � x � � ∑

k

gk � yi
� y � x � � (4.12)

Recalling the view of a CRF as a finite state model with unnormalised probabil-

ities mentioned in Section 3.5, each matrix Mi � x � can be considered to represent
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the weights on each arc of the model at time step i. This matrix formulation

means that the unnormalised conditional probability p � � y � x � of the label se-

quence can be expressed as the product of the appropriate entries drawn from

the n
�

1 matrices for this sequence:

p � � y � x � �

n � 1

∏
i � 1

Mi � yi � 1 � yi � x � (4.13)

The normalisation factor Z � x � , which depends only on the observation se-

quence x, may be calculated from the set of Mi � x � matrices by using closed

semirings, an algebraic structure that results in a general framework for solving

path problems within graphs [16]. Specifically, Z � x � is given by the (start,stop)

entry of the product of the Mi � x � matrices:

Z � x � �

�
n � 1

∏
i � 1

Mi � x � �
start,stop

� (4.14)

4.3.3 Dynamic Programming for Feature Expectations

The IIS-based training algorithm for CRFs and the numerical estimation tech-

niques described in Sections 4.1 and 4.2 all involve calculation of feature ex-

pectations with respect to both the empirical distribution p̃ � x � y � , given by

E p̃ � x � y �
�
fk � � ∑

x � y p̃ � x � y �
n � 1

∑
i � 1

fk � yi � 1 � yi � x � (4.15)

for an edge feature fk � yi � 1 � yi � x � , and the feature expectations with respect to

the product of the model distribution p � y � x � and the marginal p � x � :

Ep � y � x � Θ �
�
fk � � ∑

x � y p̃ � x � p � y � x �
n � 1

∑
i � 1

fk � yi � 1 � yi � x � � (4.16)

for an edge feature fk � yi � 1 � yi � x � . However, calculating the expectation of each

feature with respect to the CRF model distribution in a naı̈ve fashion is in-

tractable due to the required sum over all possible label sequences. For in-

stance, if a given observation sequence x has a length n then there will be
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n � Y � possible label sequences for this observation sequence. Clearly evaluating

p̃ � x � p � y � x � ∑n � 1
i � 1 fk � yi � 1 � yi � x � for all of these possible label sequences is infeasi-

ble. Fortunately, Lafferty et al. propose a dynamic programming method for

avoiding this intractability when calculating Ep � y � x � Θ �
�
fk � .

Lafferty et al.’s dynamic programming technique makes use of the fact that

the model probability p � y � x � may be expressed in terms of the matrices Mi � x � .

Starting with the definition of the expectation of an edge feature fk � yi � 1 � yi � x � ,

we note that Equation 4.16 may be rewritten as:

Ep � y � x � Θ �
�
fk � � ∑

x
p̃ � x �

n � 1

∑
i � 1

∑
y � � y fk � yi � 1

� y
� � yi

� y � x �

� αi � y � � x � Mi � y � � y � x � βi � 1 � y � x �
Z � x � (4.17)

where αi � x � and βi � x � are forward and backward vectors, and are defined re-

spectively as by the base cases:

α0 � y � x � � �� � 1 if y � start

0 otherwise
(4.18)

and

βn � 1 � y � x � � �� � 1 if y � stop

0 otherwise
(4.19)

and the recurrence relations:

αi � x � T � αi � 1 � x � T Mi � x � (4.20)

and

βi � x � � Mi � 1 � x � βi � 1 � x � (4.21)

Similarly, Lafferty et al. state that the expectation of a vertex feature gk � yi � x �
with respect to the model distribution may be expressed as:

Ep � y � x � Θ �
�
gk � � ∑

x
p̃ � x �

n � 1

∑
i � 1

∑
y

gk � yi
� y � x �

� αi � y � x � βi � y � x �
Z � x � (4.22)
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However, the representation of the training data used in this project, in which

each row of the training data matrix corresponds to a particular � x � yi � 1 � yi �
tuple, means that in fact it is more efficient to represent the expectation of an

edge feature gk as

Ep � y � x � Θ �
�
gk � � ∑

x
p̃ � x �

n � 1

∑
i � 1

∑
y � � y gk � yi

� y � x �

� αi � y � � x � Mi � y � � y � x � βi � 1 � y � x �
Z � x � (4.23)

Using these expressions for feature expectations means that rather than cal-

culating the entire model distribution p � y1 ����� � � yn � x � we need only calculate

each possible p � yi � 1 � yi � x � value using the dynamic programming technique

described above. In addition to this, we observe that rewriting the definitions

for E p̃ � x � y �
�
fk � and Ep � y � x � Θ �

�
fk � in a similar fashion means that all the informa-

tion we need from the empirical distribution p̃ � x � y � may be stored using two

vectors – p � yi � 1 � yi � x � for all possible � yi � 1,yi � values and p � x � , the marginal

distribution of observation sequences in the training data.

All information required for estimating parameters, both by the IIS-based al-

gorithm and the numerical techniques, is contained within the distribution

vectors p̃ � y1 � ����� � yn � x � and p̃ � x � , the Mi � x � matrices, the forward and backwards

vectors, and the training data matrix. Using these data structures, all com-

putations required for parameter estimation may be performed using matrix

calculations which may be efficiently performed using the PETSc library.

4.3.4 Optimisation Techniques

The IIS-based parameter estimation algorithm was implemented in C++ using

data structures and routines provided by PETSc. The other estimation algo-

rithms were also implemented in C++ and made use of TAO (the Toolkit for

Advanced Optimisation) [6, 5] for the implementation of the numerical opti-

misation methods. TAO is a library, built on top of PETSc, designed to assist
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with the implementation of tasks that involve non-linear optimisation prob-

lems. TAO provides routines for line searches and convergence tests as well as

implementations of standard optimisation algorithms, such as conjugate gra-

dient and variable metric methods.

4.3.5 Stopping Criterion

To ensure fair comparison, the same stopping criterion was used for all param-

eter estimation algorithms. Malouf [32] found that judging convergence to be

reached when the relative change in log-likelihood between iterations:

L � Θ � k � ��� L � Θ � k � 1 � �
L � Θk � (4.24)

fell below a predetermined threshold of 10 � 7 provided a good basis for com-

paring parameter estimation techniques for conditional maximum entropy mod-

els. Since this criterion was used by Malouf to successfully compare parame-

ter estimation algorithms for conditional maximum entropy models, it would

seem an appropriate choice to use for CRFs which have a similar functional

form to the models investigated by Malouf.

4.4 Experiments

To perform a comparison of the numerical optimisation techniques described

in Sections 4.1 and 4.2 and Lafferty et al.’s IIS-based algorithm, the implemen-

tation described in the previous section was applied to a well-known sequen-

tial data labelling task found in statistical natural language processing – text

chunking or shallow parsing [28]. This task was chosen because it is repre-

sentative of the sorts of sequential data found in NLP problems, and has been

previously studied using many different methods ranging from adaptations

of non-sequential techniques maximum entropy [38, 29] to HMM- and FSA-

based methods [43, 51, 34].
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4.4.1 Shallow Parsing

Shallow parsing is the task of diving text into non overlapping chunks or

phrases such that syntactically related words are grouped together. For ex-

ample, consider the labelled sentence:

� �
NP He � �

VP reckons � �
NP the current account deficit � �

VP will narrow ��
PP to � �

NP only # 1.8 billion � �
PP in � �

NP September � �
O . � .

Text chunking of this nature can be very useful – the resultant chunks can

be used to assist the process of full parsing, as originally proposed by Abney

[1]. Here, the CoNLL-2000 shared task (a supervised learning problem involv-

ing annotating part-of-speech (POS) tagged sentences with non-overlapping

phrases) is used. An overview of this task and detailed description of the

chunk types may be found in Tjong Kim Sang and Buchholz [28]. Each word in

a given sentence is labelled with a chunk label which can be one of three forms

– an O label (indicating that the word is not part of any phrase), a B label (indi-

cating that the word is the first of a particular phrase) or an I label (indicating

that the word is inside a phrase). The B and I labels are further subdivided

to indicate what type of minor phrasal category a given word word is part of,

giving rise to a total of 22 chunks labels (see Table 4.1).

The corpus from which the sentences I used were drawn consists of material

from the Penn Treebank II (WSJ sections 15-18 and 20). The material has been

split into sentences (or sequences) and each sentence split into tokens (words,

punctuation). Tokens are additionally annotated with a part-of-speech tag

(generated by a Brill tagger).

4.4.2 Features

Previous work involving log-linear models for text chunking [38, 29, 39] has

resulted in the identification of a set of informative features that capture salient

aspects of the tagging task. Specifically, when performing text chunking, there
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Count Chunk Type

55081 NP (noun phrase)

21467 VP (very phrase)

21281 PP (prepositional phrase)

4227 ADVP (adverb phrase)

2207 SBAR (subordinated clause)

2060 ADJP (adjective phrase)

556 PRT (particles)

56 CONJP (conjunction phrase)

31 INTJ (interjection)

10 LST (list marker)

2 UCP (unlike coordinated phrase)

Table 4.1: Number of chunks per phrase type in training data (211727 tokens). [28]

is a tradeoff between context and accuracy. The more context (words and POS

tags) used, the greater the accuracy of the model will be, however more context

vastly increases the number and sparsity of features. Osborne [39] found that

good results can be achieved by considering the POS tag of the current word

ti , the POS tags of the next two words ti � 1 � ti � 2 and the last four letters of the

current word wi. To encode context of this nature as CRF features, a set of

features is defined for each previous and current state pair � y � � y � and each state-

observation pair � y � x � . Each state-state feature is of the form:

f � y � � y 	 � yi � 1 � yi � � ���� 1 if label yi � 1
� y

�
and label yi

� y

0 otherwise �

(4.25)

and each state-observation feature is defined as

g � y � b 	 � yi � x � � ���� 1 if b � xi � and label yi
� y

0 otherwise �

(4.26)



56 Chapter 4. Numerical Optimisation for CRF Parameter Estimation

where b � xi � is a boolean predicate regarding the nature of the ith word and its

context ti � ti � 1 � ti � 2 � wi. An example of such a boolean predicate is

b � xi � � �� � 1 if the POS tag of the current word is NN

0 otherwise �

(4.27)

Unfortunately, implementation problems (outlined below) meant that it was

not possible to use the context described above when CRF parameter estima-

tion techniques. Instead a greatly reduced context consisting of the current

POS tag ti and the last four letters of the current word wi were used instead.

The method for constructing CRF features from this limited context is identical

to the process described above.

4.4.3 Performance of Parameter Estimation Algorithms

My original intention was to compare the performance of Lafferty et al.’s IIS

variant and the parameter estimation algorithms described in Sections 4.1 and

4.2 using the training data from the CoNLL-2000 shared task to train the CRF

models. However problems with memory leaks in the CRF implementation,

which appeared to be occurring in the PETSc library routines for matrix cre-

ation, manipulation and destruction, meant that the training process used in-

creasingly large amounts of memory as it ran, even though no additional mem-

ory needed to be allocated. These memory leaks severely limited the size of

data set and amount of context that could feasibly be used when training the

CRF models. I therefore chose to restrict the training data to a toy problem

consisting of five sentences drawn from the CoNLL-2000 shared task corpus

(see Table 4.2). These sentences are not special in any way, and the accuracy

of any model trained on these sentences is not indicative of the accuracy that

would be achieved, were the models trained on a much larger data set. How-

ever, these five sentences do provide a common, albeit tiny, data set that may

be used to compare the relative performance of the parameter estimation al-

gorithms in question. To provide a more detailed and thorough comparison
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of the parameter estimation algorithms, all experiments used to compare the

training methods will be repeated with the full CoNLL-2000 training data set

once the memory leaks mentioned above have been eliminated1

Labels Contexts Features Non-zeros � yi � 1
� y

� � yi
� y � x � events

10 5 69 4572 237602

Table 4.2: Characteristics of the toy dataset used to compare algorithm performance.

The results of applying each of the parameter estimation algorithms to the five

sentences drawn from the CoNLL-2000 training data set are summarised in

Table 4.3. For each training algorithm, this table indicates the number of itera-

tions required to train the model to convergence, the number of log-likelihood

and gradient evaluations required (some optimisation techniques require mul-

tiple evaluations per iteration) and the total elapsed time in seconds.3 Despite

Method Iterations LL Evaluations Time (s)

IIS � 150 � 150 � 188.65

Conjugate gradient (FR) 19 99 124.67

Conjugate gradient (PRP) 27 140 176.55

Limited memory variable metric 22 22 29.72

Table 4.3: Results of comparison.

the highly trivial nature of the data set used, these results clearly highlight

performance differences between the algorithms. Lafferty et al.’s IIS-based

algorithm is the slowest of all of the techniques, taking more than n itera-

tions and n seconds to reach a relative change in log-likelihood of 10 � 7 be-

tween iterations. The conjugate gradient methods are both faster than the

IIS variant, requiring fewer iterations and log-likelihood calculations. Of the

1The updated results will be at http://www.cogsci.ed.ac.uk/˜osborne/msc-projects/
wallach.ps.gz.

3All experiments were performed using a single CPU of a dual processor Intel(R) Xeon(TM)
CPU 1700MHz machine with 2GB of RAM.
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two conjugate gradient-based methods, Fletcher-Reeves exhibits faster conver-

gence. The fastest technique out of all the methods investigated was the lim-

ited memory variable metric algorithm [7]. This technique trained the CRF to

convergence in 29.72 seconds using 22 iterations and performed only 22 log-

likelihood and gradient calculations. Even though the results obtained in these

experiments seem to be highly encouraging, to fully confirm these results, a

comparison of the four techniques will need to be rerun on a much larger, non-

trivial dataset once issues regarding memory leaks in the CRF implementation

have been sorted out.

Most importantly, these results echo Malouf’s [32] findings for conditional

maximum entropy models, even though the data set used here was not in any

way representative of the kind of dataset encountered in NLP classification

tasks. This re-confirmation of Malouf’s experimental observations using a dif-

ferent theoretical framework has significant implications not only for training

of CRFs, but for training of other maximum entropy and minimum divergence

models. In particular, Malouf’s findings combined with the work in this thesis

show, using two independent experimental scenarios involving two different

log-linear models, that general gradient-based numerical optimisation tech-

niques outperform iterative scaling by a considerable margin both in terms of

log-likelihood evaluations and total elapsed time. Additionally, in both Mal-

ouf’s experiments and the work outlined in this thesis, a limited memory vari-

able metric method that takes into account the curvature of the log-likelihood

function when calculating updates results in significantly faster convergence

than the first-order techniques considered.

4.5 Chapter Summary

In this chapter, a number of first- and second-order numerical optimisation

techniques applied to CRF parameter estimation were described and imple-

mentation details of a program to compare CRF training algorithms were given.
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Finally, the performance of the numerical techniques implemented were com-

pared with that of Lafferty et al.’s IIS-based algorithm on a toy problem based

on the NLP task of shallow parsing. These experimental results indicated that

numerical optimisation techniques were faster at training CRFs than iterative

scaling.





Chapter 5

Conclusions

The aim of the work described in this thesis was to compare the performance of

general numerical optimisation techniques with that of iterative scaling algo-

rithms for the task of estimating the parameters of conditional random fields.

As an initial step, theoretical analysis of CRFs and the iterative scaling algo-

rithms presented in current literature [31] was carried out. This analysis (see

Chapter 3 for details) revealed that the GIS-based algorithm for CRFs [31] is in

fact intractable due to the sequential nature of the data being modelled. Ad-

ditionally, Lafferty et al.’s IIS-based algorithm requires the use of a mean field

approximation which may slow convergence.

In addition to these theoretical disadvantages of iterative scaling for CRFs, re-

cent experimental work of Malouf [32] also suggested that iterative scaling

may not be the most practical method of training CRFs. Malouf’s work demon-

strated that first- and second-order general numerical optimisation techniques

significantly reduced the time taken to train (non-sequential) conditional max-

imum entropy models – a type of log-linear model with a very similar func-

tional form to the distribution defined by a conditional random field. To in-

vestigate whether these numerical optimisation techniques would enable ef-

ficient training of CRFs, a CRF implementation was developed using matrix

and vector primitives provided by the PETSc software library. The IIS-based

61
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parameter estimation algorithm and the framework for the numerical optimi-

sation algorithms were implemented in C++ using data structures and routines

provided by PETSc. The actual numerical optimisation routines used were

two conjugate gradient based algorithms (Fletcher-Reeves and Polak-Ribière-

Positive) and the limited memory variable metric algorithm of Benson and

Moré [7]. The implementations of these algorithms used were those provided

by TAO (the Toolkit for Advanced Optimisation), a framework for implement-

ing software involving optimisation routines.

The original intention was to compare the performance of iterative scaling and

the numerical optimisation algorithms using the text chunking data from the

CoNLL-2000 shared task to train CRF models. However implementation is-

sues meant that using a dataset of this size was not possible during the time

frame of the project. Instead, the algorithms were compared using a tiny sub-

set of this data which, despite the trivial nature, clearly highlighted the perfor-

mance differences between the parameter estimation techniques compared.

The results obtained for CRF parameter estimation using this naı̈ve dataset

echo Malouf’s findings for non-sequential conditional maximum entropy mod-

els, thus confirming his findings using a similar, but non-identical, theoretical

framework. The most striking feature of the results presented in this thesis is

that all of the numerical optimisation techniques outperformed Lafferty et al.’s

IIS-based method. Additionally, Benson and More’s limited-memory variable

metric algorithm performed much better than the first-order conjugate gradi-

ent algorithms also investigated.

In conclusion, the work described in this thesis indicates that the iterative scal-

ing techniques presented in current literature on CRF parameter estimation

suffer from theoretical and practical disadvantages, making CRFs an impracti-

cal choice for labelling real-world sequential data. Although the experiments

performed will need to be re-run using much larger data sets, the experimen-

tal results presented here reveal that it is possible to train CRFs using general

first- and second-order numerical optimisation techniques with a much bet-
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ter convergence rate than that exhibited by iterative scaling. This is a highly

promising finding as it provides a means for CRFs to be trained without rely-

ing on other models to provide initial parameter values.
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