Trust region methods

- previously:
 - use a hessian to choose length of step

- now:
 - use a local model of fun to choose dir, size of step within trust region

Local model:

\[f(x) = f(x_k) + p^\top \nabla f_k + \frac{1}{2} p^\top B_k p \]

this could be Hessian or other matrix
Trust region:
\[p'p < d^2 \]

Issues
- how to choose \(p \)?
- how to choose \(d \)?

Choosing \(d \):
write \(m_k(x_p) \) for model
consider

\[
C_k = \frac{f(x_k) - f(x_k + p_k)}{M_k(o) - M_k(p_k)}
\]

\[
= \frac{\text{actual reduction}}{\text{predicted reduction}} > 0
\]
Cases:

P_k close to 1:
\rightarrow model is good, trust region can be expanded

P_k smallish
\rightarrow do not alter trust region

P_k 0, negative (step rejected)
\rightarrow reduce trust region

Notice: no need to increase trust region if model is good and step is valid.
Solving the subproblem:

$$\min_p \ m(p) = f + p^T g + \frac{1}{2} p^T B p$$
subject to \quad \frac{p^T p}{d^2} \leq 1$$

\underline{global soln if}:

$$(B + \lambda I) p^* = -g$$

$$\lambda (d^2 - p^* p) = 0$$

$$\lambda (d^2 - p^* p) \geq 0$$

\[\text{positive semi-def}\]

(significant optimization problem on its own)
But approximation may be OK.

Cauchy point.

1) solve $p^s_k = \arg \min_p (f + p^l) \rightarrow $ linear w.r.t. m_k

2) compute $\gamma_k > 0$ to minimize $M_k(\gamma_k p_k)$ such that $\|\gamma_k p_k\| \leq d_k$

$p^c_k = \gamma_k p^s_k$
Fact: a TV method will be globally convergent if steps give a reduction in m_k that is at least a fixed positive multiple of Cauchy.

Why not just use CP?

- It's gradient descent w/ a special step.

The Dogleg method:

- Notice that if B_k is pd and

$$
\|B_k^{-1}g\| \leq d
$$

- $B_k^{-1}g$ is a step (the full step).
Now for small p ($\|p\| < d$) the quadratic term isn't important.

\[p^*(d) \approx -d \frac{g}{\|g\|} \]
(for small d)

\[p = -B^{-1}g \]

which is min of m along descent dir

\[p = -t \frac{g}{\|g\|} \]

\[= -\frac{g^T g}{g^T B g} \cdot g \]
The dog-leg path is

$$\hat{p}(t) = \begin{cases} t \hat{p}^u & 0 \leq t \leq 1 \\ \hat{p}^u + (t-1)(\hat{p}^b - \hat{p}^u) & 1 \leq t \leq 2 \end{cases}$$

Notice:

1) $\|\hat{p}\|$ is an increasing fn of u

2) $m(\hat{p}(t))$ is an increasing fn of u

So: if $\|\hat{p}^b\| > d$, path intersects tr at one point

\Rightarrow 2 possibilities

1) \hat{p}^b

2) int of \hat{p} and tr.
strategy is most useful for convex functions

2D subspace minimization:

- consider subspace spanned by \(p \) and \(p^b \)

- confine \(m \) to this subspace

locate here

\[= \text{root finding for degree 4 polynomial} \]
Now if

\[\begin{align*} \text{note: span} \left[\rho^T \rho B \right] & = \text{span} \left[g, -B' g \right] \\
\text{est} \lambda_{k+1} & = \text{smallest eval of } B \\
\text{use } -\lambda & < \alpha < -2\lambda, \\
\text{subspace is} \quad \text{span} \left[g, (B + \alpha I)^{-1} g \right] \\
\text{if } \| (B + \alpha I)^{-1} g \| & \leq d \\
\text{adjust step so that} \quad \| p \| > \| (B + \alpha I)^{-1} g \| \\
\text{no neg evals } \rightarrow \text{use Cauchy point, } \\
\text{This is convergent.} \end{align*} \]
General notes

- One can work with

\[p^T D p \leq d^2 \]

\[L \text{ scaling matrix} \text{ elliptical TR.} \]

- One can work with

\[1 \text{-norm, } \infty \text{-norm trust region} \]