Miterm Exam Answer Sheet.

Q1. Two fools decide to hold a gunfight, but have only one gun (a six cylinder resolvers) and one bullet. They agree to fight according to the following scheme: A will pick up the gun, spin the cylinder, and fire at B (with a probability of $1 / 6$ that the hammer will fall on a live round). If the gun fires, A wins. If the gun does not fire, B will pick up the gun, spin the cylinder, and fire at A (with a probability $1 / 6$ that the hammer will fall on a live round). If the gun fires this time, B wins. Otherwise, it's a draw.
[Hint: A starts to fire the gun, so A wins with probability $\frac{1}{6}$ that the gun fires successfully; otherwise B takes the turn, under another probability $\frac{1}{6} \mathrm{~B}$ wins; otherwise it's a draw.]
(a). What is the probability that A wins?

$$
\frac{1}{6}
$$

(b). What's the probability that B wins?

$$
\left(1-\frac{1}{6}\right) \cdot \frac{1}{6}
$$

(c). They find the idea of a draw frustrating. They decide to resolve this by simply repeating the procedure if there is a draw until the gun fires. What's the number of trigger pulls?

$$
P(x=n)=\left(1-\frac{1}{6}\right)^{n-1} \frac{1}{6}
$$

It is a geometric distribution with $p=\frac{1}{6}$, so

$$
E_{p}(x)=1 / p=6
$$

Q2. A dataset consists of 6 IID samples from a probability distribution $P(x)$. The dataset is $\{0,1,1,0,0,1\}$
(a). Estimate $E[X]$

$$
E[X]=\frac{0+1+1+0+0+1}{\# \text { samples }}=3 / 6=0.5
$$

(b). Estimate $E\left[X^{2}\right]$

$$
E[X]=\frac{0^{2}+1^{2}+1^{2}+0^{2}+0^{2}+1^{2}}{\# \text { samples }}=3 / 6=0.5
$$

(c). Estimate $\operatorname{Var}[X]$

$$
\operatorname{Var}[X]=E\left[X^{2}\right]-E^{2}[X]=0.5-0.5^{2}=0.25
$$

(d). Why can you make estimates without knowing $P(X)$ (short phrase)?

The dataset is IID samples.

Q3. Teh patriot missile is an anti-missile missile that was deployed in the first gulf war. At that time the Pentagon claimed that the patriot missile had a probability of destroying a target of 0.8 . They released video tapes of 14 missles firings; 13 showed the missile failing, and one showed the missile destropying its target. Assuming the pentagon's estimate of the probability of destropying a target is correct.
(a). Write an expression for the probability of 1 success in 14 independant firings.

$$
\binom{14}{1} * 0.8 * 0.2^{13}
$$

(b). Is this number smaller than 10^{-6} ?

Yes.

$$
\begin{equation*}
\binom{14}{1} * 0.8 * 0.2^{13}=\frac{14 * 0.8 * 2^{13}}{10^{13}}=\frac{14 * 0.8 * 8 * 1024}{10^{13}}<\frac{10^{7}}{10^{13}}=1 e-6 \tag{1}
\end{equation*}
$$

Q4. A machine has k working parts. Each part will fail with probability $1 / 3$ in year 1 and with probability $2 / 3$ in year 2 . Each failure is independant.
[Hint: I think David expained in class that "Each part will fail with probability $1 / 3$ in year 1 and with probability $2 / 3$ in year 2 " means if a part does not fail in year 1 , then it must fail in year 2 (because $1 / 3$ $+2 / 3=1$, this means the probability that a part fails in year 2 is not independtant of its status in year $1)$. There is a different way to read this if we assume a part fails in year 2 with probability independant of its status in year 1.]
(a). Assume that if any part fails, the machine becomes inoperable. Write an expression for the expected number of years before it becomes inoperable.

$$
\begin{gathered}
P(X=1)=1-\left(1-\frac{1}{3}\right)^{k}=1-\left(\frac{2}{3}\right)^{k}, \quad P(X=2)=1-P(X=1)=\left(\frac{2}{3}\right)^{k} \\
E[X]=1 P(X=1)+2 P(X=2)=1+\left(\frac{2}{3}\right)^{k}
\end{gathered}
$$

(b). Now assume that a clever designer rearranges the machine so that it becomes inoperable only if all parts fail. Write an expression for the expected number of years before it becomes inoperable?

$$
\begin{gathered}
P(X=1)=\left(\frac{1}{3}\right)^{k}, \quad P(X=2)=1-P(X=1)=1-\left(\frac{1}{3}\right)^{k} \\
E^{\prime}[X]=1 P(X=1)+2 P(X=2)=2-\left(\frac{1}{3}\right)^{k}
\end{gathered}
$$

(c). Which machine is more reliable?

The second machine when k is greater than 1 (intuitively); or mathematically:

$$
E^{\prime}[X]-E[X]=1-\left(\left(\frac{1}{3}\right)^{k}+\left(\frac{2}{3}\right)^{k}\right) \geq 1-\left(\frac{1}{3}+\frac{2}{3}\right)^{k}=0
$$

Q5. You select three people at random, and ask the month of their birth. Each month has the same probability of being the month of the birth for a randomly selected person. You could be told 1 (i.e. all born in the same month), 2 (i.e. two born in one month, one born in a different), or 3 distinct months. Write an expression for the expected number of months?

$$
\begin{gathered}
P(X=1)=\binom{12}{1} * \frac{1}{12} * \frac{1}{12} * \frac{1}{12}=\frac{1}{144} \\
P(X=2)=\binom{3}{2} *\left(\binom{12}{1} \frac{1}{12} * \frac{1}{12}\right) * \frac{11}{12}=\frac{33}{144} \\
P(X=3)=\frac{11}{12} * \frac{10}{11}=\frac{110}{144} \\
E[X]=1 P(X=1)+2 P(X=2)+3 P(X=3)=\frac{397}{144}
\end{gathered}
$$

Q6. The figure shows a scatter plot of a dataset in normalized coordinates.
(a). What is the sign of r, the correlation coefficient?

Positive
(b). The magnitude of r is 0.8 , the x-coordinate of a data item in normalized coordinates in 1 , what's the best prediction of its y-coordinate

$$
\hat{y}=r x=0.8 * 1=0.8
$$

(b). The magnitude of r is 0.8 , the y-coordinate of a data item in normalized coordinates in -0.2 , what's the best prediction of its x-coordinate

$$
\hat{x}=r y=0.8 *(-0.2)=-0.16
$$

