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Let N be a finite set and = be a real-valued function defined on the set of subsets of N that
satisfies z(S)+ AT)z=z(SUTY+ (SN T) for all S, T in N. Such a function is called
submodular. We consider the problem max g, {z(S): IS|=<K, z(5) submodular},

Several hard combinatorial optimization problems can be posed in this framework. For
example, the problem of finding a maximum weight independent set in a matroid, when the
elements of the matroid are colored and the elements of the independent set ¢
than K colors, is in this class. The uncapacitated location problem is a
matroid optimization problem.

We analyze greedy and jocal improvement heuristics and a linear
for this problem. Our results are worst case bounds

example, when z(S) is nondecreasing and z(§) = 0, we show that a “greedy” heuristic always

produces a solution whose value is at least =K - 1)K times the optimal value. This

bound can be achieved for each K and has a limiting value of (e — 1)/e, where ¢ is the base of
the natural logarithm.

an have no more
special case of thig

programming relaxation
on the quality of the approximations. For
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L. Introduction

problems. We can view the location p
Given a non-negative m X n matrix
index set I, for each non-empty S C N define '

*On leave of absence from Cornell
5-00568,

roblem as the following combinatorial one.

C = (c;) with column index set N and row

z(S)=§Ir§1€an Cji ) (1.1
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and z(®) = 0. The problem is to find an S of cardinality less than or equal to a
specified integer K (K <n) such that z(S) is maximum; i.e.,

ns'kgzl( {z(5):]S]= K, z(S) given by (1.D}. (1.2)

As noted in [2], problem (1.2) is a member of the class of NP-hard problems.
A fundamental property of the function given by (1.1) is that, for RC S and
ke N — S, adding k to S will increase z by no more than by adding k to R. Note

that

I

max ¢; —max ¢

max(0, cx —max ¢;)
jESU{k} JjES jeS

< max(0, ¢y — max c;) (1.3)
1)
JER

i

max ¢;—maxc; €1
jERU{k} JjER

where the inequality follows from maxjes ¢ = MaX er Cip By summing the in-
equalities of (1.3) over i we obtain that z(S) defined by (1.1) satisfies

2(S U {k}) — z(S) = z(R U {k}) — z(R), RCSCN, kEN-S5. (1.4

Furthermore,
(S U{kPD—2(5)=0, SCN, ke N-S. (1.5)

A real-valued function z(S) defined on the set of subsets of N that satisfies
(1.4) {and (1.5)] is called a submodular [nondecreasing] set function. Thus a
natural generalization of (1.2), which we study in this paper, is

max {z(S): |S]| = K, z(S) submodular}. (1.6)
SCN

Note that when z is nondecreasing the cardinality constraint is necessary in (1.6)
to obtain a nontrivial problem. However when z does not satisfy (1.5), the
problem is interesting even without the cardinality constraint (i.e., K = [N|=n).
Although our results apply to arbitrary submodular functions, they are much
sharper for nondecreasing submodular functions.

In Section 2 we give several equivalent definitions of submodular function:
and we will see that submodularity is in some sense a combinatorial analogue of
concavity. Most of these results are not original; we collect them together and
prove them here to facilitate availability and use throughout this paper.

A rich variety of combinatorial optimization problems can be modeled as the
maximization of submodular functions as in (1.6). In Section 3 we present three
classes of these problems. One class, which contains the location problem, arises
from matroids, another from the assignment problem and a third from boolean
polynomials. To motivate the representation of combinatorial optimization

" This property for the uncapacitated location problem has been observed by Babayev [1], Frieze

[6] and Spielberg [9].
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problems by (1.6), we now present the location problem in its matroid context.

Let E be a finite set and & a nonempty collection of subsets of E. The system
M= (E, %) is called a matroid if

(a) €% and F,C F,> FE %.

(b) For all E'C E every maximal member of #F(E)={F: F€ %, F C E'} has
the same cardinality.

The members of & are called independent sets.

Suppose that the elements {e} of E are assigned weights {c.} and consider the
matroid optimization problem of determining

v(E'Y= max 2, Ce (1.7

FEF(E') e€EF
The function v(E’) is submodular and nondecreasing (see Proposition 3.1) but it
is completely unnecessary to consider approximations for (1.7) since it is
well-solved by a simple greedy algorithm [5].

Consider, however, a generalization of (1.7) in which the elements of E are
assigned colors as well as weights; in other words E is partitioned into subsets
{Q;: jE N} and the elements of Q; are colored j. The problem is to find a
maximum weight independent set that contains no more than K colors. Let

2(S) = U(]LEJS QJ) = max{E c.FE %(U Q,-)}, SCN. (1.8)

eEF jES

- The function z(S) in (1.8) gives the value of a maximum weight independent set
\1; that is restricted to the colors contained in S. The submodularity of v(E’) in (1.7)
= implies the submodularity of z(S) in (1.8), see Proposition 2.5. Thus the matroid
ptimization problem of finding a maximum weight independent set that contains
no more than K colors is a case of (1.6) where z(S) is given by (1.8).

To show that the location problem can be placed in the framework of (1.7) and
(1.8) let E={(ijrielLjE N} and partition E into the subsets E;=

{(i,): j€ N}, i € I Define an F C E to be independent if and only if |[FNE| =<1,
1€ I. This system clearly satisfies matroid property (a) and property (b) follows
from the fact that every maximal independent set of E’ has cardinality [{i €

j ;"I: E’'N E;# @}|. The matroid defined by this system is the well-known partition

natroid.

Let ¢; =0 be the weightof (i, DEE, i€, jEN and Q;={(i,j): i€}, jEN.

When E’ = U esQ;, SC N, we obtain

2(S) = u<U Q,)
jes

= 2 max Cj. (19)

iel jes

roblem as an optimization problem with respect to a partition matroid and have
btained another proof that the location problem belongs to (1.6). The result
btained in this indirect and tedious way provided impetus for our work.
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Sections 4—7 contain the results on approximations. Here we briefly sum-
marize the main results for z(#) = 0, z nondecreasing and z# 0.

In Section 4 we study a greedy heuristic that first solves (1.6) for K =1 and
then iteratively approximates for larger K. If S, |S| = p, is the approximate
solution for K = p, then the approximate solution for K =p + 1 is determined by
adding to S (if possible) a j* such that 2(S U{j*}) = maxes 2(S U {j}) and
2(S U {j*}) > z(S). We obtain the bound

value of greedy approximation =1— (K — 1)1\’ _e- 1

value of optimal solution K e

where e = 2.718 - - - is the base of the natural logarithm. This result is generalized
to the case in which the greedy algorithm selects a subset of cardinality R at
each iteration.

In Section 5 we analyze an interchange heuristic for (1.6) that begins with an
arbitrary set S of cardinality K and attempts to improve on the value of this set
by replacing ¥ members of S by r members of N — S, 1=r= R. The procedure
stops when no such improvement is possible. When R divides K we obtain the

bound

value of interchange approximation K
value of optimal solution T 2K—-R

For the matroid case, in which z(S) is given by (1.8), we can state (1.6) as an
integer program. In Section 6 we study a linear programming relaxation of this
integer program. The quality of the linear programming approximation depends
on the matroid structure relative to the sets {Q;}. For a particular case that
includes the location problem we obtain the result

value of greedy approximation  _ . (K - 1\*
value of linear programming solution K ) ’

All of the bounds mentioned above are achieved by worst-case examples.

The performance of a heuristic sometimes can be improved by combining it
with partial enumeration. Suppose for some heuristic we have (value of heuris-
tic)/(value of optimal solution) = 1— B(K). In Section 7 we analyze the approx-
imation that first enumerates all (') subsets of N for a specified R < K and then
applies the heuristic to each of the (}) problems (1.6) with a fixed subset of
cardinality R, and K replaced by K — R. Choosing the best of these solutions

yields

value of R-enumeration plus heuristic approximation
value of optimal solution

_, (E-R)
- K

B(K — R).



- (vil)

‘ Proof. We

G.L. Nemhauser, L.A. Wolsey, M.L. Fisher| Maximizing submodular set functions 269

2. Submodular set functions’

Definition 2.1. Given a finite set E, a real-valued function z on the set of subsets
of E is called submodular if

(1) z2(AY+z(BY)=z(AUB)+z(ANB), VA,BCE,

We shall often make use of the incremental value of adding element j to the set

S let pi(S)y=z(SU{j}H — z(S).

Proposition 2.1. Each of the following statements is equivalent and defines a
submodular set function.

) zZ(A)+z(BY=z(AUB)+z(ANB), VA,BCE.

(i) pi(SY=p(T), YVSCTCE and jeE-T.

(iii) pi(SY=p(SU{k}), VSCE and jEE-(SU{k}D.

(iv) ATY=z2(8)+ 2 pS)— X p(SUT={j}), VS, TCE.
JET-S jES-T

() 2(T)=z(S)+ D, p(S), YSCTCE.
jET-S

(vi) (T)=z(S)— 2, p(S—{}), VITCSCE.

JE€S-T

2(Ty=z(S)— >

jES-T

pi(S—{ih+ ,E; PSNT), VS, TCE
i .

will prove the equivalence of (i) and (i), and then
(i) = ()= (iv) = (v) = (iii). Statements (vi) and (vil) can be shown to be

-~ equivalent in a similar manner.

(1)=> (ii). Take SCT, j& T, A=S U{j} and B= T in (i). This yields
2(SU{H+z(T)=z(T U{jh + z(S),

pi(S) = z(SU{jP — 2(S) = (T U{j}) — 2(T) = p(T).
(i) = (i). Let {j, ...
P/,(A N B U {jl’ e ’jifl}) = pj.‘(B U {jla

,J-} = A— B. From (ii) we obtain
’ji~l})7 i=17~--9r-
Summing these r inequalities yields

z(A)—z(ANB)=z(AU B)—-z(B).

* Edmonds (4] and Shapley [8], among others, give various properties of submodular set functions.
See also {17 and [6].
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(iii) = (ii). Take SCT, j& T, and T — S = {f1, ..., j,}. Then from (iii) we have

oY= p(SUD, p(SU{HD =p(SU{L i, ..,
p](S U {jls ey jr—l}) = P](T)

Summing these r inequalities yields (ii).
(i) = (iv). For arbitrary Sand T with T =S ={j,....J,}and S =T ={k;, .. k}
we have

2(SUT)—z(S) = 21 [2(SU{j1, o s iD= 2(S Ut ey Jmi D]

=> o (SU{n i D=2 0= > p(S) (2.1
t=1 t=1 JET-S
where the inequality follows from (ii). Similarly

zZ(SUT)—z(T) = i [(2(T Ulky, ..., kD —z(T Uik, ..., kD]

= 12:1 o (T Uk, .k —{k]) = 21 pe(TUS —{k})

(o)
2
>

= > p(SUT—={}. (2.

jeS-T

We obtain (iv) by subtracting (2.2) from (2.1).
(iv)y=>(v). If SCT, S— T =0 and the last term of (iv) vanishes.
(v)=> (iii). Substitute T=S U {j, k}, j& S U {k} in (v) to obtain

2(S U{j, kP =z(S) + pi(S) + pu(S),
or
z2(SU{j, kP —z(SU{kD

(S U], kP — pe(S) — 2(S) = pi(S).

In many cases we consider nondecreasing submodular functions, which, in
addition to (i), satisfy z(S)=z(T),VSC T CE.

i

pi(S U{k}

I

Proposition 2.2. Each of the following statements is equivalent and defines a
nondecreasing submodular set function.

@) 2(A)+z(B)=z(AUB)+z(ANB), YA, BCE,
z2(A)=z(B), VACBCE.
(ii" p(S)=p(T)=0, YSCTCE, VjEE.
(iv') 2T)=z(8)+ 2, p(S), VS, TCE.
JET-S

Proof. ()< (i") is a trivial consequence of (i)<> (ii). Now (ii") = (i) = (iv)- Bgt
p;i(T)=0 implies that the last term of (iv) is nonpositive, and this fact gives (iv)-




Proof. (Throughout the proof we abbreviate U e+ Q; by U7 Q) Submodularity
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Finally, (iv')=> (if') since choosing S=T U {j} in (iv') yields z(T)=z(T U {j}) or

We remark that definitions (i1) and (ii') suggest decreasing returns to scale and
the notion of concave set functions. Furthermore (i) and (i) when rewritten as

[z(A)—z(AN BN +[z(B)—z(ANB)} =
={z(AUB)—z(ANB), VA BCE

can be thought of as generalized subadditivity. However, subadditivity by itself
is not sufficient to obtain any of our results on approximations given in Sections
4,5 and 6.

Now we look at other properties of submodular set functions that are useful in
the following sections. Since E is a finite set, upper and lower bounds on p;(S)
exist.

Proposition 2.3. If z is a submodular set function on E with —60 <pi(S)= 4,
VSCE,j€EE—S, then

(a) 2TY=z(S)+ D p(S)+|S—Tl|8, VS, TCE.
JET-S

(b) AT)=2(8)~ X p(S—{P+|T-Sly. VS.TCE
JES—

Proof. Substitute the bounds on p; into definitions (iv) and (vii).

We shall also make use of the incremental value of adding subset J to subset
S. Let p;(S)=2z(SUJ)— z(S).

Proposition 2.4. If z is a nondecreasing submodular set function on E and
{J1. ..., I,} is a partition of T — S, Then

2T)=2(S)+ 2 pu(S)-

The next four propositions show how to generate new submodular functions
from given ones. Of particular interest to us is the creation of submodular
functions by letting subsets {Q;} of E be the elements in a set function.

Proposition 2.5 (See (70) of [4]). Given a submodular set function v on the set of
subsets of E and a collection of subsets {Q;},j € N, of E; if (a) vis nondecreasing, or
(b) the {Q;} are disjoint, then z(S) = (U jes Q) is a submodular set function on the
set of subsets of N.
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of v implies
z(A)+ z(B)

o(U Q) +v(U Q)
A B

v

iU QulJ Qi+ eilJ o nJ ol
Also (UAQ,-) N (UBQ,-)Q U 4ns Q; with equality if (b) holds. Therefore either i
@ or (b implies vl(UAQ)N(UzQ)=v(UnsQ). Since (UiQpu :
(Us0) =U s Q we obtain z(A) +z2(B) = z2(AUB) + z(ANB). ;

Proposition 2.6. Let d; be the weight of j € E. The linear set function z(S)=
EJ-ESd,-, S C E, is submodular.

Proposition 2.7. A positive linear combination of submodular functions is sub-

modular.

Proposition 2.8. Given a submodular set function v(S), SCE, then the sel
function z(S)= v(E — S} is submodular on SCE.

Proof.

fi

zZ{A)+z2(BYy=v(E—-A)+uv(E—-B)
v[(E— A)U(E—B)]+v[(E— A) N(E-B)]

WE-ANB)+u(E—-—AUB)=z(ANB)+z(AU B).

v

i

3. Some classes of submodular functions

A. Matroid optimization

Let A =(E,%) be a matroid, ¢, the weight of e€E, and F(E')=
{F: FE%, FC E'}, E'C E. Members of the complement of & are called depen-
dent sets, minimal dependent sets are called circuits. If F 1s independent and
F U{j} is dependent then F U {j} contains exactly one circuit. If C' and C? wre
distinct circuits of F and e € C'NC? then C'U C*~{e} contains a circuit.
(Refer to Section 1 for other terminology.)

Edmonds [5] has given a greedy algorithm that finds a maximum weight
independent set in a matroid. (Note that, since subsets of independent sets are
independent, every maximum weight independent set contains a maximum
weight set in which all elements have positive weight. Thus we assume, without
loss of generality, that all elements of E have positive weight.) The greedy
algorithm proceeds as follows. Arrange the elements of E in a list such that ¢’
above e implies c¢.=c. Examine the topmost element of the list not yet
considered and select it if it does not form a circuit with some of the elements
already selected. The subset selected after the last element has been considered
is of maximum weight.
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Lemma 3.1. Assume that the elements of E have been put in a list as described
above. Let F be the maximum weight independent set in F(E') given by the greedy
algorithm, G the maximum weight independent set in F(E' U {e}), e& E', given by
the greedy algorithm and f € E —(E'U{e}). Exactly one of the following four
statements is true.

(1) FU{f} and G U{f} are both independent.

(2) FU{f} and G U{f} are both dependent and contain the same unique
circuit.

(3) F U{f} is independent and G U{f} is dependent.

(4) FU{f} and G U{f} are both dependent. G = F U{e}—{e,}, e,# e, and e, is in
the circuit of F U{f}. ~

Proof. These four statements are mutually exclusive. Furthermore, the greedy
algorithm implies that G must be F, FU{e} or FU{e}—{e}, e #e More
precisely G = F U {e} if F U{e} is independent and otherwise G = F U {e}—{e,},
where e, (¢, can be e) is a minimum weight element in the unique circuit of
Ful{el.

We now prove, by considering separately the three possibilities for G, that one
of the four statements must be obtained.

(a) G = F. Either (1) or (2) must be true. ‘

b) G=FU{e}. If GU{f}E F then FU{f}€ F as F C G and we obtain (1).
If GU{f}& %, we obtain (2) if FU{f} € % and we obtain (3) if FU{f}€ %.

(¢) G=FUle}—{e}, e,# e Let C be the unique circuit in F U {e}. Suppose
first that F U {f} € % Then C is also the unique circuit in F U {e, f}. Thus ¢, € C
implies that F U {e, f}—{e,} = G U{f} is independent and we obtain (1). Now
suppose that F U{f} & % and let ¢ be the unique circuit in F U{f}. If ¢, € C, then
CUC —{e,} contains a circuit in G U{f} and we obtain (4). If ¢& C, then
¢ c FU{f}—{e,} C G U{f}. Hence C is the unique circuit of G U{f}and we obtain

(2).

Proposition 3.1.> The set function

v(E)= max >, ¢, E'CE,

FEF(E" e€F

is submodular and nondecreasing.

Proof. Since E C E’ implies @(E)(_: F(E"), v is nondecreasing.

To prove submodularity let F, G, e and f be defined as in Lemma 3.1. By
Proposition 2.1 it suffices to show that p(E') = p(E' U {e}). We will establish this
result for the four mutually exclusive and collectively exhaustive statements of
Lemma 3.1. Note that for all E C E, p,(E) = ¢y

*J. Edmonds has pointed out to us that Proposition 3.1 also can be proved using Proposition 2.5
and the fact that the rank function of a matroid is submodular [4]. We prove Proposition 3.1 here

because it does not seem to be in the literature, except in an unpublished paper by Woodall [10],
which proves a more general result for polymatroids.
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(1) and (3). Since FU{f}E &, pr(EN = ¢y
() p(E") = p(E'"U{eD = ¢ — Mmin,ec ¢, Where C is the unique circuit in F U

{f} and G U{f}.
(4) In this case G =F U{e}—{e}, e# e, where ¢, € C, the unique circuit of

F U{e}, and ¢ € ¢, the unique circuit of F U{f}. Thus the unique circuit C' of
G U{f} is contained in C U ¢ —{e} and

E Uley)=c¢—min ¢, = ¢ — min ¢
pf( {}) f geC £ d geCUC—{e,} &

=c¢;— melg ¢, = pi(E"),
4

where the last inequality follows from G = F U{e}—{e}, which implies ¢, =

mingec Cg-
Combining Proposition 2.5 with Proposition 3.1 we obtain.

Proposition 3.2. Let {Q;}, JE N, bea collection of subsets of E. The set function
2(S) = max{Xeerce: F € F(Ujes Q) SC N, is submodular and nondecreasing.

To interpret the use of Proposition 3.2 in the context of problem (1.6) we
consider a graphic matroid. Given a graph G. a subset of its edges is an
independent set if the subgraph induced by these edges is a forest (contains no
cycles). Each edge is assigned a weight and one or more colors from the set N;
Q;, ] € N, is the subset of edges that are colored j. 2(S), S C N, is the value of a
maximum weight forest that contains colors only in the set S. Problem (1.6) is to
find 2 maximum weight forest that contains no more than K colors.

B. Generalized transportation problems

Let I be a set of sources, J a set of sinks and ci the value of assigning source
i to sink k. Consider the family of transportation (or assignment) problems

parametrized by T C I:
U(T) = max 2 E CitXiks

IET k&S

S xu=be k€I,

ieT (3])
2 =1, i€ T,

keJ

Xz =0, ieT, kel

Proposition 3.3 (Shapley [71). o(T), T C I, given by (3.1) is submodular.

We now consider a generalization of (3.1) in which there is a set N of
suppliers. The jth supplier, j € N, can provide a; units from source i and has a
fixed cost of d;. Let z(S) be the value of an optimal solution to the transportation

ot s i s A . gk i



sk S

s e, T
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problem when the set of suppliers S C N is employed, i.e.,
z(S)=max 3, >, caxi — 2, d;»
el kes s
Z X = by, ke,
el

zx,»,\.sz aij, iel
JES

keJs
X,‘kZO, ZEI, kel

(3.2)

Proposition 3.4. z(S), SC N, given by (3.2) is submodular.

Proof. For the moment ignore the fixed costs {d;} and consider a problem of the
form (3.1) with Zia E,EN a; sources each with an availability of one unit. Let M
be the set of these sources and #(T), T C M, the maximum value solution of
(3.1) that can be obtained from the subset T. By Proposition 3.3, #(T) is
submodular. Now let Q; be the subset of M corresponding to the jth supplier. By
Proposition 2.5, Z(S)= 5(U;esQ;), SCN, is submodular. Finally, the sub-
modularity of z(S) = z(S) —E,»ES d; is a consequence of Propositions 2.6 and 2.7.

We note that with z(S) given by (3.2), problem (1.6), without the cardinality
constraint, gives an optimal set of suppliers. In the particular case in which each
supplier is associated with only one source, we obtain the so-called ‘“‘capacitated
location problem™.

C. Boolean polynomials

Let g be a real-valued function on the set of subsets of N and for all SCN
define

2(S)= 2, g(M= 3 (M ][] x
TCcs TCN jET

1, jJES, (3.3)

where x,~={0 ies

We note that any set function z(S) can be represented by (3.3) by defining
g =z(®) and g(S)= z(S)-ETcsg(T). The problem of maximizing z(S) is a
nonlinear boolean program.

Proposition 3.5. z(S) given by (3.3) is submodular if and only if Eﬂ;sg(TU
{i,k)=0 for all SCN and j,k& S, j# k, and nondecreasing if and only if
2resg(T UL =0 forall SC N and j& S.

Proof. We have

pi(S)= > g(T)— > g(Ty= 2 g(TU{j}
TE504) s s

TC
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il

pi(S) — pi(S U {k}) g(TU{ih— > (T uijh
TCSU{k}

TCS

~ > g(T U, kD).
TCS

An interesting case of (3.3) is the quadratic boolean polynomial that is
obtained by putting g(T) =0 for |T|> 2. Here a simple necessary and sufficient
condition for submodularity is g({i,j}H) =0 for all {i,j} with i#j, and z is
nondecreasing if and only if g({j}) = — E,»#,»g({i, i} for all j € N. In this context,
problem (1.6) takes the form:

max{xHx:ex=K,x; €{0,1},j=1,...,n},

where H is a symmetric matrix with non-positive off-diagonal elements and
e=(1,1,..,1).

Submodular quadratic polynomials can be used to describe the cut function of
a graph. Given an undirected graph G =(V, E), let w;=0, i <j be the weight of
edge (i, j)€ E. A cut in G is a partition of the vertices into sets S and V — S. The
value of the cut is given by the function v(S) = E.ESEEV_S wi, where wy = wy = w/;
if (i,j) € E and w; = 0 otherwise.

Let 2(S) = —} 2ics 2jes wys 2 is submodular since

P(S)—p(SUD = X w;—2 w;=wg=0.
JESULk} JES

The submodularity of v follows by noting that v(S) = z(S)+ z(V - 8)— z(V) and
then using Propositions 2.7 and 2.8. Problem (1.6) in this context, without the
cardinality constraint, is to find a maximum cut in the graph. Using the set
function z we see that it is equivalent to

max{3[eWe — xWx — (e — x)W(e—x)]: x; €{0, 1}, j =1, ..., n},
where W = {w;}.

4. The greedy heuristic for submodular set functions

A natural way to find solutions to problem (1.6) quickly is to start from the
null set and add elements one at a time, taking at each step that element which
increases z the most. The resulting solution is called a “greedy” solution, and
the procedure, which we now define formally, the “‘greedy’ heuristic. As before,
we let p;(S) = z(SU{j}) — z(S).

The greedy heuristic for set functions

Initialization. Let S°=@, N°= N and set t = 1.
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Iteration t. Select i(t)E€ N' for which piy(S"™") = max;en+-1(S™") with ties
settled arbitrarily. Set pi—y = pi(S*™).

Step 1. If p_;=0, stop with the set S, K*=t—1<K. If p_;>0, set
St=8"'U{i(t)} and N' = N —{i(¢)}. Continue.

Step 2. If t = K, stop with the set $¥°, K* = K. Otherwise set t > ¢+ 1.

Let Z be the value of an optimal solution to problem (1.6) and let Z€ be the
value of a particular solution to (1.6) constructed by the greedy heuristic. Note
that

ZGZZ(¢)+p0+"'+pK*_1, K*SK,

and, since the {p;} may depend on how ties are settled, Z° may as well. We will
assume throughout this section that K* = 1, thus excluding trivial problems with
Z=2Z%=z2(0).

Let C(6) be the class of submodular set functions satisfying p;(S)=—8,
VSCN,jJEN-S.

Proposition 4.1. Suppose z € C(6), 6 =0, and the greedy heuristic stops after K*
steps, then the corresponding {p} 5" satisfy

1—1
Z=z(@®+> pi+Kp+18, t=0,...,K*~1
i=o

and also 4.1)

K*—-1

7 =z(®)+ 2 p:+ K*6, if K¥<K.
=0

Proof. By Proposition 2.3, z(T) =< z(S)+ E,-ET_S pi(S)+|S - T|e.
Taking T to be an optimal solution of problem (1.6), S to be the set S'
generated after ¢ iterations of the greedy heuristic, and using

Z=zT), p(SY=p, p=0,
|S'-T|=1, 6=0, |T—-S'|=K,
and
z(8Y) = Z(ﬂ)+§)pf,
we obtain :

t—1
Z=z(®)+ > pi+Kp +1t0, t=0,..,K*—1.
i=0

In addition, if K* < K, taking S = SX" yields

K*~1

Z=z@+ > pi+K*6
i=0

as pg-=<0.

From Proposition 4.1 we immediately obtain some simple results. For exam-
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ple, putting # = 0 in the last inequality of (4.1) yields

Proposition 4.2. If the greedy heuristic is applied to problem (1.6) with z non-
decreasing and stops after K* < K steps, the greedy solution is optimal. :

From the first inequality of (4.1) with ¢t = 0 we obtain ’

Proposition 4.3. If the greedy heuristic is applied to problem (1.6) then

Z-27% K-1
=
7 — z(9) K

Proof. The inequality for =0 of (4.1) vields Z — z(8) = Kp, = K(Z° — z(#)) or,

equivalently,
z-2° _K-1
Z - z(9) K

The bound of Proposition 4.3 can be tight only for very large values of 6. For
example, when @ =0 we will obtain the much sharper bound

z-Z° _ (K - 1>K
Z-z® \ K

In fact, we will obtain a family of K bounds, each one of which is tight for a
different interval containing 6. These intervals cover the whole nonnegative
domain of @ that is of interest. The bounds are obtained by applying linear
programming to the problem of minimizing Z% subject to the inequalities (4.1).
Lemma 4.1 states the linear program and its solution. After proving the lemma,
we will use it to establish the bounds. Let a = (K ~ 1)/ K.

Lemma 4.1. Given positive integers j and K, j <K, and a non-negative real
number b, let

i
P(by= Kb + min z X,
=0

t=1

%x,—+Kx,Zl—(K+t)b, t=0,...,7 (4.2)

J
>Sxz=1-(K+j+1b,
i=0

then

P(b)z{l—(j+1)b if b=a*K,

1+(K~j-Db—-a ifb=a"'IK,

and

i =1 (LD i
pin P =1 (1o
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If the last constraint is omitted from (4.2), then P(b) =1+ (K —j—1)b—a'"" for
all b =0.

Proof. The dual of problem (4.2) is

i+l
W(b) = Kb +max » {l— (K + t)b}u,
=0
j+l
Kui+ > u=1, i=0,...], (4.3)

t=i+l

w=0, t=0,..,j+1.

We now proceed to calculate W(b), and hence by LP duality P(b). Let
A =1—u;, in (4.3). Then we observe that feasible values of the remaining
variables u, t =0, ..., j, are uniquely determined with u, = (A/K)a’™" and

S {1 — (K + D)bYu, = A1~/ = (j + Db,
t=0

Therefore
W(h)=max {Kb+A[l—a™'—({+Db]+(1 - A1 —(K+j+ Db}
0=A=1
=max {1~ + )b+ A(Kb — '™}
O=xr=1

It follows immediately that A =0 (= 1), if Kb <a'™', and A =1 (4., =0) if
Kb > o', Therefore

Wb)=max{l-(G+ Db, 1+ (K —j—1)b—a’}
and
1=+ Do, if b =a''K,

1+ (K—j—Db—a™ if b=a"K. “.4)

P(b)= W(b)={

Now we observe thatas j+1>0and K—~j—1=0,

. = ajH 1 ]+1 j+1
min P =#(%) = 1= ()

Consider now the case where the last constraint of (4.2) is omitted. Dropping
’ this constraint is equivalent to finding an optimal dual solution with u;,; = 0. But
* then from (4.4) we obtain P(b)=1+(K —j— )b —a’"".

Theorem 4.1. If the greedy heuristic is applied to problem (1.6) with z € C(8),
then
(a) If it terminates after K* steps, then
z-z°% _ (gj)a K+
Z —z(§)+ Ko K ’
() if .

0 o
0=ZZ@+Ke- K
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then |
Z-2z° e B —k=D _ o ) :

T IRE=Y T Z- Ko E k=0,.. . K—1,
(¢) there is a family of problems of the form (1.6) such that for k=
i,...,K-—2 and

k+1 k
a _ 4 <2

K ~Z-:20+K6 K

and for k=K —1 and

k
Z-z@®+Ké K’

the first inequality of (b) is an equality and K* =k + 1.

Before proving Theorem 4.1 we state a much simpler version of it. Although
far less general, the simplified version presents the most useful part of Theorem
4.1. The right-hand side of (a) increases with K*, hence setting K*= K we

obtain

Theorem 4.2.% If the greedy heuristic is applied to problem (1.6) with z € C(8),
then
Z - ZG - K
LT L o,
Z - z(§)+ K6

Proof of Theorem 4.1. We first dispose of the case § < 0 (z strictly increasing) in
(a). Let 2'(S) = z(S) +|S8]6. We observe that Z— 26 =2'—-2'%, Z—z® + Kb =
Z'—2'(#) and z’ is nondecreasing. Therefore applying the result for 6 =0 to z'
yields the desired conclusion for z. For the remainder of the proof we assume
that 6 = 0.

The rest of the proof uses Lemma 4.1 with

L A D S
b=Z 0+ Ko and X = o T K6

With this transformation of variables the inequalities of the linear program are
identical to the inequalities (4.1) of Proposition 4.1 and we obtain

P(O)Z - 2)+ Ky <Ko+ 3 p. “5)
i=0

Now for j < K*, 2h_o p=Z° — z() and (4.5) yields
P(b)Z —z(§)+ KO) = KO + Z° — z(8).

4 For uncapacitated location problems this result appears in {2].
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The proof of (a) is now separated into two parts.
(K* < K). Here with j+ 1= K* all of the inequalities of (4.2) are valid and

from Lemma 4.1,
*
Pb)y=1- <—KE>a’<*. 4.7)

By substituting (4.7) into (4.6) and doing some algebraic manipulation we obtain

the result (a).
(K* = K). Here with j+ 1=K only the first K inequalities of (4.2) are valid

and from Lemma 4.1

Ph)=1+(K - K)b—a*=1-ak (4.8)
Now substituting (4.8) into (4.6) and doing some algebraic manipulation yields
(a).

To prove (b) for a given non-negative integer k, suppose first that k< K*.
Thus the first k + 1 inequalities of (4.2) are valid and by Lemma 4.1

K~-k=1)
P(b)21+—~——~—z_z(ﬂ)+K6 « 4.9)
Substituting (4.9) into (4.6) and doing some algebraic manipulation yields

Z-2°% _ o OK-k-1)
Z-:+Ko & T Z-z@+Ke
k+1

The right-hand side of (4.10) decreases with 0/(Z—z@+ K8) and o' —
(@ K)K —k — 1) = (k/ K)a*. Therefore

if k<K*. (4.10)

ﬁ k k+1 G(K_k"‘l) . 6 a_"
(k) =" -7 are O=7mrre=k 1D
Now from (a) we have
Z-2° (KM c_ (Kb i ks ko
Z—z(ﬂ)+K9S(K)a S<K>a, if k=K 4.12)

since (k/K)a* increases with k. Combining (4.11) and (4.12) yields

zZ-27Z¢ gkt (K —k—-1)
Z-z(®)+ Ko~ Z—z(®)+ K¢’
7] at

= K o
if k= K* and OSZ—z(ﬂ)+K65K' (4.13)

Finally, combining (4.10) and (4.13) yields (b).

(¢) For K=2,3,..., let C¥ be a K(K~1) by 2K — 1 matrix with entries as
follows:

B K-3 iol e s g .
forj=1,..,K—-1, C?}("—‘{(K DK .al » M i=(=DKA+L,..., JK,
0, otherwise,
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and
KK ifi=14+j+(U-2K, I=1,..,K-1,

=K, .. 2K~ 1, -'-'={ .
forJ K=1, ¢ 0, otherwise,

and let @ be a nonnegative scalar. We claim that z(§) = Eie, maXjes C;’f — 6|S] is the
required function.

For this function, problem (1.6) is an uncapacitated location problem with a
fixed cost of @ at each location. For the case 9 = 0 it can be shown (the details
are given in [2]) that the greedy heuristic can select the first K columns so that
76 = (K — NKX(1—«*), while the last K columns are an optimal set so that

7 = (K — DK¥. More generally when
a"'“S————e——jSak, k=0,...,K—-2

or 0=0=(K-DX for k=K-1,

the greedy heuristic can select the first k + 1 columns while the last K columns
are an optimal set. We then obtain 7% =(K — HK¥(1—a*")—(k+1)8 and
Z = (K - 1)K¥ — K#. Using these values of 6, 76 and Z, (¢) is easily verified.

Having analyzed the worst-case behavior of the greedy heuristic, we consider
whether the results can be substantially improved by finding the R best possible
elements to add to the given solution at each iteration. The R-step greedy
heuristic requires O(n**') evaluations of z so that increasing R by one increases
the number of computations by a factor of n. However we will show that, in the
worst case, increasing R does not yield a substantial improvement in the quality
of solutions. For simplicity, we consider only nondecreasing functions.

The R-step greedy heuristic for set functions

Suppose K = gR — p, where ¢ is a positive integer and 0=p <R. Let §'=

' I'and $°=@. Fort=1,...,q—1choose I'C N—S""with |[I'|= R soas to
maximize £, = z(§") — z(S'™". Finally choose I* C N — 897! with [I*|=R —p s0
as to maximize n = z(S U T*) —z(S* ).

Let

q—2

ZO® = 2@+ > Li+n=2(STUTH
=0
denote the value of an R-step greedy solution.

Theorem 4.3. Suppose z is nondecreasing and the R-step greedy heuristic is

applied to problem (1.6):
(a) If K=qR—p, with q a positive integer, p integer 0 =p = R-1,

Z—Z0® g a\(g—-1\""_ (qg—1\"" _R-
Z—z(ﬂ)s(——q )(————q ) << a ) ., where A = R

(b) If p =0, i.e., K is a multiple of R, the bound is tight.

v
%
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Proof. (a) Let {,-; = maXy=r z(S'UI) - z(S*"") and T be an optimal solution
to (1.6). By submodularity and Proposition 2.4, z(T) < z(S") + 29 p5,(S"), where
{J;}4, is any partition of T —S' with [l=R, i=1,..,q Since z(S)=

z(ﬁ)+2'i;{) ; and py(S') =, we have

Z=<z@+ L+ i+ -+ 4a+agl, t=0,...,q—1 4.14)
Also

ZOR = 2@y + qu L+rn=z(@)+ qz—z Gt AL = ZGR)
=0 =0

since submodularity implies 1 = A{,-1. Therefore

7 — ZG(R)>Z’“ ZG(R)
Z—z® ~ Z-z(®)

It now suffices to prove that

AL 2(8)

(1'{111):1,% m-‘ subject to (4.14) (4.15)

equals 1~ [(g — A)/q]l(q — 1)/q]?"". Reasoning as in the analysis of the 1-step greedy
heuristic (see Lemma 4.1 with b =0), we can formulate problem (4.15) as the
linear program

g=2

min 20 gi + /\é’qfl y
i=

=1
2&“‘"‘1&21, t=0,..,9—1.
i=0
Its dual is
g1
max >, U,
=0

q-—1
qu; + 2 w=1, i=0,...,9—2
t=i+1

qug1=A, u =0, t=0,...,9—-L

The solutions

G=1(44), i=0.a-1,

qa\ q
1 (q—/\)(q— 1)"“‘1 A
u =— (12— E2— , t=0,...,9-2, U=,
t q q—l q q q-—1 q

are primal and dual feasible, and give the required result.
(b) To show that the bound (Z — Z°®)/(Z — z(#)) = ((q — 1)/q)* is attained when
K = gR, take the uncapacitated location problem with

C‘?
C= ce ,
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where the matrix C* defined in the proof of part (c) of Theorem 4.1 is repeated R
times along the diagonal. At iteration ¢ the R-step greedy heuristic can choose
the tth column of each matrix C¢, and therefore the behavior is the same same

as if the greedy heuristic is applied to C*.

Example. K=6, R=3,q= 2,

{ 20000000

> 1 02000000

C= o _ 0001 20000
c? 0001 02000
000000120

000 0O0O0 1 0 2

We obtain

. 7 7GR 129 21V
— G3Yy — - —_— =
z=12, 7°=9 Sm="n ( )

Consider the problem

max {2(9):|S|= |N|— K. z(S) submodular}. (4.16)
For probiem (4.16) we can apply a “stingy heuristic”, where one starts with the
set N at each step removes an element so as to maximize the value of the
remaining ones. An alternative but equivalent view of this heuristic is to apply
the greedy heuristic with the submodular set function v(S)=z(N — S). see
Proposition 2.8. This observation allows us to use Theorem 4.1 to obtain a worst
case analysis for the stingy heuristic applied to (4.16). Let Z be the optimal value
and Z° the value of a stingy heuristic solution to (4.16).

Theorem 4.4. If the stingy heuristic is applied to the problem (4.16) with p;(S)=¢
and terminates after K* steps, then
AR (K*) R
- = |5 & .
Z —z(N)+ K¢ K
When K = |N| problems (1.6) and (4.16) are identical and we can apply both
the greedy and stingy heuristics and consequently obtain the better of the two
bounds from Theorems 4.1 and 4.4.

5. The interchange heuristic for submodular set functions

Here we consider another familiar way of trying to generate a good solution
for problem (1.6). If z is nondecreasing, there is an optimal solution containing K
elements. Thus it makes sense to start from an arbitrary set of K elements and
look for a subset of R or fewer elements that can be profitably replaced by an
equal number of elements not in the set. The procedure is then repeated until n0
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further improvements of this type can be made. The resulting solution is called
an R-interchange solution, and the procedure the R-interchange heuristic.

The R-interchange heuristic for nondecreasing set functions

Initialization. Pick an arbitrary set S°C N with |S% =K. Set t = 1.

[teration t. Given a set S with [§"7'| = K, try to find a set P C N with |P]|=K,

and [P —S"|=|S"'-P|=R such that z(P)> z(S"™"). Set §' = P, t >t + 1, and

continue. If no such set P exists, stop. S* = §' ! is an R-interchange solution.
Let Z'® = z(S*) denote the value of an R-interchange solution.

We note that the above heuristic is far from being completely specified. In
particular both the choice of starting set S°, and the method of searching for P
are arbitrary. The bound given in Theorem 5.1 applies, however, regardless of
how we make these choices.

Theorem 5.1.° Suppose z is nondecreasing, and the R-interchange heuristic is
applied to problem (1.6).
(a) If K = qR — p with q a positive integer, and p integer 0=p =R —1,

zZ-Z'"" __K-R+p
Z—-z(#) 2K-R+p’

(o) If p =0, i.e., K is a multiple of R, the bound is tight.

Proof. (a) For simplicity we show the result only for p =0. Apply the R-step
greedy heuristic of the previous section to problem (1.6) with N replaced by S*,
the elements of the R-interchange solution. We obtain a partition {I'}{_, of §*
where

I|=R,  fo= z(CJ 1") - Z(U 1f>, fo= = Lyt

i=1 i=1
and Z'® = z(#) + 215 &
Let I*= %I, so that S¥=T*UI% Let T = J4_, T* be any partition of an
optimal set T of cardinality K into ¢ disjoint sets of size R.
By submodularity, as in Proposition 2.4,

il

Z = 2(T) = 2(I*) + 3 {z(I* U T — z(I*)}.
=

" However S* = I* U I is an R-interchange solution. Therefore

(Q,l—"wz(I*UI")Fz(I*)Zz(I*U T8 —zd®, k=1,....4

and hence Z=zU¥)+qly=Z'"®+(q =Dl As L=, (G- D1 =
(g — D/gNZ'® — z(@)). So finally we obtain Z= ZI® 4 ((g = DIg)Z'® - z(#)),
which, after rewriting as (2q — I)(Z — ZI®Yy < (g — 1)(Z - z(P)), gives the required
result.

5 . . . .
For uncapacitated location problems and R = 1 this result appears in [2].
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When p > 0 the proof is almost identical to the proof given above, except that
in applying the R-step greedy heuristic to S* a set of size (R — p) is chosen first,
followed by (g — 1) sets of size R.

(b) The R-interchange algorithm applied to the following class of un-
capacitated location problems in the form of problem (1.6) shows that the bound
is tight for p = 0.

The matrix C = (c;) has K? rows and 2K columns. The first K columns
consist of K (K x K) identity matrices, and column (K +s), s =1,..., K has K
successive entries equal to (2K —~R)/K in rows K(s—D+¢t t= 1,..., K, and
seroes elsewhere. (An example with K =4 and R =2 is shown below.)

We claim that the first K columns form an R-interchange solution. Suppose
without loss of generality that columns K—R+1,...,K are removed, and
columns K+1,..., K+ R are added. The decrease in value from dropping the
columns is KR. The increase when adding the new columns is

R(K - R)(zKK' R_ 1) + Rz(zKK— R) - KR.

On the other hand, if fewer than R columns are interchanged, the objective

value decreases.
Therefore the first K columns form an R-interchange solution and Z'® = K2
The last K columns clearly form the optimal solution with Z=

K¥(2K - R)/K) = KQK — R). Hence

Z-Z'™ K-R
7Z—z2(8) 2K—-R’

Example. K =4, R= 2,

1 3 )
1 2
Ll
1 3
1 2
1 3
1 3
1 3
C=
1 3
I ;
1 2
1 3
3
2
3
3
3
2

SRR A
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When K is not a multiple of R the bound of Theorem 5.1 is weaker than the
corresponding tight bound for K = gR. It is possible that for nondecreasing
submodular functions the bound (Z — ZI®Y(Z — z($)) = (K — R)/(2K — R) holds
for all R = K. We have established this result for nondecreasing functions that

arise from uncapacitated location problems.

When 6§ >0 an optimal solution to problem (1.6) may contain fewer than K
elements. Therefore, the R-interchange heuristic given above must be modified
to allow sets of differing cardinality. In particular, at iteration ¢, given the set St
we attempt to find a set P C N with |[P|=K, and [P -S"|=Rand|S"'~P|=R

such that z(P)>z(S'™).
With this generalized version of the R-interchange heuristic we have for

R=1

Theorem 5.2. Suppose z € C(8), 6§ =0, and the generalized 1-interchange heuris-
tic is applied to problem (1.6). Then
z-z'" _K-1
Z—z®+ Ko 2K-1

Proof. Let S be the interchange solution. If |S] = K, the proof parallels the proof
of (a) in Theorem 5.1. If |S|= K — 1, then by Proposition 2.3 and 6 =0

AT)=z(S)+ 2 pi(S)+(K~-1D.
jeT-S

As S is an interchange solution p;(S)=0 for jEN-—-S and (S —{ih =0 for
j € S. This last inequality implies z(S) = z(#). Hence

2(T)=z(S)+ (K- 1o+ KIE L (2(S) — z(9)).

Substituting z(T) = Z and z(S) = Z'” into this last inequality yields the result.

One might hope that the greedy heuristic followed by the R-interchange
heuristic would yield a significant improvement on both. Unfortunately, in terms
of worst case behavior this improvement is not achieved. We have constructed a
family of uncapacitated location problems for which the R-interchange heuristic
cannot improve on the greedy heuristic. For these problems the error
approaches X as K —. Examples of this behavior are given in [2] for R =1.

In the worst case the interchange heuristic does not perform as well as the
greedy heuristic. Also the number of iterations required by the interchange
heuristic depends on the method used to find improving solutions. A poor
method can take an exponential number of iterations as shown by

Theorem 5.3. There is a family of uncapacitated location problems with |[N|=
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2K, K =2,3,..., for which the 1-interchange heuristic can take 25" — (K +2)

iterations.

Proof. The Kth problem, K = 2.3, ..., is defined by the K x 2K matrix C* with
elements ¢ where for i=1,... . K
201, j=2i—1,

ck=920"-1, j=2i
0 otherwise.
Starting from $°={1,3,....2K —3,2K — I} with 2(S% = 2K — (K +2) there is
easily seen to be a sequence of 2K*'—(K +2) iterations where z(S')=
K (K +2)+t for t=0,1,.... 28" = (K+2).

The example below gives C? and the sequence of interchanges for this

problem.
Example
1 20 0 0 O
C'=7j0 0 3 6 0 O
0 0 0 0 7 14
The sequence of S, 0, .., 11=25"-(K+2)is

=
(1,3,5) (2,3,5) (3.4,5) (1,49 (2,4,5) (2,5.6) (3,5,6)
(1,3,6) (2,3,6) (3.4.6) (1,4,6) (2,4, 6).

Note that the first five and last five sets are identical except that the 6th
element has replaced the Sth. Also these five sets without the last element are
precisely the sets generated in the problem defined by K =2.

6. A linear programming approximation

Here we study problem (1.6) in the case where the submodular function i
generated from a matroid as in Proposition 3.2; e, z(8) =
max{zeepcgz Fe F(U s QD) and the {Q, jEN are a partition of E and
satisfy an independence condition to be given below. Under these conditions
problem (1.6) can be formulated as an integer program and the linear program-
ming relaxation of this integer program provides an upper bound on Z. The
result we obtain is a bound on the “duality gap™ between the optimal values of
the integer and real solutions to this linear program. More generally, it is 2
strengthening of Theorem 4.2 in the case where z(S) is generated from a
matroid. ,

Let # =(E, %) be a matroid, ¢, the weight of ¢ € E, FEY={F.Fe% FC E'}
for E'C E and v(E") = maxFEg(Ef)zeEpce‘
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Proposition 6.1 (Edmonds [5]).
v(E") = max Z CeXey
¢€EE

e;xeSr(A), ACE, (6.1)

x, =0, e€ E’, x, =0 otherwise,

where r(A) is the cardinality of a largest independent set in A and x, = 1 if element e

is chosen.
Thus if z(S) = max{zeep c.: F € F(UesQ)}, where {Q;}, j € N is a partition
of E, problem (1.6) can be written as the integer program

Z=max 2, CXe,

e€E
S x.=r(A), ACE, (6.2)
eEA
Xe = Yi» ee Qh je N’ (63)
> =K, (6.4)
i=1
x.=0, e€E, (6.5)

Define the linear programming relaxation of this integer program by

Z' = max D, cX.

eEE
subject to (6.2)-(6.5) and

We have Z“* = Z and, by Theorem 4.1, (Z — Z°)/Z < a*, where ZY is the value
of the greedy solution to (1.6).

Theorem 6.1. Let 4 = (E, &) be a matroid and {Q;}, j € N, be a partition of E
that satisfies the independence condition: ‘i e, f € Q;, there is no circuit in M
containing both e and f. Then

ZLP _ ZG

7}"" = ok

The “independence condition” holds for the uncapacitated location problem,

for which Theorem 6.1 is given in [2]. More generally when the matroid (E, %) is
obtained by combining r distinct matroids (E;, %) so that E=U E;, with E; N
E, =0, j#k, and F € & only if F N E; € %, for all i° the independence property
will hold if the {Q;} are chosen to satisfy [E;N Q)|=1,i=1,..,nJ€E N.

6 . . .. .
R. Giles has pointed out to us that these conditions are also necessary for a matroid (E, ¥) to be
partitionable into sets {Q;} that satisfy the independence condition.
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The proof of Theorem 6.1 is a simple consequence of the proof of Theorem
4.2 (with 6 = 0) and

Lemma 6.1. If the conditions of Theorem 6.1 hold, then
Z® =29+ 2 p(S), SCN
JE€STK)
where S(K)C N — S is an index set of K largest pi(S). ;

The proof of Lemma 6.1 requires some properties of optimal dual variables to
the linear program (6.1). The dual of (6.1) is
min 2, r(A)ua,

ACE

S us=c, ¢€E, (6.7)

A3e
us=0, ACE.

Let F ={ey, ..., e} C E’ be the elements corresponding to an optimal solution
of problem (6.1) with ¢,=" "= Ce, and let sp(T), T C E, denote the set
{e€E:r(TU{eh= r(T). The following proposition is known and easily
verified.

Proposition 6.2. Let A; = spley, ., e, I =1,....8, and define ¢, = 0. An optimal
solution of (6.7) is u%,= C;— Cey j=1,..,s, and uf=0 otherwise.

We use Proposition 6.2 to establish other properties of the optimal dual

variables.

Proposition 6.3. Suppose e & E-E'.
() If FU{e} € F, then 2 ase u} = 0.
Gi) If FU{e} & %, then 2 aze uk=minfc, 6 €C —{e}} where C is the un:
circuit in F U {e}.

ii

Proof. () If FU{e} € &, e A; for any j=1,...,s, and hence u} =0, VA3e.
(i) Suppose {ei, ..., ¢, e} € F, but {e, ..., € €1, €} & F. Then e& A, for k=]
and e € A, for k > j. Therefore
E uf = 2 (Co, — Coppy) = Cejiyr
k>j

A3e

Now ¢ € C CH{er, .o s € €41, e}, and therefore

uj=cy, = min{c,: &€ C —{e}}.
Ade ‘
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We now consider the change in v in problem (6.1) when the constraints x, = 0
and x; = 0 are suppressed, for e, feE-FE.

Proposition 6.4. (1) v(E'U{e}) ~ v(E") = (¢ — EAae u¥)*, where x*= max{0, x}.
(il) If there is no circuit containing e and f,

o(E'Ude, f) — v(E') = <ce— > u;")++ <c,— s uj;) .

A3e ASf

Proof. (i) It follows from the greedy algorithm that if e enters the new solution,
either F U {e} is independent or it replaces the cheapest element in the unique
circuit C containing it. Therefore the result follows from (i) and (ii) of the
previous proposition.

(ii) Let G be the elements corresponding to an optimal solution of (6.1) over
E'U{e} given by the greedy algorithm. We now consider the forms of the
optimal solutions over E’'U{e} and E’U{e, f} given in Lemma 3.1. However,
note that when e and f are in no common circuit cases (3) and (4) of Lemma 3.1
cannot occur. This is obvious for case (3). In case (4) G=F U{el—{e}, e, #e
and e, is in the circuit of F U {f}, which implies that F U {e, f}—{e,} contains a
circuit. Since FU{e}—{e} and FU{f}—{e} are independent, ¢ and [ are
contained in a common circuit of F U {e, f}-{e,}. Thus we are left with cases (1)
and (2), which imply that either F U{f} and G U{f} are both independent or both
contain the same unique circuit. Therefore v(E'Ul{e, f})—v(E'U {eh =
v(E"U{fH)— v(E"), and the result follows.

Proof of Lemma 6.1. Let u°® be the optimal variables as given in Proposition 6.2
for problem (6.7) with E'= U esQ; From Propositions 6.1 and 6.2, z(8)=
(U jes Q) = > 4 uSr(A), the value of the objective function of (6.7).

By definition

ZY = max S cox., subject to (6.2)—(6.6)

eEE

IA

max {2 CoXe + EE u ﬁ(r(A) - EA xe)},

xy ¢EE e€

subject to (6.2)-(6.6), (since u5=0 and (6.2) holds)

=z(S)+ max 2 <ce - 2 ui)xe, subject to (6.3)-(6.6)
X, e€EE

A3e

= 2(S)+max 3, 3 (ce ~Su f)xe, subject to (6.3)~(6.6),

JES e€Q; A3e

A3e

(as UQ=EQNQ=9,j#kand ce— 2 uf;sOforeEUsQ,)
JEN je
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z(S)+m§1x{2 (Z (ce— > uﬁY)y,-:;SyjsK,OSyjs 1}

w

il

JES \e€Q Ade
—usremax (3 (U @)ua) =Y Q)

Sy=K0=y= 1} (by Proposition 6.4)

Jj&S
z(8S) + mg;x{%gpj(S)yj: ,;g =K 0=y = 1}
(since py($) = 2S UL = 2(5) = (™ Q)uQ)- oY a))

2(S)+ >, pi(S).

JES(K)

il

1l

Proof of Theorem 6.1. Using Lemma 6.1 and S=5° t=0,..,K—1as the sets
chosen by the greedy heuristic we have that

ZL‘PSZ(SI)'{_ 2 pj(st)’ tZO,...,.l{“1
jeSHK)
and
(-1

7w =S p+Kp, t=0,...K-1

i=0

Exactly as in Theorem 4.1 (with 6 =0), we obtain (ZF — Z9)ZY = o*.

A surprising consequence of Theorem 6.1 is that if a particular problem is a
worst case example for the greedy heuristic in the sense of Theorem 4.2, then
7 — 7 while if the duality gap is maximum ie., (ZY—2)]1Z'" = ¥, then the
greedy heuristic gives the optimal solution.

Finally, we note that under the hypotheses of Theorem 6.1 we can prove an
analogous theorem for the interchange heuristic. Here we obtain the bound
(ZYF = Z!'MZ"" = (K — DIQK — 1) (see Theorem 5.1). This theorem is proved by

applying the greedy heuristic to the interchange solution and then using the
result of Lemma 6.1 for t = K —1.

7. Heuristics and partial enumeration

By combining partial enumeration with the heuristics of Sections 4 and 5 we
can improve the bounds given previously. Suppose for each subset S of
cardinality R we apply some heuristic (H) to the problem

max {z(SU T):|T|= K — R} (7.1

TCN-S

Call the value of the best of these (INl) approximations Z* and the method the
“R-enumeration plus H ™ heuristic.
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Theorem 7.1. Suppose that z(S), SC N is submodular and nondecreasing and
the heuristic (H) gives a bound of

A
Z — z(9)

when applied to problem (1.6). Then

= B(K)

zZ-7* _K-R
Z—z®~ K

B(K = R).

Proof. Let T of cardinality K be an optimal solution to problem (1.6). Apply at
most R steps of the greedy heuristic of Section 4 to T to obtain a set S*C T,
|S*| = R. If the greedy heuristic stops before R steps have been executed, then
Proposition 4.2 implies that z(S*) = z(T) = 7. Otherwise submodularity implies
that z(S*)— z(#) = (RIK)(Z — z(#)). Now applying heuristic (H) to problem (7.1)
with S = S*, we obtain a set S* U T* for which

Z—z2(S*¥U T*)
Z — z(S%)
Noting that Z*= z(S*U T*) and substituting z(@) + (RIK)Z — z(#)) = z(S*) we
obtain the required result.

= B(K —R).

Theorem 7.1 suggests that the “(R — 1)-enumeration plus 1-greedy” heuristic
may outperform the R-step greedy heuristic, and similarly the “(R—1)-
enumeration plus 1-interchange heuristic” may be preferable to the R-interchange
heuristic.

We close this section by noting that all of the bounds on approximations can
also be viewed as bounds on the value of an optimal solution. If we have a
. particular heuristic value and know that the heuristic value is at least a specified
" fraction of the optimal value, we then have an upper bound on the optimal value.

; Furthermore. if z is nondecreasing, from any heuristic solution S = {iy, ... , ix} we
j obtain
3 Z< min z(SH+ > pi(SH) (7.2)
t=0,..,K-1 jESHK)
where S* = {i, ..., i,}. For example, from the greedy heuristic and (7.2) we obtain

a bound that is at most Z/(1 — aX). But on specific problems the bound computed
from (7.2) frequently will be much tighter.

Thus in branch-and-bound algorithms a heuristic solution can serve the dual
purpose of providing an upper bound on the optimal value as well as the usual
feasible solution and lower bound. In this regard, the bound of Theorem 7.1
could be helpful in an implicit enumeration algorithm that used a tree in which
the nodes at level k represents subsets of N in which k elements are chosen.

Similarly, when viewed in this way, linear programming approximations
provide lower bounds as well as the usual upper bounds.
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8. Future work i

Problem (1.6) is a particular case of
max {z(S): z(S) submodular,
ScN

S an independent set in a matroid MY (8.1)

where in (1.6) the maximal independent sets in A are all subsets of cardinality K.

The approach and many of the results of this paper generalize to problem (8.1) i
and to the maximization of submodular functions over other independence
systems as well. In a sequel to this paper we will analyze approximations for
these problems.
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