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Abstract

The problem of low-rank matrix factorization in the pres-
ence of missing data has seen significant attention in recent
computer vision research. The approach that dominates the
literature is EM-like alternation of closed-form solutions for
the two factors of the matrix. An obvious alternative is non-
linear optimization of both factors simultaneously, a strat-
egy which has seen little published research. This paper
provides a comprehensive comparison of the two strategies
by evaluating previously published factorization algorithms
as well as some second order methods not previously pre-
sented for this problem.

We conclude that, although alternation approaches can
be very quick, their propensity to glacial convergence in
narrow valleys of the cost function means that average-
case performance is worse than second-order strategies.
Further, we demonstrate the importance of two main ob-
servations: one, that schemes based on closed-form solu-
tions alone are not suitable and that non-linear optimiza-
tion strategies are faster, more accurate and provide more
flexible frameworks for continued progress; and two, that
basic objective functions are not adequate and that regular-
ization priors must be incorporated, a process that is easier
with nonlinear methods.

1. Introduction

Matrix factorization is central to many computer vision
problems. Structure from motion (SFM) [12], illumination
based reconstruction (IBR) [7], and non-rigid model track-
ing [3] all have solutions based in factorization. In each
case, the measured data (interest points, pixel intensities)
are observations of the elements of an m×n measurement
matrix, denoted Mtrue, which is of known1 rank r, typically

1In practice r is often unknown, but this paper shall assume it is given.
There are strategies to choose r automatically, but in most real situations
the user will be forced to choose either r or another tuning parameter which
controls it.

much smaller than min(m,n). With perfect data, in the ab-
sence of noise, the desired quantities are two smaller matrix
factors A ∈ R

m×r and B ∈ R
n×r such that

Mtrue = AB�. (1)

In the presence of noise, Mtrue will not be observable, and
we will instead observe a noise-corrupted version, M. As-
suming that the noise is isotropic Gaussian, the maximum
likelihood estimates of A and B are the minimizers of the
error function (with ‖ · ‖F denoting the Frobenius norm)

εfull(A, B) = ‖ M− AB�‖2
F , (2)

for which there are reliable and globally convergent algo-
rithms based on the singular value decomposition (SVD).
In practice, however, an apparently innocuous modification
of the problem must be solved, a modification that currently
defies solution. The complication is that some elements of
M may not be available, for example due to occlusions and
tracking failures for SFM, or shadows and specularities for
IBR. To account for these missing entries, a weight matrix,
W, is provided, of the same size as M, in which zeros corre-
spond to missing elements of M. The modified factorization
problem is now to compute the minimizers of

εmle(A, B) = ‖ W� (
M− AB�

) ‖2
F . (3)

where � is the Hadamard product2. The search for an algo-
rithm which can reliably minimize this error is the subject of
this paper. Many approaches in the literature use an iterative
strategy, which, although guaranteed to minimize the error
at every iteration, is prone to flatlining: requiring excessive
numbers of iterations before convergence (Figure 1).

Before a review of the literature and our contribution, a
few more notes on (3). We observe that there is a gauge
freedom: for any invertible r × r matrix G, ε(A, B) =
ε(AG, BG−�), meaning that for a minimizing pair of fac-
tors (A, B) there is an infinite family of equivalent solutions.

2R = P� Q ⇔ rij = pijqij



ALT PF SIR HHH BDT AFAC GA
inputs: A,B, M, W, r

1 1 1 1 1 1 1 1: M̂ ← M
2 2 2 2 2 2 2 2: repeat

3 3: M̃ ← truncate M̂ to rank r (via SVD)
4 4 4 4 4: ai ← (B�diag(wi)2B + λ1I)−1B�diag(wi)2m̂i ∀i

5 5: M̂ ← update elements of M̂ with large residuals
6 6 6: A ← first left singular vectors of M̂

7 7 7:
[
A t

] ← A; M̂ ← M̂− t1�

8 8 8 8 8: bj ← (A�diag(wj)
2A + λ2I)−1A�diag(wj)

2m̂j ∀j
9 9: B ← column-wise orthonormalization of B

10 10: B ← Brandt closed-form update of B
11 11 11 11: B ← [

B 1
]
; A ← [

A t
]

12 12 12: M̂ ← M̂ + t1�

13 13: M̃ ← (AB�)
14 14 14: M̂ ← W� M + (1− W) � M̃

15 15 15 15 15 15 15 15: until convergence
• • • • • • outputs: A, B

• outputs: M̃

Algorithm 1. Alternation and variants for the minimization of Equation (4). Columns denote the lines used by each algorithm. ALT =
alternation; PF = PowerFactorization [15]; SIR = Shum et al. [11]; HHH = Huynh et al. [8]; AFAC = Aanaes et al. [1]; GA = Guerreiro and
Aguiar [6]; BDT = Brandt [2]. Notation: xi is the ith row and xj the jth column of matrix X, with both xi and xj as column vectors.

Secondly, it is clear that not all weight matrices W admit a
unique (even up to gauge) solution. As an extreme exam-
ple, if W = 0, all choices of A and B yield the same (zero)
error. To cope with these and related problems, some of
the algorithms we shall review minimize a modified version
of (3):

ε(A, B) = ‖W� (
M− AB�

) ‖2
F + λ1‖A‖2

F + λ2‖B‖2
F , (4)

with regularizing constants λ1 and λ2. Finally, a modifica-
tion of (4) which is commonly encountered is the “PCA”
or “SFM” modification, in which it is required that the rth

column of B is all ones, i.e. bir= 1 ∀i. All algorithms we
propose are trivially modified to handle this case.

The remainder of this paper is as follows. We review
the state of the art in minimizing (4) and remind the reader
that the most effective current strategies are based around
first-order minimizations, which we call “alternation”. We
then describe a class of second-order minimizations which
converge more reliably than alternation and present experi-
ments to support this claim.

2. Background

The literature on factorization with missing data falls
into several categories: closed-form solutions, imputation,
alternation, and direct nonlinear minimization of (4).

The closed-form solution introduced by Jacobs [9] does
not minimize (4), but is the algebraically correct method to

use. In Jacobs’ algorithm, subsets of M’s columns are used
to build up the subspace orthogonal to A. However, it is
strongly affected by noise on the measurement data.

Imputation covers a number of strategies which attempt
to fill in the missing entries of the matrix without consider-
ing the global error (4). For example, the original Tomasi
and Kanade proposal [12]. Rather than tackle the whole
problem at once, sub-blocks can be chosen to give a set of
smaller and less sparse sub-problems. By making the sub-
blocks overlap, the individual solutions may be ‘stitched’
together to give a solution for the whole problem.

In practice, using the closed form solution or imputation
on real data, which tend to be noisy and have reduced cou-
pling between known regions of the measurement matrix,
produces poor results and so such methods are generally
suitable only as initializations for the iterative algorithms.
However, because we shall show that even the best iterative
algorithms require multiple restarts from different starting
points in order to find good optima, the single starting point
these strategies supply is insufficient.

Alternation algorithms are based on the observation that
if one of A or B are known, there is a closed-form solu-
tion for the other that minimizes (4). Algorithm 1 provides
pseudo code that implements all of the alternation schemes
proposed by the papers reviewed here and shows how all
these algorithms are related. Lines 4 and 8 show the formu-
lae for the closed-form minimizers of A and B respectively.

Wiberg [16] showed that alternation can be used to solve
the factorization problem when data are missing. Later



Shum, Ikeuchi and Reddy [11] extended the algorithm to
allow for arbitrary weighting values in W. It was shown by
Roweis [10] that alternation can, in fact, be derived within
an EM framework. Other variations on Wiberg’s approach
include Vidal and Hartley’s suggestion [15] of adding a
normalization step between the two factor updates. Also,
Huynh, Hartley and Heyden [8] have proposed performing
alternation on a continually updated version of M. Their al-
gorithm does not include the weight matrix W, being aimed
at outlier rejection problems. Aanaes et al [1], have put
forward another method that works on an updated version
of the measurement matrix. They use one alternation step
after a subspace projection. Although not directly related,
Guerreiro and Aguiar [6] also present a similar project and
merge iteration scheme.

These algorithms have all been presented as solutions to
the SFM/PCA problem. Shum et al’s algorithm explicitly
solves for the image centroid offsets, which are encoded in
the last column of A, as seen in Algorithm 1. However,
many do not deal with the fact that a measurement matrix
with missing entries cannot be mean-centred. Brandt [2] has
presented an algorithm, very similar to that of Aanaes et al,
incorporating a closed form solution for B implicitly ad-
dressing this point.

A modification of (4) is minimized by de la Torre and
Black [5], in which the Frobenius norm is replaced by a
robust error function of the residuals. Their alternation up-
dates are no longer closed form, but are implemented as a
single step of a Newton-like algorithm which uses an ap-
proximation to the second derivatives of ε with respect to
A and B separately. Thus, the comparison in this paper of
full second-order methods, including the cross-derivatives
∂2ε/∂A∂B, to standard alternation, applies equally to this
error function as well.

Torresani and Hertzmann [13] recast the estimation of
the factors as Bayesian inference and, crucially, add priors
on A and B, yielding excellent results on some difficult se-
quences. As we shall discuss in Section 5, the addition of
priors greatly improves the veridicity of the recovered fac-
tors, but our conclusions regarding the best way to minimize
(4) carry through to the with-priors case. The EM-based
minimization in [13] produces updates which are closely
analogous to alternation.

The final category of approach employs direct nonlin-
ear minimization of the error function. Although not doc-
umented for the factorization problem, the use of second-
order nonlinear optimization in projective structure and mo-
tion recovery problems has a long history [14]. Known
as bundle adjustment, it depends typically on Levenberg-
Marquardt (L-M) optimization of a Gauss-Newton approx-
imation of (4). In the factorization case, the second deriva-
tives are easy to compute (Appendix A), so we can employ
a full Newton method. Section 3 describes the algorithm in
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Figure 1. Typical error descent curves for the alternation, damped
Newton and hybrid algorithms. All algorithms were started with
the same random initial state vector. This is a minimization for the
dinosaur sequence.

more detail and the modification giving the damped Newton
algorithm.

Summary: practical solutions to factorization and re-
lated problems fall into two main camps. Alternating
closed-form solutions for each factor guarantees that the
state error will be reduced after every iteration. In practice,
the convergence of alternation iterations is initially very
good, so combined with the attribute of typically fast itera-
tion times, it is an attractive iteration scheme. However, we
show that it is very susceptible to flatlining. This is because
alternation is essentially a coordinate-descent scheme, al-
beit one in which the global optimum within each dimen-
sion subset is obtained at each descent step. Newton meth-
ods are expensive per iteration, initially converge slowly,
and are fractionally more difficult to program, but on aver-
age require orders of magnitude fewer iterations to reach a
solution.

In this paper we experimentally compare the two ap-
proaches (see [14] for a theoretical analysis). We also intro-
duce a class of hybrid algorithms in an attempt to combine
the advantages of both. Hybrid methods switch between
alternation and Newton formulations as iterations progress,
so that the periods of rapid convergence exhibited by alter-
nation may be augmented with the long-term convergence
power of damped Newton. This paper is, by necessity, con-
cise; more details may be found in [4].

3. The Damped Newton Algorithm

In this section we vectorize the unknown variables, in
this case the elements of the two matrix factors, so the error
surface ε(A, B) becomes the function ε(x) of the state vec-
tor x. At each iteration of the Newton method we seek an
update δx which minimizes the second-order Taylor-series



inputs A, B, M, W

1: declare F =
∣∣∣∣W� (

M− AB�
)∣∣∣∣2

F
+λ1

∣∣∣∣A∣∣∣∣2
F
+λ2

∣∣∣∣B∣∣∣∣2
F

2: x ← vectorize(A,B)
3: λ ← 0.01
4: repeat
5: d = ∂F

∂x

6: H = ∂2F
∂x2

7: repeat
8: λ ← λ × 10
9: y = x − (H + λI)−1d

10: until F(y) < F(x)
11: x ← y
12: λ ← λ ÷ 10
13: until convergence
outputs A, B ← unvectorize(x)

Algorithm 2. The damped Newton algorithm

approximation

ε(x + δx) ≈ ε(x) +
∂ε

∂x
· δx +

1
2
(
∂2ε

∂x2
· δx) · δx. (5)

With the gradient d = ∂ε
∂x and a positive definite Hessian

matrix, H = ∂2ε
∂x2 , the minimum of this quadratic approxi-

mation is found using the update

δx = −H−1d. (6)

Details of the computation of the gradient and Hessian are
supplied in the appendix.

Unfortunately the error function in (4) is quartic in x and
so quadratic approximations can be very unsuitable. Also,
where the surface is almost flat in one or more dimensions
the Hessian will be singular to machine precision. In these
situations, when the H is not positive definite it is desirable
to shift its eigenvalues. Adding a scaled identity matrix
achieves this effect and results in a damped Newton method
(Algorithm 2). It uses an adaptive regularizing parameter
λ to perform this eigenvalue shift in an analogous way to
the equivalent parameter in the L-M algorithm. The larger
the value of λ, the smaller the length of the step taken by
each iteration, reflecting the lower quality of the quadratic
approximation, and resulting in more like gradient descent
like behaviour.

Alternation-like Regularization. The damped Newton
algorithm can be modified to resort to more alternation-
like behaviour by boosting the diagonal r × r blocks of
the Hessian using the λ parameter. In Matlab notation, re-
place I with kron(eye(m+n), ones(r)).∗H on line 9 of Al-
gorithm 2. Experiments consistently demonstrate that gra-
dient descent is a very poor choice for minimizing (4) and
so resorting to an alternation-style descent could be an ad-
vantage.

Damped Newton with Line Search. The matrix inver-
sion on line 9 is the most expensive operation in the damped
Newton algorithm and yet may be repeated several times
per iteration. To reduce the number of inversions to one per
iteration, determine the search direction using the Hessian,
the gradient vector and λ, in the same way as damped New-
ton, but then use a line search to find the minimum in that
direction. At the end of each iteration, λ is updated based
on how far along the line the state was moved. If the step
length taken was large, λ is reduced as the quadratic ap-
proximation was seemingly good. Conversely, a short step
results in an increase in λ.

Hybrid Methods. A typical set of error descent curves
are seen in Figure 1 giving a comparison of the alternation
and damped Newton algorithms. Although other graphs
could have been presented, the one shown represents the
most common characteristics seen in experiments. Alterna-
tion initially converges very quickly, but slow convergence
invariably dominates, typically taking thousands more iter-
ations than the damped Newton algorithm. It would seem
advantageous to combine the two methods to give an al-
gorithm that has fast initial convergence giving way to the
power of non-linear optimization. These are the hybrid
schemes.

The crucial element of a hybrid algorithm is the switch
criterion, i.e. how to make the decision to stop using alter-
nation and start using damped Newton or vice-versa. We
implemented three simple strategies: 1) calculate a new
state with both alternation and damped Newton (with line
search), then use the new state that gives the lowest new er-
ror; 2) run alternation for N iterations and switch to damped
Newton. When λ rises to a threshold value, reduce λ and
perform another N alternation steps; 3) use damped New-
ton with a check on λ within the inner loop. If λ exceeds a
threshold value, perform an alternation step. The use of λ
to initiate the switch comes again from the idea that it rep-
resents the fit of the quadratic surface approximation. Ob-
viously, many variations on these basic ideas are possible.

Other Algorithms. Further to those tested, other
derivative-based algorithms that might be compared with
damped Newton are the conjugate gradient, quasi-Newton
and limited memory quasi-Newton algorithms. Testing of
these will be the subject of future work.

4. Experiments

All the algorithms reviewed and introduced above were
run on three example problems, corresponding to the three
applications mentioned in Section 1. The three problems
also cover a range of matrix sizes and missing data ratios.
A summary of the problems and results is given in Figure 2.
Note that most of the tested algorithms cannot cope with
outliers in the measurement matrix. Because of this, the
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Figure 2. Summary of the results. The three columns correspond to three example problems: the recovery of 1) the rigid turntable motion
of a toy dinosaur; 2) the non-rigid occluded motion of a giraffe in the background; and 3) the light directions and surface normals of a static
face with a moving light source. The first row shows a frame from the sequence. The second represents the sparsity of the measurement
matrix. The third row shows small sections of the accumulation histograms (curves showing the number of random initial state vectors
which converged to a solution with a particular rms pixel error or lower) for the best of the algorithms presented in the text.

measurement matrix to be factored in each case was filtered
to remove any outliers. This is discussed in section 5.

The algorithms were first initialized with potential fac-
tors given by the output of Jacobs’s algorithm and secondly
with a large number of random starting states (indicated in
the figure). In all three cases the Jacobs estimate itself and
the solutions given by the algorithms using Jacobs as a start-
ing point were not as good as the best of the random runs.

It is assumed that accurate solutions are sought and
poor solutions are to be rejected, irrespective of time taken.
Therefore, timings will not be used as a measure of com-
parison. By this criterion several algorithms could be im-
mediately discounted: the schemes proposed by Brandt,
Huynh et al. and Aanaes et al., plus the project and merge
algorithm never gave final errors below a modest threshold.
The remaining three alternation algorithms (basic alterna-
tion, Shum et al. and PowerFactorization) all performed rel-
atively evenly. However, on the dinosaur sequence, none of
the pure alternation schemes achieved a final error as low as

the best runs by the Newton-based algorithms. It must be
noted that an iteration limit was imposed on the algorithms,
and it is possible in some cases that a flatlined alternation al-
gorithm could have reached the optimum. However, in our
experience flatlining at 1000 iterations invariably mean that
tens of thousands of iterations are required for convergence.

We confirmed that all runs that converged to the same er-
ror value gave the same factorization solution (within gauge
freedom). Because the initial states were generated ran-
domly, counting the number of runs that ended with the
same error value is a reflection of the size of the basin of
convergence for that minimum for each algorithm. The
count for the lowest minimum can be taken as a measure
of how well each algorithm performed on each example.
When judged on this criterion, Newton-based methods out-
perform the other algorithms. The three alternation schemes
performed with mixed success. Damped Newton itself was
the most successful algorithm in the dinosaur and illumina-
tion problems and found the lowest error solution for the



~ rms pixel error = 1.0847 rms pixel error = 1.2702

Figure 3. Point tracks for the dinosaur turntable sequence. On the left are the input tracks. In the middle are the best tracks obtained using
the algorithms discussed in Section 4. On the right are tracks obtained using simple priors (orthonormality of the camera matrices in A).

giraffe sequence as well. The hybrid schemes were the best
algorithms considering performances across all three prob-
lems.

5. Discussion and Conclusions

Throughout the work above, it has been assumed that the
error function (4) has a global minimum that represents a
desirable and adequate result. Consider the dinosaur exam-
ple. We are confident that the smallest error of all the 1000
runs is the global minimum for the dinosaur’s measurement
matrix. However, the solution associated with this mini-
mum error is not satisfactory. Figure 3 shows how poorly
the reconstructed tracks represent the turntable motion of
this sequence. In an effort to obtain a better solution, ex-
tra terms were added to the error function (4) to penalize
A having non camera-like properties (orthonormality) and
damped Newton was run again. The third panel of Figure 3
illustrates the improvement obtained by including this sim-
ple prior. A very plausible three-dimensional reconstruc-
tion was also recovered. Note how the basic solution has
a lower rms pixel error compared to the improved version,
reflecting the fact that using models with more freedom will
always fit noisy data better than constrained systems. Using
the special-case solution as the initial state of the generic
algorithms compliantly returns the inferior solution we la-
belled as the global minimum of (4). This reiterates the fact
that for many real problems, it is not sufficient simply to
minimize (4). Prior knowledge of the problem must be in-
cluded in the minimization if good meaningful results are
desired. As shown by Torresani and Hertzmann [13], the
inclusion of priors can greatly improve performance on dif-
ficult problems. However, there are important consequences
for the factorization problem: when priors are incorporated,
the resulting error function frequently precludes the possi-
bility of closed-form alternation. On the other hand, adding
priors within a non-linear optimization framework is rela-
tively easy. In theory, this will make alternation approaches

even slower and emphasize the advantage of the damped
Newton methods, but this claim remains to be tested. Al-
ternation schemes implemented using non-linear forms are
harder to create than pure Newton algorithms, but allow the
construction of the hybrid form, which has been seen here to
be successful in the context of basic error functions. Com-
parisons with more involved error functions is the subject
of further research.

Also worthy of note is that the error surface of (4) is
strongly affected by outliers. In the experiments for this pa-
per, we removed outliers before performing factorization.
This is not possible in general, and robust algorithms are
required for reliable solutions. By including a robustifying
term in the error function, as in [5], we again lose alter-
nation’s closed-form inner loop, and might again expect to
see an advantage in second-order methods. This is also the
subject of current investigation.

This paper has presented a comparison of many fac-
torization algorithms. The comparison was made against
Newton-based algorithms and hybrid schemes. The hybrid
schemes performed very well within the context of the basic
objective function (4), but updating them to use priors and
robust error terms may be challenging. Newton-based algo-
rithms themselves present an easy framework for such im-
provements. The results strongly suggest that second order
non-linear optimization strategies are the key to successful
matrix factorization when data are missing.
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Figure 4. The sparsity structure of an example Hessian matrix.
The upper left block is generated by Equation (14), the lower right
block by (16) and the off-diagonal blocks by (15). This example
was generated for m = 5, n = 8 and r = 3 with 50% known data.

A. Derivatives

The first and second derivatives of Equation (4) are re-
quired to implement Algorithm 2 and are given below. As
in Algorithm 1, xi is the ith row and xj the jth column of
matrix X, with both xi and xj as column vectors.

A row-wise vectorization of A and B, so that

x =
[
a1� a2� · · · am� b1� · · · bn� ]�

, (7)

gives

d =
∂ε

∂x
=

[
∂ε

∂a1

�
· · · ∂ε

∂am

� ∂ε

∂b1

�
· · · ∂ε

∂bn

�]�
(8)

∂ε

∂ai
= 2B� diag(wi)2

(
Bai − mi

)
+ 2λ1ai (9)

∂ε

∂bj
= 2A� diag(wj)2

(
Abj − mj

)
+ 2λ2bj (10)

H =
∂2ε

∂x2
=

[
∂d
∂a1

· · · ∂d
∂am

∂d
∂b1

· · · ∂d
∂bn

]�
(11)

∂d
∂ai

=

[
∂2ε

∂a1∂ai

�
· · · ∂2ε

∂am∂ai

�
∂2ε

∂b1∂ai

�
· · · ∂2ε

∂bn∂ai

�]�
(12)

∂d
∂bj

=

[
∂2ε

∂a1∂bj

�
· · · ∂2ε

∂am∂bj

�
∂2ε

∂b1∂bj

�
· · · ∂2ε

∂bn∂bj

�]�
(13)

∂2ε

∂ap∂aq
=

{
2B� diag(wp)2B + 2λ1I p = q
0 p �= q

(14)

∂2ε

∂ap∂bf
= 2w2

pf

(
apbf� + I(bf�ap − mpf )

)
(15)

∂2ε

∂be∂bf
=

{
2A� diag(we)2A + 2λ2I e = f
0 e �= f

(16)


