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Mean Field Inference

Graphical models are important and useful, but come with a serious practical
problem. For many models, we cannot compute either the normalizing constant or
the maximum a posteriori state. It will help to have some notation. Write X for a
set of observed values, H1, . . . , HN for the unknown (hidden) values of interest. We
will assume that these are discrete. We seek the values of H1, . . . , HN that maxi-
mizes P (H1, . . . , HN |X). There is an exponential number of such possible values,
so we must exploit some kind of structure in the problem to find the maximum. In
the case of a model that could be drawn as a forest, this structure was easily found;
for models which can’t, mostly that structure isn’t there. This means the model is
formally intractable — there is no practical prospect of an efficient algorithm for
finding the maximum.

There are two reasons not to use this problem as a reason to simply ignore
graphical models. First, graphical models that quite naturally describe interesting
application problems are intractable. This chapter will work with one such model
for denoising images. Second, there are quite good approximation procedures for
extracting information from intractable models. This chapter will describe one such
procedure.

15.1 USEFUL BUT INTRACTABLE MODELS

Here is a formal model we can use. A Boltzmann machine is a distribution model
for a set of binary random variables. Assume we have N binary random variables
Ui, which take the values 1 or −1. The values of these random variables are not
observed (the true values of the pixels). These binary random variables are not
independent. Instead, we will assume that some (but not all) pairs are coupled.
We could draw this situation as a graph (Figure 15.1), where each node represents
a Ui and each edge represents a coupling. The edges are weighted, so the coupling
strengths vary from edge to edge.

Write N (i) for the set of random variables whose values are coupled to that
of i – these are the neighbors of i in the graph. The joint probability model is

logP (U |θ) =





∑

i

∑

j∈N (i)

θijUiUj



− logZ(θ) = −E(U |θ)− logZ(θ).

Now UiUj is 1 when Ui and Uj agree, and −1 otherwise (this is why we chose Ui

to take values 1 or −1). The θij are the edge weights; notice if θij > 0, the model
generally prefers Ui and Uj to agree (as in, it will assign higher probability to states
where they agree, unless other variables intervene), and if θij < 0, the model prefers
they disagree.
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FIGURE 15.1: On the left, a simple Boltzmann machine. Each Ui has two possible
states, so the whole thing has 16 states. Different choices of the constants coupling
the U ’s along each edge lead to different probability distributions. On the right,
this Boltzmann machine adapted to denoising binary images. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) true pixel values Hi. Notice that pixels depend on
their neighbors in the grid. There are 216 states for X in this simple example.

Here E(U |θ) is sometimes referred to as the energy (notice the sign - higher
energy corresponds to lower probability) and Z(θ) ensures that the model normal-
izes to 1, so that

Z(θ) =
Σ

all values of U
[exp (−E(U |θ))] .

15.1.1 Denoising Binary Images with Boltzmann Machines

Here is a simple model for a binary image that has been corrupted by noise. At
each pixel, we observe the corrupted value, which is binary. Hidden from us are the
true values of each pixel. The observed value at each pixel is random, but depends
only on the true value. This means that, for example, the value at a pixel can
change, but the noise doesn’t cause blocks of pixels to, say, shift left. This is a
fairly good model for many kinds of transmission noise, scanning noise, and so on.
The true value at each pixel is affected by the true value at each of its neighbors –
a reasonable model, as image pixels tend to agree with their neighbors.

We can apply a Boltzmann machine. We split the U into two groups. One
group represents the observed value at each pixel (I will use Xi, and the convention
that i chooses the pixel), and the other represents the hidden value at each pixel
(I will use Hi). Each observation is either 1 or −1. We arrange the graph so that
the edges between the Hi form a grid, and there is a link between each Xi and its
corresponding Hi (but no other - see Figure 15.1).

Assume we know good values for θ. We have

P (H |X, θ) =
exp(−E(H,X|θ))/Z(θ)

ΣH [exp(−E(H,X|θ))/Z(θ)]
=

exp (−E(H,X |θ))
ΣH exp (−E(H,X |θ))

so posterior inference doesn’t require evaluating the normalizing constant. This
isn’t really good news. Posterior inference still requires a sum over an exponential



Section 15.1 Useful but Intractable Models 370

number of values. Unless the underlying graph is special (a tree or a forest) or very
small, posterior inference is intractable.

You might think that focusing on MAP inference will solve this problem.
Recall that MAP inference seeks the values of H to maximize P (H |X, θ) or equiv-
alently, maximizing the log of this function. We seek

argmax
H

logP (H |X, θ) = (−E(H,X |θ))− log [ΣH exp (−E(H,X |θ))]

but the second term is not a function of H , so we could avoid the intractable
sum. This doesn’t mean the problem is tractable. Some pencil and paper work
will establish that there is some set of constants aij and bj so that the solution is
obtained by solving

argmax
H

(

∑

ij aijhihj

)

+
∑

j bjhj

subject to hi ∈ {−1, 1}
.

This is a combinatorial optimization problem with considerable potential for un-
pleasantness. How nasty it is depends on some details of the aij , but with the right
choice of weights aij , the problem is max-cut, which is NP-hard.

Remember this: A natural model for denoising a binary image is to
assume that there are unknown, true pixel values that tend to agree with the
observed noisy pixel values and with one another. This model is intractable
– you can’t compute the normalizing constant, and you can’t find the best
set of true pixel values.

15.1.2 A Discrete Markov Random Field

Boltzmann machines are a simple version of a much more complex device widely
used in computer vision and other applications. In a Boltzmann machine, we took
a graph and associated a binary random variable with each node and a coupling
weight with each edge. This produced a probability distribution. We obtain a
Markov random field by placing a random variable (doesn’t have to be binary,
or even discrete) at each node, and a coupling function (almost anything works)
at each edge. Write Ui for the random variable at the i’th node, and θ(Ui, Uj) for
the coupling function associated with the edge from i to j (the arguments tell you
which function; you can have different functions on different edges).

We will ignore the possibility that the random variables are continuous. A
discrete Markov random field has all Ui discrete random variables with a finite
set of possible values. Write Ui for the random variable at each node, and θ(Ui, Uj)
for the coupling function associated with the edge from i to j (the arguments tell
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you which function; you can have different functions on different edges). For a
discrete Markov random field, we have

logP (U |θ) =





∑

i

∑

j∈N (i)

θ(Ui, Uj)



− logZ(θ).

It is usual – and a good idea – to think about the random variables as indicator
functions, rather than values. So, for example, if there were three possible values
at node i, we represent Ui with a 3D vector containing one indicator function for
each value. One of the components must be one, and the other two must be zero.
Vectors like this are sometimes know as one-hot vectors. The advantage of this
representation is that it helps keep track of the fact that the values that each
random variable can take are not really to the point; it’s the interaction between
assignments that matters. Another advantage is that we can easily keep track of
the parameters that matter. I will adopt this convention in what follows.

I will write ui for the random variable at location i represented as a vector.
All but one of the components of this vector are zero, and the remaining component
is 1. If there are #(Ui) possible values for Ui and #(Uj) possible values for Uj , we
can represent θ(Ui, Uj) as a #(Ui) × #(Uj) table of values. I will write Θ(ij) for

the table representing θ(Ui, Uj), and θ
(ij)
mn for the m, n’th entry of that table. This

entry is the value of θ(Ui, Uj) when Ui takes its m’th value and Uj takes its n’th

value. I write Θ(ij) for a matrix whose m, n’th component is θ
(ij)
mn . In this notation,

I write
θ(Ui, Uj) = uT

i Θ
(ij)uj .

All this does not simplify computation of the normalizing constant. We have

Z(θ) =
Σ

all values of u



exp





∑

i

∑

j∈N (i)

uT
i Θ

(ij)uj







 .

Note that the collection of all values of u has rather nasty structure, and is very
big – it consists of all possible one-hot vectors representing each U .

15.1.3 Denoising and Segmenting with Discrete MRF’s

A simple denoising model for images that aren’t binary is just like the binary
denoising model. We now use a discrete MRF. We split the U into two groups, H
and X . We observe a noisy image (the X values) and we wish to reconstruct the
true pixel values (the H). For example, if we are dealing with grey level images
with 256 different possible grey values at each pixel, then each H has 256 possible
values. The graph is a grid for the H and one link from an X to the corresponding
H (like Figure 15.1). Now we think about P (H |X, θ). As you would expect, the
model is intractable – the normalizing constant can’t be computed.
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Worked example 15.1 A simple discrete MRF for image denoising.

Set up an MRF for grey level image denoising.

Solution: Construct a graph that is a grid. The grid represents the true value
of each pixel, which we expect to be unknown. Now add an extra node for each
grid element, and connect that node to the grid element. These nodes represent
the observed value at each pixel. As before, we will separate the variables U
into two sets, X for observed values and H for hidden values (Figure 15.1). In
most grey level images, pixels take one of 256 (= 28) values. For the moment,
we work with a grey level image, so each variable takes one of 256 values. There
is no reason to believe that any one pixel behaves differently from any other
pixel, so we expect the θ(Hi, Hj) not to depend on the pixel location; there’ll
be one copy of the same function at each grid edge. By far the most usual case
has

θ(Hi, Hj) =

[

0 if Hi = Hj

c otherwise

where c > 0. Representing this function using one-hot vectors is straightfor-
ward. There is no reason to believe that the relationship between observed and
hidden values depends on the pixel location. However, large differences between
observed and hidden values should be more expensive than small differences.
Write Xj for the observed value at node j, where j is the observed value node
corresponding to Hi. We usually have

θ(Hi, Xj) = (Hi −Xj)
2.

If we think of Hi as an indicator function, then this function can be represented
as a vector of values; one of these values is picked out by the indicator. Notice
there is a different vector at each Hi node (because there may be a different
Xi at each).

Now write hi for the hidden variable at location i represented as a vector, etc.
Remember, all but one of the components of this vector are zero, and the remaining
component is 1. The one-hot vector representing an observed value at location i is

xi. I write Θ(ij) for a matrix who’s m, n’th component is θ
(ij)
mn . In this notation, I

write
θ(Hi, Hj) = hT

i Θ
(ij)hj

and
θ(Hi, Xj) = hT

i Θ
(ij)xj = hT

i βi.

In turn, we have

log p(H |X) =









∑

ij

hT
i Θ

(ij)hj



+
∑

i

hT
i βi



+ logZ.
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Worked example 15.2 Denoising MRF - II

Write out Θ(ij) for the θ(Hi, Hj) with the form given in example 15.1 using the
one-hot vector notation.

Solution: This is more a check you have the notation. cI is the answer.

Worked example 15.3 Denoising MRF - III

Assume that we have X1 = 128 and θ(Hi, Xj) = (Hi −Xj)
2. What is β1 using

the one-hot vector notation? Assume pixels take values in the range [0, 255].

Solution: Again, a check you have the notation. We have

β1 =













1282 first component
. . .

(i − 128)2 i’th component
. . .
1272













FIGURE 15.2: For problems like image segmentation, hidden labels may be linked to
many observed labels. So, for example, the segment label at one pixel might depend
on the values of many pixels. This is a sketch of such a graph. The shaded nodes
represent the known pixel values (Xi in the text) and the open nodes represent the
(unknown, and to be inferred) labels Hi. A particular hidden node may depend
on many pixels, because we will use all these pixel values to compute the cost of
labelling that node in a particular way.

Segmentation is another application that fits this recipe. We now want to
break the image into a set of regions. Each region will have a label (eg “grass”,
“sky”, “tree”, etc.). The Xi are the observed values of each pixel value, and the
Hi are the labels. In this case, the graph may have quite complex structure (eg
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figure 15.2). We must come up with a process that computes the cost of labelling
a given pixel location in the image with a given label. Notice this process could
look at many other pixel values in the image to come up with the label, but not at
other labels. There are many possibilities. For example, we could build a logistic
regression classifier that predicts the label at a pixel from image features around
that pixel (if you don’t know any image feature constructions, assume we use the
pixel color; if you do, you can use anything that pleases you). We then model
the cost of a having a particular label at a particular point as the negative log
probability of the label under that model. We obtain the θ(Hi, Hj) by assuming
that labels on neighboring pixels should agree with one another, as in the case of
denoising.

15.1.4 MAP Inference in Discrete MRF’s can be Hard

As you should suspect, focusing on MAP inference doesn’t make the difficulty go
away for discrete Markov random fields.

Worked example 15.4 Useful facts about MRF’s.

Show that, using the notation of the text, we have: (a) for any i, 1Thi = 1;
(b) the MAP inference problem can be expressed as a quadratic program, with
linear constraints, on discrete variables.

Solution: For (a) the equation is true because exactly one entry in hi is 1,
the others are zero. But (b) is more interesting. MAP inference is equivalent
to maximizing log p(H |X). Recall logZ does not depend on the h. We seek

max
h1,...,hN









∑

ij

hT
i Θ

(ij)hj



+
∑

i

hT
i βi



+ logZ

subject to very important constraints. We must have 1Thi = 1 for all i.
Furthermore, any component of any hi must be either 0 or 1. So we have a
quadratic program (because the cost function is quadratic in the variables),
with linear constraints, on discrete variables.

Example 15.4 is a bit alarming, because it implies (correctly) that MAP
inference in MRF’s can be very hard. You should remember this. Gradient descent
is no use here because the idea is meaningless. You can’t take a gradient with
respect to discrete variables. If you have the background, it’s quite easy to prove
by producing (eg from example 15.4) an MRF where inference is equivalent to
max-cut, which is NP hard.
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Worked example 15.5 MAP inference for MRF’s is a linear program

Show that, using the notation of the text, the MAP inference for an MRF prob-
lem can be expressed as a linear program, with linear constraints, on discrete
variables.

Solution: If you have two binary variables zi and zj both in {0, 1}, then write
qij = zizj. We have that qij ≤ zi, qij ≤ zj , qij ∈ {0, 1}, and qij ≥ zi + zj − 1.
You should check (a) these inequalities and (b) that qij is uniquely identified by
these inequalities. Now notice that each hi is just a bunch of binary variables,
and the quadratic term hT

i Θ
(ij)hj is linear in qij .

Example 15.5 is the start of an extremely rich vein of approximation math-
ematics, which we shall not mine. If you are of a deep mathematical bent, you
can phrase everything in what follows in terms of approximate solutions of linear
programs. For example, this makes it possible to identify MRF’s for which MAP
inference can be done in polynomial time; the family is more than just trees. We
won’t go there.

Remember this: A natural model for denoising general images follows
the line of the binary image model. One assumes that there are unknown,
true pixel values that tend to agree with the observed noisy pixel values
and with one another. This model is intractable – you can’t compute the
normalizing constant, and you can’t find the best set of true pixel values.
This is also a natural model of image segmentation, where the unknown
values are segment identities.

15.2 VARIATIONAL INFERENCE

We could just ignore intractable models, and stick to tractable models. This isn’t a
good idea, because intractable models are often quite natural. The discrete Markov
random field model of an image is a fairly natural model. Image labels should
depend on pixel values, and on neighboring labels. It is better to try and deal with
the intractable model. One really successful strategy for doing so is to choose a
tractable parametric family of probability models Q(H ; θ), then adjust θ to find

parameter values θ̂ that represent a distribution that is “close” in the right sense
to P (H |X). One then extracts information from Q(H ; θ̂). This process is known
as variational inference. What is remarkable is that (a) it is possible to find a

Q(H ; θ̂) without too much fuss and (b) information extracted from this distribution
is often accurate and useful.
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Remember this: Variational inference tries to find a tractable distri-
bution Q(H ; θ̂) that is “close” to an intractable P (H |X). One then extracts

information from Q(H ; θ̂).

15.2.1 The KL Divergence

Assume we have two probability distributions P (X) and Q(X). A measure of their
similarity is the KL-divergence (or sometimes Kullback-Leibler divergence)
written

D(P || Q) =

∫

P (X) log
P (X)

Q(X)
dX

(you’ve clearly got to be careful about zeros in P and Q here). This likely strikes
you as an odd measure of similarity, because it isn’t symmetric. It is not the case
that D(P || Q) is the same as D(Q || P ), which means you have to watch your P’s
and Q’s. Furthermore, some work will demonstrate that it does not satisfy the
triangle inequality, so KL divergence lacks two of the three important properties of
a metric.

KL divergence has some nice properties, however. First, we have

D(P || Q) ≥ 0

with equality only if P and Q are equal almost everywhere (i.e. except on a set of
measure zero).

Remember this: The KL divergence measures the similarity of two
probability distributions. It is always non-negative, and is only zero if the
two distributions are the same. However, it is not symmetric.

Second, there is a suggestive relationship between KL divergence and maxi-
mum likelihood. Assume that Xi are IID samples from some unknown P (X), and
we wish to fit a parametric model Q(X |θ) to these samples. This is the usual situ-
ation we deal with when we fit a model. Now write H(P ) for the entropy of P (X),
defined by

H(P ) = −
∫

P (X) logP (X)dx = −EP [logP ].

The distribution P is unknown, and so is its entropy, but it is a constant. Now we
can write

D(P || Q) = EP [logP ]− EP [logQ]
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Then

L(θ) =
∑

i

logQ(Xi|θ) ≈
∫

P (X) logQ(X |θ)dX = EP (X)[logQ(X |θ)]

= −H(P )− D(P || Q)(θ).

Equivalently, we can write

L(θ) + D(P || Q)(θ) = −H(P ).

Recall P doesn’t change (though it’s unknown), so H(P ) is also constant (though
unknown). This means that when L(θ) goes up, D(P || Q)(θ) must go down. When
L(θ) is at a maximum, D(P || Q)(θ) must be at a minimum. All this means that,
when you choose θ to maximize the likelihood of some dataset given θ for a para-
metric family of models, you are choosing the model in that family with smallest
KL divergence from the (unknown) P (X).

Remember this: Maximum likelihood estimation recovers the parame-
ters of a distribution in the chosen family that is closest in KL divergence
to the data distribution.

15.2.2 The Variational Free Energy

We have a P (H |X) that is hard to work with (usually because we can’t evaluate
P (X)) and we want to obtain a Q(H) that is “close to” P (H |X). A good choice
of “close to” is to require that

D(Q(H) || P (H |X))

is small. Expand the expression for KL divergence, to get

D(Q(H) || P (H |X)) = EQ[logQ]− EQ[logP (H |X)]

= EQ[logQ]− EQ[logP (H,X)] + EQ[logP (X)]

= EQ[logQ]− EQ[logP (H,X)] + logP (X)

which at first glance may look unpromising, because we can’t evaluate P (X). But
logP (X) is fixed (although unknown). Now rearrange to get

logP (X) = D(Q(H) || P (H |X))− (EQ[logQ]− EQ[logP (H,X)])

= D(Q(H) || P (H |X))− EQ.

Here
EQ = (EQ[logQ]− EQ[logP (H,X)])

is referred to as the variational free energy. We can’t evaluate D(Q(H) || P (H |X)).
But, because logP (X) is fixed, when EQ goes down, D(Q(H) || P (H |X)) must
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go down too. Furthermore, a minimum of EQ will correspond to a minimum of
D(Q(H) || P (H |X)). And we can evaluate EQ.

We now have a strategy for building approximateQ(H). We choose a family of
approximating distributions. From that family, we obtain the Q(H) that minimises
EQ (which will take some work). The result is theQ(H) in the family that minimizes
D(Q(H) || P (H |X)). We use that Q(H) as our approximation to P (H |X), and
extract whatever information we want from Q(H).

Remember this: The variational free energy of Q gives a bound on the
KL divergence D(Q(H) || P (H |X)), and is tractable if Q was chosen sensi-
bly. We select the element of the family of Q with the smallest variational
free energy.

15.3 EXAMPLE: VARIATIONAL INFERENCE FOR BOLTZMANN MACHINES

We want to construct a Q(H) that approximates the posterior for a Boltzmann
machine. We will choose Q(H) to have one factor for each hidden variable, so
Q(H) = q1(H1)q2(H2) . . . qN (HN ). We will then assume that all but one of the
terms in Q are known, and adjust the remaining term. We will sweep through the
terms doing this until nothing changes.

The i’th factor in Q is a probability distribution over the two possible values
of Hi, which are 1 and −1. There is only one possible choice of distribution. Each
qi has one parameter πi = P ({Hi = 1}). We have

qi(Hi) = (πi)
(1+Hi)

2 (1− πi)
(1−Hi)

2 .

Notice the trick; the power each term is raised to is either 1 or 0, and I have used
this trick as a switch to turn on or off each term, depending on whether Hi is 1
or −1. So qi(1) = πi and qi(−1) = (1 − πi). This is a standard, and quite useful,
trick. We wish to minimize the variational free energy, which is

EQ = (EQ[logQ]− EQ[logP (H,X)]).

We look at the EQ[logQ] term first. We have

EQ[logQ] = Eq1(H1)...qN (HN )[log q1(H1) + . . . log qN (HN )]

= Eq1(H1)[log q1(H1)] + . . .EqN (HN )[log qN (HN )]

where we get the second step by noticing that

Eq1(H1)...qN (HN )[log q1(H1)] = Eq1(H1)[log q1(H1)]

(write out the expectations and check this if you’re uncertain).
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Now we need to deal with EQ[logP (H,X)]. We have

log p(H,X) = −E(H,X)− logZ

=
∑

i∈H

∑

j∈N (i)∩H

θijHiHj +
∑

i∈H

∑

j∈N (i)∩X

θijHiXj +K

(where K doesn’t depend on any H and is so of no interest). Assume all the q’s are
known except the i’th term. Write Qî for the distribution obtained by omitting qi
from the product, so Q1̂ = q2(H2)q3(H3) . . . qN (HN ), etc. Notice that

EQ[logP (H,X)] =

(

qi(−1)EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)]+

qi(1)EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

.

This means that if we fix all the q terms except qi(Hi), we must choose qi to minimize

qi(−1) log qi(−1) + qi(1) log qi(1) −
qi(−1)EQ

î
[logP (H1, . . . , Hi = −1, . . . , HN , X)] +

qi(1)EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

subject to the constraint that qi(1) + qi(−1) = 1. Introduce a Lagrange multiplier
to deal with the constraint, differentiate and set to zero, and get

qi(1) =
1

c
exp

(

EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

qi(−1) =
1

c
exp

(

EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)]

)

where c = exp
(

EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)]

)

+

exp
(

EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

)

.

In turn, this means we need to know EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)], etc.

only up to a constant. Equivalently, we need to compute only log qi(Hi)+K for K
some unknown constant (because qi(1) + qi(−1) = 1). Now we compute

EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)].

This is equal to

EQ
î





∑

j∈N (i)∩H

θij(−1)Hj +
∑

j∈N (i)∩X

θij(−1)Xj + terms not containing Hi





which is the same as
∑

j∈N (i)∩H

θij(−1)EQ
î
[Hj ] +

∑

j∈N (i)∩X

θij(−1)Xj +K

and this is the same as
∑

j∈N (i)∩H

θij(−1)((πj)(1) + (1 − πj)(−1)) +
∑

j∈N (i)∩X

θij(−1)Xj +K
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and this is

∑

j∈N (i)∩H

θij(−1)(2πj − 1) +
∑

j∈N (i)∩X

θij(−1)Xj +K.

If you thrash through the case for

EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)]

(which works the same) you will get

log qi(1) = EQ
î
[logP (H1, . . . , Hi = 1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[θij(2πj − 1)] +
∑

j∈N (i)∩X

[θijXj] +K

and

log qi(−1) = EQ
î
[logP (H1, . . . , Hi = −1, . . . , HN , X)] +K

=
∑

j∈N (i)∩H

[−θij(2πj − 1)] +
∑

j∈N (i)∩X

[−θijXj ] +K

All this means that

πi =
ea

ea + eb

where

a = e

(

∑

j∈N(i)∩H
[θij(2πj−1)]+

∑

j∈N(i)∩X
[θijXj ]

)

b = e

(

∑

j∈N(i)∩H
[−θij(2πj−1)]+

∑

j∈N(i)∩X
[−θijXj ]

)

After this blizzard of calculation, our inference algorithm is straightforward. We
visit each hidden node in turn, set the associated πi to the value of the expression
above assuming all the other πj are fixed at their current values, and repeat until
convergence. We can test convergence by checking the size of the change in each
πj .

We can now do anything to Q(H) that we would have done to P (H |X).
For example, we might compute the values of H that maximize Q(H) for MAP
inference. It is wise to limit ones ambition here, because Q(H) is an approximation.
It’s straightforward to set up and describe, but it isn’t particularly good. The main
problem is that the variational distribution is unimodal. Furthermore, we chose a
variational distribution by assuming that each Hi was independent of all others.
This means that computing, say, covariances will likely lead to the wrong numbers
(although it’s easy — almost all are zero, and the remainder are easy). Obtaining
an approximation by assuming that Hi is independent of all others is often called
a mean field method.
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Remember this: A long, but easy, derivation yields a way to recover an
approximation to the best denoised binary image. The inference algorithm
is a straightforward optimization procedure.

15.4 YOU SHOULD

15.4.1 remember these terms:

Boltzmann machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
max-cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Markov random field . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
discrete Markov random field . . . . . . . . . . . . . . . . . . . . . . 369
one-hot vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
KL-divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . 375
variational free energy . . . . . . . . . . . . . . . . . . . . . . . . . . 376
mean field method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

15.4.2 remember these facts:

A natural denoiser for binary images is intractable . . . . . . . . . . 369
A natural denoiser for images is also intractable . . . . . . . . . . . . 374
Variational inference uses an easy distribution close to an intractable model375
KL divergence measures the similarity of two probability distributions375
Maximum likelihood estimation uses KL divergence . . . . . . . . . . 376
The variational free energy bounds KL divergence, and is tractable . 377
Mean field inference works well for denoising binary images . . . . . 380

15.4.3 be able to:

• Set up and solve a mean field model for denoising binary images.


