These problems are coupled by complementarity conditions

\[(\lambda_i^1)_{kK} f_k = 0 \quad K = 1 \ldots \#E\]

\[(\lambda_i^2)_{kK} (e_k - f_k) = 0 \quad K = 1 \ldots \#E\]

(i.e. either the inequality is active or its Lagrange multiplier is 0)

Flow's

Now \((\lambda_i^1)_{kK} = 0\) implies that flow is \(> 0\)

\((\lambda_i^2)_{kK} = 0\) """" < e

- The non-zero \(\lambda_i^1\)'s identify edges that could disconnect (i.e., any path containing one is not augmenting)
- If the non-zero \(\lambda_i^2\)s meet the equality, we have a cut
There is a general point here

consider \((f, \lambda^1_c, \lambda^2_c, \lambda^1_e) \equiv (p, d) \)

primal vars \[\rightarrow\] dual vars.

1) At a solution if \(p \) is soln to primal, \(d \) is soln to dual.
 \(p, d \) are complementary

 (follows from KKT).

2) if \((p, d) \) are complementary and
 \(p \) is primal feasible and
 \(d \) is dual feasible then

 \(p \) solves primal \(\iff \) \(d \) solves dual.