An Introduction to Bilevel

 ProgrammingChris Fricke
Department of Mathematics and Statistics
University of Melbourne

Outline

- What is Bilevel Programming?
- Origins of Bilevel Programming.
- Some Properties of Bilevel Programs.
- The Linear Bilevel Programming Problem.
- Applications.
- References.

What is Bilevel Programming?

What is Bilevel Programming?

- 'A mathematical program that contains an optimization problem in the constraints.' *
- Evolved in two ways:
- A logical extension of mathematical programming.
- Generalisation of a particular problem in game theory (Stackelberg Game).

General Bilevel Programming Problem (Bard, 1998)

$$
\begin{aligned}
& \min F(x, y) \\
& x \in X \\
& \text { s.t. } \\
& G(x, y) \leq 0 \\
& \min f(x, y) \\
& y \in Y \\
& \text { s.t. } \\
& g(x, y) \leq 0 \\
& x, y \geq 0
\end{aligned}
$$

Origins of Bilevel Programming

- Game Theory Approach
- Mathematical Programming Approach

Origins of Bilevel Programming

- Stackelberg
- (The Theory of the Market Economy, Oxford University Press, 1952).
- Bracken and McGill
- ("Mathematical Programs with Optimization Problems in the Constraints", Operations Research Vol. 21 No. 1, 1973).

Game Theory Approach

Elementary Game Theory

- Situations involving more than one decision maker (player).
- Leads to the notion of conflict or competition.
- Each player has a number of available strategies with corresponding payoffs.
- Simplest case: Two-person, zero-sum game.

Two-person Zero-sum Game: Assumptions

- One player's gain = other player's loss.
- Players make decisions simultaneously.
- Players have perfect information
- Of both their own and their opponent's permissible strategies and corresponding payoff.
- Players do not cooperate.

Two-person Zero-sum Game

- Payoff matrix:

Player II

Stackelberg Game: Assumptions

- One player's gain \neq the other player's loss.
- Players make decisions in specified order.
- Second player reacts rationally to first player's decision.
- Players have perfect information
- Of both their own and their opponent's permissible strategies and consequent payoff.
- Players do not cooperate.

Stackelberg Game

- Payoff matrix:
(Bimatrix Game)
$\begin{array}{llll}A_{1} & A_{2} & \ldots & A_{n}\end{array}$

a_{1}	
$a_{2}\left[\begin{array}{cccc}\left(v_{11}, w_{11}\right) & \left(v_{12}, w_{12}\right) & \ldots & \left(v_{1 n}, w_{1 n}\right) \\ \vdots \\ \left(v_{21}, w_{21}\right) & \left(v_{22}, w_{22}\right) & \ldots & \left(v_{2 n}, w_{2 n}\right) \\ \vdots & \vdots & & \vdots \\ a_{m}\left[\begin{array}{c}\left(v_{m 1}, w_{m 1}\right) \\ \lambda\end{array}\right. & \left(v_{m 2}, w_{m 2}\right) & \ldots & \left(v_{m n}, w_{m n}\right)\end{array}\right]$	
Player I Payoff	
Player II Payoff	

Stackelberg Game: Definitions

- Player who moves first is called the LEADER.
- Player who reacts (rationally) to the leader's decision (strategy) is called the FOLLOWER.
- The actions of one affect the choices and payoffs available to the other, and viceversa.

Stackelberg Game: Solution Methods

- Small instances can be solved analytically (standard game theory techniques
e.g. graphical method).
- How to analyze/solve when each player has many available strategies?
- How to incorporate a complex relationship between the strategies and payoffs?

Extension to Bilevel Programming

- Also allows additional constraints to be placed on the player's strategies.
- Mathematical programming viewpoint:
- LEADER moves first and attempts to minimize their own objective function.
- FOLLOWER observes the leader's action and moves in a way that is personally optimal.

Mathematical Programming Approach

Some Distinctions

- General mathematical program:

$$
\begin{aligned}
& \min _{x} \\
& \text { s.t. } \\
& \qquad \begin{aligned}
A x & \leq b \\
x & \geq 0
\end{aligned}
\end{aligned}
$$

Some Distinctions

- Multiple objective program:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \min _{x} g(x) \\
& \text { s.t. } \\
& \qquad \begin{aligned}
A x & \leq b \\
x & \geq 0
\end{aligned}
\end{aligned}
$$

Some Distinctions

- Bilevel program:

$$
\begin{aligned}
& \min _{x} f(x, y) \\
& \text { s.t. } \\
& \quad A(x, y) \leq b \\
& \min _{y} g(x, y) \\
& \text { s.t. } \\
& \left.\quad \begin{array}{l}
C(x, y)
\end{array}\right] d \\
& \quad x, y \geq 0
\end{aligned}
$$

General Bilevel Programming Problem (BLPP)

$$
\begin{aligned}
& \min _{x \in X} \\
& \text { s.t. } \\
& \quad G(x, y) \\
& \quad G(x, y) \leq 0 \\
& \min _{y \in Y} f(x, y) \\
& \text { s.t. } \\
& \quad g(x, y) \leq 0 \\
& \quad x, y \geq 0
\end{aligned}
$$

Properties of Bilevel Programs

- Existence of Solutions
- Order of Play

Existence of Solutions

- A BLPP need not have a solution.
- Restricting the functions F, G, f, g to be continuous and bounded DOES NOT guarantee the existence of a solution.

Example (Bard, 1998)

$\min _{\mathbf{x}}\left\{F=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]: \begin{array}{l}x_{1} \geq 0, x_{2} \geq 0 \\ x_{1}+x_{2}=1\end{array}\right\}$ s.t.
$\min _{\mathbf{y}}\left\{f=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{l}-1 \\ -4 \\ -3\end{array}-2\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]: \begin{array}{l}y_{1} \geq 0, y_{2} \geq 0 \\ y_{1}+y_{2}=1\end{array}\right\}$

Example 1

- The solution \hat{y} to the follower's problem as a function of x is:
$\hat{\mathbf{y}}(\mathbf{x})=\left\{\begin{array}{lll}(1,0) & \text { for } & x_{1}+3 x_{2}>4 x_{1}+2 x_{2} ;\end{array}\right.$ i.e. $x_{1}<\frac{1}{4}$

Example 1

- Substituting these values into the leader's problem gives:

$$
\begin{aligned}
\min _{\mathbf{x}} F= \begin{cases}2 x_{1}+4 x_{2} & ; x_{1}<\frac{1}{4} \\
2 y_{1}+\frac{3}{2} & \left(0 \leq y_{1} \leq 1\right) \\
3 x_{1}+x_{2} & ; x_{1}=\frac{1}{4} \\
\text { s.t. } & x_{1}>\frac{1}{4}\end{cases} \\
x_{1}+x_{2}=1 ; \quad x_{1} \geq 0 ; \quad x_{2} \geq 0
\end{aligned}
$$

Example 1

- Solution space for leader's problem:

Example 1

- Leader's optimal solution:

$$
\begin{aligned}
& F=1.5 \\
& x=\left(\frac{1}{4}, \frac{3}{4}\right) \\
& y=(0,1)
\end{aligned}
$$

Example 1

- At $x=\left(\frac{1}{4}, \frac{3}{4}\right)$ follower's optimal solution is $f=1$ at any point on the line $y_{1}+y_{2}=1$
- Corresponding solution for leader is

$$
F=2 y_{1}+\frac{3}{2} \quad \Rightarrow \quad F \in[1.5,3.5]
$$

- No way for the leader to guarantee they achieve their minimum payoff
\Rightarrow No solution.

Order of Play

- The order in which decisions are made is important.
- The roles of leader and follower are NOT interchangeable (problem is not symmetric).

Example 2

- Reverse the previous example:

$$
\begin{array}{cll}
\min _{\mathbf{y}} f= & -\left(x_{1}+3 x_{2}\right) y_{1} & -\left(4 x_{1}+2 x_{2}\right) y_{2} \\
\text { s.t. } & \\
& y_{1}+y_{2}=1 ; & y_{1} \geq 0, \quad y_{2} \geq 0 \\
\min _{\mathbf{x}} F= & \left(2 y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2} \\
\text { s.t. } & \\
& & x_{1}+x_{2}=1 ; \quad x_{1} \geq 0 ; \quad x_{2} \geq 0
\end{array}
$$

Example 2

- The solution \hat{x} to the follower's problem as a function of y is:

$$
\hat{\mathbf{x}}(\mathbf{y})=\left\{\begin{array}{lll}
(1,0) & \text { for } 2 y_{1}+3 y_{2}<4 y_{1}+y_{2} ; & \text { i.e. } y_{1}>\frac{1}{2} \\
x_{1}+x_{2}=1 & \text { for } y_{1}=\frac{1}{2} \\
(0,1) & \text { for } y_{1}<\frac{1}{2}
\end{array}\right.
$$

Example 2

- Substituting these values into the leader's problem gives:

$$
\begin{gathered}
\min _{\mathbf{y}} f= \begin{cases}-y_{1}-4 y_{2} & ; y_{1}>\frac{1}{2} \\
-\left(3-2 x_{1}\right) y_{1}-\left(2 x_{1}+2\right) y_{2} & ; y_{1}=\frac{1}{2} \\
-3 y_{1}-2 y_{2} & ; y_{1}<\frac{1}{2}\end{cases} \\
\text { s.t. } \quad y_{1}+y_{2}=1 ; \quad y_{1} \geq 0 ; \quad y_{2} \geq 0
\end{gathered}
$$

Example 2

- Solution space for leader's problem:

Example 2

- Solution space for leader's problem:

Example 2

- At $y^{*}=\left(\frac{1}{2}, \frac{1}{2}\right)$ follower's optimal solution is $F=2.5$ at any point on the line $x_{1}+x_{2}=1$
- Comparison of solutions:

	Example 1	Example 2	Nash Equilibrium
Solution (\mathbf{x})	$\left(\frac{1}{4}, \frac{3}{4}\right)$	$x_{1}+x_{2}=1$	$\left(\frac{1}{4}, \frac{3}{4}\right)$
$\operatorname{Cost}(F)$	1.5	2.5	2.5
Solution (\mathbf{y})	$(0,1)$	$\left(\frac{1}{2}, \frac{1}{2}\right)$	$\left(\frac{1}{2}, \frac{1}{2}\right)$
$\operatorname{Cost}(f)$	-2.5	-2.5	-2.5

The Linear Bilevel Programming Problem (LBLPP)

General Bilevel Programming Problem (Bard, 1998)

$$
\begin{aligned}
& \min F(x, y) \\
& x \in X \\
& \text { s.t. } \\
& G(x, y) \leq 0 \\
& \min f(x, y) \\
& y \in Y \\
& \text { s.t. } \\
& g(x, y) \leq 0 \\
& x, y \geq 0
\end{aligned}
$$

General LBLPP

$$
\begin{array}{ll}
\min _{x \in X} F(x, y)= & c_{1} x+d_{1} y \\
\text { s.t. } & \\
& A_{1} x+B_{1} y \leq b_{1} \\
& \min _{y \in Y} f(x, y)=c_{2} x+d_{2} y \\
& \text { s.t. }
\end{array}
$$

$$
A_{2} x+B_{2} y \leq b_{2}
$$

Definitions

- Constraint region of the BLPP:

$$
\begin{gathered}
S=\left\{(x, y): x \in X, y \in Y, A_{1} x+B_{1} y \leq b_{1},\right. \\
\left.A_{2} x+B_{2} y \leq b_{2}\right\}
\end{gathered}
$$

- Follower's feasible set for each fixed $x \in X$

$$
S(x)=\left\{y \in Y: B_{2} y \leq b_{2}-A_{2} x\right\}
$$

- Follower's rational reaction set:

$$
P(x)=\{y \in Y: y \in \operatorname{argmin}[f(x, \hat{y}): \hat{y} \in S(x)]\}
$$

Definitions

- Inducible Region:

$$
I R=\{(x, y) \in S, y \in P(x)\}
$$

- When S and $P(x)$ are non-empty, the BLPP can be written as:

$$
\min \{F(x, y):(x, y) \in I R\}
$$

Example (Bard, 1998)

$\min _{x \geq 0}^{x \geq 0}$	
s.t.	
s.	

$$
\min _{y \geq 0} \quad f(y)=y
$$

$$
\begin{aligned}
-x-y & \leq-3 \\
-2 x+y & \leq 0 \\
2 x+y & \leq 12 \\
-3 x+2 y & \leq-4
\end{aligned}
$$

Pareto Optimality

- Multiple objective problem.
- Feasible solution B dominates feasible solution A:
- B at least as good as A w.r.t. every objective,
- B strictly better than A w.r.t. at least one objective.
- Pareto optimal solutions:
- Set of all non-dominated feasible solutions.

Summary of Properties of Bilevel Programs

- No guarantee of solution.
- Order in which decisions are made is important.
- No guarantee of Pareto optimality.
- Non-convex optimization problem.
- All of the above can apply even when all functions are continuous and bounded.

Solution Methods for the LBLPP

- Vertex Enumeration
- Penalty Methods
- KKT Conditions

Represent the IR as a Piecewise Linear Function*

- Theorem 1:
- The IR can be written equivalently as a piecewise linear equality constraint comprised of supporting hyperplanes of S.
- Theorem 2:
- The solution $\left(x^{*}, y^{*}\right)$ of the LBLPP occurs at a vertex of S.

Solution Methods

- These Theorems are exploited in vertex enumeration algorithm of Candler and Townsley*.
- Approach based on Simplex method.
- Various penalty methods also developed.
- Most common approach via use of KKT conditions.

Karush-Kuhn-Tucker Conditions

- Given $x=\hat{x}$ the KKT conditions for a local optimum at the point y^{*} for

$$
\begin{array}{rl}
\min _{y} & f(\hat{\mathbf{x}}, \mathbf{y}) \\
& g(\hat{\mathbf{x}}, \mathbf{y}) \geq 0 \quad(\mu)
\end{array}
$$

are:

$$
\begin{aligned}
\nabla_{y} f\left(\hat{\mathbf{x}}, \mathbf{y}^{*}\right)-\mu^{\mathrm{t}} \nabla_{y} g\left(\hat{\mathbf{x}}, \mathbf{y}^{*}\right) & =0 \\
\mu^{\mathrm{t}} g\left(\hat{\mathbf{x}}, \mathbf{y}^{*}\right) & =0 \\
\mu & \geq 0
\end{aligned}
$$

Replace the Follower's Problem with its KKT Conditions
 - Recall the follower's problem:

$$
\begin{array}{cc}
\min _{\mathbf{y} \in Y} & f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{\mathbf{2}} \mathbf{x}+\mathbf{d}_{\mathbf{2}} \mathbf{y} \\
\text { s.t. } & \\
& A_{2} \mathbf{x}+B_{2} \mathbf{y} \\
& \mathbf{y}
\end{array}
$$

KKT Conditions

- Let \mathbf{u} and \mathbf{v} be the dual variables associated with the two sets of constraints.

$$
\begin{array}{cl}
\min _{\mathbf{y} \in Y} & f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{\mathbf{2}} \mathbf{x}+\mathbf{d}_{\mathbf{2}} \mathbf{y} \\
\text { s.t. }
\end{array}
$$

$$
\begin{align*}
\mathbf{b}_{\mathbf{2}}-A_{2} \mathbf{x}-B_{2} \mathbf{y} & \geq 0 \tag{u}\\
\mathbf{y} & \geq 0 \tag{v}
\end{align*}
$$

KKT Conditions

- Applying the KKT conditions to the follower's problem gives:

$$
\begin{aligned}
\mathbf{d}_{\mathbf{2}}+\mathbf{u} B_{2}-\mathbf{v} & =0 \\
\mathbf{u}\left(\mathbf{b}_{\mathbf{2}}-A_{2} \mathbf{x}-B_{2} \mathbf{y}\right)+\mathbf{v y} & =0 \\
\mathbf{u}, \mathbf{v} & \geq 0
\end{aligned}
$$

Reformulation

- Solve for $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}$

$$
\begin{array}{lll}
\min _{\mathbf{x} \in X} & \mathbf{c}_{\mathbf{1}} \mathbf{x}+\mathbf{d}_{\mathbf{1}} \mathbf{y} & \\
\text { s.t. } & A_{1} \mathbf{x}+\mathbf{B}_{\mathbf{1}} \mathbf{y} & \leq \mathbf{b}_{\mathbf{1}} \\
& \mathbf{u} B_{2}-\mathbf{v} & =-\mathbf{d}_{\mathbf{2}} \\
& \mathbf{u}\left(\mathbf{b}_{\mathbf{2}}-A_{2} \mathbf{x}-B_{2} \mathbf{y}\right)+\mathbf{v y} & =0 \\
& A_{2} \mathbf{x}+B_{2} \mathbf{y} & \leq \mathbf{b}_{\mathbf{2}} \\
\mathbf{x} \geq 0, \quad \mathbf{y} \geq 0, \quad \mathbf{u} \geq 0, \quad \mathbf{v} \geq 0 &
\end{array}
$$

Reformulation

- Complementarity condition is non-linear.

$$
\mathbf{u}\left(\mathbf{b}_{\mathbf{2}}-A_{2} \mathbf{x}-B_{2} \mathbf{y}\right)+\mathbf{v y} \quad=0
$$

- Requires implementation of non-linear programming methods.
- Problem is further complicated if IR is not convex.

Integer Programming Approach

 to Dealing with Non-Linearity- Write all inequalities in follower's problem in the form:

$$
g_{i}(x, y) \geq 0
$$

- Complementary slackness gives:

$$
u_{i} g_{i}(x, y)=0
$$

- Introduce binary variables $z_{i} \in\{0,1\}$ and sufficiently large constant M

Integer Programming Approach to Dealing with Non-Linearity*

- Replace complementary slackness with the following inequalities:

$$
u_{i} \leq M z_{i}, \quad g_{i} \leq M\left(1-z_{i}\right)
$$

- Now have a mixed-integer linear program \rightarrow Apply standard IP solvers (e.g. CPLEX).
- Drawback: increased number of variables and constraints
\rightarrow Computational inefficiency.

Alternative Approach to Dealing with Non-Linearity

- Rewrite complementary slackness term as sum of piecewise linear separable functions.
- Use globally convergent non-linear code to obtain solutions.
- Basis for Bard-Moore (branch-and-bound) algorithm for solving the LBLPP*

$$
\sum_{i} u_{i} g_{i}(x, y)=0
$$

$$
\begin{aligned}
& \sum_{i} u_{i} g_{i}(x, y)=0 \\
\Rightarrow \quad & \sum_{i} \min \left\{u_{i}, g_{i}\right\}=0 \\
\Rightarrow \quad & \sum_{i}\left(\min \left\{0,\left(g_{i}-u_{i}\right)\right\}+u_{i}\right)=0
\end{aligned}
$$

- Replace $g_{i}-u_{i}$ with new variables w_{i} to give equivalent set of constraints:

Piecewise linear

$$
\sum_{i}\left(\min \left\{0, w_{i}\right\}+u_{i}\right)=0
$$

$$
w_{i}-g_{i}+u_{i}=0
$$

Applications

- Economics
- Resource Allocation
- Transportation Network Design

Applications

- Multilevel systems
- A high level decision maker is able to influence the decisions made at lower levels, without having complete control over their actions.
- Objective function of one department is determined, in part, by variables controlled by other departments operating at higher or lower levels.

Economic Planning at the Regional or National Level

- Leader: Government
- Controls policy variables e.g. tax rates, import quotas.
- Maximize employment / Minimize use of a resource.
- Follower: Industry to be regulated
- Maximize net income s.t. economic and governmental constraints.

Determining Price Support Levels for Biofuel Crops

- Leader: Government
- Determine the level of tax credits for each biofuel product.
- Minimize total outlays.
- Follower: Petro-chemical industry
- Minimize costs.

Resource Allocation in a Decentralized Firm

- Leader: Central resource supplier
- Allocates products to manufacturers.
- Maximize profit of firm as a whole.
- Follower: Manufacturing facilities at different locations
- Determines own production mix/output.
- Maximize performance of own unit.

Transportation System Network Design

- Leader:

Central planner

- Controls investment costs e.g. which links to improve.
- Influence users' preferences to minimize total costs.
- Follower: Individual users
- Their route selection determines the traffic flows and therefore operational costs.
- Seek to minimize cost of own route.

Summary of Bilevel Programming Problems

$$
\begin{aligned}
& \min _{x \in X} F(x, y) \\
& \text { s.t. } \\
& \quad G(x, y) \leq 0 \\
& \min _{y \in Y} f(x, y) \\
& \text { s.t. } \\
& \quad g(x, y) \leq 0 \\
& \quad x, y \geq 0
\end{aligned}
$$

Summary of Bilevel Programming Problems

- No guarantee of solution.
- Order in which decisions are made is important.
- No guarantee of Pareto optimality.
- Non-convex optimization problem.
- In linear case, a number of possible reformulations exist to aid solution.
- Used for specific applications.

References

- Bard, J.F. Practical Bilevel Optimization: Applications and Algorithms, Kluwer Academic Press, 1998.
- Shimizu, K., Ishizuka, Y. and Bard, J.F., Nondifferentiable and Two-Level Mathematical Programming, Kluwer Academic Publishers, 1997.
- http://www.acsu.buffalo.edu/~bialas/

