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CHAPTER 3. LINE SEARCH METHODS

It can be shown that if x; — x* superlinearly, then the ratio in this expression converges to
1. If we adjust the choice (3.60) by setting

og < min(1, 1.01a),

we find that the unit step length o = 1 will eventually always be tried and accepted, and the
superlinear convergence properties of Newton and quasi-Newton methods will be observed, |

A LINE SEARCH ALGORITHM FOR THE WOLFE CONDITIONS

The Wolfe (or strong Wolfe) conditions are among the most widely applicable and
useful termination conditions. We now describe in some detail a one-dimensional search
procedure that is guaranteed to find a step length satisfying the strong Wolfe conditions (3.7)
for any parameters ¢; and ¢, satisfying 0 < ¢1 < ¢ < 1. As before, we assume that p isa
descent direction and that f is bounded below along the direction p.

The algorithm has two stages. This first stage begins with a trial estimate oy, and keeps
increasing it until it finds either an acceptable step length or an interval that brackets the
desired step lengths. In the latter case, the second stage is invoked by calling a function called
zoom (Algorithm 3.6, below), which successively decreases the size of the interval until an'
acceptable step length is identified.

A formal specification of the line search algorithm follows. We refer to (3. 7a) as the
sufficient decrease condition and to (3.7b) as the curvature condition. The parameter (xm‘
is a user-supplied bound on the maximum step length allowed. The line search algorithm
terminates with o, set to a step length that satisfies the strong Wolfe conditions.

|

Algorithm 3.5 (Line Search Algorithm). |
Set ag < 0, choose ttpay > 0 and a1 € (0, Amax)s |
i< 1;
repeat

Evaluate ¢(o;);
if ¢(a;) > ¢(0) + 1090/ (0) or [p(er;) = ploi—1) and i > 1]
o, <zoom(a;_1, &;) and stop;
Evaluate ¢'(«; );
if [¢'(2;)| < —c29'(0)
set ct, < «; and stop;
if¢'(e;) = 0
set o, <—zoom(c;, o; ) and stop;
Choose ;11 € (¢4, Cmax)s
I <—i+1;
end (repeat)

Note that the se
the order of the argw
the knowledge that th
conditions if one of tt

(i) «; violates the s1
(i) ¢(ai) = dlaig
(iii) ¢'(oy) > 0.

The last step of the al
implement this step
we can simply set o,
important that the suc
a finite number of iter

‘We now specify:
its input arguments is

(a) the interval boun
conditions;

(b) oy, is, among all
condition, the on

(c) oy; is chosen so tl

Each iteration of zoon
of these endpoints by ¢

Algorithm 3.6 (zoor

repeat
Interpolate {u:
a trial st
Evaluate ¢{o;,
if $(a) >
Ohp < C
else
Evaluate
if |¢'(« j
S
if ¢'(a;.
o
¥ <0
end (repeat)




3.5. STEP-LENGTH SELECTION ALGORITHMS

Note that the sequence of trial step lengths {o;} is monotonically increasing, but that
e order of the arguments supplied to the zoom function may vary. The procedure uses
he knowledge that the interval (o1, e;) contains step lengths satisfying the strong Wolfe
wnditions if one of the following three conditions is satisfied:

(i) o; violates the sufficient decrease condition;
(i) Pley) > Pleri1);
(ifi) ¢'(cti) = 0.

The last step of the algorithm performs extrapolation to find the next trial value aj41. To
implement this step we can use approaches like the interpolation procedures above, or
e can simply set o1 to some constant multiple of a;. Whichever strategy we use, it is
important that the successive steps increase quickly enough to reach the upper limit Gty 0
afinite number of iterations.

We now specify the function zoom, which requires a little explanation. The order of
its input arguments is such that each call has the form zoom(a,, o), where

(a) the interval bounded by e, and ay; contains step lengths that satisfy the strong Wolfe
conditions;

(b) oo is, among all step lengths generated so far and satisfying the sufficient decrease
condition, the one giving the smallest function value; and

(c) o is chosen so that ¢ (ao ) (i — a10) < 0.

Fach iteration of zoom generates an iterate o between o, and oy, and then replaces one
of these endpoints by «; in such a way that the properties (a), (b), and (c) continue to hold.

Algorithm 3.6 (zoom).
repeat
Interpolate (using quadratic, cubic, or bisection) to find
a trial step length o; between oy, and oths
Evaluate ¢ (c; )3
() > B(0) + cr0¢'(0) or dlery) = leno)
Ohi < O3
else
Evaluate ¢'(¢;);
if ¢/ ()] < —c2(0)
Set ¢, <— o¢; and stop;
if ¢ (e ) (ani — o) = 0
Ohi <= Clo>
Uy < ¢j;
end (repeat)
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CHAPTER 3. LINE SEARCH METHODS

If the new estimate o; happens to satisfy the strong Wolfe conditions, then zoom has served
its purpose of identifying such a point, so it terminates with o, = ;- Otherwise, if @;
satisfies the sufficient decrease condition and has a lower function value than xy,, then we
set o < o O maintain condition (b). If this setting results in a violation of condition (¢),
we remedy the situation by setting ohi 1O the old value of ¢ Readers should sketch some
graphs to se¢ for themselves how zoom works!

As mentioned earlier, the interpolation step that determines o should be safeguarded
{0 ensure that the new step length is not too close to the endpoints of the interval. Practical
line search algorithms also make use of the properties of the interpolating polynomials to
make educated guesses of where the next st€p length should lie; see (39, 216]. A problem
that can arise is that as the optimization algorithm approaches the solution, two consecutive
function values f (x) and f (xg_1) may be indistinguishable in finite-precision arithmetic.
Therefore, the line search must include a stopping test if it cannot attain a lower function
value after a certain number (typically, ten) of trial step lengths. Some procedures also
stop if the relative change in x 18 close to machine precision, Or to SOMe user-specified
threshold.

A line search algorithm that incorporates all these features is difficult to code. We
advocate the use of one of the several good software implementations available in the
public domain. See Dennis and Schnabel [92], Temaréchal [189], Fletcher {1011, Moré and
Thuente [216] (in particular), and Hager and Zhang [161].

One may ask how much more expensive it is to require the strong Wolfe conditions
instead of the regular Wolfe conditions. Our experience snggests that for a “loose” line
search (with parameters such ascp = 10-* and ¢z = 0.9) both strategies require a similar
amount of work. The strong Wolfe conditions have the advantage that by decreasing 2 We
can directly control the quality of the search, by forcing the accepted value of o to lie closer
to a local minimum. This feature is important in steepest descent of nonlinear conjugate
gradient methods, and therefore 2 step selection routine that enforces the strong Wolfe

conditions has wide applicability.

NOTES AND REFERENCES

For an extensive discussion of line search termination conditions see Ortega and
Rheinboldt [230]. Akaike [2] presentsa probabilistic analysis of the steepest descent method
with exact line searches on quadratic functions. He shows that when n > 2, the worst-case
bound (3.29) can be expected to hold for most starting points. The case 1 = 2 can be
studied in closed form; see Bazaraa, Sherali, and Shetty [14]. Theorem 3.6 is due to Dennis
and Mor¢.

Some line search methods (see Goldfarb [132] and Moré and Sorensen [213]) compute
a direction of negative curvature, whenever it exists, to prevent the jteration from converging
to nonminimizing stationary points. A direction of negative curvature p— isone that satisfies
pIVEflx)p- < 0. These algorithms generatea search direction by combining p— with the
steepest descent direction —V fi, often performing a curvilinear backtracking line search.
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3.5. STEP-LENGTH SELECTION ALGORITHMS

Itis difficult to determine the relative contributions of the steepest descent and negative
aurvature directions. Because of this fact, the approach fell out of favor after the introduction
of trust-region methods.

For a more thorough treatment of the modified Cholesky factorization see Gill,
Murray, and Wright [130] or Dennis and Schnabel [92]. A modified Cholesky factorization
based on Gershgorin disk estimates is described in Schnabel and Eskow [276]. The medified
indefinite factorization is from Cheng and Higham [58].

Another strategy for implementing a line search Newton method when the Hessian
tontains negative eigenvalues is to compute a direction of negative curvature and use it to
define the search direction (see Moré and Sorensen [213] and Goldfarb [132]).

Derivative-free line search algorithms include golden section and Fibonacci search.
They share some of the features with the line search method given in this chapter. They
typically store three trial points that determine an interval containing a one-dimensional
minimizer. Golden section and Fibonacci differ in the way in which the trial step lengths are
generated; see, for example, [79, 39].

Our discussion of interpolation follows Dennis and Schnabel [92], and the algorithm
for finding a step length satisfying the strong Wolfe conditions can be found in Fletcher
f101].

7 EXERCISES

# 3.1 Program the steepest descent and Newton algorithms using the backtracking line
search, Algorithm 3.1. Use them to minimize the Rosenbrock function (2.22). Set the initial
steplength o = 1 and print the step length used by each method at each iteration. First try
theinitial point xo = (1.2, 1.2)7 and then the more difficult starting point xy = (—1.2, 1)7.

7 32 Show thatif 0 < ¢; < ¢; < 1, there may be no step lengths that satisfy the Wolfe
wonditions.

7 3.3 Show that the one-dimensional minimizer ofa strongly convex quadratic function
isgiven by (3.55).

7 3.4 Show that the one-dimensional minimizer of a strongly convex quadratic function
ahways satisfies the Goldstein conditions (3.11).

# 35 Prove that ||Bx| > |x||/||B~"| for any nonsingular matrix B. Use this fact to
stablish (3.19).

7 3.6 Consider the steepest descent method with exact line searches applied to the
anvex quadratic function (3.24). Using the properties given in this chapter, show that if the
nitial point is such that xg — x™ is parallel to an eigenvector of , then the steepest descent
nethod will find the solution in one step.
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