(\mathbf{I}) (onstraine) optimization: equality constraints . Two kinds of problem meg constraints. . These are quite 24férent, ways. in unportant g(x) = 0 primize f subject to g = 0 $\equiv \nabla f$ is \overline{f} is \overline{f} is \overline{f} is \overline{f} (because "sourface" g=0 (because otherwise, we could move along g=0 in a way that reduces f)

megnality Picture: $h_{1}(x) = 0$ $h_{1}(x) = 0$ $h_{2}(x) = 0$ $h_{2}(x) = 0$ $h_{3}(x) = 0$ at a constraints are imelevant;
locally, problem involves min fixe)
at a pplies, but no officers, so
at a pplies, but no officers, so
at a problem (ooks like locally problem (ooks like locally problem fixe)
at a 1 h_1, h_2 o at C, the stop may mean picture changes! BUT:

Equality constraints g(x) = 0· Simple picture: 30, one constraint · g(x) = 0· uni f(x) st g(x) = 0/ 1 . consuer occurs at points where ∇f is normal to $\{g(x) = 0\}$ · Normal of implicit surface g(x) = 0 is Vg $\therefore \nabla f = \lambda \nabla g$ L'Some unknown Constant.

What if there are many constraints in N-D? $g_1(x) = 0, \quad g_2(x) = 0, \quad \text{etc}$ Vf is normal $\nabla f \in Span \{ \nabla g_1, \nabla g_2, \nabla g_3, \cdots \}$ $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 + \cdot$ equivalently, write $\frac{1}{2} \circ 9 = \begin{bmatrix} 9, \\ 9_2 \\ \vdots \end{bmatrix}$

then $\nabla f = \lambda^T Jg$. This justifies writing the Lagrangian $\int = f - \lambda g.$ at minimum $\nabla_{\chi} Z = \nabla f - \lambda Jg = 0$ = 0 $\nabla_{\lambda} \mathcal{I} = -9$ These conditions must be true at a read plan alls ut 1) (1) (1) M

I will deal with pages 6-10 later - DAF V. Important special cases for constrained optimization s,t. $x^Tx = 1$ (i) max $x^{T} A x$ Lagrangian $\therefore \qquad \begin{array}{c|c} x^{T} A x & -\lambda (x^{T} x & -1) \\ \hline A x & = \lambda x \end{array}$ Ceigenvalue problem

St $x^{T}Bx = 1$ $\binom{2}{2}$ max xTAx Lagrangian $\lambda^T A \lambda - \lambda(x^T B \lambda - 1)$ $\therefore \qquad Ax - \lambda Bx = 0$ A generalizéd eigenvalue problem Notice: NOT the same as $B^{-1}Ax - \lambda x = 0 A$ NAUGHTY! bounderbecause B-1 may not exist . Any good Numerical linear Alg package can 20 these.

3min $\frac{1}{2}$ st A = 6(i.e. closest point on linear subspace to) The origin Lagrangian: $\frac{1}{2} \sum_{x=1}^{T} (Ax - b)$ $\frac{J\zeta_{z}}{Z} - A^{T}\lambda = 0 \qquad (\nabla_{x}Z) \qquad (B)$ $AA^T \lambda = 6 \quad \bigstar \quad \textcircled{}$ 50 solve linear system x for λ , then subs for ∞ . in \mathbb{B} Alg

	(IF)
(4) $\mu \dot{\mu}$ $\chi^{T} A \chi + b \chi$ z $s.t.$ $C \chi = d$	
$\frac{\lambda a grangian}{2} :$ $\frac{\lambda^{T} A \alpha + 6^{T} \alpha - \lambda^{T} (C \alpha - d)}{2} = 0$	
$\nabla_x f$: Ax + b - L = 0	
$\nabla_{\lambda} \vec{J}$: $\begin{bmatrix} A & -C \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} -C \\ x \end{bmatrix}$	67
	d
Colve this.	

how useful it has been to (5) the Lagrange multipliers. Nohie KNOW for other cases Algorithuus Eleminating constraints Sométimes, we can parametrife the construint sct and more on that. not usually a good idea eg. min $x^2 + (y-10)^2$ subject to $y - \sin x = 0$

Notice the mich supply of local min , we could rewrite as (16) w/ no constraints min χ^2 + $(sin \alpha - 10)^2$ then try to aim this. Notice when we do this, we are confining our steps to the constraint space: - Problem - Don't see large scale Structure of objective . Equivalent: · take step Taugent to Constraint space . project back. (. i.e. make up local parametrifation)

For example:

$$for example:$$

$$min x^{T}Ax + b^{T}x$$

$$st. \qquad \oint (x) = 0$$

$$f \text{ vector function}.$$

$$Wow consider a step \Delta x$$

$$\oint (x + \Delta x) \approx \oint (x) + J_{\phi}. \Delta x.$$

$$\oint (x + \Delta x) \approx \oint (x) + J_{\phi}. \Delta x.$$

$$so ase could fry:$$

$$step:$$

$$nin (st_{h} \Delta x) + J_{\phi}. \Delta x = 0$$

$$st = J_{\phi}. \Delta x = 0$$

$$2) correct by finding x_{h}$$

$$st = f(x_{h}) = 0, \text{ Start}$$

$$search at x_{h} + \Delta x.$$

Again, not usually a great plan, (3) because we may have a hard time taking big steps Quadratic penalty method min f(x) = 0st g(x) = 0. approach by uni $f(x) + \frac{c}{2}gg$ · if c is big, this forces g^Tg to be Small · advantage: - we could take steps off the constraint space - now its unconstrained.

(Big) · Hisadvantages =) some big terms in Hessian 1) big C $H = H_{f}$ l'so we should see terms that look like Zi dgi oh Hess k dxi. diag 2) at soln, g isn't Zero $\nabla_x f + c g J_g = 0$ at solu V_{xf} woht be zero, in general, so g can't

The method of multipliers 20 (also, Augmented Lagrangian) method. $Sf \quad g(x) = 0$ min f(x) form: Augmented hagrangian $A(x;\lambda) = f(x) - \lambda^{T}g(x) + \frac{1}{2}(gg)$ Now, assume use have an augmentation estimate λ^{κ} of the hittis Minimize $A(x; \lambda^{\kappa})$ to get x^{κ}

at x" we have (21) $\nabla f(x_{k}) - \lambda g J_{g} + c g J_{g} = 0$ Now, pattern match to conditions $\nabla_{\mathcal{X}} \mathcal{I} =$ $\nabla_{2c}Z = \nabla f - \lambda^{T}Jg$ This suggests $\lambda^{k+1} = \left(\lambda^{k} - cq\right)$ a som $\omega/g=0!$ we could have Notice:

ALM: . start to x°, 1°, c° $mn \quad A(x, \lambda^{k}) = f - \lambda g + \frac{5}{2}g g$ * $\lambda^{K+1} = \lambda^{K} - \frac{c^{K}q^{T}(x^{K})}{2}$ $C^{K+l} = \Gamma C^{K}$ $\frac{1}{4len}$ Q: How do we know its converged?A: In ALM, usually nothing to 20 -we don't reject steps - but issue for future. Q: de ve have Hessian probs." A: No, because à ests help. (formally, fliere is some bound on) the c required to get exact soln.)

23 First glimple of Quality. have min f(sc) we have st g(x) = 0 $= f(x) - \lambda g(x) = Z(x, \lambda)$ 1 he have solution when $\nabla_x \mathcal{I} = 0$] so solution is $\nabla_x \mathcal{I} = 0$] at a critical $\nabla_x \mathcal{I} = 0$] point of \mathcal{I} . -, what kind of c.p.? (a) fix $\lambda = \lambda$; then $\mathcal{I}(\infty, \lambda)$ is (locally) at a min (b) but for fixed $x = \hat{x}$, $\mathcal{I}(\hat{x}, \lambda)$ is Inear $\frac{\chi^{c}, \lambda^{c}}{\chi^{c}}, \frac{\partial \chi}{\partial \lambda_{i} \partial \lambda_{j}}$ $\partial^2 f(x, \lambda)$ is zero. C Eq at

ie shink about H = Hessiah & Lin 2 and 1 at xit, there are some Firms Dirns) S. S.t. (the x Si H Z O El devis) some Dirns St AND S, $S_{\star}^{T}HS_{\star}=0$ be a x', l' must 50 Saddle point e 2 - spece a x-space .

This means we could think (25) about $q(1) = \inf_{x} \mathcal{L}(x, \lambda)$ Notice: $q(\lambda) \leq f(x^{c})$. consider 1 constraint, then fairly easy; $\int = f(x) + \lambda g(x).$ now for q(1) to be finite, he must have Agix bounded below; it Ag(z) bound is gneater than Zero, no pensible point, so its loss than zero; $\begin{array}{l}
\text{inf} \quad f(\infty) \\
\text{st} \quad g(x) = 0 \end{array}$ but then inf f(x) + d g(x) K Multiple Hundusions follow

This is poweful because we could consider ZG $max q(\lambda)$ $(f(x^{c}))$. $\frac{1}{14} \quad ke \quad kaue \quad 2, \quad \lambda^{\kappa}, \quad x^{\kappa}, \quad$ and $q(1^k) - f(x^k)$ is small, $f(x^k) - f(x^c)$ is also small this could help us track proguess. Simple Juals: O xAx st Ax + 6 = 01) hun x xc $-\lambda(Ax+b)$ $\lambda : x^T x$ 2

occurs when

year inf Z(x, 2)

\mathcal{H}
$\begin{array}{c} \chi - A\lambda = 0 \\ \hline & T \\ \hline \\$
So q(A) = AT
$q(\lambda) = -\lambda \frac{\tau}{2} \frac{A}{2} \lambda - \frac{T}{2}$
(subs. into I)
(It's not always this easy)
Notice max q(1)
occurs when
$AA^{T}\lambda - 6 = 0$
(i.e. at solu).

Vouriational calc. Interesting example 6 Problem: find a PDF. that has a fixed set of Expectations (i-e) $\begin{cases} E_p(f_i) = M_i \rightarrow Khowsh humber \end{cases}$ While max unifing entropy. -> useful modelling idea. We observe good estimates of some expectations in Tata, and want model to respect these. But we know nothing else, so max entropy. - Variatisco Vouratiske problem with constraint. max-JP logp doc So St. $\int p \, dx = 1$ $\int p \cdot f_i \, dx = m_i$

Ĩ, Lagrangian $\int (p) = - \int p \log p \, dx$ - $-\sum_{i}^{i} \lambda_{i} \int \mathcal{P} f_{i} dx - m_{i}$ Here we want to form 2 gradients $\nabla_{x} I$ is easy $\nabla_p \mathcal{I}$ follows the case we saw earlier. (i.e at p^* , $\int_{\mathcal{I}} \frac{d}{d} \mathcal{I}(p^* + \varepsilon \varphi) \int_{\mathcal{I}} \frac{d}{\varepsilon} = 0$ for any φ .) $\frac{d}{d\xi} \left[\frac{p^* + \xi \varphi}{\xi = 6} \right]_{\xi = 6}^{\xi = 6} = \int \varphi \left[-\log p^* - 1 - \lambda_0 - \sum_i i_f \right] dx.$ this must be zero for any Q, $p^* \propto l \cdot l$ SO

This class of model used to be called a maximum entropy model Fiffing: . (012 way) λ_i so that . adjust = Mi $\int p^* f_i d_{i} c$ $\frac{1}{N}\sum_{j} f(x_{j}) - an estimate$ $<math>from \partial ata$ of thes Expectation so that . and to $\int p^* cloc = 1$.

magine we have a model of 3 and we fit with Max likelihood we must solve st. $\int p^*(x) dx = 1$ $\max \sum_{j=1}^{\infty} \log p(x_j)$ (problem in do, di) $\int p^{*}(x) dx = 1 = \int e^{-\lambda_{0}} e^{-\sum_{i} \lambda_{i} \int f_{i}(x)} dx$ $= e^{-\lambda_{0}} \int e^{-\sum_{i} \lambda_{i} \int f_{i}(x)} dx$ $\lambda_{0} = \log \left[\int e^{-\lambda_{i} \int f_{i}(x)} dx \right] = \log Z(\lambda_{i})$ NOW So

So we must solve: $\max_{\lambda_{i}} \sum_{i} \left[-\log Z - \sum_{i} \lambda_{i} f_{i}(x_{j}) \right] = Q(\lambda)$ λi $\frac{\partial Q}{\partial l} = \sum_{j} \left[-\frac{1}{Z} \frac{\partial Z}{\partial \lambda_{k}} - \frac{\ell}{k} f_{k}(x_{j}) \right]$ Jyr $\mathcal{F}_{\mathcal{F}} = \ell^{\lambda_0} = \left[\int e^{-\frac{\pi}{2}\lambda_i f_i(x)} dx\right]$ $\frac{\partial Z}{\partial \lambda_{k}} = -\int e^{-\frac{Z}{2}\lambda_{i} \cdot f_{i}(x)} \cdot f_{k}(x) dx$ $\int \frac{1}{2} \frac{\partial z}{\partial \lambda_{k}} = \int e^{-\lambda_{0}} e^{-\Sigma_{i} \lambda_{i} f_{i}(x)} f_{k}(x) dx$ solve So we must Jp* fx(x)dx Exact expectations $= \frac{1}{N} \sum_{j=1}^{N} f_{k}(c_{j})$ Pempirical expectations