More Submodular stuff

D.A. Forsyth, working entirely from Carlos Guestrin's slides

Example: Submodularity of info-gain

- $Y_1, ..., Y_m, X_1, ..., X_n$ discrete RVs F(A) = IG(Y; X_A) = H(Y)-H(Y | X_A)
- F(A) is always monotonic

sense

learn act

However, NOT always submodular

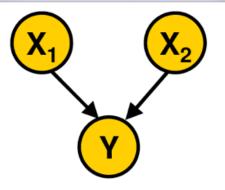
An "elementary" counterexample

 $X_1, X_2 \sim \text{Bernoulli}(0.5)$ Y = X₁ **XOR** X₂

sense

learn

act



Let
$$F(A) = IG(X_A; Y) = H(Y) - H(Y|X_A)$$

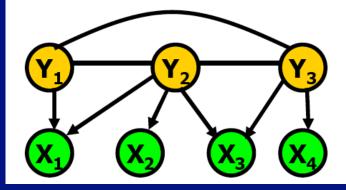
 $Y \mid X_1 \text{ and } Y \mid X_2$ ~ Bernoulli(0.5) (entropy 1) $Y \mid X_1, X_2$ is deterministic! (entropy 0)

Hence $F(\{1,2\}) - F(\{1\}) = 1$, but $F(\{2\}) - F(\emptyset) = 0$

F(A) submodular under some conditions! (later)

81

Theorem [Krause & Guestrin UAI' 05] If X_i are all conditionally independent given Y, then F(A) is submodular!



Hence, greedy algorithm works!

In fact, NO algorithm can do better than (1-1/e) approximation!

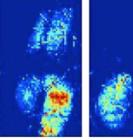
sense Building a Sensing Chair [Mutlu, Krause, Forlizzi, Guestrin, Hodgins UIST '07]

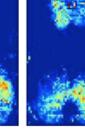
- People sit a lot
- Activity recognition in assistive technologies
- Seating pressure as user interface

Equipped with 1 sensor per cm²!

🗖 Costs \$16,000! 😕

Can we get similar accuracy with fewer, cheaper sensors?



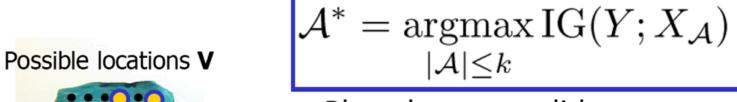


Lean Lean Slouch left forward

82% accuracy on 10 postures! [Tan et al]⁸³

How to place sensors on a chair?

- Sensor readings at locations V as random variables
- Predict posture Y using probabilistic model P(Y,V)
- Pick sensor locations $A^* \subseteq V$ to minimize entropy:



Placed sensors, did a user study:

	Accuracy	Cost
Before	82%	\$16,000 🛞
After		

Similar accuracy at <1% of the cost!

Variance reduction

(a.k.a. Orthogonal matching pursuit, Forward Regression)

- Let $Y = \sum_{i} \alpha_{i} X_{i} + \epsilon$, and $(X_{1}, ..., X_{n}, \epsilon) \sim N(\cdot; \mu, \Sigma)$
- Want to pick subset X_A to predict Y

sense learn

act

- Var(Y | $X_A = x_A$): conditional variance of Y given $X_A = x_A$
- Expected variance: Var(Y | X_A) = $\int p(x_A) Var(Y | X_A = x_A) dx_A$
- Variance reduction: $F_V(A) = Var(Y) Var(Y | X_A)$

 $F_v(A)$ is always monotonic

Theorem [Das & Kempe, STOC '08] F_V(A) is submodular*

*under some conditions on Σ

Orthogonal matching pursuit near optimal! [see other analyses by Tropp, Donoho et al., and Temlyakov]

Active learning

• Hoi et al, "Batch mode Active Learning...", ICML'08

• Fisher information matrix

- - Expected value of Hessian of log-likelihood
- Big -> log-likelihood is tightly peaked
- Natural criterion for selecting examples to be labelled
 - alpha classifier parameters
 - p distribution of labelled examples
 - q distribution of unlabelled that are chosen for labelling

$$q^* = \arg\min_q \operatorname{tr}(I_q(\alpha)^{-1}I_p(\alpha))$$

Active learning

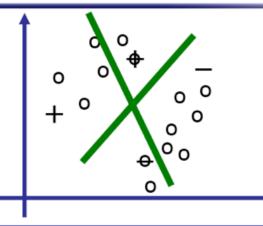
• By a series of approximations, we get

$$\min_{|S|=k\wedge S\subseteq D} \sum_{\mathbf{x}\notin S} \frac{\pi(\mathbf{x})(1-\pi(\mathbf{x}))}{\delta + \sum_{\mathbf{x}'\in S} \pi(\mathbf{x}')(1-\pi(\mathbf{x}'))(\mathbf{x}^{\top}\mathbf{x}')^2}$$

• Substitute with

$$f(S) = \frac{1}{\delta} \sum_{\mathbf{x} \in D} \pi(\mathbf{x})(1 - \pi(\mathbf{x}))$$
(6)
$$- \sum_{\mathbf{x} \notin S} \frac{\pi(\mathbf{x})(1 - \pi(\mathbf{x}))}{\delta + \sum_{\mathbf{x}' \in S} \pi(\mathbf{x}')(1 - \pi(\mathbf{x}'))(\mathbf{x}^{\top}\mathbf{x}')^2}$$

Batch mode active learning [Hoi et al, ICML'06]



Which data points o should we label to minimize error?

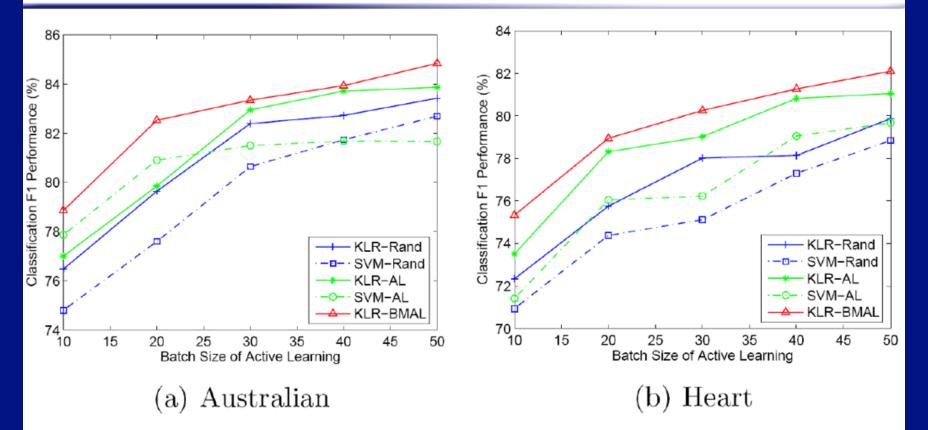
Want batch A of k points to show an expert for labeling

$$F(\mathcal{A}) = \frac{1}{\delta} \sum_{s \in \mathcal{V}} \sigma^2(s) - \sum_{s \notin \mathcal{A}} \frac{\sigma^2(s)}{\delta + \sum_{s' \in \mathcal{A}} \sigma^2(s')(s^T s')}$$

F(A) selects examples that are

- uncertain $[\sigma^2(s) = \pi(s) (1-\pi(s))$ is large]
- diverse (points in A are as different as possible)
- relevant (as close to V\A is possible, s^T s' large)
- F(A) is submodular and monotonic! [approximation to improvement in Fisher-information]

Results about Active Learning [Hoi et al, ICML'06]



Batch mode Active Learning performs better than

Picking k points at random

sense learn

act

Picking k points of highest entropy