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Let N be a finite set and # a nonempty collection of subsets of N which have the property
that F, € F and F,C F, imply F, € %. A real-valued function z defined on the subsets of N
that satisfies z(S)=2z(T) for all SCTCN and z(S)+z(T)=z(SUT)+2(SNT) for all
S,TCN is called nondecreasing and submodular. We consider the probiem
maxgcn{z(S): S € &, z(S) submodular and nondecreasing} and several special cases of it.

We analyze greedy and local improvement heuristics, and a linear programming relaxation
when z(S) is linear. Our results are worst case bounds on the quality of the approximations.
For example, when (N, %) is described by the intersection of P matroids, we show that a
greedy heuristic always produces a solution whose value is at least 1/(P + 1) times the optimal
value. This bound can be achieved for all positive integers P.

Key words: Heuristics, Greedy Algorithm, Linear Programming, Independence Systems,
Matroids, Submodular Set Functions

1. Introduction

Let N ={1,..., n} be a finite set and z a real-valued function defined on the
subsets of N that satisfies

2+ z2(My=2z2(SUTY+z2(SNT)

for all S, T in N. Such a set function is called submodular. This paper is the
third in a series dealing with approximate methods for maximizing submodular
set functions. We additionally assume here that z(S) is nondecreasing, i.e.,
z2(S)=2z(T) forall SC T CN.

In [2] we studied the uncapacitated location problem

max {Z(S)I 2(8) = E max ¢ |S| = K},
ScN

i€l jeS
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where C = (¢;) is a nonnegative matrix with column index set N and row index
set [ and z(%) = 0. In [7] we generalized the results to the problem

max {z(8): |S| = K, z(S) submodular and nondecreasing}. (1.1)
SCN

Since many combinatorial optimization problems, including the maximum
m-cut problem [8], a storage allocation problem [1] and the matroid partition
problem [3], require an optimal partition or packing, we were motivated to extend
our results to the problem

max {2 Z,‘(S,‘): Lmj S,‘QI\’, S,ﬂSAZQ‘.k?fl.
i=1

SICN, ... 5,CN Li=1

z:(S) submodular and nondecreasing, i =1, ..., m}. (1.2)

We like to think of (1.2) as the “m-box” model in which putting S; in box i yields
a value of z;(S;) and the objective is to maximize the value summed over all
boxes.

The m-box model can be used to describe a multiproduct version of the
uncapacitated location problem. Here each box corresponds to a different
product. Assigning the set of locations S5;C N to box i means that these
locations supply product i. The objective is to maximize 25’;1 Ekel maXjes, Chi-

By adding the restrictions |S;|=1 to the m-box model we obtain the con-
straints of an assignment problem. Now by generalizing the objective function to
include terms involving pairs of boxes we obtain a model of the quadratic
assignment problem. Here the objective is no longer a sum of set functions but a
multidimensional set function of the form w»(S,, ..., S,). We can treat these
multidimensional set functions directly by defining a multidimensional version of
submodularity, i.e.,

U(Sh EERE) Sm)+ U(Th LR ) Tm)
ZU(S]UT}, ..... SmUTn1)+U(S]nT1,.,.,Smme).

However, an alternative viewpoint of the box model renders this multidimen-
sional construct unnecessary and provides a more general and unified framework
for the extensions of (1.1) that we consider here.

Let M be the set of boxes, rename tHe set of elements to be put into the boxes
E, let N={(i,j:i€eM,je E} and N;={(i,j): i € M}, j € E. There is a one-to-
one correspondence between packings (S, ..., S,) of E and subsets S C N that
satisfy |S N N;| =1, j € E. The correspondence is given by S; = {j: (i,]) € S} and
S={(i,j)j€S,i& M} Therefore a generalized version of the m-box problem
(1.2) is

max {z(S): |[SNN;|<1,jEE.
SCN

z(S) submodular and nondecreasing}. (1.3)
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Now comparing (1.1) and (1.3), we see that they differ only in their constraints.
However in each case the family & of feasible or independent sets forms a
matroid M = (N, %); ie., ;€% and F,CF>Fe% [(N, %) is an indepen-
dence system] and for all N'CN every maximal member of F(N')=
{F: FE€ %, FC N'} has the same cardinality. In (1.1) # is the matroid in which
all subsets of cardinality K or smaller are independent and in (1.3) M is a
partition matroid. Thus a natural generalization of (1.1) and (1.3) is

max {z(S): S € &, M = (N, F) a matroid,
SCN

z(8) submodular and nondecreasing} (1.4)

and an obvious generalization of (1.4) is

P
max {z(S): S€ N %,, 4, = (N, %,) are matroids, p =1, ..., P,
SCN p=1

z(S) submodular and nondecreasing}. (L.5)

Note that any independence system can be described as the intersection of P
matroids for suitably large P.
Finally, a different generalization of problem (1.3) is

max {z(S): N=UN,NNN=8.j#k SN, F

SCN j=1

z(S) submodular and nondecreasing} (1.6)

where (N, %) j=1,...,n are independence systems, each the intersection of P
or fewer matroids. Note that combining the disjoint independence systems gives
a problem over N of the form (1.5) involving the intersection of P matroids.
Alternatively we can view (1.6) as a generalization of (1.5), where (1.5) is
obtained from (1.6) by taking n = 1.

We now summarize our results. In Section 2 we consider a greedy heuristic
for problem (1.5). The greedy heuristic first solves (1.5) with the constraint
[S]=1 to obtain a set S' and then iteratively builds a nested sequence of sets
{$%h t=2,3,.., where '€ N[, % and |S'| =t. S™*' is determined by adding to
S* (if possible) a j* such that

P
Z(S"U§FhH = max{z(S’ u{ih: S'u{le Q F,je S‘}_

We obtain the tight bound

value of greedy approximation =]
value of optimal solution =~ P+ 1

We also show that without regard to P, if K is the cardinality of a largest
independent set, and k+1 the cardinality of a smallest dependent (not in-
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dependent) set,

value of greedy approximation _ . <K - 1)"

" value of optimal solution K

Problem (1.1) is the special case of this model with k = K.

In Section 3 we assume that z(S) is linear, in which case (1.5) can be
represented as an integer program. We study the linear programming relaxation
of this integer program, which is obtained by suppressing the integrality restric-
tions. Our result is

value of greedy approximation
value of linear programming solution

1
==,
P’

which is a bound on the duality gap and also implies the bound obtained by
Jenkyns [5] and Korte and Hausmann [6] on the ratio of the greedy and integer
solutions.

In Section 4 we examine problem (1.6) and show that the greedy heuristic can
be simplified and the bound of 1/(P + 1) maintained. Also, for problem (1.3)
when z(S) has a certain symmetry with respect to the boxes, the bound of i can
be improved to m/(2m — 1), where m is the number of boxes.

In Section 5 we examine a local improvement heuristic for model (1.5). We show
that when P =1

value of local improvement approximation =
value of optimal solution o

1
7
but that the heuristic is arbitrarily bad when P = 2.

We close this section by giving two other equivalent definitions of sub-
modularity that are proved in {7]. Although this paper can be read independently,

we strongly recommend the prior reading of [7].
Let p;(S) = z(S U{j}) — z(S).

Proposition 1.1. Each of the following statements is equivaleni and defines a
nondecreasing submodular set function.

(i) 2S)+2T)=2z2(SUT)+2(§NT), ¥VS.TCN
2(8)=z(T), YSCTCN.
(i)  p(S)=p(T)=0, VSCTCN and jEN-T.

(iii) 2AT)=z(S)+ > pi(S), VS, TCN.
JET~-S

Finally, we assume throughout the paper that z= z() and therefore exclude
the trivial possibility of @ being an optimal solution.
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2. The greedy heuristic

We first describe the greedy heuristic and then obtain two worst case bounds
for problem (1.5).

The greedy heuristic for nondecreasing set functions on independence systems
(N, %).

Initialization. Let S°=@, N°= N and set ¢t = 1.

Iteration t

Step 0. If N'™' =g, stop with S*! the greedy solution.

Step 1. Select i(t) € N*™' for which p;,(S'™") = max;en-1 pi(S™Y), with ties
settled arbitrarily.

Step 2a. If S'U{i(1)} & F, set N'™'= N —{i(#)} and return to Step 0.

Step 2b. If S*™U{i}E F, set pi= (S, $' =S U{i(t)} and N'=
N —{i(n)}.

Step 3. Set t—>1t+ 1 and continue.

Let U’ be the set of elements considered in the first ¢ + 1 iterations of the
greedy heuristic before the addition of a (¢ + 1)st element. Suppose F = ﬂ,’;l Z,,
where M, = (N, ¥,) are matroids p = 1, ..., P. Define r,(S), called the rank of S
in matroid p, to be the cardinality of a largest independent set contained in S in
matroid p, and define sp”(S), called the span of S in matroid p, by

sp?(S)={iEN: ,(SU{ih = r,(S)}.

Before stating our first result we need two simple propositions.
Proposition 2.1. U'Cc UZ_ sp”(S), r=0,1, ....

Proof. If j€ U’, then either j& S'Csp”(S*) for all p, or j failed the in-
dependence test at Step 2a, which implies j € sp”(S") for some p.

Propesition 2.2. If 2,{;50',- =tfort=1,...K, and p_i=p, i=1,... , K —1 with
pi, O = 0, then E,I(:BI pio; = 2{(:_01 Oi.

Proof. Consider the linear program

K-1 t—1
Vzmax{z poi: yoi=tt=1,.,K 0;=0,i=0,.., K~ z}
g i=0 i=0
with dual
1

=P i=0,..,K-1,u4=0,t=0,..., K1}

il

ol

K
W = min {Z tiy_yp:
H t=1

12
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As p; = pis1, the solution u; = p;—piy1, i =0,..., K —1 (where px =0) is dual
feasible with \alue > tH(pio1— pr) = 255 pi. By weak linear programming dual-
1ty,z (\D;UrSV<W<ZIOpI

Let Z denote the optimal value and Z¢ the value of a greedy solution to
problem (1.5).

Theorem 2.1." If the greedy heuristic is applied to problem (1.5), then

Z=7Z" P
Z-—z0) " P+1

The bound is tight for all P.

Proof.” Let T and S be optimal and greedy solutions respectively, with |S| =
Fort=1,..,Klet s, =|TNU"'=U"Y|, where U'! is the set of all elements
considered during the first ¢ iterations before the addition of a tth element to
S'~!. Below we show

(a) EjeT—s pi(S) = Ef{:l Pi-18i-1, and

(b) 24 si,<Pt for t=1,..,K, which implies via Proposition 2.2 that
> Pic1Siog = P2k, 0i-1. The result then follows from Proposition 1.1 since

K
Z:zuwsasw<2 msﬁy#+PEpm=Zﬁ+P@Gwamy
i i=1

K
(a) pi(S) = 2 pi(S) = E > pl®= Z i

€T~ =l jernui-uh
as pi(S)=p,., for j& U'— U'"! by the nature of the greedy heuristic.

(b) From the definition of s,_;, and assuming without loss of generality that
U°=@, we have 2’ 1 8i-1 = |T N U'|. Now by Proposition 2.1 U' ¢ U?Z_;sp”(S")
so that [T N U* |<Z T Nsp?(S")|. But as T is independent in matroid (N, %”)
and r,(sp®(S") =1, we obtam |T Nsp”(SH] = t. Therefore e = Pt.

To show that the bound is tight we exhibit a family of problems with
N={1,..,P+2}, Z°=1 and Z =P +1. We associate the variable x; €{0, 1}
with element i and represent S C N by its characteristic vector; x;, =1 if i€ S
and x; = 0 if iZ S. Consider the problem

Z = max X1+ X+ - ~+xp+1+)/gp+2-—x1xp+2

x1+x2 = 1, /%1
X1 + X3 . = 1, MZ
X1 "f”Xp = 1, Mp_l
X1 + Xp+1 = 1,}
+xP+2 = 1, J“P

x€{0,1}, i=1,..,P+2.
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It is easy to verify that this quadratic objective function is submodular and
nondecreasing. An optimal solution is given byx=Qand x,.=1,i=2, .. P12
so that Z = P + 1. However the greedy heuristic can select elements 1 and P + 2
in the given order, which yields Z¢ = 1.

Now we turn to another bound that can be used whenever the greedy heuristic
is applied. This bound is independent of P. It, instead, depends on the cardinality
of a largest independent set in (N, %), denoted by K, and the cardinality of a
smallest dependent set in (N, %), denoted by k+1.

Theorem 2.2. If the greedy heuristic is applied to problem (1.5), then

==Y

The bound is tight for all k <K and all K.

Proof. Let T be an optimal solution to {1.5). By Proposition 1.1 ()=
2(8)+Zjer 5 p(S"). Now Vi<k S U{leEF Vi€ T-S', and therefore
pi(S") = p,. Since [T - $'|= K, 215 p(S*) = Kp, and we obtain

t—1
Z=z0)+> p+Kp, t=0,.. k—1. (2.1)
=0

Now

i=0

k-1
z2-2° _z-ysn_ Z-H0-2e
Z-z(0)" Z-z(0) Z —z(B)

We can assume, without loss of generality, that all nondecreasing submodular
functions with Z > z(#) have been normalized so that Z—z(@#) = 1. We then
obtain a bound on (Z - Z%/(Z - z(f)) by maximizing 1— 2%} p; subject to the
inequalities (2.1). This linear program has maximum value [(K — D/KT* —see [7,
Lemma 4.1] - and the result follows.

For k=K the bound has been shown to be tight for all K in [2]. The
constraints of these problems can be modified to imply the tightness of the
bound for all k=<K and all K. We simply redefine the independence system in
the example of [2] so that the first k elements chosen by the greedy heuristic are
a maximal independent set.

! This theorem can be easily generalized to “p-systems” [5], which are a family of independence
systems that include those given in problem (1.5).

“ This proof is similar to the proof of Theorem 1 of [5], where it is assumed that z is linear and the
independence system is a p-system.
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3. The greedy heuristic and linear objective functions
When z(S) is linear, problem (1.5) can be written as the integer program
7= max D, €Xe
eEN

Y x=rF), YFCN and p=1,..P (3.1

¢EF

x. €1{0,1}, VeeN.
Let Z'° be the optimal value of the linear programming problem obtained by
dropping the integrality constraints in (3.1).
Theorem 3.1. If the greedy heuristic is applied to problem (3.1), then
Z¥—-z79 P-1
<

ko s

ZLP P

and the bound is tight for all P.
Proof. From duality

‘
up(F)>xe+ > u,(F)r, (F)
p=1

FCN

P
(=23

where u is a vector of dual variables with elements u,(F), VFCN and
p=1,...,P

Suppose the greedy heuristic terminates with the set SX. We choose dual
variables u as follows: !

Z" = min max
u=0 x,€{0,1}

eEN De

u,(sp” (SN =p—pers forp=1,...,P, k=0,.., K-1,
where pg = 0,

u,(F)=0, otherwise.

We claim that this choice of dual variables yields ¢, — 2’;:1 EFBe u,(F)=0,
Ve e N. To prove this result suppose that e is examined when the greedy
heuristic has chosen S*. We now consider two cases depending on whether e is
selected by the greedy heuristic.

(@) If e is selected then 2 s, up(F)= (px— pist) + (Prs1— Prad) + -+ + pror =
or and ¢, = p,. Hence ¢, — 2’,;, 2;:52 u,(F) 5 pr — Pp. = 0.

(b) If e is not selected then there exists p* such that e € sp?"(S*). Hence Em
ups(F) = ZX, u(sp”(S)) = (puct — o) + (B — pesn) +- 2 + pr-1 = ey and
pi—1 = ¢, from the order in which the variables are considered. Thus

P
=2 3 wE)< = B uplF) = co=proa =<0,
= e El

F3
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‘Finally, we note that

2 U (P (F) = (po—p) +2(pi— p) + -+ - + (K — Dpx_,

FCN

K
:Zpi:ZG-

i=0

Therefore Z'¥ < PZ and the result follows.
To see that the bound is tight for all P consider

Z:maXX]+X2+"'+xP+[,

X1+ X, Sl, ./%1
X1 + X3 Sl, /%2
X1 +xpo =1, Mp

x€e{0, 1}, i=1,.,P+1.

A greedy solution is given by x;=1, x;=0, i =2, Z°=1, and an optimal LP
solution is given by x, =0, x; =1, i =2, Z'? = P.

Corollary 3.1° [5,6]. If the greedy heuristic is applied to problem (3.1), then
(Z - Z%|Z = (P —1)/P and the bound is tight for all P.

Proof. This bound is implied by the bound of Theorem 3.1 and the example
given above has Z'F = Z.

Problem (3.1) has the alternative representation

DL

max {v(S): S &

SCN D

%,} (3.2)

Il
N

where v(S) = mangs{zeep c.: F € %} is submodular and nondecreasing (Pro-
position 3.1 of [7]). It then can be shown that applying the greedy heuristic to
problems (3.1) and (3.2) can lead to identical solutions. Thus Corollary 3.1 is also
a consequence of Theorem 2.1.

Corollary 3.2. For problem (3.1),

Z%¥-7 P-1
=

Although it can be shown that the ratio (Z'* — Z)/Z™® has a limit of one as P
approaches infinity, we do not know whether the bound of (P — 1)/P is tight for
P >2. Edmonds [4] has proved that there is no duality gap for P = 2.

*In [5] this result is obtained for p-systems.
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4. The locally greedy heuristic

Here we study problem (1.6) and then problem (1.3) when z has a certain
symmetry. In problem (1.6) N is partitioned into n smaller sets {N;}/-; and the
computation required by the greedy heuristic can be reduced by considering
these sets separately.

4.1. The locally greedy heuristic for Problem (1.6)
Initialization. Arbitrarily index the sets {N;}’,, set S°=@ and ¢ = 1.

Iteration t. Apply the greedy heuristic to the problem

max {z(ST'UD: € F'}

ICN,

and let I, be a greedy solution. Set §' =S 'U I. If t = n stop, S = S" is a locally
greedy solution. Otherwise set t — ¢ + 1 and continue.

If n; =|Nj|, the locally greedy heuristic requires 2}-‘,, O(n}) evaluations while
the greedy heuristic requires @(2?:1 ;)" evaluations.
Let Z'° be the value of a locally greedy solution.

Theorem 4.1. If the locally greedy heuristic is applied to problem (1.6) then

Z-Z2Lf P
Z—z@ P+

The bound is tight for all P and n.

Proof. Let T be an optimal solution, T'=T NN, S=S" a locally greedy
solution and S N N, = I,. By Proposition 1.1

n

2TY=z(S)+ D> p(S)=z(S)+2, 2 p(S)
qeT-S 1

=1 ger'~],
SZ(S)+2] > pq(S)Sz(S)+Z > p:(SY.
=l geT! =1 4eT!

Since (N, ') is the intersection of at most P matroids, exactly as in the proof
of Theorem 2.1 it can be argued that qur,pq(S‘) = P[z(S") — z(S"™H]. Thus

Z=z(T)=z(S)+ 2, P[z(S") - 2(8' )]
t=1
. . /
=7%+P[Z°— z2(®)].
For n = 1 the worst case example of Theorem 2.1 shows that the bound is tight
for all P. For arbitrary n, we obtain a worst case example by replicating n times
the variables and constraints of the example of Theorem 2.1.
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Specializing further, we consider problem (1.3). Recall that this model is a
special case of problem (1.6) in which P =1, M ={1, ..., m} is a set of boxes,
E={l,..,n} is a set of elements to be packed into the boxes, N =
{(i.i):ieM,jEE} and N;={(i,j):i € M}, j€ E. Since z(S) is nondecreasing
there is an optimal packing in which all of the elements are included and we can
replace the packing constraints |[S N N;|=1 by the partition constraints SN
N;| = 1. These partition constraints are equivalent to SN Sy =@, iz k, U ey S; =
E, where S;={j:(i,j) € S} is the subset of elements placed in box i. Defining
v(S1, ..., Sn) = z(S) we can restate problem (1.3) as

max  {o(S1, ..., 8.):SiNS, =8,i=k, U S, = E}. “4.D
S|CE,....SyCcE ieM
Let piSt i85 = (S s S L0, 80 = 0(S, 0 Si s S = 2(SU{L D
— 2z(5). Then 2z(S) is submodular and nondecreasing if and only if
Pi(St, .o s Sp) = piT,, ..., T) =0 for S, C Ty, Yk € M, which is equivalent to

U(T],...,T,,,)SD(S;,...,S,,,)JFE E p_,/:(Slﬁ---,Sm)'

{EM jET-S;
In the context of problem (4.1) the locally greedy heuristic considers the

elements of E in any order and puts each element in whichever box gives the
greatest immediate gain.

4.2. The locally greedy heuristic for Problem (4.1)

Initialization. Assume the elements of E are ordered 1, ... ,n,set SP=¢,ieM
and ¢t = 1.

Iteration t. Find p, = p{(Si™', ..., S = max; pi(S{™', ..., S5 with ties settled
arbitrarily. Set Si= Si'U{t} and Si= S/ for i#i* If t =n stop. Otherwise
set t -t + 1 and continue.

We know that setting P =1 in Theorem 4.1 yields (Z — Z*)/(Z — z()) <3 for
problem (4.1).
Suppose now that z(S) = v(S,, ..., S,) is symmetric, i.e.,

U(Sl, ey S,‘—x, S,‘, Si+], cee o Skﬁl. Sk, Sk+1, cee o Sm)
=v(S1 ..., Si1, St Sixts e Skcts Siy Skats -5 Sh)  for all pairs i, k.

This condition is satisfied when v(Si, ..., Sn) = 2 e 5(S:), where  is a non-
decreasing submodular function on E and more generally means that the boxes

are identical.

Theorem 4.2. If the locally greedy heuristic is applied to problem (4.1) and v is
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symmetric, then

Z“‘ -1
7#-: "(ﬂ) 2m -1

The bound is tight for all m.

Proof. Let (T, ..., T,,) be an optimal partition of E and (S,..., S,) a locally
greedy partition. Submodularity of v implies

U(Thn-a Tm)sv(sla Sm)+ Z pf(Slv---sSm)~
€M 1€T-5;
Furthermore p, = pi(Si™', ..., S = pi(Si, ..., Sn), where the first inequality is

implied by the locally greedy heuristic and the second by submodularity.
Therefore

Z=v(Ty, ..., Tw) = 0(Si, ... Sm>+2 > 9

ie MIET,—Q,

= D(Sla . Sm)+ z E pt 2 pt
IEMIET; IEMETNS;

:v(S],..., m)"‘ZPr Z pr
t=1 iEM (ETNS;

=220 -z~ 2> > pn

IEMtET;NS;
where z(@) = v(@, ..., ) and Z"C = (S, ..., Sn) = 27—, p, + (D).
Using the fact that v is symmetric, we note that o(Ty, .., T, =

U(T(H»k)modms see iy T(m+k)mndm) fOT k = Oa L e g M — 1 Hence

Z=27ZC—z8)- > > p, k=0,1,....,m—1.
IEM 1ET i1 ky mod mNSi
Since U Tistmeam N S; =S, summing these last inequalities over k=
0,...,m—1 yields

mZ < m[2Z%C — z(@)] — o

€M (€S,

— mRZ — 2] ~i} o = m[2Z — z(@#)] - [Z"C - 2(@)],

or Cm — IYZ - Z < (m — 1)N(Z — z(®)), and the result follows.

We now show that the bound is tight by considering a matroid partition
problem for which Edmonds [3] has given a good algorithm. We are given a
multigraph G = (V, E) that is to be partitioned into/m disjoint forests containing
a maximum number of edges. An equivalent statement of this problem is to
partition the edges among m boxes, where the value of the ith box is the
cardinality of a largest forest that can be constructed from the edges in it.
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Take the multigraph G on 2m nodes, consisting of a complete bipartite graph
(ViU V5, Vix V), where Vi ={1,...,m}and V,={m + I,...,2m}, and m copies
of the edge (i,i+1) i=1,..,m — 1. An example for m =3 is given in Fig. 1.

Consider the disjoint trees {T;}/*,, where T; has 2m — | edges: (j,j+1) for
Isj=m-—1,and (i, m +j) for 1 =j < m. Since these trees use all of the edges in
G, they represent an optimal solution and Z = m(2m — 1). On the other hand the
locally greedy heuristic can choose the m disjoint trees {Srym, during the first
m? iterations where S has m edges (j,m+ i) for 1=<j<m. The succeeding
iterations contribute nothing to the value of this solution. Hence Z-¢ = m? and
(Z=2Z"YZ =(m - D/@m —1).

5. The interchange heuristic

Finally, we consider the interchange heuristic, which is a local improvement
procedure. For problem (1.5), we show that for P = 1 the interchange and greedy
heuristics have the same worst case behavior, but for P =2 the interchange
heuristic can behave arbitrarily badly.

Fig. 1.
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5.1 The interchange heuristic for set functions on independence systems (N, F)
Initialization. Pick an arbitrary independent set S°C N. Set ¢ = 1.

Iteration t. Given a set S! try to find an independent set Q C N such that
[Q—s"= 1,8 = Q|=1 and z(Q)>z(S'™"). If such a Q exists set S'=Q,
t— ¢+ 1 and continue. If not S = St7! is an interchange solution.

Let Z' denote the value of an interchange solution.

Theorem 5.1. If the interchange heuristic is applied to problem (1.5), then
() (Z-ZY(Z - z(@) <3 if P =1, and this bound is tight,
i) (Z-ZW(Z ~z@) =<1 if P =2, and this bound is tight.

Proof. (i) As the independence system is a matroid and z is nondecreasing we
can assume, without loss of generality, that an interchange solution S and an
optimal solution T are both bases of the matroid. Let e, ..., ex be any ordering
of the elements of S, Si={ey, ..., &1} and pe_i = p(Sk-), k=1,...,K. It is
shown in von Randow [9, p. 82, Th. 25] that there exists a bijection f: S—T
such that (S —{eh U {f(e)} € # Ve € S. Now

K K
;T pi(S)= z} Pren(S) = Z Pren(S —{e})
j i= i=
K K K—-1
= ; p(S—{eh= ; Pe(Si-) = Z Pi

where the first and third inequalities follow from submodularity (Proposition
1.1), and the second from the fact that S is an interchange solution. Therefore
Z=z(T)=z(8)+ 2 2;(S)
jET-S

K-1

=z($)+ Z,G pi =22(S) — z(8) = 2Z' - z(§).

To show that this bound is tight consider the problem

maximize x;+ X,+ X3— X1X3,
subject to  x;+ X2y, =1,
X3 =1,
xe{0,1}, i=1,2,3,
which is the example of Theorem 2.1 for P = 1. The optimal solution is given by
x;=0, x,=x3=1 and an interchange solution is given by x;=1, x;=x3=0.
Hence (Z—ZY/Z =3.
(ii) To show that the bound is tight for P =2, consider the family of problems
maximize Xp,i,
subject to x;+xpu =1, i=1,..,P
x;e{0,1}, i=1,...,P+1.
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The optimal solution is given by x;=0,i=1,...,P, Xps1 =1 and an interchange
solution is given by x; =1, i=1,..., P, xp,, = 0. Therefore (Z-2ZMZ=1.

6. Conclusions

A number of other details that we studied in [7]1 for problem (1.1) could also be
considered for problem (1.5). These include (1) elimination of the nondecreasing
assumption, (2) more general heuristics, such as R-step greedy and interchange,
and combining a heuristic with partial enumeration and (3) a linear programming
relaxation for (1.5) that yields (Z"* — Z%)/Z'F < pP/(P + 1) for P =2 when z(S) is
generated from a matroid as indicated in [7, Section 6]. However, since the
bounds obtained here are already poor, none of these generalizations seem to be
worthy of a detailed development, much of which would parallel that in [7]. We
believe, instead, that the value of the development here is its use as a framework
for studying narrower classes of problems and other heuristics for which sharper
results might be obtained.

We are also interested in determining optimal heuristics, i.e., a heuristic that
guarantees the best worst case bound for a fixed amount of computation. This
problem for the maximization of submodular functions will be the subject of a
forthcoming paper.
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