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We consider the problem: min {& fj_: 2(S)=z(N), SEN} where r is a nondecreasing
jieS
submodular set function on a finite set V. When = is integer-valued and =(0) =0, itis shown that
the value of a greedy heuristic solution never exceeds the optimal value by more than a factor
a 1
H(max =((j)), where H(d)= I —.
i=1 ]
This generalises earlier results of Dobson md others on the lf)pllk. ations of the greedy
algorithm to the integer covering pxobkm min {/v: Ay=bH, v<{0, 1}} where a;;. 5, =0 are
integer, and also includes the problem of finding a mlmmum wuvht basx: ina matrou,

1. Introduction

Several authors have very recently studied the behaviour of the greedy heuris-
tic for various versions of the integer covering problem

) min { > iy Ay = b, oyiE 0,1} j=1,.., n}
=1
where ; =0, b, f;=0 forall /and /.

On the other hand th‘. optimality of the greedy algorithm for finding a mini-
mum weight basis in a matroid is by now a classic result. Here we consider a genera-
lisation of both problems, namely the submodular set covering problem:

g = 1 r P = Z ‘

(©) Z=min| 3 i =(8) = 2(V)

where z: #(N)—R is a nondecreasing, submodular set function on N={l, ..., n}.
A function is submodular if z(A)+z(B)=z(AUB)+z(4AMNB).

To see that the integer covering problem (C) is a special case of (Q), it suffi-
ces to take z(S)= V min { 7 au, ,f, while we obtain the minimum weight spann-

z—l
ing set of a matroid by fakmo 7 to be the rank function of the matroid. Another

AMS subject classification (1980): 68 C 03, 68 C 25; 90 C 10, 05 B 35
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case of (Q) of practical interest is the set covering problem with capacity restrictions:

min{ 2 fivie 2 agxg;
J=1 j=1
x; =0, y;€{0,1} with a;;€{0,1}.

Note that z” defined by z’(S)=min {z,, z(S)} is submodular and nondec-
reasing whenever z is, so the apparently more general constraint z(S)=z, also fits
the model.

The main result of the paper is to show that if a greedy heuristic is applied
to problem (Q), the value Z¢ of a greedy heuristic solution always satisfies Z¢=

=(1+log,y)Z where y is one of several possible problem parameters. In the special
case that z is integer-valued, the analysis gives Z9/Z = H(max z({j})—z(0)). This
J

m

1 i=1,..m Dx;=d;y; j=1,..,n,

i=1

I

leads to an error factor of H(max 2> a,-,-) for problem (C) with integer data, which
s

is a result of Dobson [3], generalising earlier results of Johnson [5], Lovész [6] and
Chvatal [1] for the set covering problem. If z is the rank function of a matroid,
max (z({j}) —z(®))=1, H(1)=1, and greedy is optimal, see Rado [9] and many others.
J
The problem (Q) and its analysis is also closely related to the problem
max {z(S): 2 L= fo} which has been studied extensively in [7, 8, 10].
=1 jesS

The outline of the paper is as follows. In the following section we give an
integer programming reformulation of (Q), describe the greedy heuristic and prove
the main result. In Section 3 we indicate how a similar analysis can be carried out for
a continuous version of (Q), the problem: Zz=min {w(p): w(y)=w(h), y=0}
where w is a concave submodular nondecreasing function on R".. In addition we de-
duce a highly negative result for the family of set covering problems with unit costs

and duplicate rows: min{ >'y;: Sa;y;=1 i=1,...,m, y;€{0, I}jEN} where
i=1 i=1
a;;€{0, 1} for all 7 and j. Among all “black box” algorithms looking only at values
of the subroutine z(S)= > min{ > a;;, 1}= 3 max a;; (ie., z(S) is the number
j=1 JjES i=1J

of rows covered by the set S of columns), there is no approximation algorithm making
a polynomial number of calls of the subroutine that guarantees less than t times the
optimal value for all problem instances for any fixed value of .

2. Problem reformulation and the greedy heuristic

First we present a reformulation of (Q) as a linear integer program. For this
it is useful to view two alternative properties of submodular functions.
Let 9,(S) = z(SU{j )—z(S).

Proposition 1 [7]. A set function z: P(N)—~R is submodular and nondecreasing if
and only if either

a) 0;(8) = 0(T)=0 VSSTES N or
b) 2(T)=z(S)+ 2 0;(S) VS, TS N. 1
JETRS
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Zp=min 2 f;v, st
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oSy, (M —=z(S) YS =N yEe{0, 1} jewn.

The following result shows us that problems (Q) and (Q') are equivalent, and
hat Z=27,.

>roposition 2. TSN s feasible in (Q) if and only if its characteristic vector yT is
easible in (QF).

roof. Suppose T is feasible in (Q). Then J o/(S)yI= 3 0;(S)=z(T)—
TN JETS

-2(8)=z(N)—z(S)YScN. The first equality holds as 0;,(8)=0 if jeS, the

nequality follows from Proposition I, and z(T)=z(N) as T is feasible in (0).

Conversely if yT is feasible in (O1), and we consider the constraint indexed

v T, 0= ¥ o(T)»/=z(N)—z(T), and hence z(T)=z(N). §

I

Now we present the greedy algorithm.

A Greedy Heuristic for (O)

Set t=1. §°=0. Stop if z(@)=z(N).

reration t. Let 0'= min f 1{
JENN St )
S
Let arg min|{—=2—— =
- ( Qj(St-l)J )

Let o, = 0,,(S*7Y).
Set §*=S""1U{j,}, and o, = z(5H—z(S*~1).

iop if z(SH=z(N), and set T=r.
ltherwise set =1+ 1.
We say that ST is a greedy hewristic solution with value Z6= 3 f;. Evi-
jésT
sntly Z¢ provides an upper bound for Z. Note also that because of submodularity
=0'=0*=...=0".

heorem 1. [f the greedy algorithm is applied to {Q)

P G — Q_](SO). r ]
) z /Z:l—{—logen}’%x{——gj(sr). gj(5)>oj,
/) Z%Z = 1+log, 0T/0%,

4 zZ(N)—z(D) }

) Gl7 = 11 \

Yy Z%1Z = 14 IOge{z——(N)—z(ST*l) .
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If z is integer-valued,

iv) Z%Z = H(m?x 2({jP)—z(9)),
41
where H(d)= ZT for d a positive integer.
i=1

Before proving the theorem we need one preliminary result.

Proposition 3. Let O<uy=u=...=1, and x,=x,=..=x,>0. If S§=
n—1 n—1

> (X —Xip1) FUn Xy = X1+ (Uis1—U) Xi 41, then

i=1 i=1

- sl
S= (m?_x u; x;) [1 -+log, min (x,, Ty )] ’

If (x;)', are integer, S §(m?x u;x;) H (xy).
If {w)i-, are integer, S é(m?x ux;) H ().

n—1 )
Proof. Taking u,;=(max u;x;)/x;, S=(max u; X;) [Z (1 —i‘;—l) + 1] =(max u; x;) X
i i =i X; i

n—1 X; X
[1 + > (1oge ]] =(max u; X;) [1 +log,
=1 X i %

“vi+1l n

], where the second inequality

. X;
uses the fact that 1——;§logex\fle. If {x}/-, are integer, 1——:—1§
Vi

1 1 . By n—1 Xit1 L

?:+:Y_i:+ -l—xi+1+1 if x;>x;.,=1, so that S_.—_(mgxuixi)[igi (1—-—x—i—)+l]:
1

(m?x U; X;) [Z+ et e + 1] :(m:glx u;x;) H ().

Taking x;=(max u;x;)/u;, und using an identical argument completes the
proof. N

e e )
RESh 057> 0 k=i k= Ty

Let k, = max{
J, r

Proof of Theorem 1. To analyse the heuristic it is necessary to obtain lower bounds
on Z. For this we consider the following linear programming relaxation of (@H:
ZY = min Vit (SDYy; = z(N)—z(S") t=0,..,T-1

©9 J%f,y, ,-% 0;(Sy; = z( .) (s

y; =0, JjeEN.
Our aim will be to find appropriate dual feasible solutions for (QF) whose
value will provide a lower bound on Z* and hence on Z.

i) and ii). Let 6*=(6", 02—@", ...,0T—07~%). For a given j, there exists r=T
such that ¢;(S*"1)>0 and ¢;(S")=0. Apply Proposition 3 with 0<8'=...=6"
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and 9;(S")=...=p,;(S""")=>0. Wec obtain that
o (SN H(* =000 (SH+ ... +(0" =01, (S"™Y)

e oo iy (S 0m) , .
= {x:{qf?srw(!;‘(b } {1 +log, mmlBjS’—*) ] = Ji[1+log, min {k,, ka}],

where 0%9;(S*"Y)=f; is a consequence of the greedy heuristic.
Hence (1+log, min {k,, k,})710" is dual feasible for (QF), and therefore

(1 +log, min {ki, ko) [ (z(N)—2(S)) +

(=) (z(N)==z(SH) + ... +(OT=0TDH(z(MN)—z(ST )] =2t = Z

=4

But

T
2% = Z0(z(S)==2(S7Y) = 0 (2(N==(S)+ 3 (00D (2(M)—=(5"D)

M~

and hence
Z% = Z(1+log, min {ky, k.}).

iii) Define uw'¢RT by ui=0" if /=t uj=0 otherwise.
W (0 (S%, ..y 0,(STTY) = 00;(S*7Y) = £,
and h.nce « is dual feasible tor =1, ..., 7. It follows that
,max u (z(N)—=z(8%, ..., Z(N)—=z(ST7Y) = nax, ' (z(N)—=z(S*)) = ZF = Z

Now applying Proposition 3 with 0<0'=...=07, and z(N)—z(SO)=z(V)—
—z(SYHY=...=z(N)—z(ST~1) gives

T

|

1
Z6 = 3 0°(z(SH—=(S") +87 (2(N) — 2(ST )

13

b

[

1

2(V)— (5"

SV = 20 +Hos, k.

= max {0 (z(M)—z(S*™Y)} {1 +log,

/v). If z is integer-valued, ¢;(S") is integer for all j and ¢, and from Proposition 3, we
obtain

019, (S +... +(0"—6He,;(SH = f; H(mjz;lx 2;(S9).
The rest of the proof follows that of i) and ii) above. §

Corollary. For the problem of finding a minimum weight set that is a spanning set in
each of p matroids, there exists a greedy heuristic for which ZS|Z=Hp).

p
Proof. Let r; be the rank function of matroid 7. Takez= >'r; and apply the greedy
i=1

heuristic to the resulting problem (Q). As z(S)=z(N) only if »(S8)=r;(N) for all
i, the result follows from Theorem I.
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It is perhaps of interest to note that when z(.S) is the rank function of a matroid
i.e. p=1 above, the proof of Theorem | shows not only that the greedy algorithm is
optimal but also the polyhedron

{r: ZUSULUN=r©S)y; = 2(N)=2(SYSEN,  »;=0, JEN}

€N

has integer vertices, and hence is the blocker of the bases of the matroid.

3. Further results and extensions

First we consider a continuous version of the earlier model, namely the pro-
blem:

(R) Zp = min{Z;ijj: w(y)=wh), y, 20, j=1,.., n},
7=

where w: R" —R is nondecreasing, submodular (w(x)+w(p)=w(xVy)+w(x AP)),
piecewise linear and concave. Again there is no gain in generality with the constraint
set {y: w(»)=w,, 0=y=h} as both w(y)=w(yAh) and w'(y)=min (w(»), wo)
are submodular whenever w is submodular.

Using the properties of w, it is easily shown, see [9], that:

w(y) = w(x)—l—{ >t [w (x—{—y—s—[——ic—"es] ——w(x)]‘dx, YER: ,t, = L

Sy =X} s

Paralleling the earlier development, we now describe the continuous greedy heuristic
for (R):

Let ¢;(x)= lim w(x+ee;) —w(x)
0;(x)= lim

where e; is the unit vector in direction /.

A Continuous Greedy Algorithm for (R)

Set t=1. Y=(0, ..., 0). Stop if w(0)=w(h).
Iteration t. Let 9'=H1€i113 {file;(»'~1)}
J

Let argmin {f;/0;(y*" Y} = J;-

Let o,=0¢;(y' ).

Let 0,=¢,0,, where g=max {e: w(y'"14zee;)—w(y' ") =¢e0,}.
Set y'=y'"l+ege;,, so that w(y)=w(y'"H+o,.

Stop if w(y")=w(h), and set T=t.

Otherwise set t=t+1.

We call y7 a continuous greedy solution with value Z¢= 3 f; y7. A lower bound
ji=1
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on Zy is now obtained from the linear program:

n
e,
Zi = min = /i

=

v

J

(RE) ; 0,y THy; =w)—w T, =1, T

Defining all other terms in identical fashion, we obtain:

Theorem 2. [f the continuous greedy algorithm is applied to (R) and terminaies
with a feasible solution v°°,
0,1 o7 w(h)—w(0) }

CGJ - | ~ 1 J v = - r ]
7Yz, = 1+log, oo nax oy 5 5 -
IR L+log, min i[[ o) 0,07 = OJ ot 7w (,_11)~w(yrﬁl)

Proof. The proof is identical to that of Theorem 1, once we have shown that (R")
is indeed a relaxation of (R). This will follow as in Proposition 2 if we can show that

w(y) 2w+ = o (x)y7x, yER.
=1

Jj=

) Ve— X, ) .
But w(y) =w(x)+ N o [w [xa;——’-—[—‘—es}— w(.‘c)}ﬁts =1, and setting
L= (’}"S—XS)/G

wlx-+ge,)—w(x
J=wl)

-~ 0*.

wy) =wx)+ > (r,—x,)
[siy,>=x} &

n

Hence w(y) = w(x)+ I (—x)o,(x)=w)+ Fe(x)y; as  0i{x)=0

{siy ,>x} Jj=1

and x,y=0. §

The linear programming covering problem: min {fy: Ay=b, y=0} treated
in [4] is one special case of problem (R). The results here and in [4] suggest that initial
problem scaling is of importance for the worstcase results. Dobson [3] has taken
this further, and shown how rescaling in the course of the greedy algorithm (i.e.,
changing the submodular function) can significantly improve certain worst case per-
formance.

To conclude the paper, we now consider a somewhat different question. Let
2. % denote the families of all problems of the form (Q), (C) respectively. Given an
algorithm for 2, or some subclass of 2 such as the family of integer covering problems
#, that works only by looking at function values z(S'), can we say anything about the
performance guarantees we can obtain from looking at a given number of function
values?

S
a2
2
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For a class 2 of problems, we say that an approximation algorithm H has
performance measure o if ZE=a"Z for all problems D€2, where Z¥ is any solu-
tion value from the algorithm H, and Z is the optimal value.

We say that algorithm H is an O (n?) black box algorithm for @ if there exists
a constant M such that for every problem D¢@ with |N|=n, algorithm H always
terminates before looking at more than Mn? function values.

It is immediate that the greedy algorithm is an O(n?) black box algorithm for
2, and if 27 2 is the subclass of problems with integer data and z(N)=p, we
know from Theorem 1 that the greedy algorithm has a performance measure of
{1+1log, p}. However, for the whole class 2 our results do not given an obvious
performance measure.

Let %* be the subclass of 2 consisting of set covering problems with unit

costs and duplicate rows, i.e., min{Zyj: > a;y;=1, i=1, ..., m, y;c{0, 1}
=1 =1

JEN} with a;;€ {0, 1} for all / and ;. Perhaps not surprisingly in view of the above re-
mark, we have:

Theorem 3. There is no polynomial (O (n?) for any q) black box algorithm for €*
having performance measure less than t for any finite value of t.

Proof. Fix t and q. We consider two families of functions 7 and u;". :
Given the set N={1, ..., n}, we take a set RSN with |R|=r as a special
set. We define o and u® as follows:

v (S)=1|S| if |S|<tr, and R&ES

v *(S) = tr otherwise,
and

uy* ()= || if |S|<a=r
uyt(S) = tr otherwise.

We observe immediately that the optimal value of problem (Q) equals r
when z=7%, and equals tr when z=u7"

What is more, we claim that any black box algorithm requires at least
(:l} / (Trr]=0(n’ ) calls of the function z to distinguish between »7* and u?*. Note
first that any set S that gives information (i.e., v;%(S)#u;*(S)) has |S|<tr,

and hence contains less than (‘"] r-tuples. However the total number of r-tuples is
r

n .
r} , and hence at least (n) / (”) sets must be examined so as to be sure that the spe-
r)f\r

cial set R has not been missed (if it exists). )
: Now we invoke a result from [2] that any nondecreasing set function satis-
fying the following condition:

I z(SU{j}) = 2(S) forsome ScN and jEN—S, then
Z(TU{) = Z(T) forall TS
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is ‘order equivalent’ (z(A)=z(B) i and onlv if Z(A)=Z(B)) toa location func-
m

tion z/(S)= ¥ maxa;. where dyc {0, 1.
i=1 /=9

Both »7° and uf* satisty the above condition, so let »"* and u,"* be two

order equivalent location functions. It follows that any black box algorithm H requi-
‘r, T

res at least O(x") function calls to distinguish between »;"* and u”*, and hence to
guarantee that a«ff=rt.

Letting r=g+ 1, we have shown that for any ¢ and 7, there is no O(a?)
black box algorithm with performance measure less than 7. ¥

Acknowledgement. 1 am most grateful to G. de Ghellinck for his formulation of

Proposition 3 permitting a further shortening of the proof of Theorem 1.
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