

Contents

1 Notation and conventions	2
1.1 Some Useful Mathematical Facts	3
1.2 Acknowledgements	3
2 First Tools for Looking at Data	4
2.1 Datasets	4
2.2 What's Happening? - Plotting Data	6
2.2.1 Bar Charts	7
2.2.2 Histograms	7
2.2.3 How to Make Histograms	8
2.2.4 Conditional Histograms	10
2.3 Summarizing 1D Data	10
2.3.1 The Mean	11
2.3.2 Standard Deviation and Variance	12
2.3.3 Variance	15
2.3.4 The Median	16
2.3.5 Interquartile Range	17
2.3.6 Using Summaries Sensibly	19
2.4 Plots and Summaries	20
2.4.1 Some Properties of Histograms	20
2.4.2 Standard Coordinates and Normal Data	22
2.4.3 Boxplots	25
2.5 Whose is bigger? Investigating Australian Pizzas	27
2.6 What You Must Remember	31
3 Intermezzo - Programming Tools	33
4 Looking at Relationships	38
4.1 Plotting 2D Data	38
4.1.1 Categorical Data, Counts, and Charts	38
4.1.2 Series	41
4.1.3 Scatter Plots for Spatial Data	43
4.1.4 Exposing Relationships with Scatter Plots	44
4.2 Correlation	48
4.2.1 The Correlation Coefficient	50
4.2.2 Using Correlation to Predict	55
4.2.3 Confusion caused by correlation	58
4.3 Sterile Males in Wild Horse Herds	60
4.4 What You Must Remember	62
5 Basic ideas in probability	67
5.1 Experiments, Outcomes, Events, and Probability	67
5.1.1 The Probability of an Outcome	69

5.1.2	Events	70
5.1.3	The Probability of Events	72
5.1.4	Computing Probabilities by Counting Outcomes	75
5.1.5	Computing Probabilities by Reasoning about Sets	78
5.1.6	Independence	81
5.1.7	Permutations and Combinations	84
5.2	Conditional Probability	89
5.2.1	Evaluating Conditional Probabilities	89
5.2.2	The Prosecutors Fallacy	95
5.2.3	Independence and Conditional Probability	96
5.3	Example: The Monty Hall Problem	98
5.4	What you should remember	100
6	Random Variables and Expectations	104
6.1	Random Variables	104
6.1.1	Joint and Conditional Probability for Random Variables	106
6.1.2	Just a Little Continuous Probability	108
6.2	Expectations and Expected Values	112
6.2.1	Expected Values of Discrete Random Variables	112
6.2.2	Expected Values of Continuous Random Variables	113
6.2.3	Mean, Variance and Covariance	114
6.2.4	Expectations and Statistics	117
6.2.5	Indicator Functions	118
6.2.6	Two Inequalities	119
6.2.7	IID Samples and the Weak Law of Large Numbers	120
6.3	Using Expectations	122
6.3.1	Should you accept a bet?	123
6.3.2	Odds, Expectations and Bookmaking — a Cultural Diversion	125
6.3.3	Ending a Game Early	126
6.3.4	Making a Decision with Decision Trees and Expectations . .	127
6.3.5	Utility	129
6.4	What you should remember	131
7	Useful Probability Distributions	135
7.1	Discrete Distributions	135
7.1.1	The Discrete Uniform Distribution	135
7.1.2	Sums and Differences of Discrete Uniform Random Variables	135
7.1.3	The Geometric Distribution	136
7.1.4	The Binomial Probability Distribution	137
7.1.5	Multinomial probabilities	139
7.1.6	The Poisson Distribution	140
7.2	Continuous Distributions	142
7.2.1	The Continuous Uniform Distribution	142
7.2.2	The Beta Distribution	142
7.2.3	The Exponential Distribution	142
7.2.4	Sums of Continuous Random Variables	143
7.2.5	The Normal Distribution	144

7.3	Probability as Frequency	147
7.3.1	Large N	149
7.3.2	Getting Normal	150
7.3.3	So What?	152
7.4	What you should remember	153
8	Markov Chains and Simulation	158
8.1	Markov Chains	158
8.1.1	Motivating Example: Multiple Coin Flips	158
8.1.2	Motivating Example: The Gambler's Ruin	160
8.1.3	Motivating Example: A Virus	162
8.1.4	Markov Chains	162
8.1.5	Example: Particle Motion as a Markov Chain	165
8.2	Simulation	167
8.2.1	Obtaining Uniform Random Numbers	167
8.2.2	Computing Expectations with Simulations	167
8.2.3	Computing Probabilities with Simulations	168
8.2.4	Simulation Results as Random Variables	169
8.2.5	Obtaining Random Samples	172
8.3	Simulation Examples	174
8.3.1	Simulating Experiments	175
8.3.2	Simulating Markov Chains	176
8.3.3	Example: Ranking the Web by Simulating a Markov Chain .	178
8.3.4	Example: Simulating a Complicated Game	180

C H A P T E R 1

Notation and conventions

A dataset as a collection of d -tuples (a d -tuple is an ordered list of d elements). Tuples differ from vectors, because we can always add and subtract vectors, but we cannot necessarily add or subtract tuples. There are always N items in any dataset. There are always d elements in each tuple in a dataset. The number of elements will be the same for every tuple in any given tuple. Sometimes we may not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will be vectors. We write a vector in bold, so \mathbf{x} could represent a vector or a tuple (the context will make it obvious which is intended).

The entire data set is $\{\mathbf{x}\}$. When we need to refer to the i 'th data item, we write \mathbf{x}_i . Assume we have N data items, and we wish to make a new dataset out of them; we write the dataset made out of these items as $\{\mathbf{x}_i\}$ (the i is to suggest you are taking a set of items and making a dataset out of them). If we need to refer to the j 'th component of a vector \mathbf{x}_i , we will write $x_i^{(j)}$ (notice this isn't in bold, because it is a component not a vector, and the j is in parentheses because it isn't a power). Vectors are always column vectors.

Terms:

- $\text{mean}(\{x\})$ is the mean of the dataset $\{x\}$ (definition 1, page 11).
- $\text{std}(x)$ is the standard deviation of the dataset $\{x\}$ (definition 2, page 12).
- $\text{var}(\{x\})$ is the standard deviation of the dataset $\{x\}$ (definition 3, page 16).
- $\text{median}(\{x\})$ is the standard deviation of the dataset $\{x\}$ (definition 4, page 17).
- $\text{percentile}(\{x\}, k)$ is the $k\%$ percentile of the dataset $\{x\}$ (definition 5, page 18).
- $\text{iqr}\{x\}$ is the interquartile range of the dataset $\{x\}$ (definition 7, page 18).
- $\{\hat{x}\}$ is the dataset $\{x\}$, transformed to standard coordinates (definition 8, page 23).
- Standard normal data is defined in definition 9, page 24).
- Normal data is defined in definition 10, page 25).
- $\text{corr}(\{(x, y)\})$ is the correlation between two components x and y of a dataset (definition 1, page 51).
- \emptyset is the empty set.
- Ω is the set of all possible outcomes of an experiment.
- Sets are written as \mathcal{A} .

- \mathcal{A}^c is the complement of the set \mathcal{A} (i.e. $\Omega - \mathcal{A}$).
- \mathcal{E} is an event (page 184).
- $P(\{\mathcal{E}\})$ is the probability of event \mathcal{E} (page 184).
- $P(\{\mathcal{E}\}|\{\mathcal{F}\})$ is the probability of event \mathcal{E} , conditioned on event \mathcal{F} (page 184).
- $p(x)$ is the probability that random variable X will take the value x ; also written $P(\{X = x\})$ (page 184).
- $p(x, y)$ is the probability that random variable X will take the value x and random variable Y will take the value y ; also written $P(\{X = x\} \cap \{Y = y\})$ (page 184).
- $\underset{x}{\operatorname{argmax}} f(x)$ means the value of x that maximises $f(x)$.

Background information:

- *Cards*: A standard deck of playing cards contains 52 cards. These cards are divided into four suits. The suits are: spades and clubs (which are black); and hearts and diamonds (which are red). Each suit contains 13 cards: Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (sometimes called Knave), Queen and King. It is common to call Jack, Queen and King *court cards*.
- *Dice*: If you look hard enough, you can obtain dice with many different numbers of sides (though I've never seen a three sided die). We adopt the convention that the sides of an N sided die are labeled with the numbers $1 \dots N$, and that no number is used twice. Most dice are like this.
- *Fairness*: Each face of a fair coin or die has the same probability of landing upmost in a flip or roll.

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function $\Gamma(x)$ is defined by a series of steps. First, we have that for n an integer,

$$\Gamma(n) = (n - 1)!$$

and then for z a complex number with positive real part (which includes positive real numbers), we have

$$\Gamma(z) = \int_0^\infty t^z \frac{e^{-t}}{t} dt.$$

By doing this, we get a function on positive real numbers that is a smooth interpolate of the factorial function. We won't do any real work with this function, so won't expand on this definition. In practice, we'll either look up a value in tables or require a software environment to produce it.

1.2 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Yusuf Sobh, — Your Name Here —

C H A P T E R 2

First Tools for Looking at Data

The single most important question for a working scientist — perhaps the single most useful question anyone can ask — is: “what’s going on here?” Answering this question requires creative use of different ways to make pictures of datasets, to summarize them, and to expose whatever structure might be there. This is an activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed recipe for understanding a dataset, but there is a rich variety of tools we can use to get insights.

2.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phenomenon. These descriptions could take a variety of forms, but it is important that they are descriptions of the same thing. For example, my grandfather collected the daily rainfall in his garden for many years; we could collect the height of each person in a room; or the number of children in each family on a block; or whether 10 classmates would prefer to be “rich” or “famous”. There could be more than one description recorded for each item. For example, when he recorded the contents of the rain gauge each morning, my grandfather could have recorded (say) the temperature and barometric pressure. As another example, one might record the height, weight, blood pressure and body temperature of every patient visiting a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could be **categorical**, meaning that each data item can take a small set of prescribed values. For example, we might record whether each of 100 passers-by preferred to be “Rich” or “Famous”. As another example, we could record whether the passers-by are “Male” or “Female”. Categorical data could be **ordinal**, meaning that we can tell whether one data item is larger than another. For example, a dataset giving the number of children in a family for some set of families is categorical, because it uses only non-negative integers, but it is also ordinal, because we can tell whether one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be assigned a number in a reasonably sensible fashion. For example, many readers will recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question that is usually relatively easy to answer, but is quite strange when you think about it carefully. As another example, we could ask a set of users to rate the usability of an interface in a range from “very bad” to “very good”, and then record that using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very good”.

Many interesting datasets involve **continuous** variables (like, for example, height or weight or body temperature) when you could reasonably expect to encounter any value in a particular range. For example, we might have the heights of

all people in a particular room; or the rainfall at a particular place for each day of the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d -tuples (a d -tuple is an ordered list of d elements). Tuples differ from vectors, because we can always add and subtract vectors, but we cannot necessarily add or subtract tuples. We will always write N for the number of tuples in the dataset, and d for the number of elements in each tuple. The number of elements will be the same for every tuple, though sometimes we may not know the value of some elements in some tuples (which means we must figure out how to predict their values, which we will do much later).

Index	net worth	Index	Taste score	Index	Taste score
1	100, 360	1	12.3	11	34.9
2	109, 770	2	20.9	12	57.2
3	96, 860	3	39	13	0.7
4	97, 860	4	47.9	14	25.9
5	108, 930	5	5.6	15	54.9
6	124, 330	6	25.9	16	40.9
7	101, 300	7	37.3	17	15.9
8	112, 710	8	21.9	18	6.4
9	106, 740	9	18.1	19	18
10	120, 170	10	21	20	38.9

TABLE 2.1: *On the left*, net worths of people you meet in a bar, in US \$; I made this data up, using some information from the US Census. The index column, which tells you which data item is being referred to, is usually not displayed in a table because you can usually assume that the first line is the first item, and so on. *On the right*, the taste score (I'm not making this up; higher is better) for 20 different cheeses. This data is real (i.e. not made up), and it comes from <http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html>.

Each element of a tuple has its own type. Some elements might be categorical. For example, one dataset we shall see several times records entries for Gender; Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money for 478 children, so $d = 11$ and $N = 478$. In this dataset, each entry is categorical data. Clearly, these tuples are not vectors because one cannot add or subtract (say) Genders.

Most of our data will be vectors. We use the same notation for a tuple and for a vector. We write a vector in bold, so \mathbf{x} could represent a vector or a tuple (the context will make it obvious which is intended).

The entire data set is $\{\mathbf{x}\}$. When we need to refer to the i 'th data item, we write \mathbf{x}_i . Assume we have N data items, and we wish to make a new dataset out of them; we write the dataset made out of these items as $\{\mathbf{x}_i\}$ (the i is to suggest you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a variety of methods for plotting and summarizing 1-tuples. We can build these plots from a dataset of d -tuples by extracting the r 'th element of each d -tuple.

Mostly, we will deal with continuous data. All through the book, we will see many datasets downloaded from various web sources, because people are so generous about publishing interesting datasets on the web. In the next chapter, we will look at 2-dimensional data, and we look at high dimensional data in chapter ??.

2.2 WHAT'S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables can be helpful, but aren't much use for large datasets, because it is difficult to get any sense of what the data means from a table. As a continuous example, table 2.1 gives a table of the net worth of a set of people you might meet in a bar (I made this data up). You can scan the table and have a rough sense of what is going on; net worths are quite close to \$ 100, 000, and there aren't any very big or very small numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary variety of phenomena. Apparently, one can score the goodness of the flavor of cheese with a number (bigger is better); table 2.1 gives a score for each of thirty cheeses (I did not make up this data, but downloaded it from <http://lib.stat.cmu.edu/DASL/Datafiles/Cheese.html>). You should notice that a few cheeses have very high scores, and most have moderate scores. It's difficult to draw more significant conclusions from the table, though.

Gender	Goal	Gender	Goal
boy	Sports	girl	Sports
boy	Popular	girl	Grades
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	girl	Grades
girl	Popular	girl	Sports
girl	Grades	girl	Popular
girl	Sports	girl	Grades
girl	Sports	girl	Sports

TABLE 2.2: *Chase and Dunner (?) collected data on what students thought made other students popular. As part of this effort, they collected information on (a) the gender and (b) the goal of students. This table gives the gender ("boy" or "girl") and the goal (to make good grades — "Grades"; to be popular — "Popular"; or to be good at sports — "Sports"). The table gives this information for the first 20 of 478 students; the rest can be found at <http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html>. This data is clearly categorical, and not ordinal.*

Table 2.2 shows a table for a set of categorical data. Psychologists collected data from students in grades 4-6 in three school districts to understand what factors students thought made other students popular. This fascinating data set can be found at <http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html>, and was prepared by Chase and Dunner (?). Among other things, for each student

they asked whether the student's goal was to make good grades ("Grades", for short); to be popular ("Popular"); or to be good at sports ("Sports"). They have this information for 478 students, so a table would be very hard to read. Table 2.2 shows the gender and the goal for the first 20 students in this group. It's rather harder to draw any serious conclusion from this data, because the full table would be so big. We need a more effective tool than eyeballing the table.

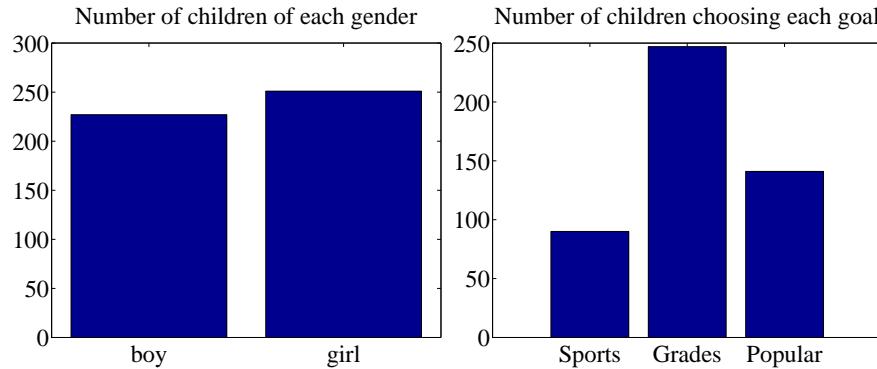


FIGURE 2.1: *On the left, a bar chart of the number of children of each gender in the Chase and Dunner study (). Notice that there are about the same number of boys and girls (the bars are about the same height). On the right, a bar chart of the number of children selecting each of three goals. You can tell, at a glance, that different goals are more or less popular by looking at the height of the bars.*

2.2.1 Bar Charts

A **bar chart** is a set of bars, one per category, where the height of each bar is proportional to the number of items in that category. A glance at a bar chart often exposes important structure in data, for example, which categories are common, and which are rare. Bar charts are particularly useful for categorical data. Figure 2.1 shows such bar charts for the genders and the goals in the student dataset of Chase and Dunner (). You can see at a glance that there are about as many boys as girls, and that there are more students who think grades are important than students who think sports or popularity is important. You couldn't draw either conclusion from Table 2.2, because I showed only the first 20 items; but a 478 item table is very difficult to read.

2.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of ranges. In turn, this means that we can reasonably expect a continuous dataset contains few or no pairs of items that have *exactly* the same value. Drawing a bar chart in the obvious way — one bar per value — produces a mess of unit height bars, and seldom leads to a good plot. Instead, we would like to have fewer bars, each representing more data items. We need a procedure to decide which data items count in which bar.

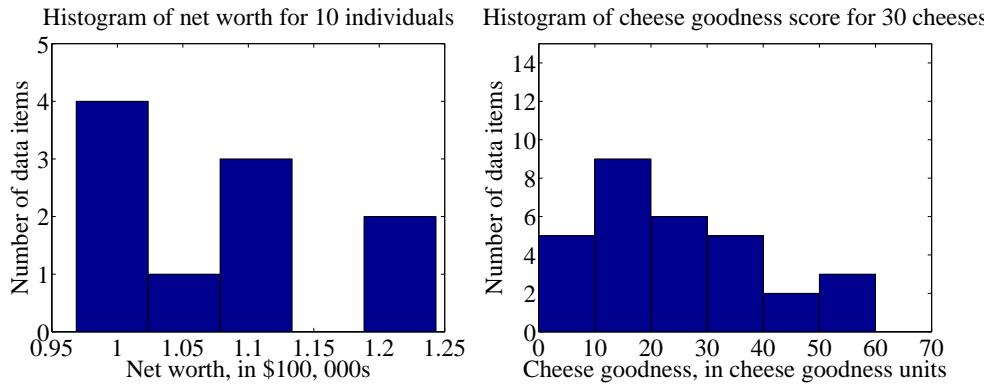


FIGURE 2.2: On the left, a histogram of net worths from the dataset described in the text and shown in table 2.1. On the right, a histogram of cheese goodness scores from the dataset described in the text and shown in table 2.1.

A simple generalization of a bar chart is a **histogram**. We divide the range of the data into intervals, which do not need to be equal in length. We think of each interval as having an associated pigeonhole, and choose one pigeonhole for each data item. We then build a set of boxes, one per interval. Each box sits on its interval on the horizontal axis, and its height is determined by the number of data items in the corresponding pigeonhole. In the simplest histogram, the intervals that form the bases of the boxes are equally sized. In this case, the height of the box is given by the number of data items in the box.

Figure 2.2 shows a histogram of the data in table 2.1. There are five bars — by my choice; I could have plotted ten bars — and the height of each bar gives the number of data items that fall into its interval. For example, there is one net worth in the range between \$102, 500 and \$107, 500. Notice that one bar is invisible, because there is no data in that range. This picture suggests conclusions consistent with the ones we had from eyeballing the table — the net worths tend to be quite similar, and around \$100, 000.

Figure 2.2 shows a histogram of the data in table 2.1. There are six bars (0-10, 10-20, and so on), and the height of each bar gives the number of data items that fall into its interval — so that, for example, there are 9 cheeses in this dataset whose score is greater than or equal to 10 and less than 20. You can also use the bars to estimate other properties. So, for example, there are 14 cheeses whose score is less than 20, and 3 cheeses with a score of 50 or greater. This picture is much more helpful than the table; you can see at a glance that quite a lot of cheeses have relatively low scores, and few have high scores.

2.2.3 How to Make Histograms

Usually, one makes a histogram by finding the appropriate command or routine in your programming environment. I use Matlab, and chapter 3 sketches some useful Matlab commands. However, it is useful to understand the procedures used.

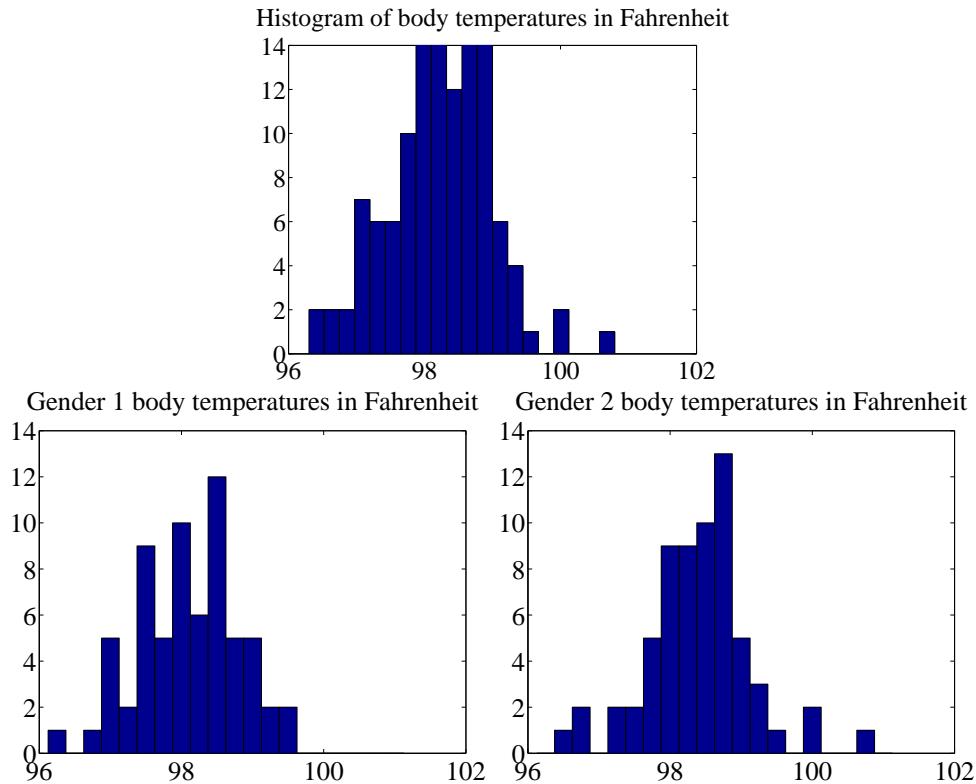


FIGURE 2.3: *On top*, a histogram of body temperatures, from the dataset published at <http://www2.stetson.edu/~jrasp/data.htm>. These seem to be clustered fairly tightly around one value. The **bottom row** shows histograms for each gender (I don't know which is which). It looks as though one gender runs slightly cooler than the other.

Histograms with Even Intervals: The easiest histogram to build uses equally sized intervals. Write x_i for the i 'th number in the dataset, x_{\min} for the smallest value, and x_{\max} for the largest value. We divide the range between the smallest and largest values into n intervals of even width $(x_{\max} - x_{\min})/n$. In this case, the height of each box is given by the number of items in that interval. We could represent the histogram with an n -dimensional vector of counts. Each entry represents the count of the number of data items that lie in that interval. Notice we need to be careful to ensure that each point in the range of values is claimed by exactly one interval. For example, we could have intervals of $[0 - 1)$ and $[1 - 2)$, or we could have intervals of $(0 - 1]$ and $(1 - 2]$. We could *not* have intervals of $[0 - 1]$ and $[1 - 2]$, because then a data item with the value 1 would appear in two boxes. Similarly, we could not have intervals of $(0 - 1)$ and $(1 - 2)$, because then a data item with the value 1 would not appear in any box.

Histograms with Uneven Intervals: For a histogram with even intervals, it is natural that the height of each box is the number of data items in that box.

But a histogram with even intervals can have empty boxes (see figure 2.2). In this case, it can be more informative to have some larger intervals to ensure that each interval has some data items in it. But how high should we plot the box? Imagine taking two consecutive intervals in a histogram with even intervals, and fusing them. It is natural that the height of the fused box should be the average height of the two boxes. This observation gives us a rule.

Write dx for the width of the intervals; n_1 for the height of the box over the first interval (which is the number of elements in the first box); and n_2 for the height of the box over the second interval. The height of the fused box will be $(n_1 + n_2)/2$. Now the *area* of the first box is $n_1 dx$; of the second box is $n_2 dx$; and of the fused box is $(n_1 + n_2)dx$. For each of these boxes, the *area* of the box is proportional to the number of elements in the box. This gives the correct rule: plot boxes such that the area of the box is proportional to the number of elements in the box.

2.2.4 Conditional Histograms

Most people believe that normal body temperature is 98.4° in Fahrenheit. If you take other people's temperatures often (for example, you might have children), you know that some individuals tend to run a little warmer or a little cooler than this number. I found data giving the body temperature of a set of individuals at <http://www2.stetson.edu/~jrasp/data.htm>. As you can see from the histogram (figure 2.3), the body temperatures cluster around a small set of numbers. But what causes the variation?

One possibility is gender. We can investigate this possibility by comparing a histogram of temperatures for males with histogram of temperatures for females. Such histograms are sometimes called **conditional histograms** or **class-conditional histograms**, because each histogram is conditioned on something (in this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don't know which is male and which female). Figure 2.3 gives the class conditional histograms. It does seem like individuals of one gender run a little cooler than individuals of the other, although we don't yet have mechanisms to test this possibility in detail (chapter 22).

2.3 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are continuous real numbers. Furthermore, we will assume that values can be added, subtracted, and multiplied by constants in a meaningful way. Human heights are one example of such data; you can add two heights, and interpret the result as a height (perhaps one person is standing on the head of the other). You can subtract one height from another, and the result is meaningful. You can multiply a height by a constant — say, $1/2$ — and interpret the result (A is half as high as B). Not all data is like this. Categorical data is often not like this. For example, you could not add "Grades" to "Popular" in any useful way.

2.3.1 The Mean

One simple and effective summary of a set of data is its **mean**. This is sometimes known as the **average** of the data.

Definition 2.1 Mean

Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . Their mean is

$$\text{mean}(\{x\}) = \frac{1}{N} \sum_{i=1}^{i=N} x_i.$$

For example, assume you're in a bar, in a group of ten people who like to talk about money. They're average people, and their net worth is given in table 2.1 (you can choose who you want to be in this story). The mean of this data is \$107,903.

An important interpretation of the mean is that it is the best guess of the value of a new data item, given no information at all. In the bar example, if a new person walked into this bar, and you had to guess that person's net worth, you should choose \$107,903.

Properties of the Mean The mean has several important properties you should remember:

- Scaling data scales the mean: or $\text{mean}(\{kx_i\}) = k\text{mean}(\{x_i\})$.
- Translating data translates the mean: or $\text{mean}(\{x_i + c\}) = \text{mean}(\{x_i\}) + c$.
- The sum of signed differences from the mean is zero. This means that

$$\sum_{i=1}^N (x_i - \text{mean}(\{x_i\})) = 0.$$

- Choose the number μ such that the sum of squared distances of data points to μ is minimized. That number is the mean. In notation

$$\arg \min_{\mu} \sum_i (x_i - \mu)^2 = \text{mean}(\{x_i\})$$

These properties are easy to prove (and so easy to remember). All but one proof is relegated to the exercises.

Proposition: $\arg \min_{\mu} \sum_i (x_i - \mu)^2 = \text{mean}(\{x\})$

Proof: Choose the number μ such that the sum of squared distances of data points to μ is minimized. That number is the mean. In notation:

$$\arg \min_{\mu} \sum_i (x_i - \mu)^2 = \text{mean}(\{x\})$$

We can show this by actually minimizing the expression. We must have that the derivative of the expression we are minimizing is zero at the value of μ we are seeking. So we have

$$\begin{aligned} \frac{d}{d\mu} \sum_{i=1}^N (x_i - \mu)^2 &= \sum_{i=1}^N 2(x_i - \mu) \\ &= 2 \sum_{i=1}^N (x_i - \mu) \\ &= 0 \end{aligned}$$

so that $2N\text{mean}(\{x\}) - 2N\mu = 0$, which means that $\mu = \text{mean}(\{x\})$.

Property 2.1: The Average Squared Distance to the Mean is Minimized

2.3.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean. This information is given by the **standard deviation**, which is the root mean square of the offsets of data from the mean.

Definition 2.2 *Standard deviation*

Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . The standard deviation of this dataset is:

$$\text{std}(x_i) = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \text{mean}(\{x\}))^2} = \sqrt{\text{mean}(\{(x_i - \text{mean}(\{x\}))^2\})}.$$

You should think of the standard deviation as a scale. It measures the size of the average deviation from the mean for a dataset. When the standard deviation of a dataset is large, there are many items with values much larger than, or much smaller than, the mean. When the standard deviation is small, most data items have values close to the mean. This means it is helpful to talk about how many standard deviations away from the mean a particular data item is. Saying that data

item x_j is “within k standard deviations from the mean” means that

$$\text{abs}(x_j - \text{mean}(\{x\})) \leq k\text{std}(x_i).$$

Similarly, saying that data item x_j is “more than k standard deviations from the mean” means that

$$\text{abs}(x_j - \text{mean}(\{x\})) > k\text{std}(x).$$

As I will show below, there must be some data at least one standard deviation away from the mean, and there can be very few data items that are many standard deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very important properties:

- Translating data does not change the standard deviation, i.e. $\text{std}(x_i + c) = \text{std}(x_i)$.
- Scaling data scales the standard deviation, i.e. $\text{std}(kx_i) = k\text{std}(x_i)$.
- For any dataset, there can be only a few items that are many standard deviations away from the mean. In particular, assume we have N data items, x_i , whose standard deviation is σ . Then there are at most $\frac{1}{k^2}$ data points lying k or more standard deviations away from the mean.
- For any dataset, there must be at least one data item that is at least one standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises.

Proposition: Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . Assume the standard deviation of this dataset is $\text{std}(x) = \sigma$. Then there are at most $\frac{1}{k^2}$ data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because translating data translates the mean, but doesn't change the standard deviation. The way to prove this is to construct a dataset with the largest possible fraction r of data points lying k or more standard deviations from the mean. To achieve this, our data should have $N(1 - r)$ data points each with the value 0, because these contribute 0 to the standard deviation. It should have Nr data points with the value $k\sigma$; if they are further from zero than this, each will contribute more to the standard deviation, so the fraction of such points will be fewer. Because

$$\text{std}(x) = \sigma = \sqrt{\frac{\sum_i x_i^2}{N}}$$

we have that, for this rather specially constructed dataset,

$$\sigma = \sqrt{\frac{Nrk^2\sigma^2}{N}}$$

so that

$$r = \frac{1}{k^2}.$$

We constructed the dataset so that r would be as large as possible, so

$$r \geq \frac{1}{k^2}$$

for any kind of data at all.

Property 2.2: For any dataset, it is hard for data items to get many standard deviations away from the mean.

The bound of box 2.3.2 is true for *any kind of data*. This bound implies that, for example, at most 100% of *any* dataset could be one standard deviation away from the mean, 25% of *any* dataset is 2 standard deviations away from the mean and at most 11% of *any* dataset could be 3 standard deviations away from the mean. But the configuration of data that achieves this bound is very unusual. This means the bound tends to wildly overstate how much data is far from the mean for most practical datasets. Most data has more random structure, meaning that we expect to see very much *less* data far from the mean than the bound predicts. For example, much data can reasonably be modelled as coming from a normal distribution (a topic we'll go into later). For such data, we expect that about 68% of the data is within one standard deviation of the mean, 95% is within two standard deviations of the mean, and 99.7% is within three standard deviations of the mean, and the percentage of data that is within ten standard deviations of the mean is essentially indistinguishable from 100%. This kind of behavior is quite common; the crucial point about the standard deviation is that you won't see much

data that lies many standard deviations from the mean, because you can't.

Proposition: $(\text{std}(x))^2 \leq \max_i(x_i - \text{mean}(\{x\}))^2$.

Proof: You can see this by looking at the expression for standard deviation. We have

$$\text{std}(x) = \sqrt{\frac{1}{N} \sum_{i=1}^{i=N} (x_i - \text{mean}(\{x\}))^2}.$$

Now, this means that

$$N(\text{std}(x))^2 = \sum_{i=1}^{i=N} (x_i - \text{mean}(\{x\}))^2.$$

But

$$\sum_{i=1}^{i=N} (x_i - \text{mean}(\{x\}))^2 \leq N \max_i(x_i - \text{mean}(\{x\}))^2$$

so

$$(\text{std}(x))^2 \leq \max_i(x_i - \text{mean}(\{x\}))^2.$$

Property 2.3: For any dataset, there must be at least one data item that is at least one standard deviation away from the mean.

Boxes 2.3.2 and 2.3.2 mean that the standard deviation is quite informative. Very little data is many standard deviations away from the mean; similarly, at least some of the data should be one or more standard deviations away from the mean. So the standard deviation tells us how data points are scattered about the mean.

Potential point of confusion: There is an ambiguity that comes up often here because two (very slightly) different numbers are called the standard deviation of a dataset. One — the one we use in this chapter — is an estimate of the scale of the data, as we describe it. The other differs from our expression very slightly; one computes

$$\sqrt{\frac{\sum_i(x_i - \text{mean}(\{x\}))^2}{N - 1}}$$

(notice the $N - 1$ for our N). If N is large, this number is basically the same as the number we compute, but for smaller N there is a difference that can be significant. Irritatingly, this number is also called the standard deviation; even more irritatingly, we will have to deal with it, but not yet. I mention it now because you may look up terms I have used, find this definition, and wonder. Don't worry - the N in our expressions is the right thing to use for what we're doing.

2.3.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which is known as the **variance**, will allow us to generalize our summaries to apply to higher dimensional data.

Definition 2.3 *Variance*

Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . where $N > 1$. Their variance is:

$$\text{var}(\{x\}) = \frac{1}{N} \left(\sum_{i=1}^{i=N} (x_i - \text{mean}(\{x\}))^2 \right) = \text{mean}(\{(x_i - \text{mean}(\{x\}))^2\}).$$

One good way to think of the variance is as the mean-square error you would incur if you replaced each data item with the mean. Another is that it is the square of the standard deviation.

Properties of the Variance The properties of the variance follow from the fact that it is the square of the standard deviation. We have that:

- Translating data does not change the variance, i.e. $\text{var}(\{x + c\}) = \text{var}(\{x\})$.
- Scaling data scales the variance by a square of the scale, i.e. $\text{var}(\{kx\}) = k^2 \text{var}(\{x\})$.

While one could restate the other two properties of the standard deviation in terms of the variance, it isn't really natural to do so. The standard deviation is in the same units as the original data, and should be thought of as a scale. Because the variance is the square of the standard deviation, it isn't a natural scale (unless you take its square root!).

2.3.4 The Median

One problem with the mean is that it can be affected strongly by extreme values. Go back to the bar example, of section 2.3.1. Now Warren Buffett (or Bill Gates, or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth \$ 1, 000, 000, 000. Then the mean net worth suddenly has become

$$\frac{10 \times \$107,903 + \$1,000,000,000}{11} = \$91,007,184$$

But this mean isn't a very helpful summary of the people in the bar. It is probably more useful to think of the net worth data as ten people together with one billionaire. The billionaire is known as an **outlier**.

One way to get outliers is that a small number of data items are very different, due to minor effects you don't want to model. Another is that the data was misrecorded, or mistranscribed. Another possibility is that there is just too much variation in the data to summarize it well. For example, a small number of extremely wealthy people could change the average net worth of US residents

dramatically, as the example shows. An alternative to using a mean is to use a **median**.

Definition 2.4 Median

The median of a set of data points is obtained by sorting the data points, and finding the point halfway along the list. If the list is of even length, it's usual to average the two numbers on either side of the middle. We write

$$\text{median}(\{x_i\})$$

for the operator that returns the median.

For example,

$$\text{median}(\{3, 5, 7\}) = 5,$$

$$\text{median}(\{3, 4, 5, 6, 7\}) = 5,$$

and

$$\text{median}(\{3, 4, 5, 6\}) = 4.5.$$

For much, but not all, data, you can expect that roughly half the data is smaller than the median, and roughly half is larger than the median. Sometimes this property fails. For example,

$$\text{median}(\{1, 2, 2, 2, 2, 2, 2, 2, 3\}) = 2.$$

With this definition, the median of our list of net worths is \$107,835. If we insert the billionaire, the median becomes \$108,930. Notice by how little the number has changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as giving the “middle” or “center” value. This means it is rather like the mean, which also gives a (slightly differently defined) “middle” or “center” value. The mean has the important properties that if you translate the dataset, the mean translates, and if you scale the dataset, the mean scales. The median has these properties, too:

- Translating data translates the median, i.e. $\text{median}(\{x + c\}) = \text{median}(\{x\}) + c$.
- Scaling data scales the median by the same scale, i.e. $\text{median}(\{kx\}) = k\text{median}(\{x\})$.

Each is easily proved, and proofs are relegated to the exercises.

2.3.5 Interquartile Range

Outliers can affect standard deviations severely, too. For our net worth data, the standard deviation without the billionaire is \$9265, but if we put the billionaire in there, it is $\$3.014 \times 10^8$. When the billionaire is in the dataset, all but one of

the data items lie about a third of a standard deviation away from the mean; the other one (the billionaire) is many standard deviations away from the mean. In this case, the standard deviation has done its work of informing us that there are huge changes in the data, but isn't really helpful.

The problem is this: describing the net worth data with billionaire as a having a mean of $\$9.101 \times 10^7$ with a standard deviation of $\$3.014 \times 10^8$ really isn't terribly helpful. Instead, the data really should be seen as a clump of values that are near $\$100,000$ and moderately close to one another, and one massive number (the billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean and standard deviation. This isn't always easy to do, because it's often less obvious which points are outliers. An alternative is to follow the strategy we did when we used the median. Find a summary that describes scale, but is less affected by outliers than the standard deviation. This is the **interquartile range**; to define it, we need to define percentiles and quartiles, which are useful anyway.

Definition 2.5 *Percentile*

The k 'th percentile is the value such that $k\%$ of the data is less than or equal to that value. We write $\text{percentile}(\{x\}, k)$ for the k 'th percentile of dataset $\{x\}$.

Definition 2.6 *Quartiles*

The first quartile of the data is the value such that 25% of the data is less than or equal to that value (i.e. $\text{percentile}(\{x\}, 25)$). The second quartile of the data is the value such that 50% of the data is less than or equal to that value, which is usually the median (i.e. $\text{percentile}(\{x\}, 50)$). The third quartile of the data is the value such that 75% of the data is less than or equal to that value (i.e. $\text{percentile}(\{x\}, 75)$).

Definition 2.7 *Interquartile Range*

The interquartile range of a dataset $\{x\}$ is $\text{iqr}\{x\} = \text{percentile}(\{x\}, 75) - \text{percentile}(\{x\}, 25)$.

Like the standard deviation, the interquartile range gives an estimate of how widely the data is spread out. But it is quite well-behaved in the presence of outliers. For our net worth data without the billionaire, the interquartile range is $\$12350$; with the billionaire, it is $\$17710$.

Properties of the interquartile range You can think of the interquartile range of a dataset as giving an estimate of the scale of the difference from the mean. This means it is rather like the standard deviation, which also gives a (slightly differently defined) scale. The standard deviation has the important properties that if you translate the dataset, the standard deviation translates, and if you scale the dataset, the standard deviation scales. The interquartile range has these properties, too:

- Translating data does not change the interquartile range, i.e. $\text{iqr}\{x + c\} = \text{iqr}\{x\}$.
- Scaling data scales the interquartile range by the same scale, i.e. $\text{iqr}\{kx\} = k^2\text{iqr}\{x\}$.

Each is easily proved, and proofs are relegated to the exercises.

2.3.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement that “the average US family has 2.6 children” invites mockery (the example is from Andrew Vickers’ book *What is a p-value anyway?*), because you can’t have fractions of a child — no family has 2.6 children. A more accurate way to say things might be “the average of the number of children in a US family is 2.6”, but this is clumsy. What is going wrong here is the 2.6 is a mean, but the number of children in a family is a categorical variable. Reporting the mean of a categorical variable is often a bad idea, because you may never encounter this value (the 2.6 children). For a categorical variable, giving the median value and perhaps the interquartile range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could expect to encounter a data item with this value, even if you haven’t seen one in the particular data set you have. It is sensible to look at both mean and median; if they’re significantly different, then there is probably something going on that is worth understanding. You’d want to plot the data using the methods of the next section before you decided what to report.

You should also be careful about how precisely numbers are reported (equivalently, the number of significant figures). Numerical and statistical software will produce very large numbers of digits freely, but not all are always useful. This is a particular nuisance in the case of the mean, because you might add many numbers, then divide by a large number; in this case, you will get many digits, but some might not be meaningful. For example, Vickers (*ibid*) describes a paper reporting the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither medical interviewing nor people’s memory for past events is that detailed. Furthermore, when you interview them about embarrassing topics, people quite often lie. There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the harm caused by doing so. But the harm is there: you are implying to other people, and to yourself, that you know something more accurately than you do. At some point, someone will suffer for it.

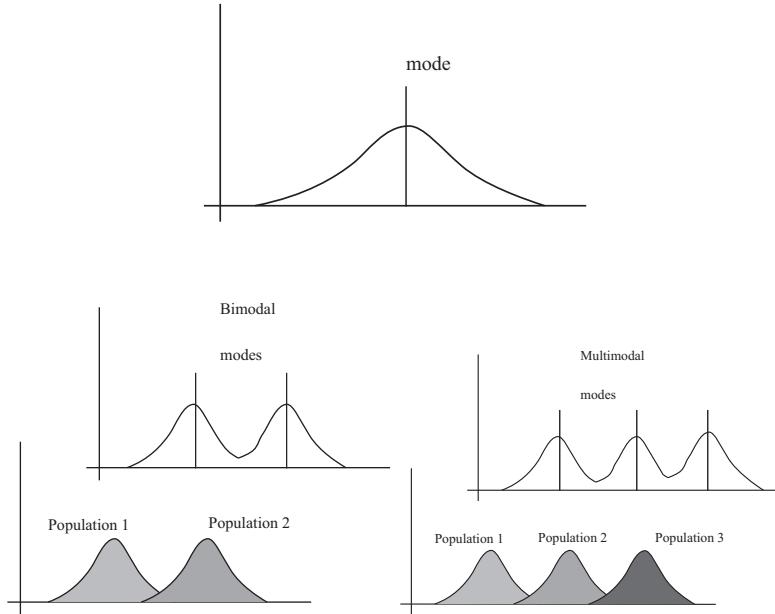


FIGURE 2.4: Many histograms are unimodal, like the example on the top; there is one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal (two or more peaks; bottom right). One common reason (but not the only reason) is that there are actually two populations being conflated in the histograms. For example, measuring adult heights might result in a bimodal histogram, if male and female heights were slightly different. As another example, measuring the weight of dogs might result in a multimodal histogram if you did not distinguish between breeds (eg chihuahua, terrier, german shepherd, pyranean mountain dog, etc.).

2.4 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset gives us some information about what its histogram might look like. In fact, the summaries give us a language in which to describe a variety of characteristic properties of histograms that are worth knowing about (Section 2.4.1). Quite remarkably, many different datasets have the same shape of histogram (Section 2.4.2). For such data, we know roughly what percentage of data items are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because it is hard to compare many histograms by eye. Section 2.4.3 describes a clever plot of various summaries of datasets that makes it easier to compare many cases.

2.4.1 Some Properties of Histograms

The **tails** of a histogram are the relatively uncommon values that are significantly larger (resp. smaller) than the value at the peak (which is sometimes called the **mode**). A histogram is **unimodal** if there is only one peak; if there are more than one, it is **multimodal**, with the special term **bimodal** sometimes being used for

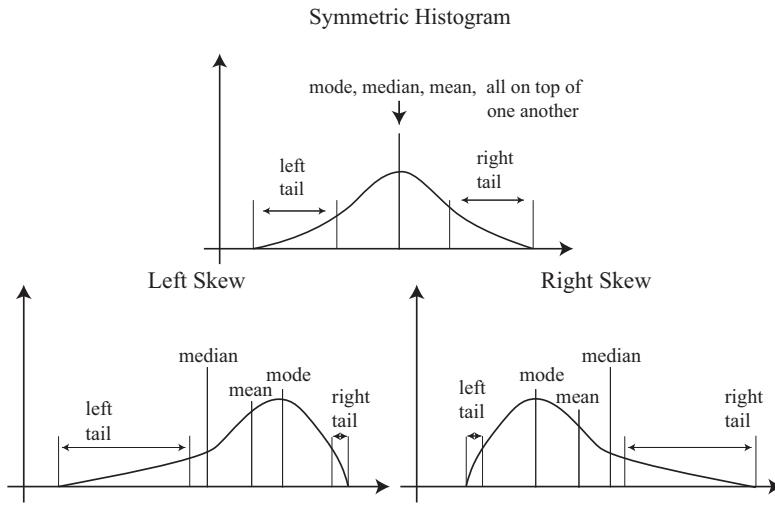


FIGURE 2.5: *On the top, an example of a symmetric histogram, showing its tails (relatively uncommon values that are significantly larger or smaller than the peak or mode). Lower left, a sketch of a left-skewed histogram. Here there are few large values, but some very small values that occur with significant frequency. We say the left tail is “long”, and that the histogram is left skewed (confusingly, this means the main bump is to the right). Lower right, a sketch of a right-skewed histogram. Here there are few small values, but some very large values that occur with significant frequency. We say the right tail is “long”, and that the histogram is right skewed (confusingly, this means the main bump is to the left).*

the case where there are two peaks (Figure 2.4). The histograms we have seen have been relatively symmetric, where the left and right tails are about as long as one another. Another way to think about this is that values a lot larger than the mean are about as common as values a lot smaller than the mean. Not all data is symmetric. In some datasets, one or another tail is longer (figure 2.5). This effect is called **skew**.

Skew appears often in real data. SOCR (the Statistics Online Computational Resource) publishes a number of datasets. Here we discuss a dataset of citations to faculty publications. For each of five UCLA faculty members, SOCR collected the number of times each of the papers they had authored had been cited by other authors (data at http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs). Generally, a small number of papers get many citations, and many papers get few citations. We see this pattern in the histograms of citation numbers (figure 2.6). These are very different from (say) the body temperature pictures. In the citation histograms, there are many data items that have very few citations, and few that have many citations. This means that the right tail of the histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to compare mean and median (though this is not foolproof). For the first citation

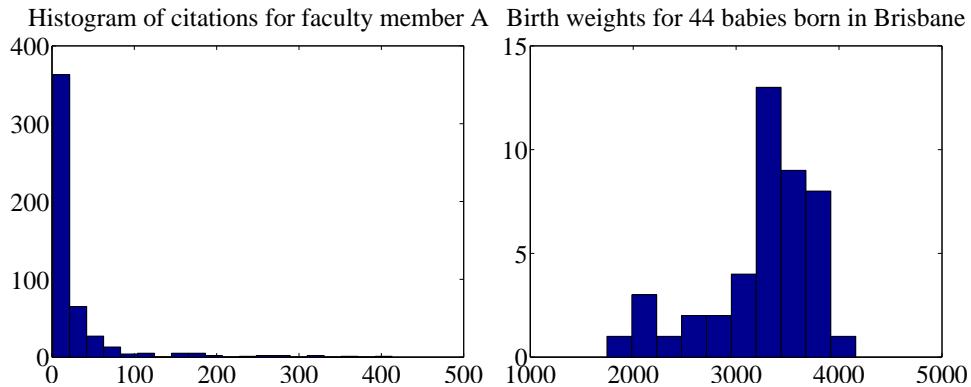


FIGURE 2.6: *On the left*, a histogram of citations for a faculty member, from data at http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_Index_Pubs. Very few publications have many citations, and many publications have few. This means the histogram is strongly right-skewed. *On the right*, a histogram of birth weights for 44 babies borne in Brisbane in 1997. This histogram looks slightly left-skewed.

histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4, and the median is 11. In each case, the mean is a lot bigger than the median. Recall the definition of the median (form a ranked list of the data points, and find the point halfway along the list). For much data, the result is larger than about half of the data set and smaller than about half the dataset. So if the median is quite small compared to the mean, then there are many small data items and a small number of data items that are large — the right tail is longer, so the histogram is skewed to the right.

Left-skewed data also occurs; figure 2.6 shows a histogram of the birth weights of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/jse/jse_data_archive.htm). This data appears to be somewhat left-skewed, as birth weights can be a lot smaller than the mean, but tend not to be much larger than the mean.

Skewed data is often, but not always, the result of constraints. For example, good obstetrical practice tries to ensure that very large birth weights are rare (birth is typically induced before the baby gets too heavy), but it may be quite hard to avoid some small birth weights. This could skew birth weights to the left (because large babies will get born, but will not be as heavy as they could be if obstetricians had not interfered). Similarly, income data can be skewed to the right by the fact that income is always positive. Test mark data is often skewed — whether to right or left depends on the circumstances — by the fact that there is a largest possible mark and a smallest possible mark.

2.4.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some useful insights about data. However, in their current form, histograms are hard to

compare. This is because each is in a different set of units. A histogram for length data will consist of boxes whose horizontal units are, say, metres; a histogram for mass data will consist of boxes whose horizontal units are in, say, kilograms. Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the plot on the horizontal axis and (b) estimating the “scale” of the plot. The location is given by the mean, and the scale by the standard deviation. We could then normalize the data by subtracting the location (mean) and dividing by the standard deviation (scale). The resulting values are unitless, and have zero mean. They are often known as **standard coordinates**.

Definition 2.8 *Standard coordinates*

Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . We represent these data items in standard coordinates by computing

$$\hat{x}_i = \frac{(x_i - \text{mean}(\{x\}))}{\text{std}(x)}.$$

We write $\{\hat{x}\}$ for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N data items. Write x_i for the i ’th data item, and \hat{x}_i for the i ’th data item in standard coordinates (I sometimes refer to these as “normalized data items”). Then we have

$$\text{mean}(\{\hat{x}\}) = 0.$$

We also have that

$$\text{std}(\hat{x}) = 1.$$

An extremely important fact about data is that, for many kinds of data, histograms of these standard coordinates look the same. Many completely different datasets produce a histogram that, in standard coordinates, has a very specific appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were enough data points and the histogram boxes were small enough, the curve would look like the curve in figure 2.7. This phenomenon is so important that data of this form has a special name.

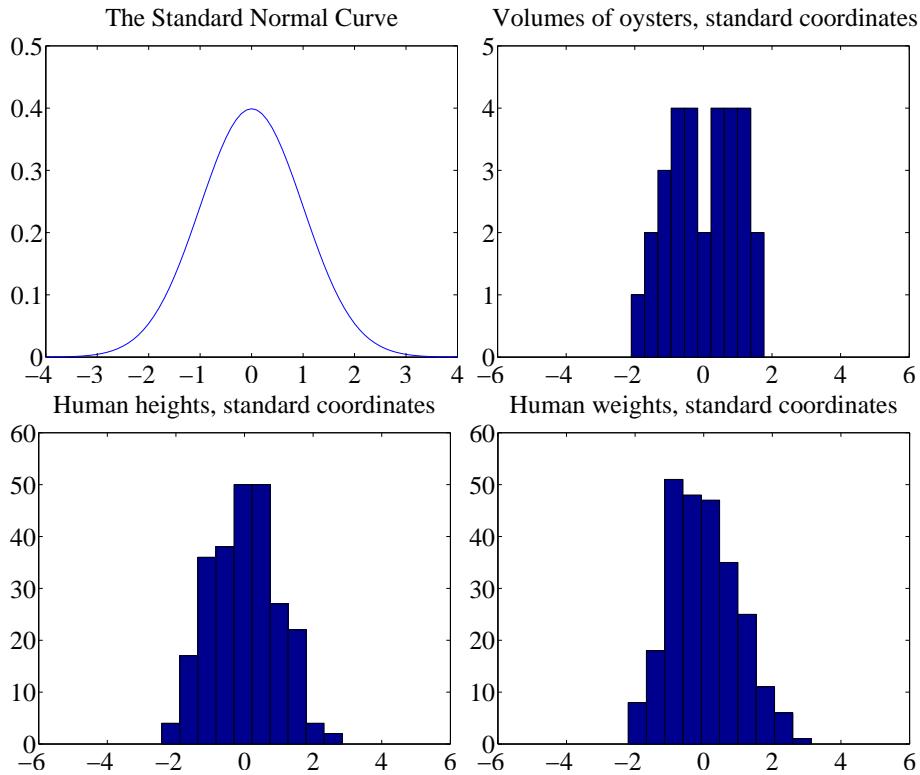


FIGURE 2.7: *Data is standard normal data when its histogram takes a stylized, bell-shaped form, plotted above. One usually requires a lot of data and very small histogram boxes for this form to be reproduced closely. Nonetheless, the histogram for normal data is unimodal (has a single bump) and is symmetric; the tails fall off fairly fast, and there are few data items that are many standard deviations from the mean. Many quite different data sets have histograms that are similar to the normal curve; I show three such datasets here.*

Definition 2.9 *Standard normal data*

Data is **standard normal data** if, when we have a great deal of data, the histogram is a close approximation to the **standard normal curve**. This curve is given by

$$y(x) = \frac{1}{\sqrt{2\pi}} e^{(-x^2/2)}$$

(which is shown in figure 2.7).

Definition 2.10 *Normal data*

Data is **normal data** if, when we subtract the mean and divide by the standard deviation (i.e. compute standard coordinates), it becomes standard normal data.

It is not always easy to tell whether data is normal or not, and there are a variety of tests one can use, which we discuss later. However, there are many examples of normal data. Figure 2.7 shows a diverse variety of data sets, plotted as histograms in standard coordinates. These include: the volumes of 30 oysters (from http://www.amstat.org/publications/jse/jse_data_archive.htm; look for 30oysters.dat.txt); human heights (from <http://www2.stetson.edu/~jrasp/data.htm>; look for bodyfat.xls, with two outliers removed); and human weights (from <http://www2.stetson.edu/~jrasp/data.htm>; look for bodyfat.xls, with two outliers removed).

Properties of normal data For the moment, assume we know that a dataset is normal. Then we expect it to have the following properties:

- If we normalize it, its histogram will be close to the standard normal curve. This means, among other things, that the data is not significantly skewed.
- About 68% of the data lie within one standard deviation of the mean. We will prove this later.
- About 95% of the data lie within two standard deviations of the mean. We will prove this later.
- About 99% of the data lie within three standard deviations of the mean. We will prove this later.

In turn, these properties imply that data that contains outliers (points many standard deviations away from the mean) is not normal. This is usually a very safe assumption. It is quite common to model a dataset by excluding a small number of outliers, then modelling the remaining data as normal. For example, if I exclude two outliers from the height and weight data from <http://www2.stetson.edu/~jrasp/data.htm>, the data looks pretty close to normal.

2.4.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with comparing histograms is the amount of space they take up on a plot, because each histogram involves multiple vertical bars. This means it is hard to plot multiple overlapping histograms cleanly. If you plot each one on a separate figure, you have to handle a large number of separate figures; either you print them too small to see enough detail, or you have to keep flipping over pages.

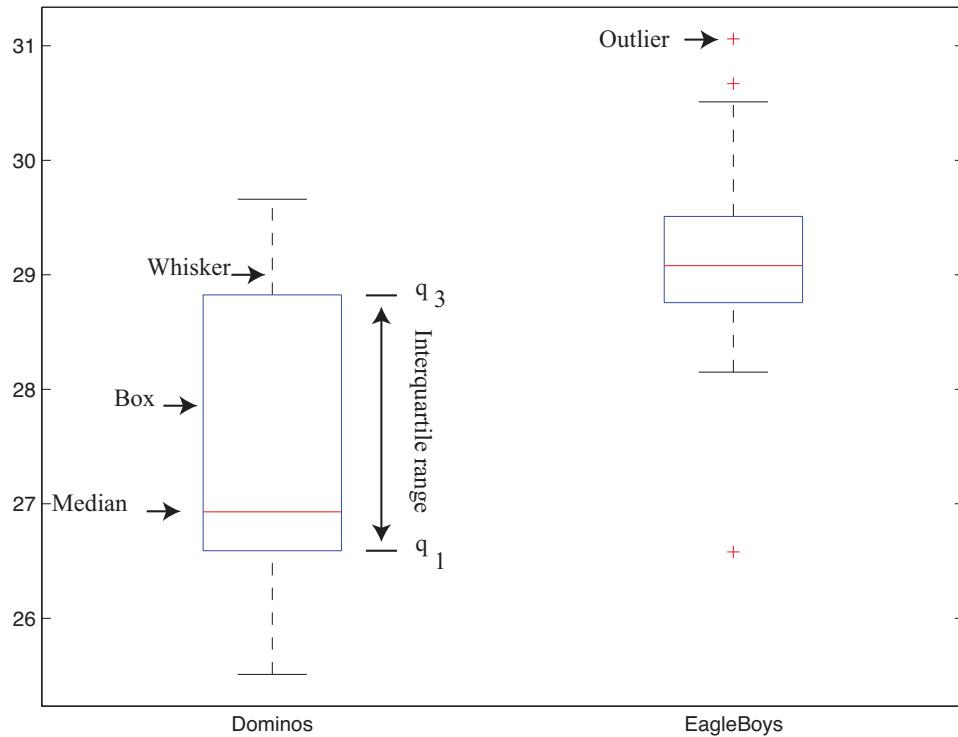


FIGURE 2.8: A boxplot showing the box, the median, the whiskers and two outliers. Notice that we can compare the two datasets rather easily; the next section explains the comparison.

A **boxplot** is a way to plot data that simplifies comparison. A boxplot displays a dataset as a vertical picture. There is a vertical box whose height corresponds to the interquartile range of the data (the width is just to make the figure easy to interpret). Then there is a horizontal line for the median; and the behavior of the rest of the data is indicated with whiskers and/or outlier markers. This means that each dataset makes is represented by a vertical structure, making it easy to show multiple datasets on one plot *and interpret the plot* (Figure 2.8).

To build a boxplot, we first plot a box that runs from the first to the third quartile. We then show the median with a horizontal line. We then decide which data items should be outliers. A variety of rules are possible; for the plots I show, I used the rule that data items that are larger than $q_3 + 1.5(q_3 - q_1)$ or smaller than $q_1 - 1.5(q_3 - q_1)$, are outliers. This criterion looks for data items that are more than one and a half interquartile ranges above the third quartile, or more than one and a half interquartile ranges below the first quartile.

Once we have identified outliers, we plot these with a special symbol (crosses in the plots I show). We then plot whiskers, which show the range of non-outlier data. We draw a whisker from q_1 to the smallest data item that is not an outlier, and from q_3 to the largest data item that is not an outlier. While all this sounds

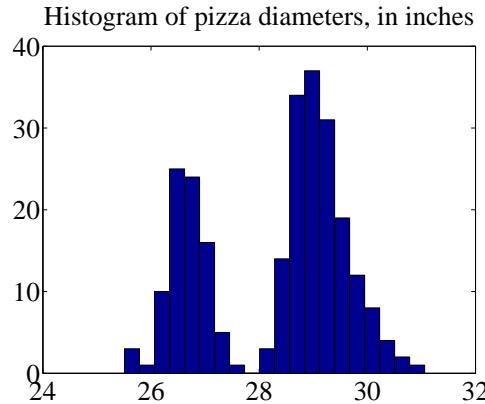


FIGURE 2.9: A histogram of pizza diameters from the dataset described in the text. Notice that there seem to be two populations.

complicated, any reasonable programming environment will have a function that will do it for you. Figure 2.8 shows an example boxplot. Notice that the rich graphical structure means it is quite straightforward to compare two histograms.

2.5 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse_data_archive.htm, you will find a dataset giving the diameter of pizzas, measured in Australia (search for the word “pizza”). This website also gives the backstory for this dataset. Apparently, EagleBoys pizza claims that their pizzas are always bigger than Dominos pizzas, and published a set of measurements to support this claim (the measurements were available at <http://www.eagleboys.com.au/realsizepizza> as of Feb 2012, but seem not to be there anymore).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears in figure 2.9. We would not expect every pizza produced by a restaurant to have exactly the same diameter, but the diameters are probably pretty close to one another, and pretty close to some standard value. This would suggest that we’d expect to see a histogram which looks like a single, rather narrow, bump about a mean. This is not what we see in figure 2.9 — instead, there are two bumps, which suggests two populations of pizzas. This isn’t particularly surprising, because we know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each data item is tagged with the company it comes from. We can now easily plot conditional histograms, conditioning on the company that the pizza came from. These appear in figure 2.10. Notice that EagleBoys pizzas seem to follow the pattern we expect — the diameters are clustered tightly around one value — but Dominos pizzas do not seem to be like that. This is reflected in a boxplot (figure 2.11), which shows the range of Dominos pizza sizes is surprisingly large, and that EagleBoys pizza sizes have several large outliers. There is more to understand about this data. The dataset contains labels for the type of crust and the type of topping — perhaps

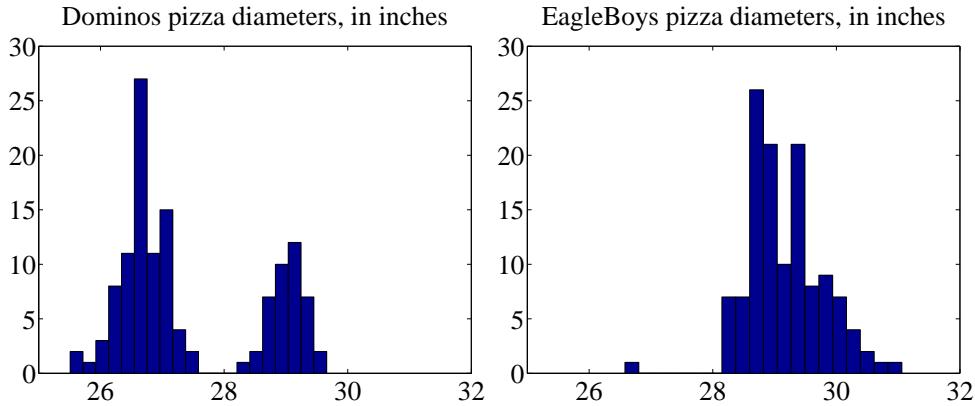


FIGURE 2.10: *On the left, the class-conditional histogram of Dominos pizza diameters from the pizza data set; on the right, the class-conditional histogram of EagleBoys pizza diameters. Notice that EagleBoys pizzas seem to follow the pattern we expect — the diameters are clustered tightly around a mean, and there is a small standard deviation — but Dominos pizzas do not seem to be like that. There is more to understand about this data.*

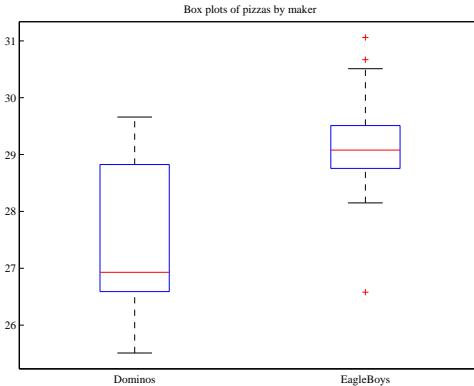


FIGURE 2.11: *Boxplots of the pizza data, comparing EagleBoys and Dominos pizza. There are several curiosities here: why is the range for Dominos so large (25.5-29)? EagleBoys has a smaller range, but has several substantial outliers; why? One would expect pizza manufacturers to try and control diameter fairly closely, because pizzas that are too small present risks (annoying customers; publicity; hostile advertising) and pizzas that are too large should affect profits.*

these properties affect the size of the pizza?

EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have something to do with the observed patterns, but comparing six histograms by eye is unattractive. A boxplot is the right way to compare these cases (figure 2.12). The



FIGURE 2.12: *Boxplots for the pizza data, broken out by type (thin crust, etc.).*

boxplot gives some more insight into the data. Dominos thin crust appear to have a narrow range of diameters (with several outliers), where the median pizza is rather larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have a range of diameters that is (a) rather similar across the types and (b) rather a lot like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping. We can compare types and toppings by producing a set of conditional boxplots (i.e. the diameters for each type and each topping). This leads to rather a lot of boxes (figure 2.13), but they're still easy to compare by eye. The main difficulty is that the labels on the plot have to be shortened. I made labels using the first letter from the manufacturer ("D" or "E"); the first letter from the crust type (previous paragraph); and the first and last letter of the topping. Toppings for Dominos are: Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; SuperSupremo; and BBQMeatlovers. This gives the labels: 'DCBs'; (Dominos; ClassicCrust; BBQMeatlovers); 'DCHn'; 'DCSe'; 'DDBs'; 'DDHn'; 'DDSe'; 'DTBs'; 'DTHn'; 'DTSe'; 'EDBs'; 'EDHn'; 'EDSo'; 'EMBs'; 'EMHn'; 'EMSo'; 'ETBs'; 'ETHn'; 'ETSo'. Figure 2.13 suggests that the topping isn't what is important, but the crust (group the boxplots by eye).

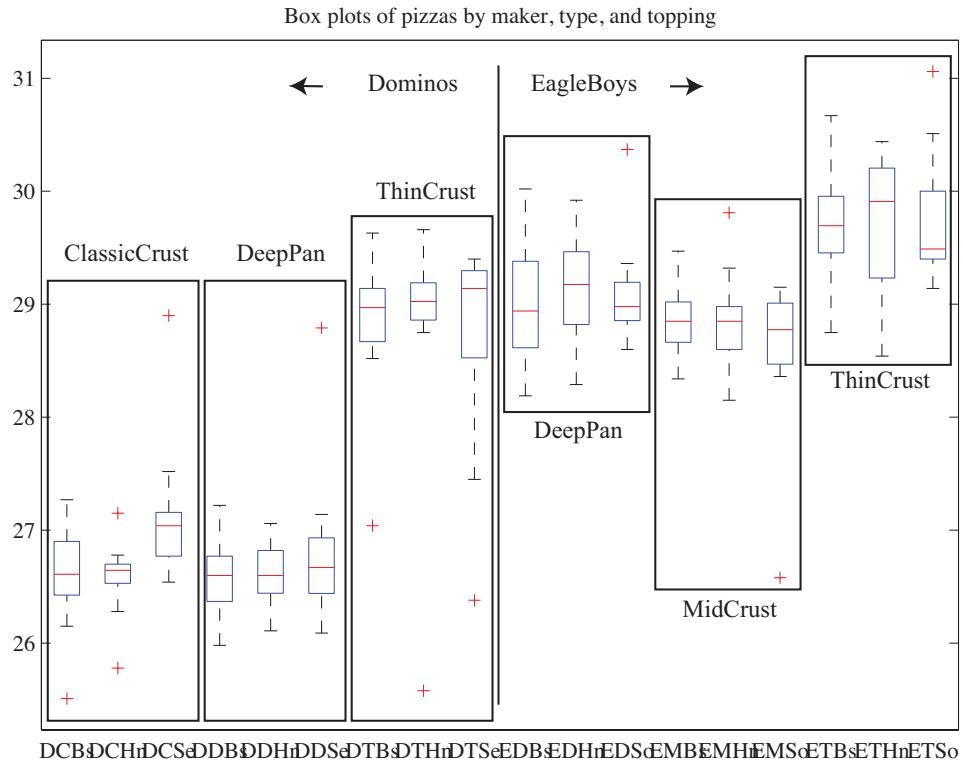


FIGURE 2.13: The pizzas are now broken up by topping as well as crust type (look at the source for the meaning of the names). I have separated Dominos from Eagleboys with a vertical line, and grouped each crust type with a box. It looks as though the issue is not the type of topping, but the crust. Eagleboys seems to have tighter control over the size of the final pizza.

What could be going on here? One possible explanation is that Eagleboys have tighter control over the size of the final pizza. One way this could happen is that all EagleBoys pizzas start the same size and shrink the same amount in baking, whereas all Dominos pizzas start a standard diameter, but different Dominos crusts shrink differently in baking. Another way is that Dominos makes different size crusts for different types, but that the cooks sometimes get confused. Yet another possibility is that Dominos controls portions by the mass of dough (so thin crust diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager at a pizza firm, you'd need to make choices about how to control costs. Labor costs, rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for their money) are the main thing to worry about. If the same kind of pizza has a wide range of diameters, you have a problem, because some customers are getting too much (which affects your profit) or too little (which means they might call someone else). But making more regular pizzas might require more skilled (and so

more expensive) labor. The fact that Dominos and EagleBoys seem to be following different strategies successfully suggests that more than one strategy might work. But you can't choose if you don't know what's happening. As I said at the start, "what's going on here?" is perhaps the single most useful question anyone can ask.

2.6 WHAT YOU MUST REMEMBER

You should be able to:

- Plot a bar chart for a dataset.
- Plot a histogram for a dataset.
- Tell whether the histogram is skewed or not, and in which direction.
- Plot a box plot for one or several datasets.
- Interpret a box plot.

You should remember:

- The definition and properties of the mean.
- The definition and properties of the standard deviation.
- The definition and properties of the variance.
- The definition and properties of the median.
- The definition and properties of the interquartile range.

PROBLEMS

- 2.1. Show that $\text{mean}(\{kx\}) = k\text{mean}(\{x\})$ by substituting into the definition.
- 2.2. Show that $\text{mean}(\{x + c\}) = \text{mean}(\{x\}) + c$ by substituting into the definition.
- 2.3. Show that $\sum_{i=1}^N (x_i - \text{mean}(\{x\})) = 0$ by substituting into the definition.
- 2.4. Show that $\text{std}(x + c) = \text{std}(x)$ by substituting into the definition (you'll need to recall the properties of the mean to do this).
- 2.5. Show that $\text{std}(kx) = k\text{std}(x)$ by substituting into the definition (you'll need to recall the properties of the mean to do this).
- 2.6. Show that $\text{median}(\{x + c\}) = \text{median}(\{x\}) + c$ by substituting into the definition.
- 2.7. Show that $\text{median}(\{kx\}) = k\text{median}(\{x\})$ by substituting into the definition.
- 2.8. Show that $\text{iqr}\{x + c\} = \text{iqr}\{x\}$ by substituting into the definition.
- 2.9. Show that $\text{iqr}\{kx\} = k\text{iqr}\{x\}$ by substituting into the definition.

PROGRAMMING EXERCISES

- 2.10. You can find a data set showing the number of barrels of oil produced, per year for the years 1880-1984 at <http://lib.stat.cmu.edu/DASL/Datafiles/Oilproduction.html>. Is a mean a useful summary of this dataset? Why?

- 2.11. You can find a dataset giving the cost (in 1976 US dollars), number of megawatts, and year of construction of a set of nuclear power plants at <http://lib.stat.cmu.edu/DASL/Datafiles/NuclearPlants.html>.
 - (a) Are there outliers in this data?
 - (b) What is the mean cost of a power plant? What is the standard deviation?
 - (c) What is the mean cost per megawatt? What is the standard deviation?
 - (d) Plot a histogram of the cost per megawatt. Is it skewed? Why?
- 2.12. You can find a dataset giving the sodium content and calorie content of three types of hot dog at <http://lib.stat.cmu.edu/DASL/Datafiles/Hotdogs.html>. The types are Beef, Poultry, and Meat (a rather disturbingly vague label). Use class-conditional histograms to compare these three types of hot dog with respect to sodium content and calories.
- 2.13. You will find a dataset giving (among other things) the number of 3 or more syllable words in advertising copy appearing in magazines at <http://lib.stat.cmu.edu/DASL/Datafiles/magadsdat.html>. The magazines are grouped by the education level of their readers; the groups are 1, 2, and 3 (the variable is called GRP in the data).
 - (a) Use a boxplot to compare the number of three or more syllable words for the ads in magazines in these three groups. What do you see?
 - (b) Use a boxplot to compare the number of sentences appearing in the ads in magazines in these three groups. What do you see?

C H A P T E R 3

Intermezzo - Programming Tools

Matlab is a programming environment widely used in numerical analysis and computer vision circles, among other. I will use Matlab in examples here, because I'm fairly fluent in Matlab, and give some guidelines. Many universities, including UIUC, have free student licenses for Matlab, and there are numerous reference books and tutorials you can look at for details of syntax, etc. Matlab's focuses on representations of vectors and matrices. The syntax is rather like Fortran, except that there are some special matrix and vector operations. Fluent Matlab programmers replace iterations with these operations to get faster code; some people are very good at this sort of trick.

An alternative widely used in statistical circles is R, which is an open-source language rather like S (a paid license statistics package). I didn't know much R at start of writing, and haven't managed to pick up the kind of fluency required to prepare figures in it, so I won't show R code here. But you should be aware of it as an alternative.

If you want to know what a Matlab command does, you can use `help` or `doc`. For example, you could type `doc sum`. In this chapter, I'll show code I used to make some of the figures and examples in chapter one, to give you some examples for Matlab code.

Listing 3.1 shows how I made the bar chart of genders in Figure 2.1. There are some points to notice here. I cut-and-pasted the data from the web page (<http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html>), put the result into a spreadsheet to make a .xls file, saved that, then read it into Matlab using `xlsread`. I did this because it meant I didn't have to write any kind of file reader. You can learn more about `xlsread` by doing `doc xlsread`. It isn't perfect — or, at least, the one on my Mac isn't — because it doesn't like some kinds of format, and it seems not to like very long files. It was enough for this purpose. It produces a cell array (`doc cell`) for the text fields, and an ordinary array for the numeric fields. The cell array is an array whose entries can contain objects like strings, etc. You will find the question of how to get a dataset from the form in which you find it into a form you want in your programming environment to be a persistent nuisance. It's usually approached with quick-and-dirty solutions like this one.

You should have noticed one nice thing. Once I've actually gotten my data into a reasonable form, making the bar chart is easy (`bar` does the trick). It's more trouble to get the title on the figure and the fonts right, etc. than to make the figure. This is true for histograms, as well (listing 2.2). In this case, the data was just a vector, so I cut it out from the web page and stuck it into the code. Look at `doc hist`, and notice you can change the number of bars and also the centers of the bars if you wish.

I have listed useful commands for computing summaries below. To give you an example of normalizing data, there is listing 3.3.

Matlab will do boxplots, too. In listing 3.4, I show the Matlab code I used to make Figure 2.11.

Boxplots can get pretty elaborate, and putting the right marker in the right place gets interesting. I show the code I used to make Figure 2.13, which required a certain amount of fooling around with strings to get the right marker and put it in the right place.

Some useful commands:

- `bar` makes a bar chart.
- `hist` makes a histogram.
- `xlsread` will read many spreadsheet files.
- `mean` computes the mean of a dataset represented as a column vector. If you give it an array, it will compute the mean of each column.
- `std` computes the standard deviation of a dataset represented as a column vector. If you give it an array, it will compute the standard deviation of each column.
- `var` computes the variance of a dataset represented as a column vector. If you give it an array, it will compute the variance of each column.
- `median` computes the median of a dataset represented as a column vector. If you give it an array, it will compute the median of each column.
- `prctile` can compute a set of percentiles for a dataset represented as a column vector. If you give it an array, it will compute those percentiles for each column. Note it takes two arguments; you should do `doc prctile`.
- `boxplot` will produce a boxplot; there are many arguments and tricks, so you should do `doc boxplot`.

Listing 3.1: Matlab code used to make the gender bar chart in figure 2.1

```

cd('~/Current/courses/ProbCourse/SomeData/MatlabCode');
[num, txt]=xlsread('..\\Datasets\\schooldata.xls');
%
set(0,'DefaultAxesFontName', 'Times-New-Roman')
set(0,'DefaultAxesFontSize', 28)
% Change default text fonts for figures
% so they print well
set(0,'DefaultTextFontname', 'Times-New-Roman')
set(0,'DefaultTextFontSize', 28)
wv=zeros(size(num, 1), 1);
wv2=zeros(size(num, 1), 1);
for i=1:size(num, 1)
    if strcmp(txt(i, 7), 'Sports')
        wv(i)=1;
    elseif strcmp(txt(i, 7), 'Grades')
        wv(i)=2;
    elseif strcmp(txt(i, 7), 'Popular')
        wv(i)=3;
    end
    if strcmp(txt(i, 1), 'boy')
        wv2(i)=1;
    elseif strcmp(txt(i, 1), 'girl')
        wv2(i)=2;
    end
end
% really stupid parser
genders=[sum(wv2==1), sum(wv2==2)];
% sum knows what to do with a vector
figure(1); % sets the window in which the figure
% will be put
clf % clears the figure
bar(genders)
set(gca, 'XTick', [1, 2]);
set(gca, 'XTickLabel', {'boy', 'girl'});
title('Number_of_children_of_each_gender');
figure(1);
% brings it to the front
%print -depsc2 ..\\Figures\\childgenderbar.eps
% this makes an eps figure and puts in the right
% place

```

Listing 3.2: Matlab code used to make the cheese histogram in figure 2.2

```

cheeses=[12.3, 20.9, 39, 47.9, 5.6, 25.9, ...
    37.3, 21.9, 18.1, 21, 34.9, 57.2, 0.7, ...
    25.9, 54.9, 40.9, 15.9, 6.4, 18, 38.9, ...
    14, 15.2, 32, 56.7, 16.8, 11.6, 26.5, ...
    0.7, 13.4, 5.5];
figure(2);
hist(cheeses, [5, 15, 25, 35, 45, 55])
figure(2);
axis([0, 70, 0, 15])
ylabel('Number of data items');
xlabel('Cheese goodness, in cheese goodness units');
title('Histogram of cheese goodness score for 30 cheeses');
set(gca, 'XTick', [0:7]*10);
set(gca, 'YTick', [0:2:15]);
figure(2);

```

Listing 3.3: Matlab code used to make the normalized oyster volume histogram in figure 2.7

```

set(0, 'DefaultAxesFontName', 'Times-New-Roman')
set(0, 'DefaultAxesFontSize', 28)
% Change default text fonts.
set(0, 'DefaultTextFontname', 'Times-New-Roman')
set(0, 'DefaultTextFontSize', 28)
cd('~/Current/Courses/Probcourse/SomeData/DataSets/');
% this is where I keep the file, but you may have it somewhere else
[num2, txt, raw]=xlsread('30oystersdata.xls');
% index weight volume
wdat=num2(:, 4); % this is the volume field
wm=mean(wdat);
wsd=std(wdat);
figure(1);
hist((wdat-wm)/wsd); figure(1)
axis([-6 6 0 5])
% sets the axes of the plot
title('Volumes of oysters, standard coordinates');
print -depsc2 noysters.eps

```

Listing 3.4: Matlab code used to make the boxplot in figure 2.11

```
% pizza size data
set(0, 'DefaultAxesFontName', 'Times-New-Roman')
set(0, 'DefaultAxesFontSize', 11)
% Change default text fonts.
set(0, 'DefaultTextFontname', 'Times-New-Roman')
set(0, 'DefaultTextFontSize', 11)
cd('~/Current/Courses/Probcourse/SomeData/DataSets/');
[num, txt, raw]=xlsread('cleanpizzasize.xls');
ndat=size(num, 1);
figure(1); boxplot(num(:, 5), txt(:, 2)); figure(1)
title('Box-plots of pizzas by maker');
print -depsc2 pmakerboxes.eps
```

Listing 3.5: Matlab code used to make the boxplot in figure 2.13

```
% pizza size data
set(0, 'DefaultAxesFontName', 'Times-New-Roman')
set(0, 'DefaultAxesFontSize', 11)
% Change default text fonts.
set(0, 'DefaultTextFontname', 'Times-New-Roman')
set(0, 'DefaultTextFontSize', 11)
cd('~/Current/Courses/Probcourse/SomeData/DataSets/');
[num, txt, raw]=xlsread('cleanpizzasize.xls');
ndat=size(num, 1);
t2=txt(:, 1);
for i=1:ndat
    foo=txt(i, 2); bar=foo{1}; c1=bar(1);
    % this gets a letter for the maker
    foo=txt(i, 3); bar=foo{1}; c2=bar(1);
    % this gets a letter for the crust
    foo=txt(i, 4); bar=foo{1}; c3=bar(1); c4=bar(end);
    % this gets first, last letter for the topping
    t2(i)={strcat(c1, c2, c3, c4)};
end
figure(2); boxplot(num(:, 5), t2, 'grouporder', { 'DCBs', 'DCHn', ...
    'DCSe', 'DDBs', 'DDHn', 'DDSe', 'DTBs', 'DTHn', 'DTSe', ...
    'EDBs', 'EDHn', 'EDSo', 'EMBs', 'EMHn', 'EMSo', 'ETBs', ...
    'ETHn', 'ETSo' }); figure(2)
title('Box-plots of pizzas by maker, and topping');
```

CHAPTER 4

Looking at Relationships

We think of a dataset as a collection of d -tuples (a d -tuple is an ordered list of d elements). For example, the Chase and Dunner dataset had entries for Gender; Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money (so it consisted of 11-tuples). The previous chapter explored methods to visualize and summarize a set of values obtained by extracting a single element from each tuple. For example, I could visualize the heights or the weights of a population (as in Figure 2.7). But I could say nothing about the relationship between the height and weight. In this chapter, we will look at methods to visualize and summarize the relationships between pairs of elements of a dataset.

4.1 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding elements from each tuple. The result is a dataset consisting of 2-tuples, and we think of this as a two dimensional dataset. The first step is to plot this dataset in a way that reveals relationships. The topic of how best to plot data fills many books, and we can only scratch the surface here. Categorical data can be particularly tricky, because there are a variety of choices we can make, and the usefulness of each tends to depend on the dataset and to some extent on one's cleverness in graphic design (section 4.1.1).

For some continuous data, we can plot the one entry as a function of the other (so, for example, our tuples might consist of the date and the number of robberies; or the year and the price of lynx pelts; and so on, section 4.1.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about scatter plots will reveal a great deal about the relationships between our data items (section 4.1.3).

4.1.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several categorical descriptions of each data item. One way to plot this data is to think of it as belonging to a richer set of categories. Assume the dataset has categorical descriptions, which are not ordinal. Then we can construct a new set of categories by looking at each of the cases for each of the descriptions. For example, in the Chase and Dunner data of table 2.2, our new categories would be: “boy-sports”; “girl-sports”; “boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A large set of categories like this can result in a poor bar chart, though, because there may be too many bars to group the bars successfully. Figure 4.1 shows such a bar chart. Notice that it is hard to group categories by eye to compare; for example, you can see that slightly more girls think grades are important than boys do, but to do so you need to compare two bars that are separated by two other bars. An alternative is a **pie**

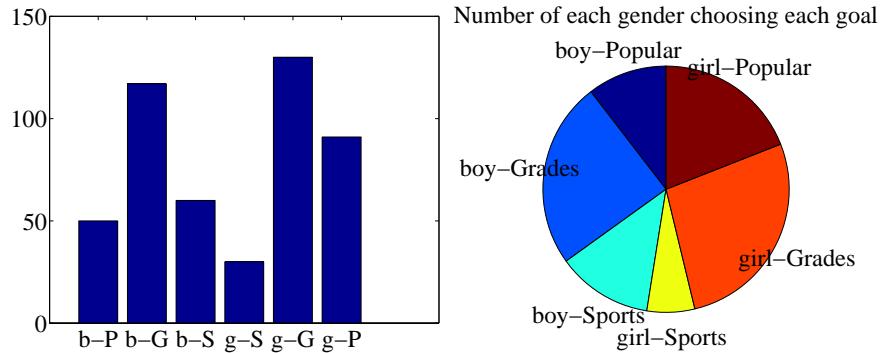


FIGURE 4.1: I sorted the children in the Chase and Dunner study into six categories (two genders by three goals), and counted the number of children that fell into each cell. I then produced the bar chart on the left, which shows the number of children of each gender, selecting each goal. On the right, a pie chart of this information. I have organized the pie chart so it is easy to compare boys and girls by eye — start at the top; going down on the left side are boy goals, and on the right side are girl goals. Comparing the size of the corresponding wedges allows you to tell what goals boys (resp. girls) identify with more or less often.

chart, where a circle is divided into sections whose angle is proportional to the size of the data item. You can think of the circle as a pie, and each section as a slice of pie. Figure 4.1 shows a pie chart, where each section is proportional to the number of students in its category. In this case, I've used my judgement to lay the categories out in a way that makes comparisons easy. I'm not aware of any tight algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area accurately by eye. For example, from the pie chart in figure 4.1, it's hard to tell that the “boy-sports” category is slightly bigger than the “boy-popular” category (try it; check using the bar chart). For either kind of chart, it is quite important to think about *what* you plot. For example, the plot of figure 4.1 shows the total number of respondents, and if you refer to figure 2.1, you will notice that there are slightly more girls in the study. Is the *percentage* of boys who think grades are important smaller (or larger) than the *percentage* of girls who think so? you can't tell from these plots, and you'd have to plot the percentages instead.

An alternative to a pie chart that is very useful for two dimensional data is a **heat map**. This is a method of displaying a matrix as an image. Each entry of the matrix is mapped to a color, and the matrix is represented as an image. For the Chase and Dunner study, I constructed a matrix where each row corresponds to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a choice of “boy” or “girl”. Each entry contains the count of data items of that type. Zero values are represented as white; the largest values as red; and as the value increases, we use an increasingly saturated pink. This plot is shown in figure 4.2

If the categorical data is ordinal, the ordering offers some hints for making a good plot. For example, imagine we are building a user interface. We build an

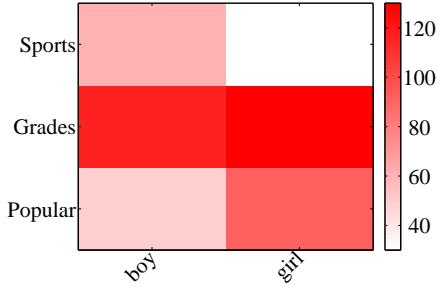


FIGURE 4.2: A heat map of the Chase and Dunner data. The color of each cell corresponds to the count of the number of elements of that type. The colorbar at the side gives the correspondence between color and count. You can see at a glance that the number of boys and girls who prefer grades is about the same; that about the same number of boys prefer sports and popularity, with sports showing a mild lead; and that more girls prefer popularity to sports.

	-2	-1	0	1	2
-2	24	5	0	0	1
-1	6	12	3	0	0
0	2	4	13	6	0
1	0	0	3	13	2
2	0	0	0	1	5

TABLE 4.1: I simulated data representing user evaluations of a user interface. Each cell in the table on the left contains the count of users rating “ease of use” (horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical, same scale). Users who found the interface hard to use did not like using it either. While this data is categorical, it’s also ordinal, so that the order of the cells is determined. It wouldn’t make sense, for example, to reorder the columns of the table or the rows of the table.

initial version, and collect some users, asking each to rate the interface on scales for “ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again, -2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where each cell represents a pair of “ease of use” and “enjoyability” values. We then count the number of users in each cell, and build graphical representations of this table. One natural representation is a **3D bar chart**, where each bar sits on its cell in the 2D table, and the height of the bars is given by the number of elements in the cell. Table 4.1 shows a table and figure 4.3 shows a 3D bar chart for some simulated data. The main difficulty with a 3D bar chart is that some bars are hidden behind others. This is a regular nuisance. You can improve things by using an interactive tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps don’t suffer from this problem (Figure 4.3), another reason they are a good choice.

Counts of user responses for a user interface

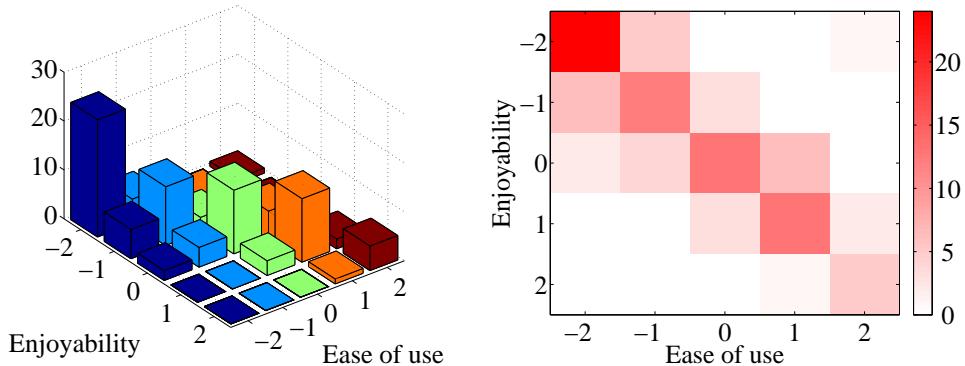


FIGURE 4.3: On the left, a 3D bar chart of the data. The height of each bar is given by the number of users in each cell. This figure immediately reveals that users who found the interface hard to use did not like using it either. However, some of the bars at the back are hidden, so some structure might be hard to infer. On the right, a heat map of this data. Again, this figure immediately reveals that users who found the interface hard to use did not like using it either. It's more apparent that everyone disliked the interface, though, and it's clear that there is no important hidden structure.

4.1.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For example, we might have a dataset giving the maximum rainfall for each day of the year. We could record this either by using a two-dimensional representation, where one dimension is the number of the day and the other is the temperature, or with a convention where the i 'th data item is the rainfall on the i 'th day. For example, at <http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html>, you can find four datasets indexed in this way. It is natural to plot data like this as a function of time. From this dataset, I extracted data giving the number of burglaries each month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 4.4 (I left out the data to do with treatment effects). It is natural to plot a graph of the burglaries as a function of time (in this case, the number of the month). The plot shows each data point explicitly. I also told the plotting software to draw lines joining data points, because burglaries do not all happen on a specific day. The lines suggest, reasonably enough, the rate at which burglaries are happening between data points.

As another example, at <http://lib.stat.cmu.edu/datasets/Andrews/> you can find a dataset that records the number of lynx pelts traded to the Hudson's Bay company and the price paid for each pelt. This version of the dataset appeared first in table 3.2 of *Data: a Collection of Problems from many Fields for the Student and Research Worker* by D.F. Andrews and A.M. Herzberg, published by Springer in 1985. I have plotted it in figure 4.4. The dataset is famous, because it shows a periodic behavior in the number of pelts (which is a good proxy for the number

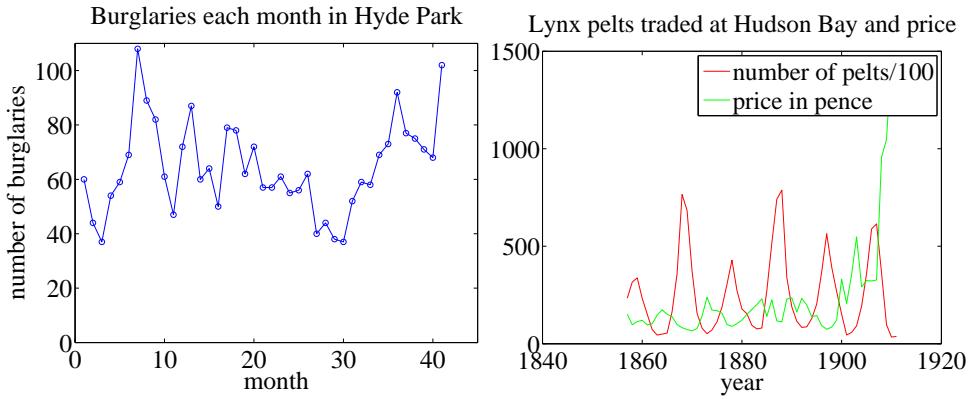


FIGURE 4.4: **Left**, the number of burglaries in Hyde Park, by month. **Right**, a plot of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt, as a function of the year. Notice the scale, and the legend box (the number of pelts is scaled by 100).

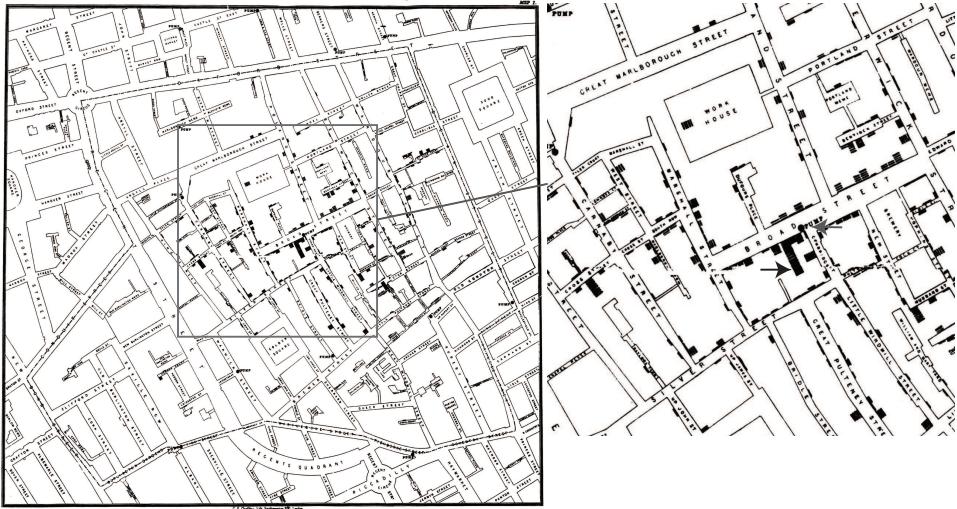


FIGURE 4.5: Snow's scatter plot of cholera deaths on the **left**. Each cholera death is plotted as a small bar on the house in which the bar occurred (for example, the black arrow points to one stack of these bars, indicating many deaths, in the detail on the **right**). Notice the fairly clear pattern of many deaths close to the Broad street pump (grey arrow in the detail), and fewer deaths further away (where it was harder to get water from the pump).

of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat rabbits. When there are many rabbits, lynx kittens thrive, and soon there will be many lynx; but then they eat most of the rabbits, and starve, at which point

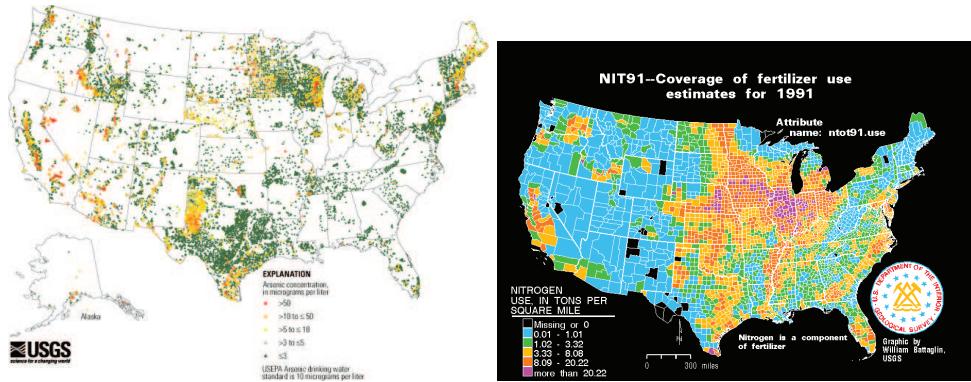


FIGURE 4.6: **Left**, a scatter plot of arsenic levels in US groundwater, prepared by the US Geological Survey (you can find the data at http://water.usgs.gov/GIS/metadata/usgs/wrd/XML/arsenic_map.xml). Here the shape and color of each marker shows the amount of arsenic, and the spatial distribution of the markers shows where the wells were sampled. **Right**, the usage of Nitrogen (a component of fertilizer) by US county in 1991, prepared by the US Geological Survey (you can find the data at <http://water.usgs.gov/GIS/metadata/usgs/wrd/XML/nit91.xml>). In this variant of a scatter plot (which usually takes specialized software to prepare) one fills each region with a color indicating the data in that region.

the rabbit population rockets. You should also notice that after about 1900, prices seem to have gone up rather quickly. I don't know why this is. There is also some suggestion, as there should be, that prices are low when there are many pelts, and high when there are few.

4.1.3 Scatter Plots for Spatial Data

It isn't always natural to plot data as a function. For example, in a dataset containing the temperature and blood pressure of a set of patients, there is no reason to believe that temperature is a function of blood pressure, or the other way round. Two people could have the same temperature, and different blood pressures, or vice-versa. As another example, we could be interested in what causes people to die of cholera. We have data indicating *where* each person died in a particular outbreak. It isn't helpful to try and plot such data as a function.

The **scatter plot** is a powerful way to deal with this situation. In the first instance, assume that our data points actually describe points on the a real map. Then, to make a scatter plot, we make a mark on the map at a place indicated by each data point. What the mark looks like, and how we place it, depends on the particular dataset, what we are looking for, how much we are willing to work with complex tools, and our sense of graphic design.

Figure 4.5 is an extremely famous scatter plot, due to John Snow. Snow — one of the founders of epidemiology — used a scatter plot to reason about a cholera outbreak centered on the Broad Street pump in London in 1854. At that time,

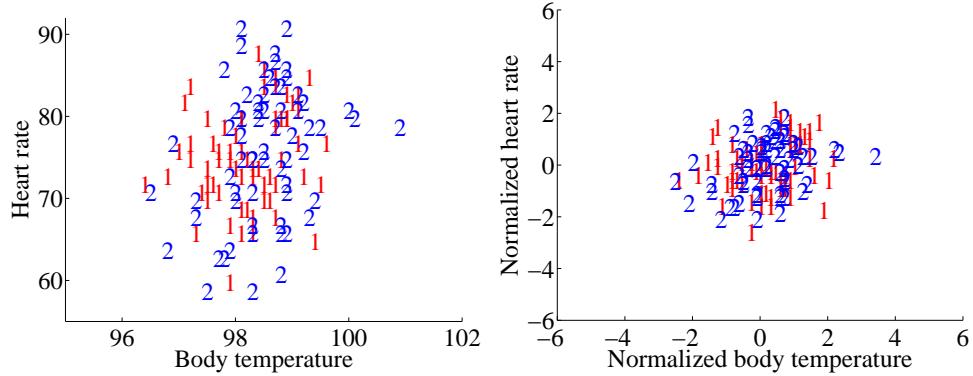


FIGURE 4.7: A scatter plot of body temperature against heart rate, from the dataset at <http://www2.stetson.edu/~jrasp/data.htm>; *normtemp.xls*. I have separated the two genders by plotting a different symbol for each (though I don't know which gender is indicated by which letter); if you view this in color, the differences in color makes for a greater separation of the scatter. This picture suggests, but doesn't conclusively establish, that there isn't much dependence between temperature and heart rate, and any dependence between temperature and heart rate isn't affected by gender.

the mechanism that causes cholera was not known. Snow plotted cholera deaths as little bars (more bars, more deaths) on the location of the house where the death occurred. More bars means more deaths, fewer bars means fewer deaths. There are more bars per block close to the pump, and few far away. This plot offers quite strong evidence of an association between the pump and death from cholera. Snow used this scatter plot as evidence that cholera was associated with water, and that the Broad Street pump was the source of the tainted water.

Figure 4.6 shows a scatter plot of arsenic levels in groundwater for the United States, prepared by the US Geological Survey. The data set was collected by Focazio and others in 2000; by Welch and others in 2000; and then updated by Ryker 2001. It can be found at http://water.usgs.gov/GIS/metadata/usgsrd/XML/arsenic_map.xml. One variant of a scatter plot that is particularly useful for geographic data occurs when one fills regions on a map with different colors, following the data in that region. Figure 4.6 shows the nitrogen usage by US county in 1991; again, this figure was prepared by the US Geological Survey.

4.1.4 Exposing Relationships with Scatter Plots

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple tool for ferreting out associations in other kinds of data as well. Now we need some notation. Assume we have a dataset $\{x\}$ of N data items, x_1, \dots, x_N . Each data item is a d dimensional vector (so its components are numbers). We wish to investigate the relationship between two components of the dataset. For example, we might be interested in the 7'th and the 13'th component of the dataset. We will produce a two-dimensional plot, one dimension for each component. It does

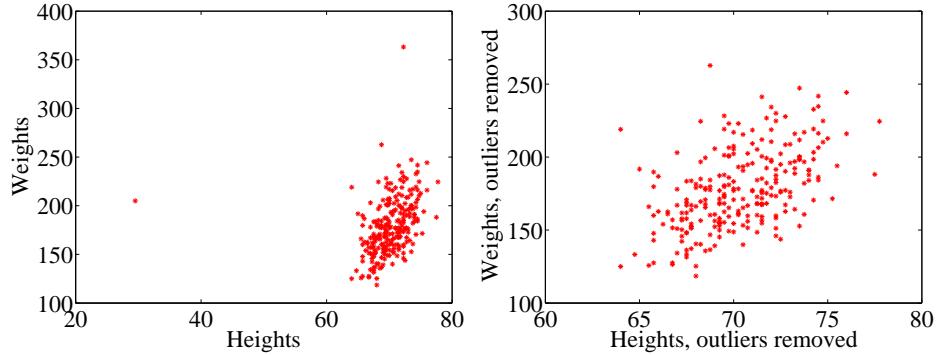


FIGURE 4.8: A scatter plots of weight against height, from the dataset at <http://www2.stetson.edu/~jrasp/data.htm>. **Left:** Notice how two outliers dominate the picture, and to show the outliers, the rest of the data has had to be bunched up. **Right** shows the data with the outliers removed. The structure is now somewhat clearer.

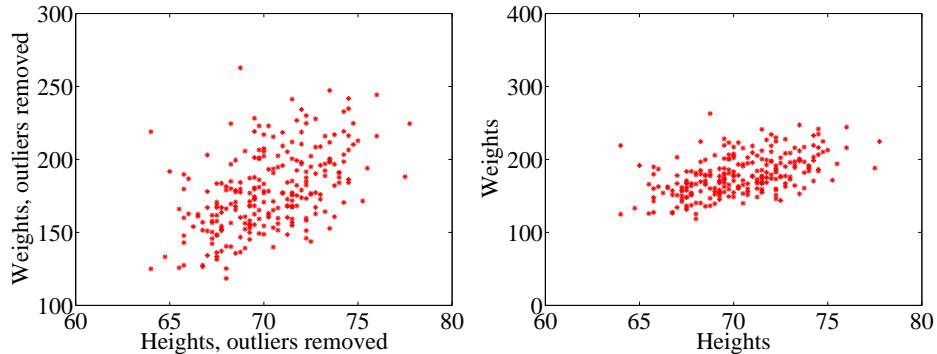


FIGURE 4.9: Scatter plots of weight against height, from the dataset at <http://www2.stetson.edu/~jrasp/data.htm>. **Left:** data with two outliers removed, as in figure 4.8. **Right:** this data, rescaled slightly. Notice how the data looks less spread out. But there is no difference between the datasets. Instead, your eye is easily confused by a change of scale.

not really matter which component is plotted on the x -coordinate and which on the y -coordinate (though it will be some pages before this is clear). But it is very difficult to write sensibly without talking about the x and y coordinates.

We will make a two-dimensional dataset out of the components that interest us. We must choose which component goes first in the resulting 2-vector. We will plot this component on the x -coordinate (and we refer to it as the x -coordinate), and to the other component as the y -coordinate. This is just to make it easier to describe what is going on; there's no important idea here. It really will not matter which is x and which is y . The two components make a dataset $\{\mathbf{x}_i\} = \{(x_i, y_i)\}$. To produce a scatter plot of this data, we plot a small shape at the location of each

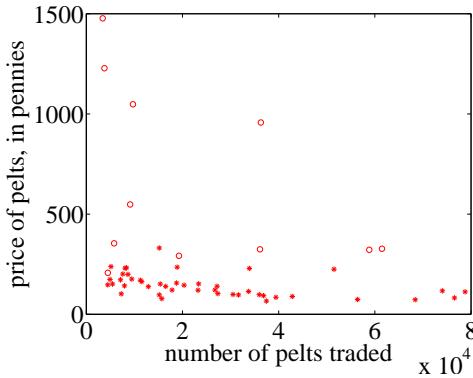


FIGURE 4.10: *A scatter plot of the price of lynx pelts against the number of pelts. I have plotted data for 1901 to the end of the series as circles, and the rest of the data as *'s. It is quite hard to draw any conclusion from this data, because the scale is confusing. Furthermore, the data from 1900 on behaves quite differently from the other data.*

data item.

Such scatter plots are very revealing. For example, figure 4.7 shows a scatter plot of body temperature against heart rate for humans. In this dataset, the gender of the subject was recorded (as “1” or “2” — I don’t know which is which), and so I have plotted a “1” at each data point with gender “1”, and so on. Looking at the data suggests there isn’t much difference between the blob of “1” labels and the blob of “2” labels, which suggests that females and males are about the same in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in meters gives a very different scatter from plotting lengths in millimeters. Figure 4.8 shows two scatter plots of weight against height. Each plot is from the same dataset, but one is scaled so as to show two outliers. Keeping these outliers means that the rest of the data looks quite concentrated, just because the axes are in large units. In the other plot, the axis scale has changed (so you can’t see the outliers), but the data looks more scattered. This may or may not be a misrepresentation. Figure 4.9 compares the data with outliers removed, with the same plot on a somewhat different set of axes. One plot looks as though increasing height corresponds to increasing weight; the other looks as though it doesn’t. This is purely due to deceptive scaling — each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in figure 4.4, price data before and after 1900 appeared to behave differently. Figure 4.10 shows a scatter plot of the lynx data, where I have plotted number of pelts against price. I plotted the post-1900 data as circles, and the rest as asterisks. Notice how the circles seem to form a quite different figure, which supports the suggestion that something interesting happened around 1900. The scatter plot does not seem to support the idea that prices go up when supply goes down, which is puzzling, because this is a pretty reliable idea. This turns out to be a scale effect. Scale is an

important nuisance, and it's easy to get misled by scale effects. The way to avoid the problem is to plot in standard coordinates.

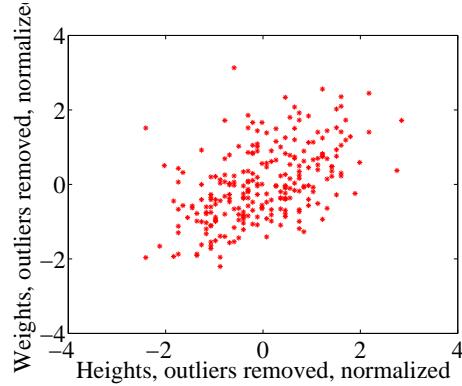


FIGURE 4.11: A normalized scatter plot of weight against height, from the dataset at <http://www2.stetson.edu/~jrasp/data.htm>. Now you can see that someone who is a standard deviation taller than the mean will tend to be somewhat heavier than the mean too.

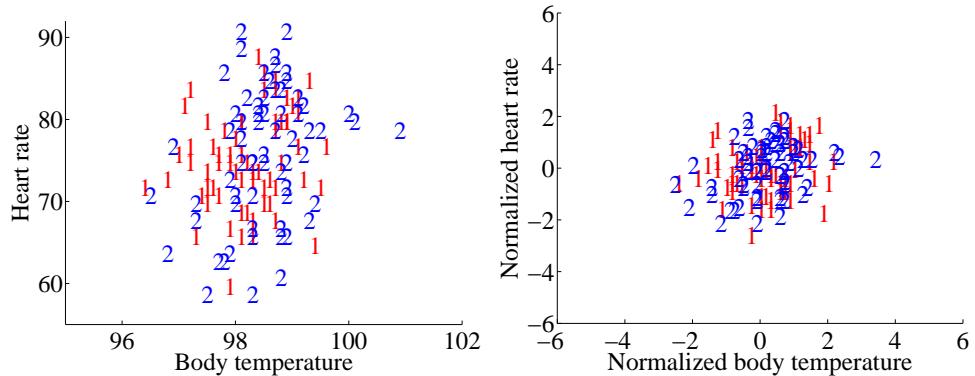


FIGURE 4.12: Left: A scatter plot of body temperature against heart rate, from the dataset at <http://www2.stetson.edu/~jrasp/data.htm>; normtemp.xls. I have separated the two genders by plotting a different symbol for each (though I don't know which gender is indicated by which letter); if you view this in color, the differences in color makes for a greater separation of the scatter. This picture suggests, but doesn't conclusively establish, that there isn't much dependence between temperature and heart rate, and any dependence between temperature and heart rate isn't affected by gender. The scatter plot of the normalized data, in standard coordinates, on the right supports this view.

A natural solution to problems with scale is to normalize the x and y coordinates of the two-dimensional data to standard coordinates. We can normalize

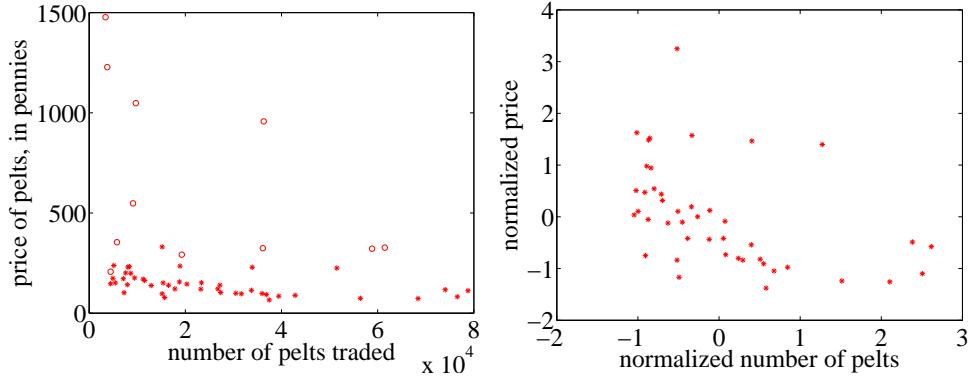


FIGURE 4.13: **Left:** A scatter plot of the price of lynx pelts against the number of pelts (this is a repeat of figure 4.10 for reference). I have plotted data for 1901 to the end of the series as circles, and the rest of the data as *'s. It is quite hard to draw any conclusion from this data, because the scale is confusing. **Right:** A scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded data for 1901 to the end of the series, and then normalized both price and number of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they are more expensive, and when there are more, they are cheaper.

without worrying about the dimension of the data — we normalize each dimension independently by subtracting the mean of that dimension and dividing by the standard deviation of that dimension. We continue to use the convention of writing the normalized x coordinate as \hat{x} and the normalized y coordinate as \hat{y} . So, for example, we can write $\hat{x}_j = (x_j - \text{mean}(\{x\}))/\text{std}(x)$ for the \hat{x} value of the j 'th data item in normalized coordinates. Normalizing shows us the dataset on a standard scale. Once we have done this, it is quite straightforward to read off simple relationships between variables from a scatter plot.

4.2 CORRELATION

The simplest, and most important, relationship to look for in a scatter plot is this: when \hat{x} increases, does \hat{y} tend to increase, decrease, or stay the same? This is straightforward to spot in a normalized scatter plot, because each case produces a very clear shape on the scatter plot. Any relationship is called **correlation** (we will see later how to measure this), and the three cases are: positive correlation, which means that larger \hat{x} values tend to appear with larger \hat{y} values; zero correlation, which means no relationship; and negative correlation, which means that larger \hat{x} values tend to appear with smaller \hat{y} values. I have shown these cases together in one figure using a real data example (Figure 4.15), so you can compare the appearance of the plots.

Positive correlation occurs when larger \hat{x} values tend to appear with larger \hat{y} values. This means that data points with small (i.e. negative with large magnitude) \hat{x} values must have small \hat{y} values, otherwise the mean of \hat{x} (resp. \hat{y}) would be too big. In turn, this means that the scatter plot should look like a “smear”

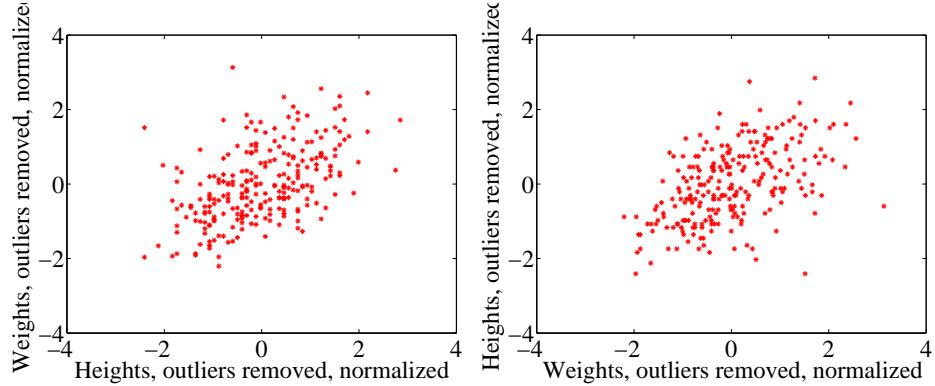


FIGURE 4.14: *On the left, a normalized scatter plot of weight (y-coordinate) against height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against weight (x-coordinate). I've put these plots next to one another so you don't have to mentally rotate (which is what you should usually do).*

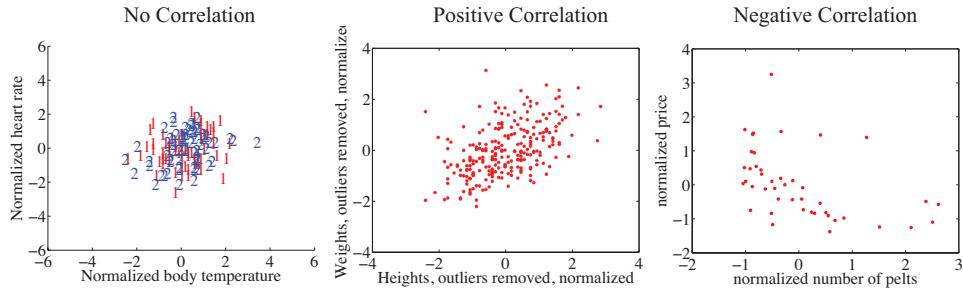


FIGURE 4.15: *The three kinds of scatter plot are less clean for real data than for our idealized examples. Here I used the body temperature vs heart rate data for the zero correlation; the height-weight data for positive correlation; and the lynx data for negative correlation. The pictures aren't idealized — real data tends to be messy — but you can still see the basic structures.*

of data from the bottom left of the graph to the top right. The smear might be broad or narrow, depending on some details we'll discuss below. Figure 4.11 shows normalized scatter plots of weight against height, and of body temperature against heart rate. In the weight-height plot, you can clearly see that individuals who are higher tend to weigh more. The important word here is “tend” — taller people could be lighter, but mostly they tend not to be. Notice, also, that I did NOT say that they weighed more *because* they were taller, but only that they tend to be heavier.

Zero correlation occurs when there is no relationship. This produces a characteristic shape in a scatter plot, but it takes a moment to understand why. If there really is no relationship, then knowing \hat{x} will tell you nothing about \hat{y} . All we know is that $\text{mean}(\{\hat{y}\}) = 0$, and $\text{var}(\{\hat{y}\}) = 1$. Our value of \hat{y} should have

this mean and this variance, but it doesn't depend on \hat{x} in any way. This is enough information to predict what the plot will look like. We know that $\text{mean}(\{\hat{x}\}) = 0$ and $\text{var}(\{\hat{x}\}) = 1$; so there will be many data points with \hat{x} value close to zero, and few with a much larger or much smaller \hat{x} value. The same applies to \hat{y} . Now consider the data points in a strip of \hat{x} values. If this strip is far away from the origin, there will be few data points in the strip, because there aren't many big \hat{x} values. If there is no relationship, we don't expect to see large or small \hat{y} values in this strip, because there are few data points in the strip and because large or small \hat{y} values are uncommon — we see them only if there are many data points, and then seldom. So for a strip with \hat{x} close to zero, we might see large \hat{y} values; but for one that is far away, we expect to see small \hat{y} values. We should see a blob, centered at the origin. In the temperature-heart rate plot of figure 4.12, it looks as though nothing of much significance is happening. The average heart rate seems to be about the same for people who run warm or who run cool. There is probably not much relationship here.

Negative correlation occurs when larger \hat{x} values tend to appear with smaller \hat{y} values. This means that data points with small \hat{x} values must have large \hat{y} values, otherwise the mean of \hat{x} (resp. \hat{y}) would be too big. In turn, this means that the scatter plot should look like a “smear” of data from the top left of the graph to the bottom right. The smear might be broad or narrow, depending on some details we'll discuss below. Figure 4.13 shows a normalized scatter plot of the lynx pelt-price data, where I have excluded the data from 1901 on. I did so because there seemed to be some other effect operating to drive prices up, which was inconsistent with the rest of the series. This plot suggests that when there were more pelts, prices were lower, as one would expect.

Notice that leaving out data, as I did here, should be done with care. If you exclude every data point that might disagree with your hypothesis, you may miss the fact that you are wrong. Leaving out data is an essential component of many kinds of fraud. You should always reveal whether you have excluded data, and why, to allow the reader to judge the evidence.

The correlation is not affected by which variable is plotted on the x -axis and which is plotted on the y -axis. Figure 4.14 compares a plot of height against weight to one of weight against height. Usually, one just does this by rotating the page, or by imagining the new picture. The left plot tells you that data points with higher height value tend to have higher weight value; the right plot tells you that data points with higher weight value tend to have higher height value — i.e. the plots tell you the same thing. It doesn't really matter which one you look at. Again, the important word is “tend” — the plot doesn't tell you anything about *why*, it just tells you that when one variable is larger the other tends to be, too.

4.2.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the i 'th data point in *standard coordinates* (\hat{x}_i, \hat{y}_i) . We already know many important summaries of this data, because it is in standard coordinates. We have $\text{mean}(\{\hat{x}\}) = 0$; $\text{mean}(\{\hat{y}\}) = 0$; $\text{std}(\hat{x}) = 1$; and $\text{std}(\hat{y}) = 1$. Each of these summaries is itself the mean of some monomial. So $\text{std}(\hat{x})^2 = \text{mean}(\{\hat{x}^2\}) = 1$; $\text{std}(\hat{y})^2 =$

$\text{mean}(\{\hat{y}^2\})$ (the other two are easy). We can rewrite this information in terms of means of monomials, giving $\text{mean}(\{\hat{x}\}) = 0$; $\text{mean}(\{\hat{y}\}) = 0$; $\text{mean}(\{\hat{x}^2\}) = 1$; and $\text{mean}(\{\hat{y}^2\}) = 1$. There is one monomial missing here, which is $\hat{x}\hat{y}$.

The term $\text{mean}(\{\hat{x}\hat{y}\})$ captures correlation between x and y . The term is known as the **correlation coefficient** or **correlation**.

Definition 4.1 *Correlation coefficient*

Assume we have N data items which are 2-vectors $(x_1, y_1), \dots, (x_N, y_N)$, where $N > 1$. These could be obtained, for example, by extracting components from larger vectors. We compute the correlation coefficient by first normalizing the x and y coordinates to obtain $\hat{x}_i = \frac{(x_i - \text{mean}(\{x\}))}{\text{std}(x)}$, $\hat{y}_i = \frac{(y_i - \text{mean}(\{y\}))}{\text{std}(y)}$. The correlation coefficient is the mean value of $\hat{x}\hat{y}$, and can be computed as:

$$\text{corr}(\{(x, y)\}) = \frac{\sum_i \hat{x}_i \hat{y}_i}{N}$$

Correlation is a measure of our ability to predict one value from another. The correlation coefficient takes values between -1 and 1 (we'll prove this below). If the correlation coefficient is close to 1 , then we are likely to predict very well. Small correlation coefficients (under about 0.5 , say, but this rather depends on what you are trying to achieve) tend not to be all that interesting, because (as we shall see) they result in rather poor predictions. Figure 4.16 gives a set of scatter plots of different real data sets with different correlation coefficients. These all come from data set of age-height-weight, which you can find at <http://www2.stetson.edu/~jrasp/data.htm> (look for bodyfat.xls). In each case, two outliers have been removed. Age and height are hardly correlated, as you can see from the figure. Younger people do tend to be slightly taller, and so the correlation coefficient is -0.25 . You should interpret this as a small correlation. However, the variable called "adiposity" (which isn't defined, but is presumably some measure of the amount of fatty tissue) is quite strongly correlated with weight, with a correlation coefficient is 0.86 . Average tissue density is quite strongly negatively correlated with adiposity, because muscle is much denser than fat, so these variables are negatively correlated — we expect high density to appear with low adiposity, and vice versa. The correlation coefficient is -0.86 . Finally, density is very strongly correlated with body weight. The correlation coefficient is -0.98 .

It's not always convenient or a good idea to produce scatter plots in standard coordinates (among other things, doing so hides the units of the data, which can be a nuisance). Fortunately, scaling or translating data does not change the value of the correlation coefficient (though it can change the sign if one scale is negative). This means that it's worth being able to spot correlation in a scatter plot that isn't in standard coordinates (even though correlation is always *defined* in standard coordinates). Figure 4.17 shows different correlated datasets plotted in their original

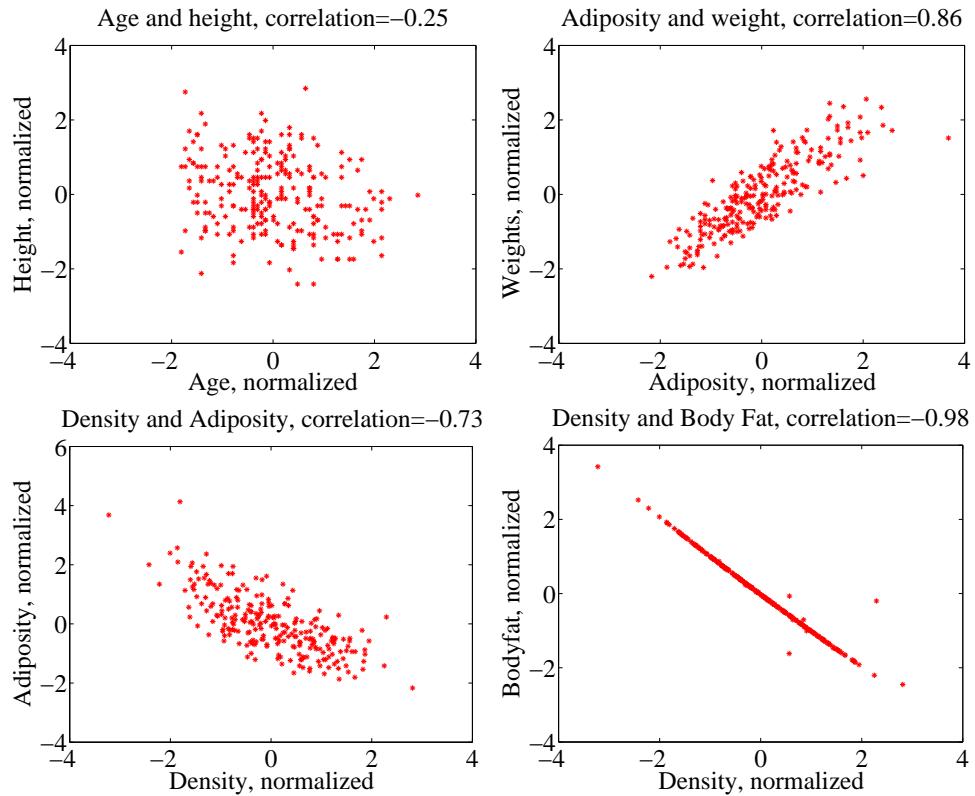


FIGURE 4.16: Scatter plots for various pairs of variables for the age-height-weight dataset from <http://www2.stetson.edu/~jrasp/data.htm>; bodyfat.xls. In each case, two outliers have been removed, and the plots are in standard coordinates (compare to figure 4.17, which shows these data sets plotted in their original units). The legend names the variables.

units. These data sets are the same as those used in figure 4.16

Properties of the Correlation Coefficient

You should memorize the following properties of the correlation coefficient:

- The correlation coefficient is symmetric (it doesn't depend on the order of its arguments), so

$$\text{corr}(\{(x, y)\}) = \text{corr}(\{(y, x)\})$$

- The value of the correlation coefficient is not changed by translating the data. Scaling the data can change the sign, but not the absolute value. For constants $a \neq 0, b, c \neq 0, d$ we have

$$\text{corr}(\{(ax + b, cx + d)\}) = \text{sign}(ab)\text{corr}(\{(x, y)\})$$

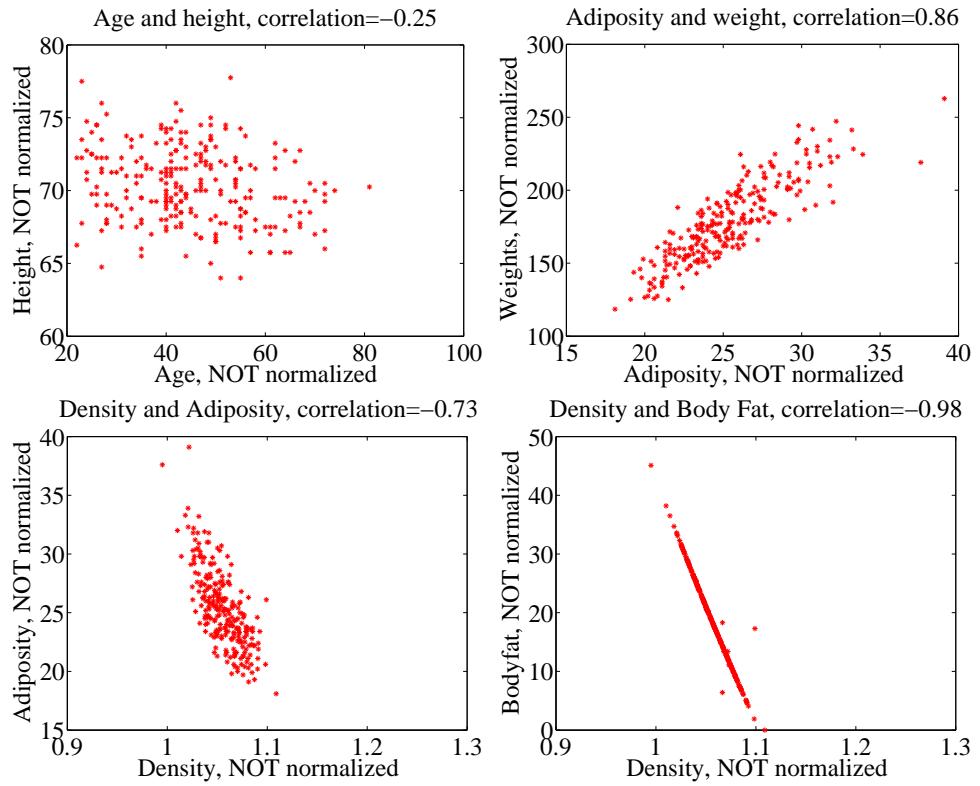


FIGURE 4.17: Scatter plots for various pairs of variables for the age-height-weight dataset from <http://www2.stetson.edu/~jrasp/data.htm>; *bodyfat.xls*. In each case, two outliers have been removed, and the plots are NOT in standard coordinates (compare to figure 4.16, which shows these data sets plotted in normalized coordinates). The legend names the variables.

- If \hat{y} tends to be large (resp. small) for large (resp. small) values of \hat{x} , then the correlation coefficient will be positive.
- If \hat{y} tends to be small (resp. large) for large (resp. small) values of \hat{x} , then the correlation coefficient will be negative.
- If \hat{y} doesn't depend on \hat{x} , then the correlation coefficient is zero (or close to zero).
- The largest possible value is 1, which happens when $\hat{x} = \hat{y}$.
- The smallest possible value is -1, which happens when $\hat{x} = -\hat{y}$.

The first property is easy, and we relegate that to the exercises. One way to see that the correlation coefficient isn't changed by translation or scale is to notice that it is defined in standard coordinates, and scaling or translating data doesn't

change those. Another way to see this is to scale and translate data, then write out the equations; notice that taking standard coordinates removes the effects of the scale and translation. In each case, notice that if the scale is negative, the sign of the correlation coefficient changes.

The property that, if \hat{y} tends to be large (resp. small) for large (resp. small) values of \hat{x} , then the correlation coefficient will be positive, doesn't really admit a formal statement. But it's relatively straightforward to see what's going on. Because $\text{mean}(\{\hat{x}\}) = 0$, small values of $\text{mean}(\{\hat{x}\})$ must be negative and large values must be positive. But $\text{corr}(\{(x, y)\}) = \frac{\sum_i \hat{x}_i \hat{y}_i}{N}$; and for this sum to be positive, it should contain mostly positive terms. It can contain few or no hugely positive (or hugely negative) terms, because $\text{std}(\hat{x}) = \text{std}(\hat{y}) = 1$ so there aren't many large (or small) numbers. For the sum to contain mostly positive terms, then the sign of \hat{x}_i should be the same as the sign \hat{y}_i for most data items. Small changes to this argument work to show that if if \hat{y} tends to be small (resp. large) for large (resp. small) values of \hat{x} , then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more work. Divide the scatter plot of the dataset up into thin vertical strips. There are S strips. Each strip is narrow, so the \hat{x} value does not change much for the data points in a particular strip. For the s 'th strip, write $N(s)$ for the number of data points in the strip, $\hat{x}(s)$ for the \hat{x} value at the center of the strip, and $\bar{y}(s)$ for the mean of the \hat{y} values within that strip. Now the strips are narrow, so we can approximate all data points within a strip as having the same value of \hat{x} . This yields

$$\text{mean}(\{\hat{x}\hat{y}\}) \approx \frac{1}{S} \sum_{s \in \text{strips}} \hat{x}(s) [N(s)\bar{y}(s)]$$

(where you could replace \approx with $=$ if the strips were narrow enough). Now assume that $\bar{y}(s)$ does not change from strip to strip, meaning that there is no relationship between \hat{x} and \hat{y} in this dataset (so the picture is like the left hand side in figure 4.15). Then each value of $\bar{y}(s)$ is the same — we write \bar{y} — and we can rearrange to get

$$\text{mean}(\{\hat{x}\hat{y}\}) \approx \bar{y} \frac{1}{S} \sum_{s \in \text{strips}} \hat{x}(s).$$

Now notice that

$$0 = \text{mean}(\{\hat{y}\}) \approx \frac{1}{S} \sum_{s \in \text{strips}} N(s)\bar{y}(s)$$

(where again you could replace \approx with $=$ if the strips were narrow enough). This means that if every strip has the same value of $\bar{y}(s)$, then that value must be zero. In turn, if there is no relationship between \hat{x} and \hat{y} , we must have $\text{mean}(\{\hat{x}\hat{y}\}) = 0$.

Proposition:

$$-1 \leq \text{corr}(\{(x, y)\}) \leq 1$$

Proof: Writing \hat{x} , \hat{y} for the normalized coefficients, we have

$$\text{corr}(\{(x, y)\}) = \frac{\sum_i \hat{x}_i \hat{y}_i}{N}$$

and you can think of the value as the inner product of two vectors. We write

$$\mathbf{x} = \frac{1}{\sqrt{N}} [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N] \text{ and } \mathbf{y} = \frac{1}{\sqrt{N}} [\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N]$$

and we have $\text{corr}(\{(x, y)\}) = \mathbf{x}^T \mathbf{y}$. Notice $\mathbf{x}^T \mathbf{x} = \text{std}(x)^2 = 1$, and similarly for \mathbf{y} . But the inner product of two vectors is at its maximum when the two vectors are the same, and this maximum is 1. This argument is also sufficient to show that smallest possible value of the correlation is -1 , and this occurs when $\hat{x}_i = -\hat{y}_i$ for all i .

Property 4.1: The largest possible value of the correlation is 1, and this occurs when $\hat{x}_i = \hat{y}_i$ for all i . The smallest possible value of the correlation is -1 , and this occurs when $\hat{x}_i = -\hat{y}_i$ for all i .

4.2.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors $(x_1, y_1), \dots, (x_N, y_N)$, where $N > 1$. These could be obtained, for example, by extracting components from larger vectors. As usual, we will write \hat{x}_i for x_i in normalized coordinates, and so on. Now assume that we know the correlation coefficient is r (this is an important, traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a data point $(x_0, ?)$ where we know the x -coordinate, but not the y -coordinate. We can use the correlation coefficient to predict the y -coordinate. First, we transform to standard coordinates. Now we must obtain the best \hat{y}_0 value to predict, using the \hat{x}_0 value we have.

We want to construct a prediction function which gives a prediction for any value of \hat{x} . This predictor should behave as well as possible on our existing data. For each of the (\hat{x}_i, \hat{y}_i) pairs in our data set, the predictor should take \hat{x}_i and produce a result as close to \hat{y}_i as possible. We can choose the predictor by looking at the errors it makes at each data point.

We write \hat{y}_i^p for the value of \hat{y}_i predicted at \hat{x}_i . The simplest form of predictor is linear. If we predict using a linear function, then we have, for some unknown a , b , that $\hat{y}_i^p = a\hat{x}_i + b$. Now think about $u_i = \hat{y}_i - \hat{y}_i^p$, which is the error in our prediction. We would like to have $\text{mean}(\{u\}) = 0$ (otherwise, we could reduce the

error of the prediction just by subtracting a constant).

$$\begin{aligned}
 \text{mean}(\{u\}) &= \text{mean}(\{\hat{y} - \hat{y}^p\}) \\
 &= \text{mean}(\{\hat{y}\}) - \text{mean}(\{a\hat{x}_i + b\}) \\
 &= \text{mean}(\{\hat{y}\}) - a\text{mean}(\{\hat{x}\}) + b \\
 &= 0 - a0 + b \\
 &= 0.
 \end{aligned}$$

This means that we must have $b = 0$.

To estimate a , we need to think about $\text{var}(\{u\})$. We should like $\text{var}(\{u\})$ to be as small as possible, so that the errors are as close to zero as possible (remember, small variance means small standard deviation which means the data is close to the mean). We have

$$\begin{aligned}
 \text{var}(\{u\}) &= \text{var}(\{\hat{y} - \hat{y}^p\}) \\
 &= \text{mean}(\{(\hat{y} - a\hat{x})^2\}) \quad \text{because } \text{mean}(\{u\}) = 0 \\
 &= \text{mean}(\{(\hat{y})^2 - 2a\hat{x}\hat{y} + a^2(\hat{x})^2\}) \\
 &= \text{mean}(\{(\hat{y})^2\}) - 2a\text{mean}(\{\hat{x}\hat{y}\}) + a^2\text{mean}(\{(\hat{x})^2\}) \\
 &= 1 - 2ar + a^2,
 \end{aligned}$$

which we want to minimize by choice of a . At the minimum, we must have

$$\frac{d\text{var}(\{u_i\})}{da} = 0 = -2r + 2a$$

so that $a = r$ and the correct prediction is

$$\hat{y}_0^p = r\hat{x}_0$$

You can use a version of this argument to establish that if we have $(?, \hat{y}_0)$, then the best prediction for \hat{x}_0 (*which is in standard coordinates*) is $r\hat{y}_0$. It is important to notice that the coefficient of \hat{y}_i is NOT $1/r$; you should work this example, which appears in the exercises. We now have a prediction procedure, outlined below.

Procedure: *Predicting a value using correlation*

Assume we have N data items which are 2-vectors $(x_1, y_1), \dots, (x_N, y_N)$, where $N > 1$. These could be obtained, for example, by extracting components from larger vectors. Assume we have an x value x_0 for which we want to give the best prediction of a y value, based on this data. The following procedure will produce a prediction:

- Transform the data set into standard coordinates, to get

$$\begin{aligned}\hat{x}_i &= \frac{1}{\text{std}(x)}(x_i - \text{mean}(\{x\})) \\ \hat{y}_i &= \frac{1}{\text{std}(y)}(y_i - \text{mean}(\{y\})) \\ \hat{x}_0 &= \frac{1}{\text{std}(x)}(x_0 - \text{mean}(\{x\})).\end{aligned}$$

- Compute the correlation

$$r = \text{corr}(\{(x, y)\}) = \text{mean}(\{\hat{x}\hat{y}\}).$$

- Predict $\hat{y}_0 = r\hat{x}_0$.
- Transform this prediction into the original coordinate system, to get

$$y_0 = \text{std}(y)r\hat{x}_0 + \text{mean}(\{y\})$$

Now assume we have a y value y_0 , for which we want to give the best prediction of an x value, based on this data. The following procedure will produce a prediction:

- Transform the data set into standard coordinates.
- Compute the correlation.
- Predict $\hat{x}_0 = r\hat{y}_0$.
- Transform this prediction into the original coordinate system, to get

$$x_0 = \text{std}(x)r\hat{y}_0 + \text{mean}(\{x\})$$

There is another way of thinking about this prediction procedure, which is often helpful. Assume we need to predict a value for x_0 . In normalized coordinates, our prediction is $\hat{y}^p = r\hat{x}_0$; if we revert back to the original coordinate system, the prediction becomes

$$\frac{(y^p - \text{mean}(\{y\}))}{\text{std}(y)} = r\left(\frac{(x_0 - \text{mean}(\{x\}))}{\text{std}(x)}\right).$$

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: *Predicting a value using correlation: Rule of thumb - 1*

If x_0 is k standard deviations from the mean of x , then the predicted value of y will be rk standard deviations away from the mean of y , and the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: *Predicting a value using correlation: Rule of thumb - 2*

The predicted value of y goes up by r standard deviations when the value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction procedure will make. The square of this error must be

$$\begin{aligned}\text{mean}(\{u^2\}) &= \text{mean}(\{y^2\}) - 2r\text{mean}(\{xy\}) + r^2\text{mean}(\{x^2\}) \\ &= 1 - 2r^2 + r^2 \\ &= 1 - r^2\end{aligned}$$

so the root mean square error will be $\sqrt{1 - r^2}$. This is yet another interpretation of correlation; if x and y have correlation close to one, then predictions could have very small root mean square error, and so might be very accurate. In this case, knowing one variable is about as good as knowing the other. If they have correlation close to zero, then the root mean square error in a prediction might be as large as the root mean square error in \hat{y} — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in other kinds of plots — one doesn't have to make a scatter plot. For example, if we were to observe a child's height from birth to their 10'th year (you can often find these observations in ballpen strokes, on kitchen walls), we could plot height as a function of year. If we also had their weight (less easily found), we could plot weight as a function of year, too. The prediction argument above say that, if you can predict the weight from the height (or vice versa) then they're correlated. One way to spot this is to look and see if one curve goes up when the other does (or goes down when the other goes up). You can see this effect in figure 4.4, where (before 19h00), prices go down when the number of pelts goes up, and vice versa. These two variables are negatively correlated.

4.2.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation. When two variables are correlated, they change together. If the correlation is positive, that means that, in typical data, if one is large then the other is large, and if one is small the other is small. In turn, this means that one can make a reasonable prediction of one from the other. However, correlation DOES NOT mean that changing one variable causes the other to change (sometimes known as causation).

Two variables in a dataset could be correlated for a variety of reasons. One important reason is pure accident. If you look at enough pairs of variables, you

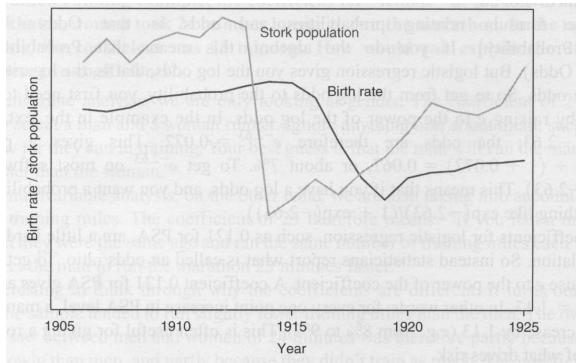


FIGURE 4.18: This figure, from Vickers (*ibid*, p184) shows a plot of the stork population as a function of time, and the human birth rate as a function of time, for some years in Germany. The correlation is fairly clear; but this does not mean that reducing the number of storks means there are fewer able to bring babies. Instead, this is the impact of the first world war — a hidden or latent variable.

may well find a pair that appears to be correlated just because you have a small set of observations. Imagine, for example, you have a dataset consisting of only two vectors — there is a pretty good chance that there is some correlation between the coefficients. Such accidents can occur in large datasets, particularly if the dimensions are high.

Another reason variables could be correlated is that there is some causal relationship — for example, pressing the accelerator tends to make the car go faster, and so there will be some correlation between accelerator position and car acceleration. As another example, adding fertilizer does tend to make a plant grow bigger. Imagine you record the amount of fertilizer you add to each pot, and the size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other background variable — often called a **latent variable** — linked causally to each of the observed variables. For example, in children (as Freedman, Pisani and Purves note in their excellent *Statistics*), shoe size is correlated with reading skills. This DOES NOT mean that making your feet grow will make you read faster, or that you can make your feet shrink by forgetting how to read. The real issue here is the age of the child. Young children tend to have small feet, and tend to have weaker reading skills (because they've had less practice). Older children tend to have larger feet, and tend to have stronger reading skills (because they've had more practice). You can make a reasonable prediction of reading skills from foot size, because they're correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the effect of fertilizer on potplants. You collect a set of pots, put one plant in each, and add different amounts of fertilizer. After some time, you record the size of each plant. You expect to see correlation between fertilizer amount and plant size. But you might not if you had used a different species of plant in each pot. Different species of plant can react quite differently to the same fertilizer (some plants just

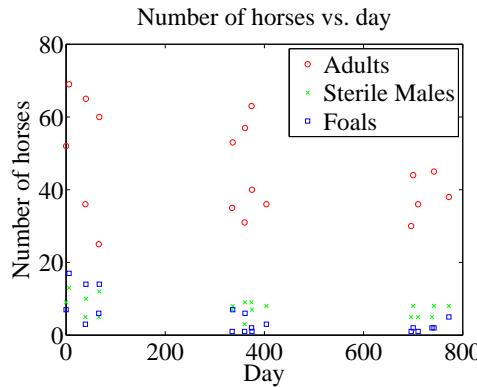


FIGURE 4.19: *A plot of the number of adult horses, sterile males, and foals in horse herds over a period of three years. The plot suggests that introducing sterile males might cause the number of foals to go down. Data from <http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html>.*

die if over-fertilized), so the species could act as a latent variable. With an unlucky choice of the different species, you might even conclude that there was a negative correlation between fertilizer and plant size. This example illustrates why you need to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it's an effect you should look for. Another nice example comes from Vickers (*ibid*). The graph, shown in Figure 4.18, shows a plot of (a) a dataset of the stork population in Europe over a period of years and (b) a dataset of the birth rate over those years. This isn't a scatter plot; instead, the data has been plotted on a graph. You can see by eye that these two datasets are quite strongly correlated. Even more disturbing, the stork population dropped somewhat before the birth rate dropped. Is this evidence that storks brought babies in Europe during those years? No (the usual arrangement seems to have applied). For a more sensible explanation, look at the dates. The war disturbed both stork and human breeding arrangements. Storks were disturbed immediately by bombs, etc., and the human birth rate dropped because men died at the front.

4.3 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers by simply shooting surplus animals would provoke outrage. One strategy that has been adopted is to sterilize males in the herd; if a herd contains sufficient sterile males, fewer foals should result. But catching stallions, sterilizing them, and reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At <http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html>, you can find a dataset covering herd management in wild horses. I have plotted part of this dataset in figure 4.19. In this dataset, there are counts of all horses, sterile males, and foals made on each of a

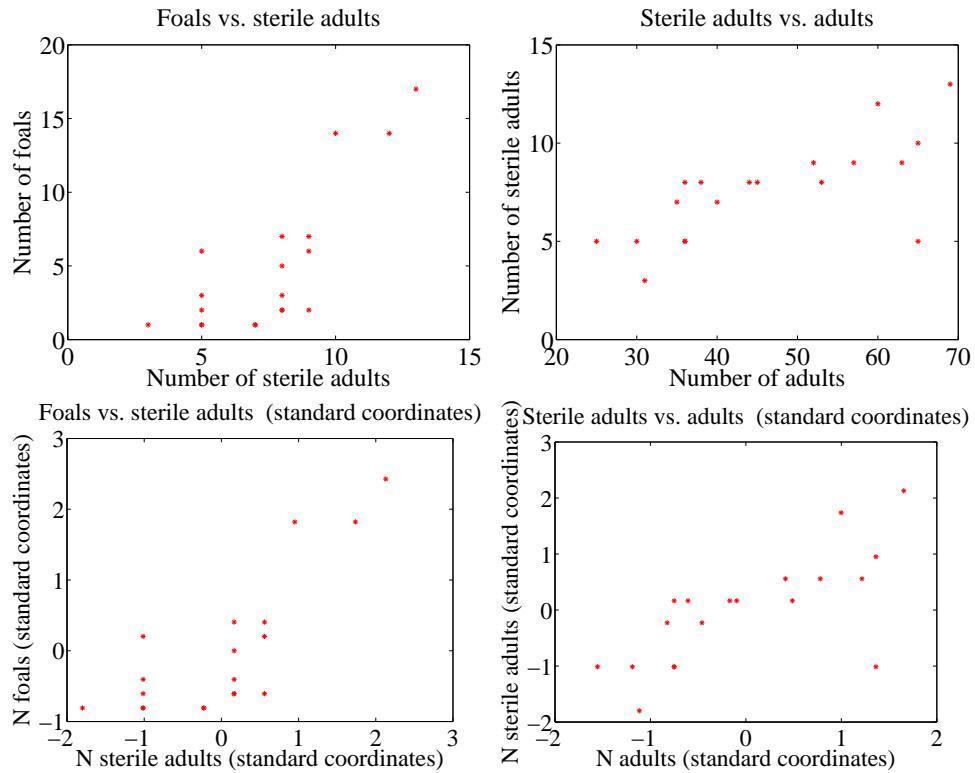


FIGURE 4.20: *Scatter plots of the number of sterile males in a horse herd against the number of adults, and the number of foals against the number of sterile males, from data of <http://lib.stat.cmu.edu/DASL/Datafiles/WildHorses.html>.*
Top: unnormalized; **bottom:** standard coordinates.

small number of days in 1986, 1987, and 1988 for each of two herds. I extracted data for one herd. I have plotted this data as a function of the count of days since the first data point, because this makes it clear that some measurements were taken at about the same time, but there are big gaps in the measurements. In this plot, the data points are shown with a marker. Joining them leads to a confusing plot because the data points vary quite strongly. However, notice that the size of the herd drifts down slowly (you could hold a ruler against the plot to see the trend), as does the number of foals, when there is a (roughly) constant number of sterile males.

Does sterilizing males result in fewer foals? This is likely hard to answer for this dataset, but we could ask whether herds with more sterile males have fewer foals. A scatter plot is a natural tool to attack this question. However, the scatter plots of figure 4.20 suggest, rather surprisingly, that when there are more sterile males there are more adults (and vice versa), and when there are more sterile males there are more foals (and vice versa). This is borne out by a correlation analysis. The correlation coefficient between foals and sterile males is 0.74, and

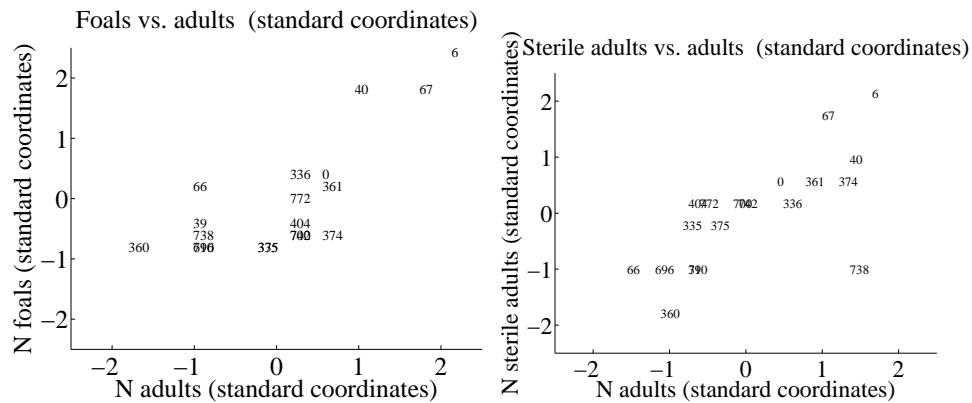


FIGURE 4.21:

the correlation coefficient between adults and sterile males is 0.68. You should find this very surprising — how do the horses know how many sterile males there are in the herd? You might think that this is an effect of scaling the plot, but there is a scatter plot in normalized coordinates in figure 4.20 that is entirely consistent with the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 4.21. Here, rather than plotting a '*' at each data point, I have plotted the day number of the observation. This is in days from the first observation. You can see that the whole herd is shrinking — observations where there are many adults (resp. sterile adults, foals) occur with small day numbers, and observations where there are few have large day numbers. Because the whole herd is shrinking, it is true that when there are more adults and more sterile males, there are also more foals. Alternatively, you can see the plots of figure 4.19 as a scatter plot of herd size (resp. number of foals, number of sterile males) against day number. Then it becomes clear that the whole herd is shrinking, as is the size of each group. To drive this point home, we can look at the correlation coefficient between adults and days (-0.24), between sterile adults and days (-0.37), and between foals and days (-0.61). We can use the rule of thumb in box 4.2.2 to interpret this. This means that every 282 days, the herd loses about three adults; about one sterile adult; and about three foals. For the herd to have a stable size, it needs to gain by birth as many foals as it loses both to growing up and to death. If the herd is losing three foals every 282 days, then if they all grow up to replace the missing adults, the herd will be shrinking slightly (because it is losing four adults in this time); but if it loses foals to natural accidents, etc., then it is shrinking rather fast.

The message of this example is important. To understand a simple dataset, you might need to plot it several ways. You should make a plot, look at it and ask what it says, and then try to use another type of plot to confirm or refute what you think might be going on.

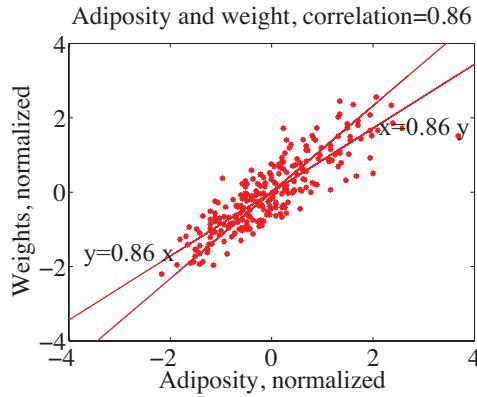


FIGURE 4.22: This figure shows two lines, $y = 0.86x$ and $x = 0.86y$, superimposed on the normalized adiposity-weight scatter plot.

4.4 WHAT YOU MUST REMEMBER

You should be able to:

- Plot a bar chart, a heat map, and a pie chart for a categorical dataset.
- Plot a dataset as a graph, making sensible choices about markers, lines and the like.
- Plot a scatter plot for a dataset.
- Plot a normalized scatter plot for a dataset.
- Interpret the scatter plot to tell the sign of the correlation between two variables, and estimate the size of the correlation coefficient.
- Compute a correlation coefficient.
- Interpret a correlation coefficient.
- Use correlation to make predictions.

You should remember:

- The definition and properties of the correlation coefficient.

PROBLEMS

- 4.1. Show that $\text{corr}(\{(x, y)\}) = \text{corr}(\{(y, x)\})$ by substituting into the definition.
- 4.2. Show that if \hat{y} tends to be small (resp. large) for large (resp. small) values of \hat{x} , then the correlation coefficient will be negative.
- 4.3. We have a 2D dataset consisting of N pairs (\hat{x}_i, \hat{y}_i) in normalized coordinates. This data has correlation coefficient r . We observe a new \hat{y} value \hat{y}_0 , and wish to predict the (unknown) x value. We will do so with a linear prediction, choosing a, b , to predict an \hat{x} for any \hat{y} using the rule $\hat{x}^p = a\hat{y}^p + b$. Write $u_i = \hat{x}_i - \hat{x}_i^p$ for the error that this rule makes on each data item.
 - (a) We require $\text{mean}(\{u\}) = 0$. Show that this means that $b = 0$.

(b) We require that $\text{var}(\{u\})$ is minimized. Show that this means that $a = r$.

(c) We now have a result that seems paradoxical — if I have $(\hat{x}_0, ?)$ I predict $(\hat{x}_0, r\hat{x}_0)$ and if I have $(?, y_0)$, I predict $(r\hat{y}_0, \hat{y}_0)$. Use figure 4.22 to explain why this is right. The important difference between the two lines is that one lies (approximately) in the middle of each vertical span of data, and the other lies (approximately) in the middle of each horizontal span of data.

4.4. I did the programming exercise about the earth temperature below. I looked at the years 1965-2012. Write $\{(y, T)\}$ for the dataset giving the temperature (T) of the earth in year y . I computed: $\text{mean}(\{y\}) = 1988.5$, $\text{std}(y) = 14$, $\text{mean}(\{T\}) = 0.175$, $\text{std}(T) = 0.231$ and $\text{corr}(\{y\})T = 0.892$. What is the best prediction using this information for the temperature in mid 2014? in mid 2028? in mid 2042?

4.5. I did the programming exercise about the earth temperature below. It is straightforward to build a dataset $\{(T, n_t)\}$ where each entry contains the temperature of the earth (T) and the number of counties where FEMA declared tornadoes n_t (for each year, you look up T and n_t , and make a data item). I computed: $\text{mean}(\{T\}) = 0.175$, $\text{std}(T) = 0.231$, $\text{mean}(\{n_t\}) = 31.6$, $\text{std}(n_t) = 30.8$, and $\text{corr}(\{T\})n_t = 0.471$. What is the best prediction using this information for the number of tornadoes if the global earth temperature is 0.5? 0.6? 0.7?

PROGRAMMING EXERCISES

4.6. At <http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html>, you will find a dataset recording per capita cigarette sales and cancer deaths per 100K population for a variety of cancers, recorded for 43 states and the District of Columbia in 1960.

(a) Plot a scatter plot of lung cancer deaths against cigarette sales, using the two letter abbreviation for each state as a marker. You should see two fairly obvious outliers. The backstory at <http://lib.stat.cmu.edu/DASL/Stories/cigcancer.html> suggests that the unusual sales in Nevada are generated by tourism (tourists go home, and die there) and the unusual sales in DC are generated by commuting workers (who also die at home).

(b) What is the correlation coefficient between per capita cigarette sales and lung cancer deaths per 100K population? Compute this with, and without the outliers. What effect did the outliers have? Why?

(c) What is the correlation coefficient between per capita cigarette sales and bladder cancer deaths per 100K population? Compute this with, and without the outliers. What effect did the outliers have? Why?

(d) What is the correlation coefficient between per capita cigarette sales and kidney cancer deaths per 100K population? Compute this with, and without the outliers. What effect did the outliers have? Why?

(e) What is the correlation coefficient between per capita cigarette sales and leukemia deaths per 100K population? Compute this with, and without the outliers. What effect did the outliers have? Why?

(f) You should have computed a positive correlation between cigarette sales and lung cancer deaths. Does this mean that smoking causes lung cancer? Why?

(g) You should have computed a negative correlation between cigarette sales and leukemia deaths. Does this mean that smoking cures leukemia? Why?

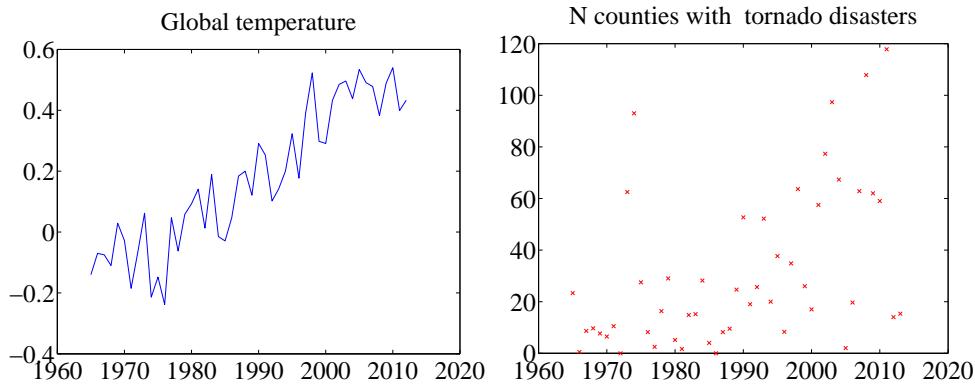


FIGURE 4.23: *Plots I prepared from left uea data on temperature and right FEMA data on tornadoes by county. These should help you tell if you're on the right track.*

4.7. At <http://www.cru.uea.ac.uk/cru/info/warming/gtc.csv>, you can find a dataset of global temperature by year. When I accessed this, the years spanned 1880-2012. I don't know what units the temperatures are measured in. Keep in mind that measuring the temperature of the earth has non-trivial difficulties (you can't just insert an enormous thermometer!), and if you look at <http://www.cru.uea.ac.uk/cru> and <http://www.cru.uea.ac.uk/cru/temperature/> you can see some discussion of the choices made to get these measurements. There are two kinds of data in this dataset, smoothed and unsmoothed. I used the unsmoothed data, which should be fine for our purposes. The government publishes a great deal of data at <http://data.gov>. From there, I found a dataset, published by the Federal Emergency Management Agency (FEMA), of all federally declared disasters (which I found at <http://www.fema.gov/media-library/assets/documents/28318?id=6292>). We would like to see whether weather related disasters are correlated to global temperature.

(a) The first step is preprocessing the data. The FEMA data has all sorts of information. From 1965 on, a disaster was declared per county (so you get one line in the data set for each county), but before 1965, it seems to have been by state. We divide the disasters into four types: TORNADO, FLOOD, STORM, HURRICANE. (FEMA seems to have a much richer type system). We want to know how many counties declare a disaster of each type, in each year. This is a really rough estimate of the number of people affected by the disaster. If a disaster has two types (in some rows, you will see "SEVERE STORMS, HEAVY RAINS & FLOODING" we will allocate the credit evenly between the types (i.e. for this case we would count 1/2 for STORM and 1/2 for FLOOD). You should write code that will (a) read the dataset and then (b) compute a table with the count of the number of counties where a disaster of each type has occurred for each year. This takes a bit of work. Notice you only need to deal with two columns of the data (the date it was declared, and the type). Notice also that FEMA changed the way it represented dates somewhere through the first column (they added times), which can cause problems. You can

tell the type of the disaster by just using a string match routine with the four keywords. Figure 4.23 shows the plot of temperature and of number of counties where FEMA declared a tornado disaster for this data.

- (b) Plot a normalized scatter plot of the number of counties where FEMA declared the disaster against temperature, for each kind.
- (c) For each kind of disaster, compute the correlation coefficient between the number of counties where FEMA declared the disaster and the year. For each kind of disaster, use this correlation coefficient to predict the number of disasters of this kind for 2013. Compare this to the true number, and explain what you see.
- (d) For each kind of disaster, compute the correlation coefficient between the number of counties where FEMA declared the disaster and the global temperature. For each kind of disaster, use this correlation coefficient to predict the number of disasters of this kind when the earth reaches 0.6 temperature units and 0.7 temperature units (on the absolute temperature scale).
- (e) Does this data show that warming of the earth causes weather disasters? Why?
- (f) Does this data suggest that more people will be affected by disasters in the US in the future? Why?
- (g) Does this data suggest that the earth will be warmer in the future? Why?

CHAPTER 5

Basic ideas in probability

We will perform experiments — which could be pretty much anything, from flipping a coin, to eating too much saturated fat, to smoking, to crossing the road without looking — and reason about the outcomes (mostly bad, for the examples I gave). But these outcomes are uncertain, and we need to weigh those uncertainties against one another. If I flip a coin, I could get heads or tails, and there's no reason to expect to see one more often than the other. If I eat too much saturated fat or smoke, I will very likely have problems, though I might not. If I cross the road without looking, I may be squashed by a truck or I may not. Our methods need also to account for information. If I look before I cross the road, I am much less likely to be squashed.

Probability is the machinery we use to predict what will happen in an experiment. Probability measures the tendency of events to occur frequently or seldom when we repeat experiments. Building this machinery involves a formal model of potential outcomes and sets of outcomes. Once we have this, a set of quite simple axioms allows us, at least in principle, to compute probabilities in most situations.

5.1 EXPERIMENTS, OUTCOMES, EVENTS, AND PROBABILITY

If we flip a fair coin many times, we expect it to come up heads about as often as it comes up tails. If we toss a fair die many times, we expect each number to come up about the same number of times. We are performing an experiment each time we flip the coin, and each time we toss the die. We can formalize this experiment by describing the set of **outcomes** that we expect from the experiment. Every run of the experiment produces one of the set of possible outcomes. There are never two or more outcomes, and there is never no outcome.

In the case of the coin, the set of outcomes is:

$$\{H, T\}.$$

In the case of the die, the set of outcomes is:

$$\{1, 2, 3, 4, 5, 6\}.$$

We are making a modelling choice by specifying the outcomes of the experiment. For example, we are assuming that the coin can only come up heads or tails (but doesn't stand on its edge; or fall between the floorboards; or land behind the bookcase; or whatever). We write the set of all outcomes Ω ; this is usually known as the **sample space**.

Worked example 5.1 *Find the lady*

We have three playing cards. One is a queen; one is a king, and one is a knave. All are shown face down, and one is chosen at random and turned up. What is the set of outcomes?

Solution: Write Q for queen, K for king, N for knave; the outcomes are $\{Q, K, N\}$

Worked example 5.2 *Find the lady, twice*

We play Find the Lady twice, replacing the card we have chosen. What is the sample space?

Solution: We now have $\{QQ, QK, QN, KQ, KK, KN, NQ, NK, NN\}$

Worked example 5.3 *Children*

A couple decides to have children until either (a) they have both a boy and a girl or (b) they have three children. What is the set of outcomes?

Solution: Write B for boy, G for girl, and write them in birth order; we have $\{BG, GB, BBG, BBB, GGB, GGG\}$.

Worked example 5.4 *Monty Hall (sigh!)*

There are three boxes. There is a goat, a second goat, and a car. These are placed into the boxes at random. The goats are indistinguishable for our purposes; equivalently, we do not care about the difference between goats. What is the sample space?

Solution: Write G for goat, C for car. Then we have $\{CGG, GCG, GGC\}$.

Worked example 5.5 *Monty Hall, different goats (sigh!)*

There are three boxes. There is a goat, a second goat, and a car. These are placed into the boxes at random. One goat is male, the other female, and the distinction is important. What is the sample space?

Solution: Write M for male goat, F for female goat, C for car. Then we have $\{CFM, CMF, FCM, MCF, FMC, MFC\}$. Notice how the number of outcomes has increased, because we now care about the distinction between goats.

Worked example 5.6 *A poor choice of strategy for planning a family*

A couple decides to have children. As they know no mathematics, they decide to have children until a girl then a boy are born. What is the sample space? Does this strategy bound the number of children they could be planning to have?

Solution: Write B for boy, G for girl. The sample space looks like any string of B's and G's that (a) ends in GB and (b) does not contain any other GB. In regular expression notation, you can write such strings as B^*G^+B . There is a lower bound (two), but no upper bound. As a family planning strategy, this is unrealistic, but it serves to illustrate the point that sample spaces don't have to be finite to be tractable.

5.1.1 The Probability of an Outcome

We represent our model of how often a particular outcome will occur in a repeated experiment with a **probability**, a non-negative number. This number gives the relative frequency of the outcome of interest, when an experiment is repeated a very large number of times.

Assume an outcome A has probability P . Assume we repeat the experiment a very large number of times N , and assume that the coins, dice, whatever don't communicate with one another from experiment to experiment (or, equivalently, that experiments don't "know" about one another). Then, for about $N \times P$ of those experiments the outcome will occur. Furthermore, as N gets larger, the fraction where the outcome occurs will get closer to P . We write $\#(A)$ for the number of times outcome A occurs. We interpret P as

$$\lim_{N \rightarrow \infty} \frac{\#(A)}{N}.$$

We can draw two important conclusions immediately.

- For any outcome A , $0 \leq P(A) \leq 1$.
- $\sum_{A_i \in \Omega} P(A_i) = 1$.

Remember that every run of the experiment produces exactly one outcome. The probabilities add up to one because each experiment must have one of the outcomes in the sample space.

Worked example 5.7 *A biased coin*

Assume we have a coin where the probability of getting heads is $P(H) = \frac{1}{3}$, and so the probability of getting tails is $P(T) = \frac{2}{3}$. We flip this coin three million times. How many times do we see heads?

Solution: $P(H) = \frac{1}{3}$, so we expect this coin will come up heads in $\frac{1}{3}$ of experiments. This means that we will very likely see very close to a million heads.

Some problems can be handled by building a set of outcomes and reasoning about the probability of each outcome. This is particularly useful when the outcomes *must* have the same probability, which happens rather a lot.

Worked example 5.8 *Find the Lady*

Assume that the card that is chosen is chosen fairly — that is, each card is chosen with the same probability. What is the probability of turning up a Queen?

Solution: There are three outcomes, and each is chosen with the same probability, so the probability is $1/3$.

Worked example 5.9 *Monty Hall, indistinguishable goats, again*

Each outcome has the same probability. We choose to open the first box. With what probability will we find a goat (any goat)?

Solution: There are three outcomes, each has the same probability, and two give a goat, so $2/3$

Worked example 5.10 *Monty Hall, yet again*

Each outcome has the same probability. We choose to open the first box. With what probability will we find the car?

Solution: There are three places the car could be, each has the same probability, so $1/3$

Worked example 5.11 *Monty Hall, with distinct goats, again*

Each outcome has the same probability. We choose to open the first box. With what probability will we find a female goat?

Solution: Using the reasoning of the previous example, but substituting “female goat” for “car”, $1/3$. The point of this example is that the sample space matters. If you care about the gender of the goat, then it’s important to keep track of it; if you don’t, it’s a good idea to omit it from the sample space.

5.1.2 Events

Assume we run an experiment and get an outcome. We know what the outcome is (that’s the whole point of a sample space). This means we can tell whether the outcome we get belongs to some particular known *set* of outcomes. We just look in the set and see if our outcome is there. This means that we should be able to predict the probability of a *set* of outcomes from any reasonable model of an experiment. For example, we might roll a die and ask what the probability of getting an even

number is. As another example, we might flip a coin ten times, and ask what the probability of getting three heads is.

An **event** is a set of outcomes. The set of all outcomes, which we wrote Ω , must be an event. It is not a particularly interesting event, because we must have $P(\Omega) = 1$ (because we said that every run of an experiment produces one outcome, and that outcome must be in Ω). In principle, there could be no outcome, although this never happens. This means that the empty set, which we write \emptyset , is an event, and we have $P(\emptyset) = 0$. The space of events has a rich structure, which makes it possible to compute probabilities for other, more interesting, events.

Notation: Generally, we write sets like \mathcal{A} ; in principle, you could confuse this notation with the matrix notation, but it's clear from context which is meant. We write $\mathcal{A} \cup \mathcal{B}$ for the union of two sets, $\mathcal{A} \cap \mathcal{B}$ for the intersection of two sets, and $\mathcal{A} - \mathcal{B}$ for the set theoretic difference (i.e. $\mathcal{A} - \mathcal{B} = \{x \in \mathcal{A} | x \notin \mathcal{B}\}$). We will write $\Omega - \mathcal{U}$ as \mathcal{U}^c ; read “the complement of \mathcal{U} ”.

Events have three important properties that follow from their nature as sets of outcomes:

- If \mathcal{U} and \mathcal{V} are events — sets of outcomes — then so is $\mathcal{U} \cap \mathcal{V}$. You should interpret this as the event that we have an outcome that is in \mathcal{U} and also in \mathcal{V} .
- If \mathcal{U} and \mathcal{V} are events, then $\mathcal{U} \cup \mathcal{V}$ is also an event. You should interpret this as the event that we have an outcome that is either in \mathcal{U} or in \mathcal{V} (or in both).
- If \mathcal{U} is an event, then $\mathcal{U}^c = \Omega - \mathcal{U}$ is also an event. You should think of this as the event we get an outcome that is not in \mathcal{U} .

This means that the set of all possible events Σ has a very important structure.

- \emptyset is in Σ .
- Ω is in Σ .
- If $\mathcal{U} \in \Sigma$ and $\mathcal{V} \in \Sigma$ then $\mathcal{U} \cup \mathcal{V} \in \Sigma$.
- If $\mathcal{U} \in \Sigma$ and $\mathcal{V} \in \Sigma$ then $\mathcal{U} \cap \mathcal{V} \in \Sigma$.
- If $\mathcal{U} \in \Sigma$ then $\mathcal{U}^c \in \Sigma$.

This means that the space of events can be quite big. For a single flip of a coin, the only possible space of events looks like:

$$\{\emptyset, \{H\}, \{T\}, \{H, T\}\}$$

Many experiments admit more than one space of events. For example, if we flip two coins, one natural event space is

$$\left\{ \emptyset, \Omega, \{HH\}, \{HT\}, \{TH\}, \{TT\}, \{HH, HT\}, \{HH, TH\}, \{HH, TT\}, \{HT, TT\}, \{HT, TH\}, \{TT, HH\}, \{HT, TH, TT\}, \{HH, TH, TT\}, \{HH, HT, TT\}, \{HH, HT, TH\} \right\}$$

which can represent any possible event that can be built out of two coin flips. But this is not the only event space possible with these outcomes.

Worked example 5.12 *The structure of event spaces*

I flip two coins. Is the following collection of sets an event space?

$$\Sigma = \{\emptyset, \Omega, \{HH\}, \{TT, HT, TH\}\}$$

Solution: Yes, because: $\emptyset \in \Sigma$; $\Omega \in \Sigma$; if $\mathcal{A} \in \Sigma$, $\mathcal{A}^c \in \Sigma$; if $\mathcal{A} \in \Sigma$ and $\mathcal{B} \in \Sigma$, $\mathcal{A} \cup \mathcal{B} \in \Sigma$; and if $\mathcal{A} \in \Sigma$ and $\mathcal{B} \in \Sigma$, $\mathcal{A} \cap \mathcal{B} \in \Sigma$.

So, from example 12, we can have different consistent collections of events built on top of the same set of outcomes. This makes sense, because it allows us to reason about different kinds of result obtained with the same experimental equipment. You can interpret the event space in example 12 as encoding the events “two heads” and “anything other than two heads”.

For a single throw of the die, the set of every possible event is

$$\left\{ \begin{array}{llllll} \emptyset, & \{1, 2, 3, 4, 5, 6\}, & & & & & \\ \{1\}, & \{2\}, & \{3\}, & \{4\}, & \{5\}, & \{6\}, & \\ & \{1, 2\}, & \{1, 3\}, & \{1, 4\}, & \{1, 5\}, & \{1, 6\}, & \\ & & \{2, 3\}, & \{2, 4\}, & \{2, 5\}, & \{2, 6\}, & \\ & & & \{3, 4\}, & \{3, 5\}, & \{3, 6\}, & \\ & & & & \{4, 5\}, & \{4, 6\}, & \\ & & & & & \{5, 6\}, & \\ \{1, 2, 3\}, & \{1, 2, 4\}, & \{1, 2, 5\}, & \{1, 2, 6\}, & & & \\ & \{1, 3, 4\}, & \{1, 3, 5\}, & \{1, 3, 6\}, & & & \\ & & \{1, 4, 5\}, & \{1, 4, 6\}, & & & \\ & & & \{1, 5, 6\}, & & & \\ & \{2, 3, 4\}, & \{2, 3, 5\}, & \{2, 3, 6\}, & & & \\ & \{2, 4, 5\}, & \{2, 4, 6\}, & \{2, 5, 6\}, & & & \\ & & \{3, 4, 5\}, & \{3, 4, 6\}, & & & \\ & & & \{3, 5, 6\}, & & & \\ & & & \{4, 5, 6\}, & & & \\ \{1, 2, 3, 4\}, & \{1, 2, 3, 5\}, & \{1, 2, 3, 6\}, & & & & \\ & \{1, 3, 4, 5\}, & \{1, 3, 4, 6\}, & & & & \\ & \{2, 3, 4, 5\}, & \{2, 3, 4, 6\}, & & & & \\ & & \{3, 4, 5, 6\}, & & & & \\ \{2, 3, 4, 5, 6\}, & \{1, 3, 4, 5, 6\}, & \{1, 2, 4, 5, 6\}, & \{1, 2, 3, 5, 6\}, & \{1, 2, 3, 4, 6\}, & \{1, 2, 3, 4, 5\} & \end{array} \right\}$$

(which gives some explanation as to why we don't usually write out the whole space of events). In fact, it is seldom necessary to explain which event space one is working with. We usually assume that the event space consists of all events that can be obtained with the outcomes (as in the event space shown for a die).

5.1.3 The Probability of Events

So far, we have described the probability of each outcome with a non-negative number. This number represents the relative frequency of the outcome. Because we can tell when an event has occurred, we can compute the relative frequency of events, too. Because it is a relative frequency, the probability of an event is a

non-negative number, and is no greater than one. But the probability of events must be consistent with the probability of outcomes. This implies a set of quite straightforward properties:

- **The probability of every event is non-negative**, which we write $P(\mathcal{A}) \geq 0$ for all \mathcal{A} in the collection of events.
- **Every experiment has an outcome**, which we write $P(\Omega) = 1$.
- **The probability of disjoint events is additive**, which requires more notation. Assume that we have a collection of events \mathcal{A}_i , indexed by i . We require that these have the property $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset$ when $i \neq j$. This means that there is no outcome that appears in more than one \mathcal{A}_i . In turn, if we interpret probability as relative frequency, we must have that $P(\bigcup_i \mathcal{A}_i) = \sum_i P(\mathcal{A}_i)$.

Any function P taking events to numbers that has these properties is a probability. These very simple properties imply a series of other very important properties.

Useful Facts 5.1 *The probability of events*

- $P(\mathcal{A}^c) = 1 - P(\mathcal{A})$
- $P(\emptyset) = 0$
- $P(\mathcal{A} - \mathcal{B}) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B})$
- $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B})$
- $P(\bigcup_1^n \mathcal{A}_i) = \sum_i P(\mathcal{A}_i) - \sum_{i < j} P(\mathcal{A}_i \cap \mathcal{A}_j) + \sum_{i < j < k} P(\mathcal{A}_i \cap \mathcal{A}_j \cap \mathcal{A}_k) + \dots (-1)^{(n+1)} P(\mathcal{A}_1 \cap \mathcal{A}_2 \cap \dots \cap \mathcal{A}_n)$

I prove each of these below. Looking at the useful facts should suggest a helpful analogy. Think about the probability of an event as the “size” of that event. This “size” is relative to Ω , which has “size” 1. I find this a good way to remember equations.

For example, $P(\mathcal{A}) + P(\mathcal{A}^c) = 1$ has to be true, by this analogy, because \mathcal{A} and \mathcal{A}^c don’t overlap, and together make up all of Ω . Similarly, $P(\mathcal{A} - \mathcal{B}) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B})$ is easily captured — the “size” of the part of \mathcal{A} that isn’t \mathcal{B} is obtained by taking the “size” of \mathcal{A} and subtracting the “size” of the part that is also in \mathcal{B} . Similarly, $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B})$ says — you can get the “size” of $\mathcal{A} \cup \mathcal{B}$ by adding the two “sizes”, then subtracting the “size” of the intersection because otherwise you would count these terms twice. Some people find Venn diagrams a useful way to keep track of this argument, and Figure 5.1 is for them.

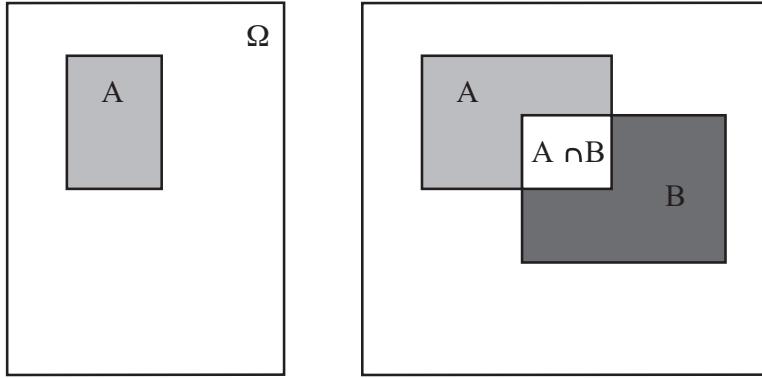


FIGURE 5.1: If you think of the probability of an event as measuring its “size”, many of the rules are quite straightforward to remember. Venn diagrams can sometimes help. On the left, a Venn diagram to help remember that $P(\mathcal{A}) + P(\mathcal{A}^c) = 1$. The “size” of Ω is 1, outcomes lie either in \mathcal{A} or \mathcal{A}^c , and the two don’t intersect. On the right, you can see that $P(\mathcal{A} - \mathcal{B}) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B})$ by noticing that $P(\mathcal{A} - \mathcal{B})$ is the “size” of the part of \mathcal{A} that isn’t \mathcal{B} . This is obtained by taking the “size” of \mathcal{A} and subtracting the “size” of the part that is also in \mathcal{B} , i.e. the “size” of $\mathcal{A} \cap \mathcal{B}$. Similarly, you can see that $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B})$ by noticing that you can get the “size” of $\mathcal{A} \cup \mathcal{B}$ by adding the “sizes” of \mathcal{A} and \mathcal{B} , then subtracting the “size” of the intersection to avoid double counting.

Proposition: $P(\mathcal{A}^c) = 1 - P(\mathcal{A})$

Proof: \mathcal{A}^c and \mathcal{A} are disjoint, so that $P(\mathcal{A}^c \cup \mathcal{A}) = P(\mathcal{A}^c) + P(\mathcal{A}) = P(\Omega) = 1$.

Proposition: $P(\emptyset) = 0$

Proof: $P(\emptyset) = P(\Omega^c) = P(\Omega - \Omega) = 1 - P(\Omega) = 1 - 1 = 0$.

Proposition: $P(\mathcal{A} - \mathcal{B}) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B})$

Proof: $\mathcal{A} - \mathcal{B}$ is disjoint from $P(\mathcal{A} \cap \mathcal{B})$, and $(\mathcal{A} - \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{B}) = \mathcal{A}$. This means that $P(\mathcal{A} - \mathcal{B}) + P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A})$.

Proposition: $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B})$

Proof: $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A} \cup (\mathcal{B} \cap \mathcal{A}^c)) = P(\mathcal{A}) + P((\mathcal{B} \cap \mathcal{A}^c))$. Now $\mathcal{B} = (\mathcal{B} \cap \mathcal{A}) \cup (\mathcal{B} \cap \mathcal{A}^c)$. Furthermore, $(\mathcal{B} \cap \mathcal{A})$ is disjoint from $(\mathcal{B} \cap \mathcal{A}^c)$, so we have $P(\mathcal{B}) = P((\mathcal{B} \cap \mathcal{A})) + P((\mathcal{B} \cap \mathcal{A}^c))$. This means that $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P((\mathcal{B} \cap \mathcal{A}^c)) = P(\mathcal{A}) + P(\mathcal{B}) - P((\mathcal{B} \cap \mathcal{A}))$.

Proposition: $P(\bigcup_1^n \mathcal{A}_i) = \sum_i P(\mathcal{A}_i) - \sum_{i < j} P(\mathcal{A}_i \cap \mathcal{A}_j) + \sum_{i < j < k} P(\mathcal{A}_i \cap \mathcal{A}_j \cap \mathcal{A}_k) + \dots + (-1)^{(n+1)} P(\mathcal{A}_1 \cap \mathcal{A}_2 \cap \dots \cap \mathcal{A}_n)$

Proof: This can be proven by repeated application of the previous result. As an example, we show how to work the case where there are three sets (you can get the rest by induction).

$$\begin{aligned}
 P(\mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3) &= P(\mathcal{A}_1 \cup (\mathcal{A}_2 \cup \mathcal{A}_3)) \\
 &= P(\mathcal{A}_1) + P(\mathcal{A}_2 \cup \mathcal{A}_3) - P(\mathcal{A}_1 \cap (\mathcal{A}_2 \cup \mathcal{A}_3)) \\
 &= P(\mathcal{A}_1) + (P(\mathcal{A}_2) + P(\mathcal{A}_3) - P(\mathcal{A}_2 \cap \mathcal{A}_3)) - \\
 &\quad P((\mathcal{A}_1 \cap \mathcal{A}_2) \cup (\mathcal{A}_1 \cap \mathcal{A}_3)) \\
 &= P(\mathcal{A}_1) + (P(\mathcal{A}_2) + P(\mathcal{A}_3) - P(\mathcal{A}_2 \cap \mathcal{A}_3)) - \\
 &\quad P(\mathcal{A}_1 \cap \mathcal{A}_2) - P(\mathcal{A}_1 \cap \mathcal{A}_3) \\
 &\quad - (-P((\mathcal{A}_1 \cap \mathcal{A}_2) \cap (\mathcal{A}_1 \cap \mathcal{A}_3))) \\
 &= P(\mathcal{A}_1) + P(\mathcal{A}_2) + P(\mathcal{A}_3) - \\
 &\quad P(\mathcal{A}_2 \cap \mathcal{A}_3) - P(\mathcal{A}_1 \cap \mathcal{A}_2) - P(\mathcal{A}_1 \cap \mathcal{A}_3) + \\
 &\quad P(\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3)
 \end{aligned}$$

5.1.4 Computing Probabilities by Counting Outcomes

The rule $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B}) - P(\mathcal{A} \cap \mathcal{B})$ yields a very useful procedure for computing the probability of some events. Imagine \mathcal{A} and \mathcal{B} are disjoint (so $\mathcal{A} \cap \mathcal{B} = \emptyset$). Then $P(\mathcal{A} \cup \mathcal{B})$ is just $P(\mathcal{A}) + P(\mathcal{B})$. So imagine some event \mathcal{E} that consists of a set of outcomes. Each singleton set — containing just one outcome — is disjoint from each other one. I can make the set \mathcal{E} by: starting with an empty set; unioning this with one of the outcomes in \mathcal{E} ; then repeatedly unioning the result a new outcome until I get \mathcal{E} . I am always unioning disjoint sets, so the probability of this event is the sum of probabilities of the outcomes. So we have

$$P(\mathcal{E}) = \sum_{O \in \mathcal{E}} P(O)$$

where O ranges over the outcomes in \mathcal{E} .

This is particularly useful when you know each outcome in Ω has the same probability. In this case, you can show

$$P(\mathcal{E}) = \frac{\text{Number of outcomes in } \mathcal{E}}{\text{Total number of outcomes in } \Omega}$$

(exercises). Such problems become, basically, advanced counting exercises.

Worked example 5.13 *Odd numbers with fair dice*

We throw a fair (each number has the same probability) die twice, then add the two numbers. What is the probability of getting an odd number?

Solution: There are 36 outcomes. Each has the same probability (1/36). 18 of them give an odd number, and the other 18 give an even number, so the probability is $18/36 = 1/2$

Worked example 5.14 *Drawing a red ten*

I shuffle a standard pack of cards, and draw one card. What is the probability that it is a red ten?

Solution: There are 52 cards, and each is an outcome. Two of these outcomes are red tens; so $1/26$.

Worked example 5.15 *Numbers divisible by five with fair dice*

We throw a fair (each number has the same probability) die twice, then add the two numbers. What is the probability of getting a number divisible by five?

Solution: There are 36 outcomes. Each has the same probability (1/36). For this event, the spots must add to either 5 or to 10. There are 4 ways to get 5. There are 3 ways to get 10, so the probability is $7/36$.

Worked example 5.16 *Children - 1*

This example is a version of example 1.12, p44, in Stirzaker, “Elementary Probability”. A couple decides to have children. They decide simply to have three children. Assume that each gender is equally likely at each birth. Let B_i be the event that there are i boys, and C be the event there are more girls than boys. Compute $P(B_1)$ and $P(C)$.

Solution: There are eight outcomes. Each has the same probability. Three of them have a single boy, so $P(B_1) = 3/8$. $P(C) = P(C^c)$ (because C^c is the event there are more boys than than girls, AND the number of children is odd), so that $P(C) = 1/2$; you can also get this by counting outcomes.

Sometimes a bit of fiddling with the space of outcomes makes it easy to compute what we want.

Worked example 5.17 *Children - 2*

This example is a version of example 1.12, p44, in Stirzaker, “Elementary Probability”. A couple decides to have children. They decide to have children until the first girl is born, or until there are three, and then stop. Assume that each gender is equally likely at each birth. Let B_i be the event that there are i boys, and C be the event there are more girls than boys. Compute $P(B_1)$ and $P(C)$.

Solution: In this case, we could write the outcomes as $\{G, BG, BBG\}$, but if we think about them like this, we have no simple way to compute their probability. Instead, we could use the sample space from the previous answer, but assume that some of the later births are fictitious. This gives us natural collection of events for which it is easy to compute probabilities. Having one girl corresponds to the event $\{Gbb, Gbg, Ggb, Ggg\}$, where I have used lowercase letters to write the fictitious later births; the probability is $1/2$. Having a boy then a girl corresponds to the event $\{BGb, BGg\}$ (and so has probability $1/4$). Having two boys then a girl corresponds to the event $\{BBG\}$ (and so has probability $1/8$). Finally, having three boys corresponds to the event $\{BBB\}$ (and so has probability $1/8$). This means that $P(B_1) = 1/4$ and $P(C) = 1/2$.

Worked example 5.18 *Children - 2*

This example is a version of example 1.12, p44, in Stirzaker, “Elementary Probability”. A couple decides to have children. They decide to have children until there is one of each gender, or until there are three, and then stop. Assume that each gender is equally likely at each birth. Let B_i be the event that there are i boys, and C be the event there are more girls than boys. Compute $P(B_1)$ and $P(C)$.

Solution: We could write the outcomes as $\{GB, BG, GGB, GGG, BBG, BBB\}$. Again, if we think about them like this, we have no simple way to compute their probability; so we use the sample space from the previous example with the device of the fictitious births again. The important events are $\{GBb, GBg\}$; $\{BGb, BGg\}$; $\{GGB\}$; $\{GGG\}$; $\{BBG\}$; and $\{BBB\}$. Like this, we get $P(B_1) = 5/8$ and $P(C) = 1/4$.

Worked example 5.19 *Birthdays in succession*

We stop three people at random, and ask the day of the week on which they are born. What is the probability that they are born on three days of the week in succession (for example, the first on Monday; the second on Tuesday; the third on Wednesday; or Saturday-Sunday-Monday; and so on).

Solution: We assume that births are equally common on each day of the week. The space of outcomes consists of triples of days, and each outcome has the same probability. The event is the set of triples of three days in succession (which has seven elements, one for each starting day). The space of outcomes has 7^3 elements in it, so the probability is

$$\frac{\text{Number of outcomes in the event}}{\text{Total number of outcomes}} = \frac{7}{7^3} = \frac{1}{49}.$$

Worked example 5.20 *Shared birthdays*

We stop two people at random. What is the probability that they were born on the same day of the week?

Solution: The day the first person was born doesn't matter; the probability the second person was born on that day is $1/7$. Or you could count outcomes explicitly to get

$$\frac{\text{Number of outcomes in the event}}{\text{Total number of outcomes}} = \frac{7}{7 \times 7} = \frac{1}{7}.$$

An important feature of this class of problem is that your intuition can be quite misleading. This is because, although each outcome can have very small probability, the number of outcomes in an event can be big.

5.1.5 Computing Probabilities by Reasoning about Sets

The rule $P(\mathcal{A}^c) = 1 - P(\mathcal{A})$ is occasionally useful for computing probabilities on its own; more commonly, you need other reasoning as well.

Worked example 5.21 *Shared birthdays*

What is the probability that, in a room of 30 people, there is a pair of people who have the same birthday?

Solution: We simplify, and assume that each year has 365 days, and that none of them are special (i.e. each day has the same probability of being chosen as a birthday). This model isn't perfect (there tend to be slightly more births roughly 9 months after: the start of spring; blackouts; major disasters; and so on) but it's workable. The easy way to attack this question is to notice that our probability, $P(\{\text{shared birthday}\})$, is

$$1 - P(\{\text{all birthdays different}\}).$$

This second probability is rather easy to compute. Each outcome in the sample space is a list of 30 days (one birthday per person). Each outcome has the same probability. So

$$P(\{\text{all birthdays different}\}) = \frac{\text{Number of outcomes in the event}}{\text{Total number of outcomes}}.$$

The total number of outcomes is easily seen to be 365^{30} , which is the total number of possible lists of 30 days. The number of outcomes in the event is the number of lists of 30 days, all different. To count these, we notice that there are 365 choices for the first day; 364 for the second; and so on. So we have

$$P(\{\text{shared birthday}\}) = 1 - \frac{365 \times 364 \times \dots \times 336}{365^{30}} = 1 - 0.2937 = 0.7063$$

which means there's really a pretty good chance that two people in a room of 30 share a birthday.

If we change the birthday example slightly, the problem changes drastically. If you stand up in a room of 30 people and bet that two people in the room have the same birthday, you have a probability of winning of about 0.71. If you bet that there is someone else in the room who has the same birthday that you do, your probability of winning is very different.

Worked example 5.22 *Shared birthdays*

You bet there is someone else in a room of 30 people who has the same birthday that you do. Assuming you know nothing about the other 29 people, what is the probability of winning?

Solution: The easy way to do this is

$$P(\{\text{winning}\}) = 1 - P(\{\text{losing}\}).$$

Now you will lose if everyone has a birthday different from you. You can think of the birthdays of the others in the room as a list of 29 days of the year. If your birthday is on the list, you win; if it's not, you lose. The number of losing lists is the number of lists of 29 days of the year such that your birthday is not in the list. This number is easy to get. We have 364 days of the year to choose from for each of 29 locations in the list. The total number of lists is the number of lists of 29 days of the year. Each list has the same probability. So

$$P(\{\text{losing}\}) = \frac{364^{29}}{365^{29}}$$

and

$$P(\{\text{winning}\}) \approx 0.0765.$$

There is a wide variety of problems like this; if you're so inclined, you can make a small but quite reliable profit off people's inability to estimate probabilities for this kind of problem correctly (examples 21 and 22 are reliably profitable; you could probably do quite well out of examples 19 and 20).

The rule $P(\mathcal{A} - \mathcal{B}) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B})$ is also occasionally useful for computing probabilities on its own; more commonly, you need other reasoning as well.

Worked example 5.23 *Dice*

You flip two fair six-sided dice, and add the number of spots. What is the probability of getting a number divisible by 2, but not by 5?

Solution: There is an interesting way to work the problem. Write \mathcal{D}_n for the event the number is divisible by n . Now $P(\mathcal{D}_2) = 1/2$ (count the cases; or, more elegantly, notice that each die has the same number of odd and even faces, and work from there). Now $P(\mathcal{D}_2 - \mathcal{D}_5) = P(\mathcal{D}_2) - P(\mathcal{D}_2 \cap \mathcal{D}_5)$. But $\mathcal{D}_2 \cap \mathcal{D}_5$ contains only two outcomes (6, 4 and 4, 6), so $P(\mathcal{D}_2 - \mathcal{D}_5) = 18/36 - 2/36 = 4/9$

Sometimes it is easier to reason about unions than to count outcomes directly.

Worked example 5.24 *Two fair dice*

I roll two fair dice. What is the probability that the result is divisible by either 2 or 5, or both?

Solution: Write \mathcal{D}_n for the event the number is divisible by n . We want $P(\mathcal{D}_2 \cup \mathcal{D}_5) = P(\mathcal{D}_2) + P(\mathcal{D}_5) - P(\mathcal{D}_2 \cap \mathcal{D}_5)$. From example 23, we know $P(\mathcal{D}_2) = 1/2$ and $P(\mathcal{D}_2 \cap \mathcal{D}_5) = 2/36$. By counting outcomes, $P(\mathcal{D}_5) = 6/36$. So $P(\mathcal{D}_2 \cup \mathcal{D}_5) = (18 + 6 - 2)/36 = 22/36$.

5.1.6 Independence

Some experimental results do not affect others. For example, if I flip a coin twice, whether I get heads on the first flip has no effect on whether I get heads on the second flip. As another example, I flip a coin; the outcome does not affect whether I get hit on the head by a falling apple later in the day. We refer to events with this property as independent.

Useful Facts 5.2 *Independent events*

Two events \mathcal{A} and \mathcal{B} are **independent** if and only if

$$P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A})P(\mathcal{B})$$

The “size” analogy helps motivate this expression. We think of $P(A)$ as the “size” of \mathcal{A} relative to Ω , and so on. Now $P(\mathcal{A} \cap \mathcal{B})$ measures the “size” of $\mathcal{A} \cap \mathcal{B}$ — that is, the part of \mathcal{A} that lies inside \mathcal{B} . But if \mathcal{A} and \mathcal{B} are independent, then the size of $\mathcal{A} \cap \mathcal{B}$ relative to \mathcal{B} should be the same as the size of \mathcal{A} relative to Ω (Figure 5.2). Otherwise, \mathcal{B} affects \mathcal{A} , because \mathcal{A} is more (or less) likely when \mathcal{B} has occurred.

So for \mathcal{A} and \mathcal{B} to be independent, we must have

$$\text{“Size” of } \mathcal{A} = \frac{\text{“Size” of piece of } \mathcal{A} \text{ in } \mathcal{B}}{\text{“Size” of } \mathcal{B}},$$

or, equivalently,

$$P(\mathcal{A}) = \frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})}$$

which yields our expression. Independence is important, because it is straightforward to compute probabilities for sequences of independent outcomes.

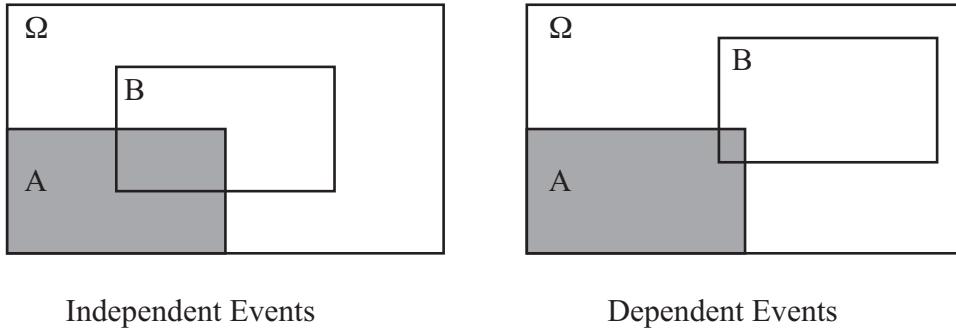


FIGURE 5.2: *On the left, \mathcal{A} and \mathcal{B} are independent. \mathcal{A} spans $1/4$ of Ω , and $\mathcal{A} \cap \mathcal{B}$ spans $1/4$ of \mathcal{B} . This means that \mathcal{B} can't affect \mathcal{A} . $1/4$ of the outcomes of Ω lie in \mathcal{A} , and $1/4$ of the outcomes in \mathcal{B} lie in $\mathcal{A} \cap \mathcal{B}$. On the right, they are not. Very few of the outcomes in \mathcal{B} lie in $\mathcal{B} \cap \mathcal{A}$, so that observing \mathcal{B} means that \mathcal{A} becomes less likely, because very few of the outcomes in \mathcal{B} also lie in $\mathcal{A} \cap \mathcal{B}$.*

Worked example 5.25 *A fair coin*

A **fair** coin (or die, or whatever) is one where each outcome has the same probability. A fair coin has two sides, so the probability of each outcome must be $1/2$. We flip this coin twice - what is the probability we see two heads?

Solution: The flips are independent. Write \mathcal{H}_1 for the event that the first flip comes up heads, \mathcal{H}_2 for the event the second comes up heads. We have $\mathcal{H}_1 = \{HH, HT\}$ and $\mathcal{H}_2 = \{HH, TH\}$. We seek $P(\mathcal{H}_1 \cap \mathcal{H}_2) = P(\mathcal{H}_1)P(\mathcal{H}_2)$. The coin is fair, so $P(\mathcal{H}_1) = P(\mathcal{H}_2) = 1/2$. So the probability is $\frac{1}{4}$.

The reasoning of example 25 is moderately rigorous (if you want real rigor, you should specify the event space, etc.; I assumed that it would be obvious), but it's a bit clumsy for everyday use. The rule to remember is this: the probability that both events occur is $P(\mathcal{A} \cap \mathcal{B})$ and, if \mathcal{A} and \mathcal{B} are independent, then this is $P(\mathcal{A})P(\mathcal{B})$.

Worked example 5.26 *A fair die*

The space of outcomes for a fair six-sided die is

$$\{1, 2, 3, 4, 5, 6\}.$$

The die is fair means that each outcome has the same probability. Now we toss two fair dice — with what probability do we get two threes?

Solution:

$$\begin{aligned} P(\text{first toss yields 3} \cap \text{second toss yields 3}) &= P(\text{first toss yields 3}) \times \\ &\quad P(\text{second toss yields 3}) \\ &= (1/6)(1/6) \\ &= 1/36 \end{aligned}$$

Worked example 5.27 *Find the Lady, twice*

Assume that the card that is chosen is chosen fairly — that is, each card is chosen with the same probability. The game is played twice, and the cards are reshuffled between games. What is the probability of turning up a Queen and then a Queen again?

Solution: The events are independent, so $1/9$.

Worked example 5.28 *Children*

A couple decides to have two children. Genders are assigned to children at random, fairly, independently and at birth (our models have to abstract a little!). What is the probability of having a boy and then a girl?

Solution:

$$\begin{aligned} P(\text{first is boy} \cap \text{second is girl}) &= P(\text{first is boy})P(\text{second is girl}) \\ &= (1/2)(1/2) \\ &= 1/4 \end{aligned}$$

You can use the expression to tell whether events are independent or not. Quite small changes to a problem affect whether events are independent. For example, simply removing a card from a deck can make some events dependent.

Worked example 5.29 *Independent cards*

We shuffle a standard deck of 52 cards and draw one card. The event \mathcal{A} is “the card is a red suit” and the event \mathcal{B} is “the card is a 10”. Are they independent?

Solution: $P(\mathcal{A}) = 1/2$, $P(\mathcal{B}) = 1/13$ and in example 14 we determined $P(\mathcal{A} \cap \mathcal{B}) = 2/52$. But $2/52 = 1/26 = P(\mathcal{A})P(\mathcal{B})$, so they are independent.

Worked example 5.30 *Independent cards*

We take a standard deck of cards, and remove the ten of hearts. We now shuffle this deck, and draw one card. The event \mathcal{A} is “the card is a red suit” and the event \mathcal{B} is “the card is a 10”. Are they independent?

Solution: These are not independent because $P(\mathcal{A}) = 25/51$, $P(\mathcal{B}) = 3/51$ and $P(\mathcal{A} \cap \mathcal{B}) = 1/51 \neq P(\mathcal{A})P(\mathcal{B}) = 75/(51^2)$

The probability of a sequence of independent events can become very small very quickly, and this often misleads people.

Worked example 5.31 *Accidental DNA Matches*

I search a DNA database with a sample. Each time I attempt to match this sample to an entry in the database, there is a probability of an accidental chance match of $1e - 4$. Chance matches are independent. There are 20, 000 people in the database. What is the probability I get at least one match, purely by chance?

Solution: This is $1 - P(\text{no chance matches})$. But $P(\text{no chance matches})$ is much smaller than you think. We have

$$\begin{aligned} P(\text{no chance matches}) &= P\left(\begin{array}{l} \text{no chance match to record 1} \cap \\ \text{no chance match to record 2} \cap \\ \dots \cap \\ \text{no chance match to record 20, 000} \end{array} \right) \\ &= P(\text{no chance match to a record})^{20,000} \\ &= (1 - 1e - 4)^{20,000} \end{aligned}$$

so the probability is about 0.86 that you get at least one match by chance. Notice that if the database gets bigger, the probability grows; so at 40, 000 the probability of one match by chance is 0.98.

5.1.7 Permutations and Combinations

Counting outcomes in an event can require pretty elaborate combinatorial arguments. One form of argument that is particularly important is to reason about permutations. You should recall that the number of permutations of k items is $k!$.

Worked example 5.32 *Counting outcomes with permutations*

I flip a coin k times. How many of the possible outcomes have exactly r heads?

Solution: Here is one natural way to think about this problem. Each outcome we are interested in is a string of r H's and $k - r$ T's, and we need to count the number of such strings. We can do so with permutations. Write down any string of r H's and $k - r$ T's. Any other string of r H's and $k - r$ T's is a permutation of this one. However, many of these permutations simply swap one H with another, or one T with another. The total number of permutations of a string of k entries is $k!$. The number of permutations that swap H's with one another is $r!$ (because there are r H's), and the number of permutations that swap T's with one another is $(k - r)!$. The total number of strings must then be

$$\frac{k!}{r!(k - r)!} = \binom{k}{r}$$

There is another way to think about example 32, which is more natural if you've seen combinations before. You start with a string of k T's, then you choose r distinct elements to turn into H's. The number of choices of r distinct elements in k items is:

$$\frac{k!}{r!(k - r)!} = \binom{k}{r},$$

so there must be this number of strings. We can use this result to investigate our model of probability as frequency.

Worked example 5.33 *A fair coin, revisited*

We conduct N experiments, where each experiment is to flip a fair coin twice. In what fraction of these experiments do we see both sides of the coin?

Solution: The sample space is $\{HH, HT, TH, TT\}$. The coin is fair, so each outcome has the same probability. This means that $(1/4)N$ experiments produce HT ; $(1/4)N$ produce TH ; and so on. We see both sides of the coin in an experiment for about $(1/2)N$ experiments.

Example 33 might seem like a contradiction to you. I claimed that we could interpret P as the relative frequency of outcomes, and that my coin was fair; but, in only half of my experiments did I see both sides of the coin. In the other half, the coin behaved as if the probability of seeing one side is 1, and the probability of seeing the other side is 0. This occurs because the number of flips *in each experiment* is very small. If the number of flips is larger, you are much more likely to see about the right frequencies.

Worked example 5.34 *A fair coin, yet again*

We conduct N experiments, where each experiment is to flip a fair coin six times. In what fraction of these experiments do we get three heads and three tails?

Solution: There are $64 = 2^6$ outcomes in total for six coin flips. Each has the same probability. By the argument of example 32, there are

$$\frac{6!}{3!3!} = 20$$

outcomes with three heads. So the fraction is $20/64 = 1/3$.

At first glance, example 34 suggests that making the number of experiments get bigger doesn't help. But in the definition of probability, I said that there would be "about" $N \times P$ experiments with the outcome of interest.

Worked example 5.35 *A fair coin, yet again*

We conduct N experiments, where each experiment is to flip a fair coin 10 times. In what fraction of these experiments do we get between 4 and 6 heads?

Solution: There are $1024 = 2^{10}$ outcomes for an experiment. We are interested in the four head outcomes, the five head outcomes and the six head outcomes. Using the argument of example 34 gives

$$\begin{aligned} \text{total outcomes} &= 4H \text{ outcomes} + 5H \text{ outcomes} + 6H \text{ outcomes} \\ &= \frac{10!}{4!6!} + \frac{10!}{5!5!} + \frac{10!}{6!4!} \\ &= 210 + 252 + 210 \\ &= 692 \end{aligned}$$

so in $692/1024 \approx 0.68$ of the experiments, we will see between four and six heads

Worked example 5.36 *A fair coin, and a lot of flipping*

We conduct N experiments, where each experiment is to flip a fair coin 100 times. In what fraction of these experiments do we get between 45 and 65 heads?

Solution: There are 2^{100} outcomes for an experiment. Using the argument of example 35 gives

$$\text{total outcomes} = \sum_{i=45}^{65} \frac{100!}{i!(100-i)!}$$

which isn't particularly easy to evaluate.

As these examples suggest, if an experiment consists of flipping a large number of coins, then a high fraction of those experiments will show heads with a frequency very close to the right number. We will establish this later, with rather more powerful machinery.

Worked example 5.37 *Overbooking - 1*

An airline has a regular flight with six seats. It always sells seven tickets. Passengers turn up for the flight with probability p , and do so independent of other passengers. What is the probability that the flight is overbooked?

Solution: This is like a coin-flip problem; think of each passenger as a biased coin. With probability p , it comes up T (for turn up) and with probability $(1-p)$, it turns up N (for no-show). This coin is flipped seven times, and we are interested in the probability that there are seven T 's. This is p^7 , because the flips are independent.

Worked example 5.38 *Overbooking - 2*

An airline has a regular flight with six seats. It always sells eight tickets. Passengers turn up for the flight with probability p , and do so independent of other passengers. What is the probability that six passengers arrive? (i.e. the flight is not overbooked or underbooked).

Solution: Now we flip the coin eight times, and are interested in the probability of getting exactly six T 's. We get, by the reasoning of worked example 32,

$$\frac{8!}{2!6!} p^6 (1-p)^2 = 28p^6(1-p)^2$$

Worked example 5.39 *Overbooking - 3*

An airline has a regular flight with six seats. It always sells eight tickets. Passengers turn up for the flight with probability p , and do so independent of other passengers. What is the probability that the flight is overbooked?

Solution: Now we flip the coin eight times, and are interested in the probability of getting more than six T 's. This is the union of two disjoint events (seven T 's and eight T 's). For the case of seven T 's, one flip must be N ; there are eight choices. For the case of eight T 's, all eight flips must be T , and there is only one way to achieve this. So the probability the flight is overbooked is

$$\begin{aligned} P(\text{overbooked}) &= P(7 \text{ } T\text{'s} \cup 8 \text{ } T\text{'s}) \\ &= P(7 \text{ } T\text{'s}) + P(8 \text{ } T\text{'s}) \\ &= 7p^7(1-p) + p^8 \end{aligned}$$

Worked example 5.40 *Overbooking - 4*

An airline has a regular flight with s seats. It always sells t tickets. Passengers turn up for the flight with probability p , and do so independent of other passengers. What is the probability that u passengers turn up?

Solution: Now we flip the coin t times, and are interested in the probability of getting u T 's. By the argument of worked example 32, there are

$$\frac{t!}{u!(t-u)!}$$

disjoint outcomes with u T 's and $t-u$ N 's. Each such outcome is independent, and has probability $p^u(1-p)^{t-u}$. So

$$P(u \text{ passengers turn up}) = \frac{t!}{u!(t-u)!} p^u (1-p)^{t-u}$$

Worked example 5.41 *Overbooking - 5*

An airline has a regular flight with s seats. It always sells t tickets. Passengers turn up for the flight with probability p , and do so independent of other passengers. What is the probability that the flight is oversold?

Solution: We need $P(\{s+1 \text{ turn up}\} \cup \{s+2 \text{ turn up}\} \cup \dots \cup \{t \text{ turn up}\})$. But the events $\{i \text{ turn up}\}$ and $\{j \text{ turn up}\}$ are disjoint if $i \neq j$. So we can exploit example 40, and write

$$\begin{aligned} P(\text{overbooked}) &= P(\{s+1 \text{ turn up}\}) + P(\{s+2 \text{ turn up}\}) + \\ &\quad \dots + P(\{t \text{ turn up}\}) \\ &= \sum_{i=s+1}^t P(\{i \text{ turn up}\}) \\ &= \sum_{i=s+1}^t \frac{t!}{i!(t-i)!} p^i (1-p)^{t-i} \end{aligned}$$

5.2 CONDITIONAL PROBABILITY

If you throw a fair die twice and add the numbers, then the probability of getting a number less than six is $\frac{10}{36}$. Now imagine you know that the first die came up three. In this case, the probability that the sum will be less than six is $\frac{1}{3}$, which is slightly larger. If the first die came up four, then the probability the sum will be less than six is $\frac{1}{6}$, which is rather less than $\frac{10}{36}$. If the first die came up one, then the probability that the sum is less than six becomes $\frac{2}{3}$, which is much larger.

Each of these probabilities is an example of a **conditional probability**. We assume we have a space of outcomes and a collection of events. The conditional probability of \mathcal{B} , conditioned on \mathcal{A} , is the probability that \mathcal{B} occurs given that \mathcal{A} has definitely occurred. We write this as

$$P(\mathcal{B}|\mathcal{A})$$

5.2.1 Evaluating Conditional Probabilities

Now to get an expression for $P(\mathcal{B}|\mathcal{A})$, notice that, because \mathcal{A} is known to have occurred, our space of outcomes or sample space is now reduced to \mathcal{A} . We know that our outcome lies in \mathcal{A} ; $P(\mathcal{B}|\mathcal{A})$ is the probability that it also lies in $\mathcal{B} \cap \mathcal{A}$.

The outcome lies in \mathcal{A} , and so it must lie in either $P(\mathcal{B} \cap \mathcal{A})$ or in $P(\mathcal{B}^c \cap \mathcal{A})$. This means that

$$P(\mathcal{B}|\mathcal{A}) + P(\mathcal{B}^c|\mathcal{A}) = 1.$$

Now recall the idea of probabilities as relative frequencies. If $P(\mathcal{C} \cap \mathcal{A}) = kP(\mathcal{B} \cap \mathcal{A})$, this means that we will see outcomes in $\mathcal{C} \cap \mathcal{A}$ k times as often as we will see outcomes in $\mathcal{B} \cap \mathcal{A}$. But this must apply even if we know in advance that

the outcome is in \mathcal{A} . So we must have

$$P(\mathcal{B}|\mathcal{A}) \propto P(\mathcal{B} \cap \mathcal{A}).$$

Now we need to determine the constant of proportionality; write c for this constant, meaning

$$P(\mathcal{B}|\mathcal{A}) = cP(\mathcal{B} \cap \mathcal{A}).$$

We have that

$$P(\mathcal{B}|\mathcal{A}) + P(\mathcal{B}^c|\mathcal{A}) = cP(\mathcal{B} \cap \mathcal{A}) + cP(\mathcal{B}^c \cap \mathcal{A}) = cP(\mathcal{A}) = 1,$$

so that

$$P(\mathcal{B}|\mathcal{A}) = \frac{P(\mathcal{B} \cap \mathcal{A})}{P(\mathcal{A})}.$$

Using the “size” metaphor, this says the probability of that an outcome, *which is known to be in \mathcal{A}* , is also in \mathcal{B} is the fraction of \mathcal{A} that is also in \mathcal{B} .

Another, very useful, way to write this expression is

$$P(\mathcal{B}|\mathcal{A})P(\mathcal{A}) = P(\mathcal{B} \cap \mathcal{A}).$$

Now, since $\mathcal{B} \cap \mathcal{A} = \mathcal{A} \cap \mathcal{B}$, we must have that

$$P(\mathcal{B}|\mathcal{A}) = \frac{P(\mathcal{A}|\mathcal{B})P(\mathcal{B})}{P(\mathcal{A})}$$

Worked example 5.42 Two dice

We throw two fair dice. What is the conditional probability that the sum of spots on both dice is greater than six, conditioned on the event that the first die comes up five?

Solution: Write the event that the first die comes up 5 as \mathcal{F} , and the event the sum is greater than six as \mathcal{S} . There are five outcomes where the first die comes up 5 and the number is greater than 6, so $P(\mathcal{F} \cap \mathcal{S}) = 5/36$. $P(\mathcal{S}|\mathcal{F}) = P(\mathcal{F} \cap \mathcal{S})/P(\mathcal{F}) = (5/36)/(1/6) = 5/6$.

Notice that $\mathcal{A} \cap \mathcal{B}$ and $\mathcal{A} \cap \mathcal{B}^c$ are disjoint sets, and that $\mathcal{A} = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{B}^c)$. So, because $P(\mathcal{A}) = P(\mathcal{A} \cap \mathcal{B}) + P(\mathcal{A} \cap \mathcal{B}^c)$, we have

$$P(\mathcal{A}) = P(\mathcal{A}|\mathcal{B})P(\mathcal{B}) + P(\mathcal{A}|\mathcal{B}^c)P(\mathcal{B}^c)$$

a tremendously important and useful fact. Another version of this fact is also very useful. Assume we have a set of disjoint sets \mathcal{B}_i . These sets must have the property that (a) $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ for $i \neq j$ and (b) they cover \mathcal{A} , meaning that $\mathcal{A} \cap (\cup_i \mathcal{B}_i) = \mathcal{A}$. Then, because $P(\mathcal{A}) = \sum_i P(\mathcal{A} \cap \mathcal{B}_i)$, so we have

$$P(\mathcal{A}) = \sum_i P(\mathcal{A}|\mathcal{B}_i)P(\mathcal{B}_i)$$

Worked example 5.43 *Car factories*

There are two car factories, A and B . Each year, factory A produces 1000 cars, of which 10 are lemons. Factory B produces 2 cars, each of which is a lemon. All cars go to a single lot, where they are thoroughly mixed up. I buy a car.

- What is the probability it is a lemon?
- What is the probability it came from factory B ?
- The car is now revealed to be a lemon. What is the probability it came from factory B , conditioned on the fact it is a lemon?

Solution:

- Write the event the car is a lemon as \mathcal{L} . There are 1002 cars, of which 12 are lemons. The probability that I select any given car is the same, so we have 12/1002.
- Same argument yields 2/1002.
- Write \mathcal{B} for the event the car comes from factory B . I need $P(\mathcal{B}|\mathcal{L})$. This is $P(\mathcal{L}|\mathcal{B})P(\mathcal{B})/P(\mathcal{L}) = (1 \times 2/1002)/(12/1002) = 1/6$.

Worked example 5.44 Royal flushes in poker - 1

This exercise is after Stirzaker, p. 51.

You are playing a straightforward version of poker, where you are dealt five cards face down. A royal flush is a hand of AKQJ10 all in one suit. What is the probability that you are dealt a royal flush?

Solution: This is

$$\frac{\text{number of hands that are royal flushes, ignoring card order}}{\text{total number of different five card hands, ignoring card order}}.$$

There are four hands that are royal flushes (one for each suit). Now the total number of five card hands is

$$\binom{52}{5} = 2598960$$

so we have

$$\frac{4}{2598960} = \frac{1}{649740}.$$

Worked example 5.45 Royal flushes in poker - 2

This exercise is after Stirzaker, p. 51.

You are playing a straightforward version of poker, where you are dealt five cards face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth card that you are dealt lands face up. It is the nine of spades. What now is the probability that you have been dealt a royal flush? (i.e. what is the conditional probability of getting a royal flush, conditioned on the event that one card is the nine of spades)

Solution: No hand containing a nine of spades is a royal flush, so this is easily zero.

Worked example 5.46 Royal flushes in poker - 3

This exercise is after Stirzaker, p. 51.

You are playing a straightforward version of poker, where you are dealt five cards face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth card that you are dealt lands face up. It is the Ace of spades. What now is the probability that you have been dealt a royal flush? (i.e. what is the conditional probability of getting a royal flush, conditioned on the event that one card is the Ace of spades)

Solution: There are two ways to do this. The easiest is to notice that the answer is the probability that the other four cards are KQJ10 of spades, which is

$$1/\binom{51}{4} = \frac{1}{249900}.$$

Harder is to consider the events

\mathcal{A} = event that you receive a royal flush and last card is the ace of spades

and

\mathcal{B} = event that the last card you receive is the ace of spades,

and the expression

$$P(\mathcal{A}|\mathcal{B}) = \frac{P(\mathcal{A} \cap \mathcal{B})}{P(\mathcal{B})}.$$

Now $P(\mathcal{A}) = \frac{1}{52}$. $P(\mathcal{A} \cap \mathcal{B})$ is given by

$$\frac{\text{number of five card royal flushes where card five is Ace of spades}}{\text{total number of different five card hands}}.$$

where we DO NOT ignore card order. This is

$$\frac{4 \times 3 \times 2 \times 1}{52 \times 51 \times 50 \times 49 \times 48}$$

yielding

$$P(\mathcal{A}|\mathcal{B}) = \frac{1}{249900}.$$

Notice the interesting part: the conditional probability is rather larger than the probability. If you see this ace, the conditional probability is $\frac{13}{5}$ times the probability that you will get a flush if you don't. Seeing this card has really made a difference.

Worked example 5.47 *False positives*

After Stirzaker, p55. You have a blood test for a rare disease that occurs by chance in 1 person in 100, 000. If you have the disease, the test will report that you do with probability 0.95 (and that you do not have the disease with probability 0.05). If you do not have the disease, the test will report a false positive with probability 1e-3. If the test says you do have the disease, what is the probability it is correct?

Solution: Write S for the event you are sick and R for the event the test reports you are sick. We need $P(S|R)$. We have

$$\begin{aligned}
 P(S|R) &= \frac{P(R|S)P(S)}{P(R)} \\
 &= \frac{P(R|S)P(S)}{P(R|S)P(S) + P(R|S^c)P(S^c)} \\
 &= \frac{0.95 \times 1e-5}{0.95 \times 1e-5 + 1e-3 \times (1 - 1e-5)} \\
 &= 0.0094
 \end{aligned}$$

which should strike you as being a bit alarming. The disease is so rare that the test is almost useless.

Worked example 5.48 False positives -2

After Stirzaker, p55. You want to *design* a blood test for a rare disease that occurs by chance in 1 person in 100, 000. If you have the disease, the test will report that you do with probability p (and that you do not with probability $(1 - p)$). If you do not have the disease, the test will report a false positive with probability q . You want to choose the value of p so that if the test says you have the disease, there is at least a 50% probability that you do.

Solution: Write S for the event you are sick and R for the event the test reports you are sick. We need $P(S|R)$. We have

$$\begin{aligned} P(S|R) &= \frac{P(R|S)P(S)}{P(R)} \\ &= \frac{P(R|S)P(S)}{P(R|S)P(S) + P(R|S^c)P(S^c)} \\ &= \frac{p \times 1e-5}{p \times 1e-5 + q \times (1 - 1e-5)} \\ &\geq 0.5 \end{aligned}$$

which means that $p \geq 99999q$ which should strike you as being very alarming indeed, because $p \leq 1$ and $q \geq 0$. One plausible pair of values is $q = 1e-5$, $p = 1 - 1e-5$. The test has to be spectacularly accurate to be of any use.

5.2.2 The Prosecutors Fallacy

It is quite easy to make mistakes in conditional probability. Several such mistakes have names, because they're so common. One is the **prosecutor's fallacy**. This often occurs in the following form: A prosecutor has evidence \mathcal{E} against a suspect. Write \mathcal{I} for the event that the suspect is innocent. The evidence has the property that $P(\mathcal{E}|\mathcal{I})$ is extremely small. The prosecutor argues that the suspect must be guilty, because $P(\mathcal{E}|\mathcal{I})$ is so small, and this is the fallacy.

The problem here is that the conditional probability of interest is $P(\mathcal{I}|\mathcal{E})$ (rather than $P(\mathcal{E}|\mathcal{I})$). The fact that $P(\mathcal{E}|\mathcal{I})$ is small doesn't mean that $P(\mathcal{I}|\mathcal{E})$ is small, because

$$P(\mathcal{I}|\mathcal{E}) = \frac{P(\mathcal{E}|\mathcal{I})P(\mathcal{I})}{P(\mathcal{E})} = \frac{P(\mathcal{E}|\mathcal{I})P(\mathcal{I})}{(P(\mathcal{E}|\mathcal{I})P(\mathcal{I}) + P(\mathcal{E}|\mathcal{I}^c)(1 - P(\mathcal{I})))}$$

Notice how, if $P(\mathcal{I})$ is large or if $P(\mathcal{E}|\mathcal{I}^c)$ is much smaller than $P(\mathcal{E}|\mathcal{I})$, then $P(\mathcal{I}|\mathcal{E})$ could be close to one. The question to look at is not how unlikely the evidence is if the subject is innocent; instead, the question is how likely the subject is to be guilty compared to some other source of the evidence. These are two very different questions.

One useful analogy may be helpful. If you buy a lottery ticket (\mathcal{L}), the

probability of winning (\mathcal{W}) is small. So $P(\mathcal{W}|\mathcal{L})$ may be very small. But $P(\mathcal{L}|\mathcal{W})$ is 1 — the winner is always someone who bought a ticket.

The prosecutor's fallacy has contributed to a variety of miscarriages of justice. One famous incident involved a mother, Sally Clark, convicted of murdering two of her children. Expert evidence by paediatrician Roy Meadow argued that the probability of both deaths resulting from Sudden Infant Death Syndrome was extremely small. Her first appeal cited, among other grounds, statistical error in the evidence (you should spot the prosecutors fallacy; others were involved, too). The appeals court rejected this appeal, calling the statistical point “a sideshow”. This prompted a great deal of controversy, both in the public press and various professional journals, including a letter from the then president of the Royal Statistical Society to the Lord Chancellor, pointing out that “*statistical evidence ... (should be) ... presented only by appropriately qualified statistical experts*”. A second appeal (on other grounds) followed, and was successful. The appellate judges specifically criticized the statistical evidence, although it was not a point of appeal. Clark never recovered from this horrific set of events and died in tragic circumstances shortly after the second appeal. Roy Meadow was then struck off the rolls for serious professional misconduct as an expert witness, a ruling he appealed successfully. You can find a more detailed account of this case, with pointers to important documents including the letter to the Lord Chancellor (which is well worth reading), at http://en.wikipedia.org/wiki/Roy_Meadow; there is further material on the prosecutors fallacy at http://en.wikipedia.org/wiki/Prosecutor%27s_fallacy.

5.2.3 Independence and Conditional Probability

As we have seen, two events are **independent** if

$$P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A})P(\mathcal{B}).$$

If two events \mathcal{A} and \mathcal{B} are independent, then

$$P(\mathcal{A}|\mathcal{B}) = P(\mathcal{A})$$

and

$$P(\mathcal{B}|\mathcal{A}) = P(\mathcal{B}).$$

Again, this means that knowing that \mathcal{A} occurred tells you nothing about \mathcal{B} — the probability that \mathcal{B} will occur is the same whether you know that \mathcal{A} occurred or not.

Events $\mathcal{A}_1 \dots \mathcal{A}_n$ are **pairwise independent** if each pair is independent (i.e. \mathcal{A}_1 and \mathcal{A}_2 are independent, etc.). They are **independent** if for any collection of distinct indices $i_1 \dots i_k$ we have

$$P(\mathcal{A}_{i_1} \cap \dots \cap \mathcal{A}_{i_k}) = P(\mathcal{A}_{i_1}) \dots P(\mathcal{A}_{i_k})$$

Notice that independence is a much stronger assumption than pairwise independence.

Worked example 5.49 *Cards and pairwise independence*

We draw three cards from a properly shuffled standard deck, with replacement and reshuffling (i.e., draw a card, make a note, return to deck, shuffle, draw the next, make a note, shuffle, draw the third). Let \mathcal{A} be the event that “card 1 and card 2 have the same suit”; let \mathcal{B} be the event that “card 2 and card 3 have the same suit”; let \mathcal{C} be the event that “card 1 and card 3 have the same suit”. Show these events are pairwise independent, but not independent.

Solution: By counting, you can check that $P(\mathcal{A}) = 1/4$; $P(\mathcal{B}) = 1/4$; and $P(\mathcal{A} \cap \mathcal{B}) = 1/16$, so that these two are independent. This argument works for other pairs, too. But $P(\mathcal{C} \cap \mathcal{A} \cap \mathcal{B}) = 1/16$ which is not $1/4^3$, so the events are not independent; this is because the third event is logically implied by the first two.

We usually do not have the information required to prove that events are independent. Instead, we use intuition (for example, two flips of the same coin are likely to be independent unless there is something very funny going on) or simply choose to apply models in which some variables are independent.

Some events are pretty obviously independent. On other occasions, one needs to think about whether they are independent or not. Sometimes, it is reasonable to choose to model events as being independent, even though they might not be exactly independent. In cases like this, it is good practice to state your assumptions, because it helps you to keep track of what your model means. For example, we have worked with the event that a person, selected fairly and randomly from a set of people in a room, has a birthday on a particular day of the year. We assumed that, for different people, the events are independent. This seems like a fair assumption, but one might want to be cautious if you know that the people in the room are drawn from a population where multiple births are common.

Independent events can lead very quickly to very small probabilities, as we saw in example 31. This can mislead intuition quite badly, and lead to serious problems. In particular, these small probabilities can interact with the prosecutor’s fallacy in a dangerous way. In example 31, we saw how the probability of getting a chance match in a large DNA database could be quite big, even though the probability of a single match is small. One version of the prosecutors fallacy is to argue that, because the probability of a single match is small, the person who matched the DNA must have committed the crime. The fallacy is to ignore the fact that the probability of a chance match to a large database is quite high.

People quite often reason poorly about independent events. The most common problem is known as the **gambler’s fallacy**. This occurs when you reason that the probability of an independent event has been changed by previous outcomes. For example, imagine I toss a coin that is known to be fair 20 times and get 20 heads. The probability that the next toss will result in a head has not changed at all — it is still 0.5 — but many people will believe that it has changed. This idea is also sometimes referred to as **antichance**.

It might in fact be sensible to behave as if you’re committing some version of

the gambler's fallacy in real life, because you hardly ever know for sure that your model is right. So in the coin tossing example, if the coin wasn't known to be fair, it might be reasonable to assume that it has been weighted in some way, and so to believe that the more heads you see, the more likely you will see a head in the next toss. At time of writing, Wikipedia has some fascinating stories about the gambler's fallacy; apparently, in 1913, a roulette wheel in Monte Carlo produced black 26 times in a row, and gamblers lost an immense amount of money betting on red. Here the gambler's reasoning seems to have been that the universe should ensure that probabilities produce the right frequencies in the end, and so will adjust the outcome of the next spin of the wheel to balance the sums. This is an instance of the gambler's fallacy. However, the page also contains the story of one Joseph Jagger, who hired people to keep records of the roulette wheels, and notice that one wheel favored some numbers (presumably because of some problem with balance). He won a lot of money, until the casino started more careful maintenance on the wheels. This isn't the gambler's fallacy; instead, he noticed that the numbers implied that the wheel was not a fair randomizer. He made money because the casino's odds on the bet assumed that it was fair.

5.3 EXAMPLE: THE MONTY HALL PROBLEM

Careless thinking about probability, particularly conditional probability, can cause wonderful confusion. The Monty Hall problem is a relatively simple exercise in conditional probability. Nonetheless, it has been the subject of extensive, lively, and often quite inaccurate correspondence in various national periodicals — it seems to catch the attention, which is why we describe it in some detail. The problem works like this: There are three doors. Behind one is a car. Behind each of the others is a goat. The car and goats are placed randomly and fairly, so that the probability that there is a car behind each door is the same. You will get the object that lies behind the door you choose at the end of the game. The goats are interchangeable, and, for reasons of your own, you would prefer the car to a goat.

The game goes as follows. You select a door. The host then opens a door and shows you a goat. You must now choose to either keep your door, or switch to the other door. What should you do?

You cannot tell what to do, by the following argument. Label the door you chose at the start of the game 1; the other doors 2 and 3. Write C_i for the event that the car lies behind door i . Write G_m for the event that a goat is revealed behind door m , where m is the number of the door where the goat was revealed (which could be 1, 2, or 3). You need to know $P(C_1|G_m)$. But

$$P(C_1|G_m) = \frac{P(G_m|C_1)P(C_1)}{P(G_m|C_1)P(C_1) + P(G_m|C_2)P(C_2) + P(G_m|C_3)P(C_3)}$$

and you do not know $P(G_m|C_1)$, $P(G_m|C_2)$, $P(G_m|C_3)$, because you don't know the rule by which the host chooses which door to open to reveal a goat. Different rules lead to quite different analyses.

There are several possible rules for the host to show a goat:

- **Rule 1:** choose a door uniformly at random.

- **Rule 2:** choose from the doors with goats behind them *that are not door 1* uniformly and at random.
- **Rule 3:** if the car is at 1, then choose 2; if at 2, choose 3; if at 3, choose 1.
- **Rule 4:** choose from the doors with goats behind them uniformly and at random.

We should keep track of the rules in the conditioning, so we write $P(G_m|C_1, r_1)$ for the conditional probability that a goat was revealed behind door m when the car is behind door 1, using rule 1 (and so on). This means we are interested in

$$P(C_1|G_m, r_n) = \frac{P(G_m|C_1, r_n)P(C_1)}{P(G_m|C_1, r_n)P(C_1) + P(G_m|C_2, r_n)P(C_2) + P(G_m|C_3, r_n)P(C_3)}.$$

Worked example 5.50 *Monty Hall, rule one*

Assume the host uses rule one, and shows you a goat behind door two. What is $P(C_1|G_2, r_1)$?

Solution: To work this out, we need to know $P(G_2|C_1, r_1)$, $P(G_2|C_2, r_1)$ and $P(G_2|C_3, r_1)$. Now $P(G_2|C_2, r_1)$ must be zero, because the host could not reveal a goat behind door two if there was a car behind that door. Write O_2 for the event the host *chooses* to open door two, and B_2 for the event there happens to be a goat behind door two. These two events are independent — the host chose the door uniformly at random. We can compute

$$\begin{aligned} P(G_2|C_1, r_1) &= P(O_2 \cap B_2|C_1, r_1) \\ &= P(O_2|C_1, r_1)P(B_2|C_1, r_1) \\ &= (1/3)(1) \\ &= 1/3 \end{aligned}$$

where $P(B_2|C_1, r_1) = 1$ because we conditioned on the fact there was a car behind door one, so there is a goat behind each other door. This argument establishes $P(G_2|C_3, r_1) = 1/3$, too. So $P(C_1|G_2, r_1) = 1/2$ — the host showing you the goat does not motivate you to do anything, because if $P(C_1|G_2, r_1) = 1/2$, then $P(C_3|G_2, r_1) = 1/2$, too — there's nothing to choose between the two closed doors.

Worked example 5.51 *Monty Hall, rule two*

Assume the host uses rule two, and shows you a goat behind door two. What is $P(C_1|G_2, r_2)$?

Solution: To work this out, we need to know $P(G_2|C_1, r_2)$, $P(G_2|C_2, r_2)$ and $P(G_2|C_3, r_2)$. Now $P(G_2|C_2, r_2) = 0$, because the host chooses from doors with goats behind them. $P(G_2|C_1, r_2) = 1/2$, because the host chooses uniformly and at random from doors with goats behind them that are not door one; if the car is behind door one, there are two such doors. $P(G_2|C_3, r_2) = 1$, because there is only one door that (a) has a goat behind it and (b) isn't door one. Plug these numbers into the formula, to get $P(C_1|G_2, r_2) = 1/3$. This is the source of all the fuss. It says that, if you know the host is using rule two, you should switch doors if the host shows you a goat behind door two (because $P(C_3|G_2, r_2) = 2/3$).

Notice what is happening: if the car is behind door three, then the *only* choice of goat for the host is the goat behind two. So by choosing a door under rule two, the host is signalling some information to you, which you can use. By using rule three, the host can tell you precisely where the car is (exercises).

Many people find the result of example 51 counterintuitive, and object (sometimes loudly, in newspaper columns, letters to the editor, etc.). One example that some people find helpful is an extreme case. Imagine that, instead of three doors, there are 1002. The host is using rule two, modified in the following way: open all but one of the doors that are not door one, choosing only doors that have goats behind them to open. You choose door one; the host opens 1000 doors — say, all but doors one and 1002. What would you do?

5.4 WHAT YOU SHOULD REMEMBER

You should be able to:

- Write out a set of outcomes for an experiment.
- Construct an event space.
- Compute the probabilities of outcomes and events.
- Determine when events are independent.
- Compute the probabilities of outcomes by counting events, when the count is straightforward.
- Compute a conditional probability.

You should remember:

- The definition of an event space.
- The properties of a probability function.

- The definition of independence.
- The definition of conditional probability.

PROBLEMS

Outcomes

- 5.1. You roll a four sided die. What is the space of outcomes?
- 5.2. King Lear decides to allocate three provinces (1, 2, and 3) to his daughters (Goneril, Regan and Cordelia - read the book) at random. Each gets one province. What is the space of outcomes?
- 5.3. You randomly wave a flyswatter at a fly. What is the space of outcomes?
- 5.4. You read the book, so you know that King Lear had family problems. As a result, he decides to allocate two provinces to one daughter, one province to another daughter, and no provinces to the third. Because he's a bad problem solver, he does so at random. What is the space of outcomes?

Probability of outcomes

- 5.5. You roll a fair four sided die. What is the probability of getting a 3?
- 5.6. You roll a fair four sided die, and then a fair six sided die. You add the numbers on the two dice. What is the probability the result is even?
- 5.7. You roll a fair 20 sided die. What is the probability of getting an even number?
- 5.8. You roll a fair five sided die. What is the probability of getting an even number?

Events

- 5.9. At a particular University, $1/2$ of the students drink alcohol and $1/3$ of the students smoke cigarettes.
 - What is the largest possible fraction of students who do neither?
 - It turns out that, in fact, $1/3$ of the students do neither. What fraction of the students does both?
- 5.10. I flip two coins. What one set needs to be added to this collection of sets to form an event space?

$$\Sigma = \{\emptyset, \Omega, \{TH\}, \{HT, TH, TT\}, \{HH\}, \{HT, TT\}, \{HH, TH\}\}$$

Probability of Events

- 5.11. Assume each outcome in Ω has the same probability. In this case, show

$$P(\mathcal{E}) = \frac{\text{Number of outcomes in } \mathcal{E}}{\text{Total number of outcomes in } \Omega}$$

- 5.12. You flip a fair coin three times. What is the probability of seeing HTH? (i.e. Heads, then Tails, then Heads)
- 5.13. You flip a fair coin three times. What is the probability of seeing two heads and one tail?
- 5.14. You remove the king of hearts from a standard deck of cards, then shuffle it and draw a card.
 - What is the probability this card is a king?
 - What is the probability this card is a heart?

5.15. You shuffle a standard deck of cards, then draw four cards.

- What is the probability all four are the same suit?
- What is the probability all four are red?
- What is the probability each has a different suit?

5.16. You roll three fair six-sided dice and add the numbers. What is the probability the result is even?

5.17. You roll three fair six-sided dice and add the numbers. What is the probability the result is even *and* not divisible by 20?

5.18. You shuffle a standard deck of cards, then draw seven cards. What is the probability that you see no aces?

5.19. Show that $P(\mathcal{A} - (\mathcal{B} \cup \mathcal{C})) = P(\mathcal{A}) - P(\mathcal{A} \cap \mathcal{B}) - P(\mathcal{A} \cap \mathcal{C}) + P(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C})$.

5.20. You draw a single card from a standard 52 card deck. What is the probability that it is red?

5.21. You remove all heart cards from a standard 52 card deck, then draw a single card from the result. What is the probability that the card you draw is red?

Conditional Probability

5.22. You roll two fair six-sided dice. What is the conditional probability the sum of numbers is greater than three, conditioned on the first die coming up even.

5.23. You take a standard deck of cards, shuffle it, and remove one card. You then draw a card.

- What is the conditional probability that the card you draw is a red king, conditioned on the removed card being a king?
- What is the conditional probability that the card you draw is a red king, conditioned on the removed card being a red king?
- What is the conditional probability that the card you draw is a red king, conditioned on the removed card being a black ace?

5.24. A royal flush is a hand of five cards, consisting of Ace, King, Queen, Jack and 10 of a single suit. Poker players like this hand, but don't see it all that often.

- You draw five cards from a standard deck of playing cards. What is the probability of getting a royal flush?
- You draw three cards from a standard deck of playing cards. These are Ace, King, Queen of hearts. What is the probability that the next two cards you draw will result in a getting a royal flush? (this is the conditional probability of getting a royal flush, conditioned on the first three cards being AKQ of hearts).

5.25. You roll a fair five-sided die, and a fair six-sided die.

- What is the probability that the sum of numbers is even?
- What is the conditional probability that the sum of numbers is even, conditioned on the six-sided die producing an odd number?

Independence

5.26. You take a standard deck of cards, shuffle it, and remove both red kings. You then draw a card.

- Is the event {card is red} independent of the event {card is a queen}?
- Is the event {card is black} independent of the event {card is a king}?

The Monty Hall Problem

- 5.27. **Monty Hall, Rule 3:** If the host uses rule 3, then what is $P(C_1|G_2, r_3)$? Do this by computing conditional probabilities.
- 5.28. **Monty Hall, Rule 4:** If the host uses rule 4, and shows you a goat behind door 2, what is $P(C_1|G_2, r_4)$? Do this by computing conditional probabilities.

CHAPTER 6

Random Variables and Expectations

6.1 RANDOM VARIABLES

Quite commonly, we would like to deal with numbers that are random. We can do so by linking numbers to the outcome of an experiment. We define a **random variable**:

Definition 6.1 *Discrete random variable*

Given a sample space Ω , a set of events \mathcal{F} , and a probability function P , and a countable set of real numbers D , a discrete random variable is a function with domain Ω and range D .

This means that for any outcome ω there is a number $X(\omega)$. P will play an important role, but first we give some examples.

Example: *Numbers from coins*

We flip a coin. Whenever the coin comes up heads, we report 1; when it comes up tails, we report 0. This is a random variable.

Example: *Numbers from coins II*

We flip a coin 32 times. We record a 1 when it comes up heads, and when it comes up tails, we record a 0. This produces a 32 bit random number, which is a random variable.

Example: *The number of pairs in a poker hand*

(from Stirzaker). We draw a hand of five cards. The number of pairs in this hand is a random variable, which takes the values 0, 1, 2 (depending on which hand we draw)

A function of a discrete random variable is also a discrete random variable.

Example: *Parity of coin flips*

We flip a coin 32 times. We record a 1 when it comes up heads, and when it comes up tails, we record a 0. This produces a 32 bit random number, which is a random variable. The parity of this number is also a random variable.

Associated with any value x of the random variable X are a series of events.

The most important is the set of outcomes such that $X = x$, which we can write $\{\omega : X(\omega) = x\}$; it is usual to simplify to $\{X = x\}$, and we will do so. The probability that a random variable X takes the value x is given by $P(\{X = x\})$. This is sometimes written as $P(X = x)$, and rather often written as $P(x)$.

We could also be interested in the set of outcomes such that $X \leq x$ (i.e. in $\{\omega : X(\omega) \leq x\}$), which we will write $\{X \leq x\}$; The probability that X takes the value x is given by $P(\{X \leq x\})$. This is sometimes written as $P(X \leq x)$. Similarly, we could be interested in $\{X > x\}$, and so on.

Definition 6.2 *The probability distribution of a discrete random variable*

The probability distribution of a discrete random variable is the set of numbers $P(\{X = x\})$ for each value x that X can take. The distribution takes the value 0 at all other numbers. Notice that this is non-negative.

Definition 6.3 *The cumulative distribution of a discrete random variable*

The cumulative distribution of a discrete random variable is the set of numbers $P(\{X \leq x\})$ for each value x that X can take. Notice that this is a non-decreasing function of x . Cumulative distributions are often written with an f , so that $f(x)$ might mean $P(\{X \leq x\})$.

Worked example 6.1 *Numbers from coins III*

We flip a biased coin 2 times. The flips are independent. The coin has $P(H) = p$, $P(T) = 1 - p$. We record a 1 when it comes up heads, and when it comes up tails, we record a 0. This produces a 2 bit random number, which is a random variable taking the values 0, 1, 2, 3. What is the probability distribution and cumulative distribution of this random variable?

Solution: Probability distribution: $P(0) = (1 - p)^2$; $P(1) = (1 - p)p$; $P(2) = p(1 - p)$; $P(3) = p^2$. Cumulative distribution: $f(0) = (1 - p)^2$; $f(1) = (1 - p)$; $f(2) = p(1 - p) + (1 - p) = (1 - p^2)$; $f(3) = 1$.

Worked example 6.2 *Betting on coins*

One way to get a random variable is to think about the reward for a bet. We agree to play the following game. I flip a coin. The coin has $P(H) = p$, $P(T) = 1 - p$. If the coin comes up heads, you pay me q ; if the coin comes up tails, I pay you r . The number of dollars that change hands is a random variable. What is its probability distribution?

Solution: We see this problem from my perspective. If the coin comes up heads, I get q ; if it comes up tails, I get $-r$. So we have $P(X = q) = p$ and $P(X = -r) = (1 - p)$, and all other probabilities are zero.

6.1.1 Joint and Conditional Probability for Random Variables

All the concepts of probability that we described for events carry over to random variables. This is as it should be, because random variables are really just a way of getting numbers out of events. However, terminology and notation change a bit.

Assume we have two random variables X and Y . The probability that X takes the value x and Y takes the value y could be written as $P(\{X = x\} \cap \{Y = y\})$. It is more usual to write it as $P(x, y)$. You can think of this as a table of values, one for each possible pair of x and y values. This table is usually referred to as the **joint probability distribution** of the random variables. Nothing (except notation) has really changed here, but the change of notation is useful.

We will simplify notation further. Usually, we are interested in random variables, rather than potentially arbitrary outcomes or sets of outcomes. We will write $P(X)$ to denote the probability distribution of a random variable, and $P(x)$ or $P(X = x)$ to denote the probability that that random variable takes a particular value. This means that, for example, the rule we could write as

$$P(\{X = x\} \mid \{Y = y\})P(\{Y = y\}) = P(\{X = x\} \cap \{Y = y\})$$

will be written as

$$P(x|y)P(y) = P(x, y).$$

This yields **Bayes' rule**, which is important enough to appear in its own box.

Definition 6.4 *Bayes' rule*

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

Random variables have another useful property. If $x_0 \neq x_1$, then the event $\{X = x_0\}$ must be disjoint from the event $\{X = x_1\}$. This means that

$$\sum_x P(x) = 1$$

and that, for any y ,

$$\sum_x P(x|y) = 1$$

(if you're uncertain on either of these points, check them by writing them out in the language of events).

Now assume we have the joint probability distribution of two random variables, X and Y . Recall that we write $P(\{X = x\} \cap \{Y = y\})$ as $P(x, y)$. Now consider the sets of outcomes $\{Y = y\}$ for each different value of y . These sets must be disjoint, because y cannot take two values at the same time. Furthermore, each element of the set of outcomes $\{X = x\}$ must lie in one of the sets $\{Y = y\}$. So we have

$$\sum_y P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\})$$

which is usually written as

$$\sum_y P(x, y) = P(x)$$

and is often referred to as the **marginal probability** of X .

Definition 6.5 *Independent random variables*

The random variables X and Y are **independent** if the events $\{X = x\}$ and $\{Y = y\}$ are independent. This means that

$$P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\})P(\{Y = y\}),$$

which we can rewrite as

$$P(x, y) = P(x)P(y)$$

Worked example 6.3 *Sums and differences of dice*

You throw two dice. The number of spots on the first die is a random variable (call it X); so is the number of spots on the second die (Y). Now define $S = X + Y$ and $D = X - Y$. What is the probability distribution of S and of D ?

Solution: S can have values in the range $2, \dots, 12$. There is only one way to get a $S = 2$; two ways to get $S = 3$; and so on. Using the methods of chapter 22 for each case, the probabilities for $[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$ are $[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36$. Similarly, D can have values in the range $-5, \dots, 5$. Again, using the methods of chapter 22, the probabilities for $[-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]$ are $[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36$.

Worked example 6.4 *Sums and differences of dice, II*

Using the terminology of example 3, what is the joint probability distribution of S and D ?

Solution: This is more interesting to display, because it's an 11×11 table. Each entry of the table represents a pair of S, D values. Many pairs can't occur (for example, for $S = 2$, D can only be zero; if S is even, then D must be even; and so on). You can work out the table by checking each case; it's in Table 6.1.

Worked example 6.5 *Sums and differences of dice, III*

Using the terminology of example 3, are X and Y independent? are S and D independent?

Solution: X and Y are clearly independent. But S and D are not. There are several ways to see this. One way is to notice that, if you know $S = 2$, then you know the value of D precisely; but if you know $S = 3$, D could be either 1 or -1 . This means that $P(S|D)$ depends on D , so they're not independent. Another way is to notice that the rank of the table, as a matrix, is 6, which means that it can't be the outer product of two vectors.

Worked example 6.6 *Sums and differences of dice, IV*

Using the terminology of example 3, what is $P(S|D = 0)$? what is $P(D|S = 11)$?

Solution: You could work it out either of these from the table, or by first principles. If $D = 0$, S can have values 2, 4, 6, 8, 10, 12, and each value has conditional probability $1/6$. If $S = 11$, D can have values 1, or -1 , and each value has conditional probability $1/2$.

6.1.2 Just a Little Continuous Probability

Our random variables take values from a discrete set of numbers D . This makes the underlying machinery somewhat simpler to describe, and is often, but not always, enough for model building. Some phenomena are more naturally modelled as being continuous — for example, human height; human weight; the mass of a distant star; and so on. Giving a complete formal description of probability on a continuous space is surprisingly tricky, and would involve us in issues that do not arise much in practice.

These issues are caused by two interrelated facts: real numbers have infinite precision; and you can't count real numbers. A continuous random variable is still a random variable, and comes with all the stuff that a random variable comes with. We will not speculate on what the underlying sample space is, nor on the underlying events. This can all be sorted out, but requires moderately heavy lifting that isn't

$$\frac{1}{36} \times \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

TABLE 6.1: *A table of the joint probability distribution of S (vertical axis; scale 2, ..., 12) and D (horizontal axis; scale $-5, \dots, 5$) from example 4*

particularly illuminating for us. The most interesting thing for us is specifying the probability distribution. Rather than talk about the probability that a real number takes a particular value (which we can't really do satisfactorily most of the time), we will instead talk about the probability that it lies in some interval. So we can specify a probability distribution for a continuous random variable by giving a set of (very small) intervals, and for each interval providing the probability that the random variable lies in this interval.

The easiest way to do this is to supply a **probability density function**. Let $p(x)$ be a probability density function for a continuous random variable X . We interpret this function by thinking in terms of small intervals. Assume that dx is an infinitesimally small interval. Then

$$p(x)dx = P(\{\text{event that } X \text{ takes a value in the range } [x, x + dx]\}).$$

Important properties of probability density functions follow from this definition.

Useful Facts 6.1 *Probability density functions*

- Probability density functions are non-negative. This follows from the definition; a negative value at some x would imply a negative probability.
- For $a < b$

$$P(\{\text{event that } X \text{ takes a value in the range } [a, b]\}) = \int_a^b p(x)dx.$$

which we obtain by summing $p(x)dx$ over all the infinitesimal intervals between a and b .

- We must have that

$$\int_{-\infty}^{\infty} p(x)dx = 1.$$

This is because

$$P(\{X \text{ takes a value in the range } [-\infty, \infty]\}) = 1 = \int_{-\infty}^{\infty} p(x)dx$$

- Probability density functions are usually called pdf's.
- It is quite usual to write all pdf's as lower-case p 's. If one specifically wishes to refer to probability, one writes an upper case P , as in the previous points.

One good way to think about pdf's is as the limit of a histogram. Imagine you collect an arbitrarily large dataset of data items, each of which is independent. You build a histogram of that dataset, using arbitrarily narrow boxes. You scale the histogram so that the sum of the box areas is one. The result is a probability density function.

The pdf doesn't represent the probability that a random variable takes a value. Instead, you should think of $p(x)$ as being the limit of a ratio (which is why it's called a density):

the probability that the random variable will lie in a small interval centered on x
the length of the small interval centered on x

Notice that, while a pdf has to be non-negative, and it has to integrate to 1, it does *not* have to be smaller than one. A ratio like this could be a lot larger than one, as long as it isn't larger than one for too many x (because the integral must be one).

Probability density functions can be moderately strange functions.

Worked example 6.7 *Strange probability density functions*

There is some (small!) voltage over the terminals of a warm resistor caused by noise (electrons moving around in the heat and banging into one another). This is a good example of a continuous random variable, and we can assume there is some probability density function for it, say $p(x)$. We assume that $p(x)$ has the property that

$$\lim_{\epsilon \rightarrow 0} \int_{v-\epsilon}^{v+\epsilon} p(x)dx = 0$$

which is what you'd expect for any function you're likely to have dealt with. Now imagine I define a new random variable by the following procedure: I flip a coin; if it comes up heads, I report 0; if tails, I report the voltage over the resistor. This random variable, u , has a probability 1/2 of taking the value 0, and 1/2 of taking a value from $p(x)$. Write this random variable's probability density function $q(u)$. Compute

$$\lim_{\epsilon \rightarrow 0} \int_{-\epsilon}^{\epsilon} q(u)du$$

Solution: We can do this from the definition. We have

$$P(\{u \in [-\epsilon, \epsilon]\}) = \int_{-\epsilon}^{\epsilon} q(u)du.$$

But u will take the value 0 with probability 1/2, and otherwise takes the value over the resistor. So

$$P(\{u \in [-\epsilon, \epsilon]\}) = 1/2 + \int_{-\epsilon}^{\epsilon} p(x)dx.$$

and

$$\lim_{\epsilon \rightarrow 0} \int_{-\epsilon}^{\epsilon} q(u)du = \lim_{\epsilon \rightarrow 0} P(\{u \in [-\epsilon, \epsilon]\}) = 1/2.$$

This means $q(x)$ has the property that

$$\lim_{\epsilon \rightarrow 0} \int_{-\epsilon}^{\epsilon} q(u)du = 1/2,$$

which means that $q(u)$ is displaying quite unusual behavior at $u = 0$. We will not need to deal with probability density functions that behave like this; but you should be aware of the possibility.

Every probability density function $p(x)$ has the property that $\int_{-\infty}^{\infty} p(x)dx = 1$; this is useful, because when we are trying to determine a probability density function, we can ignore a constant factor. So if $g(x)$ is a non-negative function that

is proportional to the probability density function (often pdf) we are interested in, we can recover the pdf by computing

$$p(x) = \frac{1}{\int_{-\infty}^{\infty} g(x)dx} g(x).$$

This procedure is sometimes known as **normalizing**, and $\int_{-\infty}^{\infty} g(x)dx$ is the **normalizing constant**.

6.2 EXPECTATIONS AND EXPECTED VALUES

Imagine we play the game of example 2 multiple times. Our frequency definition of probability means that in N games, we expect to see about pN heads and $(1-p)N$ tails. In turn, this means that my total income from these N games should be about $(pN)q - ((1-p)N)r$. The N in this expression is inconvenient; instead, we could say that for any single game, my income is

$$pq - (1-p)r.$$

This isn't the actual income from a single game (which would be either q or $-r$, depending on what the coin did). Instead, it's an estimate of what would happen over a large number of games, on a per-game basis. This is an example of an **expected value**.

6.2.1 Expected Values of Discrete Random Variables

Definition 6.6 *Expected value*

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability distribution P , we define the expected value

$$\mathbb{E}[X] = \sum_{x \in \mathcal{D}} xP(X = x).$$

This is sometimes written which is $\mathbb{E}_P[X]$, to clarify which distribution one has in mind

Notice that an expected value could take a value that the random variable doesn't take.

Example: *Betting on coins*

We agree to play the following game. I flip a fair coin (i.e. $P(H) = P(T) = 1/2$). If the coin comes up heads, you pay me 1; if the coin comes up tails, I pay you 1. The expected value of my income is 0, even though the random variable never takes that value.

Definition 6.7 *Expectation*

Assume we have a function f that maps a discrete random variable X into a set of numbers \mathcal{D}_f . Then $f(x)$ is a discrete random variable, too, which we write F . The expected value of this random variable is written

$$\mathbb{E}[f] = \sum_{u \in \mathcal{D}_f} u P(F = u) = \sum_{x \in \mathcal{D}} f(x) P(X = x)$$

which is sometimes referred to as “the expectation of f ”. The process of computing an expected value is sometimes referred to as “taking expectations”.

Expectations are linear, so that $\mathbb{E}[0] = 0$ and $\mathbb{E}[A + B] = \mathbb{E}[A] + \mathbb{E}[B]$. The expectation of a constant is that constant (or, in notation, $\mathbb{E}[k] = k$), because probabilities sum to 1. Because probabilities are non-negative, the expectation of a non-negative random variable must be non-negative.

6.2.2 Expected Values of Continuous Random Variables

We can compute expectations for continuous random variables, too, though summing over all values now turns into an integral. This should be expected. Imagine you choose a set of closely spaced values for x which are x_i , and then think about x as a discrete random variable. The values are separated by steps of width Δx . Then the expected value of this discrete random variable is

$$\mathbb{E}[X] = \sum_i x_i P(X \in \text{interval centered on } x_i) = \sum_i x_i p(x_i) \Delta x$$

and, as the values get closer together and Δx gets smaller, the sum limits to an integral.

Definition 6.8 *Expected value*

Given a continuous random variable X which takes values in the set \mathcal{D} and which has probability distribution P , we define the expected value

$$\mathbb{E}[X] = \int_{x \in \mathcal{D}} x p(x) dx.$$

This is sometimes written $\mathbb{E}_p[X]$, to clarify which distribution one has in mind

The expected value of a continuous random variable could be a value that the random variable doesn't take, too. Notice one attractive feature of the $\mathbb{E}[X]$ notation; we don't need to make any commitment to whether X is a discrete random

variable (where we would write a sum) or a continuous random variable (where we would write an integral). The reasoning by which we turned a sum into an integral works for functions of continuous random variables, too.

Definition 6.9 *Expectation*

Assume we have a function f that maps a continuous random variable X into a set of numbers \mathcal{D}_f . Then $f(x)$ is a continuous random variable, too, which we write F . The expected value of this random variable is

$$\mathbb{E}[f] = \int_{x \in \mathcal{D}} f(x)p(x)dx$$

which is sometimes referred to as “the expectation of f ”. The process of computing an expected value is sometimes referred to as “taking expectations”.

Again, for continuous random variables, expectations are linear, so that $\mathbb{E}[0] = 0$ and $\mathbb{E}[A + B] = \mathbb{E}[A] + \mathbb{E}[B]$. The expectation of a constant is that constant (or, in notation, $\mathbb{E}[k] = k$), because probabilities sum to 1. Because probabilities are non-negative, the expectation of a non-negative random variable must be non-negative.

6.2.3 Mean, Variance and Covariance

There are three very important expectations with special names.

Definition 6.10 *The mean or expected value*

The mean or expected value of a random variable X is

$$\mathbb{E}[X]$$

Definition 6.11 *The variance*

The variance of a random variable X is

$$\text{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Notice that

$$\begin{aligned}\mathbb{E}[(X - \mathbb{E}[X])^2] &= \mathbb{E}[(X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2)] \\ &= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2 \\ &= \mathbb{E}[X^2] - (\mathbb{E}[X])^2\end{aligned}$$

Definition 6.12 *The covariance*

The covariance of two random variables X and Y is

$$\text{cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Notice that

$$\begin{aligned}\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] &= \mathbb{E}[(XY - Y\mathbb{E}[X] - X\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y])] \\ &= \mathbb{E}[XY] - 2\mathbb{E}[Y]\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].\end{aligned}$$

We also have $\text{var}[X] = \text{cov}(X, X)$.

Now assume that we have a probability distribution $P(X)$ defined on some discrete set of numbers. There is some random variable that produced this probability distribution. This means that we could talk about the mean of a probability distribution P (rather than the mean of a random variable whose probability distribution is $P(X)$). It is quite usual to talk about the mean of a probability distribution. Furthermore, we could talk about the variance of a probability distribution P (rather than the variance of a random variable whose probability distribution is $P(X)$).

Worked example 6.8 *variance*

Can a random variable have $\mathbb{E}[X] > \sqrt{\mathbb{E}[X^2]}$?

Solution: No, because that would mean that $\mathbb{E}[(X - \mathbb{E}[X])^2] < 0$. But this is the expected value of a non-negative quantity; it must be non-negative.

Worked example 6.9 *More variance*

We just saw that a random variable can't have $\mathbb{E}[X] > \sqrt{\mathbb{E}[X^2]}$. But I can easily have a random variable with large mean and small variance - isn't this a contradiction?

Solution: No, you're confused. Your question means you think that the variance of X is given by $\mathbb{E}[X^2]$; but actually $\text{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Worked example 6.10 *Mean of a coin flip*

We flip a biased coin, with $P(H) = p$. The random variable X has value 1 if the coin comes up heads, 0 otherwise. What is the mean of X ? (i.e. $\mathbb{E}[X]$).

Solution: $\mathbb{E}[X] = \sum_{x \in D} xP(X = x) = 1p + 0(1 - p) = p$

Useful Facts 6.2 *Expectations*

1. $\mathbb{E}[0] = 0$
2. $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
3. $\mathbb{E}[kX] = k\mathbb{E}[X]$
4. $\mathbb{E}[1] = 1$
5. if X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
6. if X and Y are independent, then $\text{cov}(X, Y) = 0$.

All but 5 and 6 are obvious from the definition. If 5 is true, then 6 is obviously true. I prove 5.

Proposition: If X and Y are independent random variables, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Proof: Recall that $\mathbb{E}[X] = \sum_{x \in D} xP(X = x)$, so that

$$\begin{aligned}
 \mathbb{E}[XY] &= \sum_{(x,y) \in D_x \times D_y} xyP(X = x, Y = y) \\
 &= \sum_{x \in D_x} \sum_{y \in D_y} (xyP(X = x, Y = y)) \\
 &= \sum_{x \in D_x} \sum_{y \in D_y} (xyP(X = x)P(Y = y)) \\
 &\quad \text{because } X \text{ and } Y \text{ are independent} \\
 &= \sum_{x \in D_x} \sum_{y \in D_y} (xP(X = x))(yP(Y = y)) \\
 &= \left(\sum_{x \in D_x} xP(X = x) \right) \left(\sum_{y \in D_y} yP(Y = y) \right) \\
 &= (\mathbb{E}[X])(\mathbb{E}[Y]).
 \end{aligned}$$

This is certainly not true when X and Y are not independent (try $Y = -X$).

Useful Facts 6.3 *Variance*

It is quite usual to write $\text{var}[X]$ for the variance of the random variable X .

1. $\text{var}[0] = 0$
2. $\text{var}[1] = 0$
3. $\text{var}[X] \geq 0$
4. $\text{var}[kX] = k^2\text{var}[X]$
5. if X and Y are independent, then $\text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$

1, 2, 3 are obvious. You will prove 4 and 5 in the exercises.

Worked example 6.11 *Variance of a coin flip*

We flip a biased coin, with $P(H) = p$. The random variable X has value 1 if the coin comes up heads, 0 otherwise. What is the variance of X ? (i.e. $\text{var}[X]$).

Solution: $\text{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = (1p - 0(1-p)) - p^2 = p(1-p)$

The variance of a random variable is often inconvenient, because its units are the square of the units of the random variable. Instead, we could use the **standard deviation**.

Definition 6.13 *Standard deviation*

The **standard deviation** of a random variable X is defined as

$$\text{std}(X) = \sqrt{\text{var}[X]}$$

You do need to be careful with standard deviations. If X and Y are independent random variables, then $\text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$, but $\text{std}(X + Y) = \sqrt{\text{std}(X)^2 + \text{std}(Y)^2}$. One way to avoid getting mixed up is to remember that variances add, and derive expressions for standard deviations from that.

6.2.4 Expectations and Statistics

You should have noticed we now have two notions each for mean, variance, covariance, and standard deviation. One, which we expounded in sections 22, describes datasets. We will call these **descriptive statistics**. The other, described above, is a property of probability distributions. We will call these **expectations**. In each case, the reason we have one name for two notions is that the notions are not really

all that different.

Imagine we have a dataset $\{\mathbf{x}\}$ of N items, where the i 'th item is \mathbf{x}_i . We can build a probability distribution out of this dataset, by placing a probability on each data item. We will give each data item the same probability (which must be $1/N$, so all probabilities add to 1). Write $\mathbb{E}[\mathbf{x}]$ for the mean of this distribution. We have

$$\mathbb{E}[\mathbf{x}] = \sum_i \mathbf{x}_i p(\mathbf{x}_i) = \frac{1}{N} \sum_i \mathbf{x}_i = \text{mean}(\{\mathbf{x}\}).$$

The variances, standard deviations and covariance have the same property: For this particular distribution (sometimes called the **empirical distribution**), the expectations have the same value as the descriptive statistics (exercises).

In section 22, we will see a form of converse to this fact. Imagine we have a dataset that consists of independent, identically distributed samples from a probability distribution. That is, we know that each data item was obtained independently from the distribution. For example, we might have a count of heads in each of a number of coin flip experiments. Then the descriptive statistics will turn out to be accurate estimates of the expectations.

6.2.5 Indicator Functions

It is sometimes convenient when working with random variables to use **indicator functions**. This is a function that is one when some condition is true, and zero otherwise. The reason they are useful is that their expected values have interesting properties.

Definition 6.14 *Indicator functions*

An indicator function for an event is a function that takes the value zero for values of X where the event does not occur, and one where the event occurs. For the event \mathcal{E} , we write

$$\mathbb{I}_{[\mathcal{E}]}(X)$$

for the relevant indicator function.

For example,

$$\mathbb{I}_{\{|X| \leq a\}}(X) = \begin{cases} 1 & \text{if } -a < X < a \\ 0 & \text{otherwise} \end{cases}$$

Indicator functions have one useful property.

$$\mathbb{E}[\mathbb{I}_{[\mathcal{E}]}] = P(\mathcal{E})$$

which you can establish by checking the definition of expectations.

6.2.6 Two Inequalities

Mean and variance tell us quite a lot about a random variable, as two important inequalities show.

Definition 6.15 *Markov's inequality*

Markov's inequality is

$$P(\{\|X\| \geq a\}) \leq \frac{\mathbb{E}[\|X\|]}{a}.$$

You should read this as indicating that a random variable is most unlikely to have an absolute value a lot larger than the mean of its absolute value. This should seem fairly intuitive from the definition of expectation. Recall that

$$\mathbb{E}[X] = \sum_{x \in D} x P(\{X = x\})$$

Assume that D contains only non-negative numbers (that absolute value). Then the only way to have a small value of $\mathbb{E}[X]$ is to be sure that, when x is large, $P(\{X = x\})$ is small. The proof is a rather more formal version of this observation, below.

Definition 6.16 *Chebyshev's inequality*

Chebyshev's inequality is

$$P(\{|X - \mathbb{E}[X]| \geq a\}) \leq \frac{\text{var}[X]}{a^2}.$$

It is common to see this in another form, obtained by writing σ for the standard deviation of X , substituting $k\sigma$ for a , and rearranging

$$P(\{|X - \mathbb{E}[X]| \geq k\sigma\}) \leq \frac{1}{k^2}$$

This means that the probability of a random variable taking a particular value must fall off rather fast as that value moves away from the mean, in units scaled to the variance. This probably doesn't seem intuitive from the definition of expectation. But think about it this way: values of a random variable that are many standard deviations above the mean must have low probability, otherwise the standard deviation would be bigger. The proof, again, is a rather more formal version of this observation, and appears below.

Proposition: *Markov's inequality*

$$P(\{\|X\| \geq a\}) \leq \frac{\mathbb{E}[\|X\|]}{a}.$$

Proof: (from Wikipedia). Notice that, for $a > 0$,

$$a\mathbb{I}_{\{|X| \leq a\}}(X) \leq |X|$$

(because if $|X| < a$, the LHS is a ; otherwise it is zero). Now we have

$$\mathbb{E}[a\mathbb{I}_{\{|X| \leq a\}}] \leq \mathbb{E}[|X|]$$

but, because expectations are linear, we have

$$\mathbb{E}[a\mathbb{I}_{\{|X| \leq a\}}] = a\mathbb{E}[\mathbb{I}_{\{|X| \leq a\}}] = aP(\{|X| \leq a\})$$

and so we have

$$aP(\{|X| \leq a\}) \leq |X|$$

and we get the inequality by division, which we can do because $a > 0$.

Proposition: *Chebyshev's inequality*

$$P(\{|X - \mathbb{E}[X]| \geq a\}) \leq \frac{\text{var}[X]}{a^2}.$$

Proof: Write U for the random variable $(X - \mathbb{E}[X])^2$. Markov's inequality gives us

$$P(\{|U| \geq w\}) \leq \frac{\mathbb{E}[|U|]}{w}$$

Now notice that, if $a^2 = w$,

$$P(\{|U| \geq w\}) = P(\{|X - \mathbb{E}[X]| \geq a\})$$

so we have

$$P(\{|U| \geq w\}) = P(\{|X - \mathbb{E}[X]| \geq a\}) \leq \frac{\mathbb{E}[|U|]}{w} = \frac{\text{var}[X]}{a^2}$$

6.2.7 IID Samples and the Weak Law of Large Numbers

Imagine a random variable X , obtained by flipping a fair coin and reporting 1 for an H and -1 for a T . We can talk about the probability distribution $P(X)$ of this random variable; we can talk about the expected value that the random variable takes; but the random variable itself doesn't have a value. However, if we actually

flip a coin, we get either a 1 or a -1 . This number is often called a **sample** of the random variable (or of its probability distribution). Similarly, if we flipped a coin many times, we'd have a set of numbers (or samples). These numbers would be independent. Their histogram would look like $P(X)$. Collections of data items like this are important enough to have their own name.

Assume we have a set of data items x_i such that (a) they are independent; (b) each is produced from the same process; and (c) the histogram of a very large set of data items looks increasingly like the probability distribution $P(X)$ as the number of data items increases. Then we refer to these data items as **independent identically distributed samples** of $P(X)$; for short, **iid samples** or even just **samples**. For all of the cases we will deal with, it will be obvious how to get IID samples. However, it's worth knowing that obtaining IID samples from arbitrary probability distributions is very difficult.

Now assume we have a set of N IID samples x_i of a probability distribution $P(X)$. Write

$$X_N = \frac{\sum_{i=1}^N x_i}{N}.$$

Now X_N is a random variable (the x_i are IID samples, and for a different set of samples you will get a different, random, X_N).

Definition 6.17 *The Weak Law of Large Numbers*

The **weak law of large numbers** states that, for any positive number ϵ

$$\lim_{N \rightarrow \infty} P(\{\|X_N - \mathbb{E}[X]\| > \epsilon\}) = 0.$$

This means that, for a large enough set of IID samples, the average of the samples (i.e. X_N) will, with high probability, be very close to the expectation $\mathbb{E}[X]$.

Proposition: *Weak law of large numbers*

$$\lim_{N \rightarrow \infty} P(\{\|X_N - \mathbb{E}[X]\| > \epsilon\}) = 0.$$

Proof: Assume that $P(X)$ has finite variance; that is, $\text{var}(\{X\}) = \sigma^2$. Choose $\epsilon > 0$. Now we have that

$$\begin{aligned} \text{var}(\{X_N\}) &= \text{var}\left(\left\{\frac{\sum_{i=1}^N x_i}{N}\right\}\right) \\ &= \left(\frac{1}{N^2}\right)\text{var}\left(\left\{\sum_{i=1}^N x_i\right\}\right) \\ &= \left(\frac{1}{N^2}\right)(N\sigma^2) \\ &\quad \text{because the } x_i \text{ are independent} \\ &= \frac{\sigma^2}{N} \end{aligned}$$

and that

$$\mathbb{E}[X_N] = \mathbb{E}[X].$$

Now Chebyshev's inequality gives

$$P(\{\|X_N - \mathbb{E}[X]\| \geq \epsilon\}) \leq \frac{\sigma^2}{N\epsilon^2}$$

so

$$1 - P(\{\|X_N - \mathbb{E}[X]\| \geq \epsilon\}) = P(\{\|X_N - \mathbb{E}[X]\| < \epsilon\}) \geq 1 - \frac{\sigma^2}{N\epsilon^2}.$$

This means that

$$\lim_{N \rightarrow \infty} P(\{\|X_N - \mathbb{E}[X]\| > \epsilon\}) = 0$$

which is the weak law of large numbers.

6.3 USING EXPECTATIONS

The weak law of large numbers gives us a very valuable way of thinking about expectations. Assume we have a random variable X . Then the weak law says that, if you observe this random variable over a large number of trials, the mean value you observe should be very close to $\mathbb{E}[X]$. Notice that this extends to functions of random variables (because they are random variables, too). For example, I observe values x_i of a random variable X over a large number N of trials, and compute

$$\frac{1}{N} \sum_{i=1}^N f(x_i).$$

The weak law says that the value I get should be very close to $\mathbb{E}[f]$. You can show this by defining a new random variable $F = f(X)$. This has a probability

distribution $P(F)$, which might be difficult to know — but we don't need to. $\mathbb{E}[f]$, the expected value of the function f under the distribution $P(X)$. This is the same as $\mathbb{E}[F]$, and the weak law applies.

Remember: the average over repeated trials of a random variable is very close to the expectation. You can use this information to make many kinds of decision in uncertain circumstances.

6.3.1 Should you accept a bet?

We can't answer this as a moral question, but we can as a practical question, using expectations. Generally, a bet involves an agreement that amounts of money will change hands, depending on the outcome of an experiment. Mostly, you are interested in how much you get from the bet, so it is natural to give sums of money you receive a positive sign, and sums of money you pay out a negative sign. Under this convention, the practical answer is easy: accept a bet enthusiastically if its expected value is positive, otherwise decline it. It is interesting to notice how poorly this advice describes actual human behavior.

Worked example 6.12 Red or Black?

A roulette wheel has 36 numbers, 18 of which are red and 18 of which are black. Different wheels also have one, two, or even three zeros, which are colorless. A ball is thrown at the wheel when it is spinning, and it falls into a hole corresponding to one of the numbers (when the number is said to “come up”). The wheel is set up so that there is the same probability of each number coming up. You can bet on (among other things) whether a red number or a black number comes up. If you bet 1 on red, and a red number comes up, you keep your stake and get 1, otherwise you get -1 (i.e. the house keeps your bet).

- On a wheel with one zero, what is the expected value of a 1 bet on red?
- On a wheel with two zeros, what is the expected value of a 1 bet on red?
- On a wheel with three zeros, what is the expected value of a 1 bet on red?

Solution: Write p_r for the probability a red number comes up. The expected value is $1 \times p_r + (-1)(1 - p_r)$ which is $2p_r - 1$.

- In this case, $p_r = (\text{number of red numbers})/(\text{total number of numbers}) = 18/37$. So the expected value is $-1/37$ (you lose about 3 cents each time you bet).
- In this case, $p_r = 18/38$. So the expected value is $-2/38 = -1/19$ (you lose slightly more than five cents each time you bet).
- In this case, $p_r = 18/39$. So the expected value is $-3/39 = -1/13$ (you lose slightly less than 8 cents each time you bet).

Notice that in the roulette game, the money you lose will go to the house. So the expected value to the house is just the negative of the expected value to you. This is positive, which is a partial explanation of why there are lots of roulette wheels, and usually free food nearby. Not all bets are like this, though.

Worked example 6.13 *Coin game*

In this game, P1 flips a fair coin and P2 calls “H” or “T”. If P2 calls right, then P1 throws the coin into the river; otherwise, P1 keeps the coin. What is the expected value of this game to P2? and to P1?

Solution: To P2, which we do first, because it’s easiest: P2 gets 0 if P2 calls right, and 0 if P2 calls wrong; these are the only cases, so the expected value is 0. To P1: P1 gets -1 if P2 calls right, and 0 if P1 calls wrong. The coin is fair, so the probability P2 calls right is $1/2$. The expected value is $-1/2$. While I can’t explain why people would play such a game, I’ve actually seen this done.

We call a bet fair when its expected value is zero. Taking a bet with a negative expected value is unwise, because, on average, you will lose money. Worse, the more times you play, the more you lose. Taking a bet with a positive expected value is likely to be profitable. However, you do need to be careful you computed the expected value right.

Worked example 6.14 *Birthdays in succession*

P1 and P2 agree to the following bet. P1 gives P2 a stake of 1. If three people, stopped at random on the street, have birthdays in succession (i.e. Mon-Tue-Wed, and so on), then P2 gives P1 100. Otherwise, P1 loses the stake. What is the expected value of this bet to P1?

Solution: Write p for the probability of winning. Then the expected value is $p \times 100 - (1 - p) \times 1$. We computed p in example 22 (it was $1/49$). So the bet is worth $(52/49)$, or slightly more than a dollar, to P1. P1 should be happy to agree to this as often as possible.

The reason P2 agrees to bets like that of example 14 is most likely that P2 can’t compute the probability exactly. P2 thinks the event is quite unlikely, so the expected value is negative; but it isn’t as unlikely as P2 thought it was, and this is how P1 makes a profit. This is one of the reasons you should be careful accepting a bet from a stranger: they might be able to compute better than you.

6.3.2 Odds, Expectations and Bookmaking — a Cultural Diversion

Gamblers sometimes use a terminology that is a bit different from ours. In particular, the term **odds** is important. The term comes from the following idea: P1 pays a bookmaker b (the stake) to make a bet; if the bet is successful, P1 receives a , and if not, loses the original stake.

Assume the bet is fair, so that the expected value is zero. Write p for the probability of winning. The net income to P1 is $ap - b(1 - p)$. If this is zero, then $p = b/(a + b)$. So you can interpret odds in terms of probability, *if* you assume the bet is fair.

A bookmaker sets odds at which to accept bets from gamblers. The bookmaker does not wish to lose money at this business, and so must set odds which are

potentially profitable. Doing so is not simple (bookmakers can, and occasionally do, lose catastrophically, and go out of business). In the simplest case, assume that the bookmaker knows the probability p that a particular bet will win. Then the bookmaker could set odds of $(1 - p)/p : 1$. In this case, the expected value of the bet is zero; this is fair, but not attractive business, so the bookmaker will set odds assuming that the probability is a bit higher than it really is. There are other bookmakers out there, so there is some reason for the bookmaker to try to set odds that are close to fair.

In some cases, you can tell when you are dealing with a bookmaker who is likely to go out of business soon. For example, imagine there are two horses running in a race, both at $10 : 1$ odds — whatever happens, you could win by betting 1 on each. There is a more general version of this phenomenon. Assume the bet is placed on a horse race, and that bets pay off only for the winning horse. Assume also that exactly one horse will win (i.e. the race is never scratched, there aren't any ties, etc.), and write the probability that the i 'th horse will win as p_i . Then $\sum_{i \in \text{horses}} p_i$ must be 1. Now if the bookmaker's odds yield a set of probabilities that is less than 1, their business should fail, because there is at least one horse on which they are paying out too much. Bookmakers deal with this possibility by writing odds so that $\sum_{i \in \text{horses}} p_i$ is larger than one.

But this is not the only problem a bookmaker must deal with. The bookmaker doesn't actually know the probability that a particular horse will win, and must account for errors in this estimate. One way to do so is to collect as much information as possible (talk to grooms, jockeys, etc.). Another is to look at the pattern of bets that have been placed already. If the bookmaker and the gamblers agree on the probability that each horse will win, then there should be no expected advantage to choosing one horse over another — each should pay out slightly less than zero to the gambler (otherwise the bookmaker doesn't eat). But if the bookmaker has underestimated the probability that a particular horse will win, a gambler may get a positive expected payout by betting on that horse. This means that if one particular horse attracts a lot of money from bettors, it is wise for the bookmaker to offer less generous odds on that horse. There are two reasons: first, the bettors might know something the bookmaker doesn't, and they're signalling it; second, if the bets on this horse are very large and it wins, the bookmaker may not have enough capital left to pay out or to stay in business. All this means that real bookmaking is a complex, skilled business.

6.3.3 Ending a Game Early

Imagine two people are playing a game for a stake, but must stop early — who should get what percentage of the stake? One way to do this is to give each player what they put in at the start, but this is (mildly) unfair if one has an advantage over the other. The alternative is to give each player the expected value of the game at that state for that player. Sometimes one can compute that expectation quite easily.

Worked example 6.15 *Ending a game early*

(from Durrett), two players each pay 25 to play the following game. They toss a fair coin. If it comes up heads, player H wins that toss; if tails, player T wins. The first player to reach 10 wins takes the stake of 50. But one player is called away when the state is 8-7 (H-T) — how should the stake be divided?

Solution: In this state, each player can either win — and so get 50 — or lose — and so get 0. The expectation for H is $50P(\{\text{H wins from 8-7}\}) + 0P(\{\text{T wins from 8-7}\})$, so we need to compute $P(\{\text{H wins from 8-7}\})$. Similarly, the expectation for T is $50P(\{\text{T wins from 8-7}\}) + 0P(\{\text{H wins from 8-7}\})$, so we need to compute $P(\{\text{T wins from 8-7}\})$; but $P(\{\text{T wins from 8-7}\}) = 1 - P(\{\text{H wins from 8-7}\})$. Now it is slightly easier to compute $P(\{\text{T wins from 8-7}\})$, because T can only win in two ways: 8-10 or 9-10. These are independent. For T to win 8-10, the next three flips must come up T, so that event has probability $1/8$. For T to win 9-10, the next four flips must have one H in them, but the last flip may not be H (or else H wins); so the next four flips could be HTTT, THTT, or TTHT. The probability of this is $3/16$. This means the total probability that T wins is $5/16$. So T should get 16.625 and H should get the rest (although they might have to flip for the odd half cent).

6.3.4 Making a Decision with Decision Trees and Expectations

Imagine we have to choose an action. Once we have chosen, a sequence of random events occurs, and we get a reward with some probability. Which action should we choose? A good answer is to choose the action with the best expected outcome. In fact, choosing any other action is unwise, because if we encounter this situation repeatedly and make a choice that is even only slightly worse than the best, we could lose heavily. This is a very common recipe, and it can be applied to many situations. Usually, but not always, the reward is in money, and we will compute with money rewards for the first few examples.

For such problems, it can be useful to draw a **decision tree**. A decision tree is a drawing of possible outcomes of decisions, which makes costs, benefits and random elements explicit. Each node of the tree represents a test of an attribute (which could be either a decision, or a random variable), and each edge represents a possible outcome of a test. The final outcomes are leaves. Usually, decision nodes are drawn as squares, chance elements as circles, and leaves as triangles.

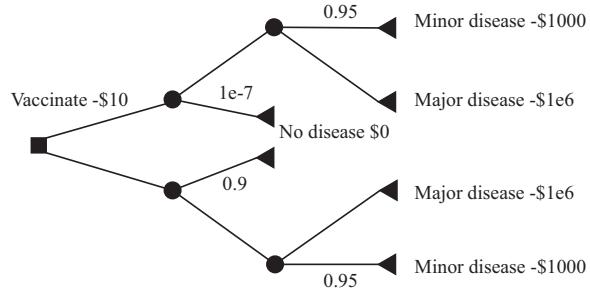


FIGURE 6.1: A decision tree for the vaccination problem. The only decision is whether to vaccinate or not (the box at the root of the tree). I have only labelled edges where this is essential, so I did not annotate the “no vaccination” edge with zero cost. Once you decide whether to vaccinate or not, there is a random node (whether you get the disease or not), and, if you get it, another (minor or major).

Worked example 6.16 Vaccination

It costs 10 to be vaccinated against a common disease. If you have the vaccination, the probability you will get the disease is $1 - 1e-7$. If you do not, the probability is 0.1. The disease is unpleasant; with probability 0.95, you will experience effects that cost you 1000 (eg several days in bed), but with probability 0.05, you will experience effects that cost you $1e6$. Should you be vaccinated?

Solution: Figure 6.1 shows a decision tree for this problem. I have annotated some edges with the choices represented, and some edges with probabilities; the sum of probabilities over all rightward (downgoing) edges leaving a random node is 1. It is straightforward to compute expectations. The expected cost of the disease is $0.95 \times 1000 + 0.05 \times 1e6 = 50,950$. If you are vaccinated, your expected income will be $-(10 + 1e-7 \times 50,950) = -10.01$ (rounding to the nearest cent). If you are not, your expected income is $-5,095$. You should be vaccinated.

Sometimes there is more than one decision. We can still do simple examples, though drawing a decision tree is now quite important, because it allows us to keep track of cases and avoid missing anything. For example, assume I wish to buy a cupboard. Two nearby towns have used furniture shops (usually called antique shops these days). One is further away than the other. If I go to town A, I will have time to look in two (of three) shops; if I go to town B, I will have time to look in one (of two) shops. I could lay out this sequence of decisions (which town to go to; which shop to visit when I get there) as Figure 6.2.

You should notice that this figure is missing a lot of information. What is the probability that I will find what I’m looking for in the shops? What is the value of finding it? What is the cost of going to each town? and so on. This information is

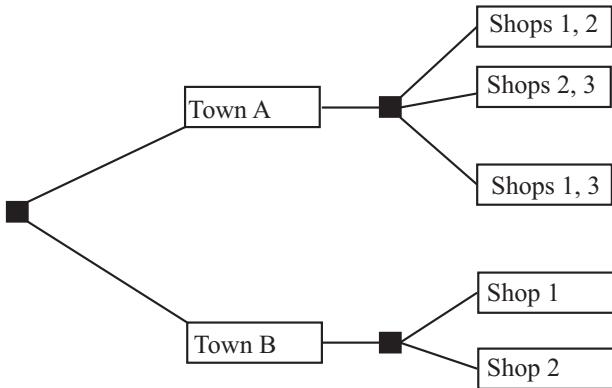


FIGURE 6.2: *The decision tree for the example of visiting furniture shops. Town A is nearer than town B, so if I go there I can choose to visit two of the three shops there; if I go to town B, I can visit only one of the two shops there. To decide what to do, I could fill in the probabilities and values of outcomes, compute the expected value of each pair of decisions, and choose the best. This could be tricky to do (where do I get the probabilities from?) but offers a rational and principled way to make the decision.*

not always easy to obtain. In fact, I might simply need to give my best subjective guess of these numbers. Furthermore, particularly if there are several decisions, computing the expected value of each possible sequence could get difficult. There are some kinds of model where one can compute expected values easily, but a good viable hypothesis about why people don't make optimal decisions is that optimal decisions are actually too hard to compute.

6.3.5 Utility

Sometimes it is hard to work with money. For example, in the case of a serious disease, choosing treatments often boils down to expected survival times, rather than money.

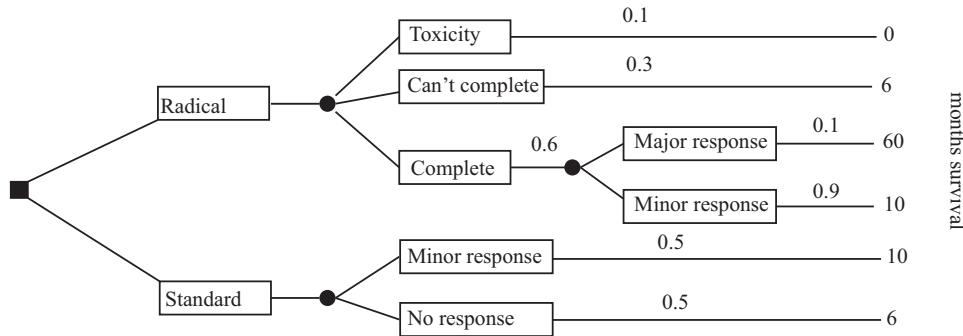


FIGURE 6.3: A decision tree for example 17. Notations vary a bit, and here I have put boxes around the labels for the edges.

Worked example 6.17 Radical treatment

(This example largely after Vickers, p97). Imagine you have a nasty disease. There are two kinds of treatment: standard, and radical. Radical treatment might kill you (with probability 0.1); might be so damaging that doctors stop (with probability 0.3); but otherwise you will complete the treatment. If you do complete radical treatment, there could be a major response (probability 0.1) or a minor response. If you follow standard treatment, there could be a major response (probability 0.5) or a minor response, but the outcomes are less good. All this is best summarized in a decision tree (Figure 6.3). What gives the longest expected survival time?

Solution: In this case, expected survival time with radical treatment is $(0.1 \times 0 + 0.3 \times 6 + 0.6 \times (0.1 \times 60 + 0.9 \times 10)) = 10.8$ months; expected survival time without radical treatment is $0.5 \times 10 + 0.5 \times 6 = 8$ months.

Working with money values is not always a good idea. For example, many people play state lotteries. The expected value of a 1 bet on a state lottery is well below 1 — why do people play? It's easy to assume that all players just can't do sums, but many players are well aware that the expected value of a bet is below the cost. It seems to be the case that people value money in a way that doesn't depend linearly on the amount of money. So, for example, people may value a million dollars rather more than a million times the value they place on one dollar. If this is true, we need some other way to keep track of value; this is sometimes called **utility**. It turns out to be quite hard to know how people value things, and there is quite good evidence that (a) human utility is complicated and (b) it is difficult to explain human decision making in terms of expected utility.

Worked example 6.18 *Human utility is not expected payoff*

Here are four games:

- **Game 1:** The player is given 1. A biased coin is flipped, and the money is taken back with probability p ; otherwise, the player keeps it.
- **Game 2:** The player stakes 1, and a fair coin is flipped; if the coin comes up heads, the player gets r and the stake back, but otherwise loses the original stake.
- **Game 3:** The player bets nothing; a biased coin is flipped, and if it comes up heads (probability q), the player gets $1e6$.
- **Game 4:** The player stakes 1000; a fair coin is flipped, and if it comes up heads, the player gets s and the stake back, but otherwise loses the original stake.

In particular, what happens if $r = 3 - 2p$ and $q = (1 - p)/1e6$ and $s = 2 - 2p + 1000$?

Solution: Game 1 has expected value $(1 - p)1$. Game 2 has expected value $(1/2)(r - 1)$. Game 3 has expected value $q1e6$. Game 4 has expected value $(1/2)s - 500$.

In the case given, each game has the same expected value. Nonetheless, people usually have decided preferences for which game they would play. Generally, 4 is unattractive (seems expensive to play); 3 seems like free money, and so a good thing; 2 might be OK but is often seen as uninteresting; and 1 is unattractive. This should suggest to you that people's reasoning about money and utility is not what simple expectations can predict.

6.4 WHAT YOU SHOULD REMEMBER

You should be able to:

- Interpret notation for joint and conditional probability for random variables; in particular, understand notation such as: $P(\{X\})$, $P(\{X = x\})$, $p(x)$, $p(x, y)$, $p(x|y)$
- Interpret a probability density function $p(x)$ as $P(\{X \in [x, x + dx]\})$.
- Interpret the expected value of a discrete random variable.
- Interpret the expected value of a continuous random variable.
- Compute expected values of random variables for straightforward cases.
- Write down expressions for mean, variance and covariance for random variables.

- Write out a decision tree.

You should remember:

- The definition of a random variable.
- The definition of an expected value.
- The definitions of mean, variance and covariance.
- The definition of an indicator function.
- Bayes rule.
- The definition of marginalization.
- The Markov inequality.
- The Chebyshev Inequality.
- The weak law of large numbers.

PROBLEMS

Joint and Conditional Probability for Random Variables

- 6.1. Define a random variable X by the following procedure. Draw a card from a standard deck of playing cards. If the card is knave, queen, or king, then $X = 11$. If the card is an ace, then $X = 1$; otherwise, X is the number of the card (i.e. two through ten). Now define a second random variable Y by the following procedure. When you evaluate X , you look at the color of the card. If the card is red, then $Y = X - 1$; otherwise, $Y = X + 1$.
 - What is $P(\{X \leq 2\})$?
 - What is $P(\{X \geq 10\})$?
 - What is $P(\{X \geq Y\})$?
 - What is the probability distribution of $Y - X$?
 - What is $P(\{Y \geq 12\})$?
- 6.2. Define a random variable by the following procedure. Flip a fair coin. If it comes up heads, the value is 1. If it comes up tails, roll a die: if the outcome is 2 or 3, the value of the random variable is 2. Otherwise, the value is 3.
 - What is the probability distribution of this random variable?
 - What is the cumulative distribution of this random variable?
- 6.3. Define three random variables, X , Y and Z by the following procedure. Roll a six-sided die and a four-sided die. Now flip a coin. If the coin comes up heads, then X takes the value of the six-sided die and Y takes the value of the four-sided die. Otherwise, X takes the value of the four-sided die and Y takes the value of the six-sided die. Z always takes the value of the sum of the dice.
 - What is $P(X)$, the probability distribution of this random variable?
 - What is $P(X, Y)$, the joint probability distribution of these two random variables?
 - Are X and Y independent?
 - Are X and Z independent?

6.4. Define two random variables X and Y by the following procedure. Flip a fair coin; if it comes up heads, then $X = 1$, otherwise $X = -1$. Now roll a six-sided die, and call the value U . We define $Y = U + X$.

- What is $P(Y|X = 1)$?
- What is $P(X|Y = 0)$?
- What is $P(X|Y = 7)$?
- What is $P(X|Y = 3)$?
- Are X and Y independent?

Expected Values

6.5. A simple coin game is as follows: we have a box, which starts empty. P1 flips a fair coin. If it comes up heads, P2 gets the contents of the box, and the game ends. If it comes up tails, P1 puts a dollar in the box and they flip again; this repeats until it comes up heads

- With what probability will P1 win exactly 10 units?
- What is the expected value of the game?
- How much should P1 pay to play, to make the game fair?

6.6. A simple card game is as follows. P1 pays a stake of 1 to play. P1 and P2 then each draw a card. If both cards are the same color, P2 keeps the stake and the game ends. If they are different colors, P2 pays P1 the stake and 1 extra (a total of 2).

- What is the expected value of the game to P1?
- P2 modifies the game, as follows. If both cards are court cards (that is, knave, queen, king), then P2 keeps the stake and the game ends; otherwise, the game works as before. Now what is the expected value of the game to P1?

6.7. An airline company runs a flight that has six seats. Each passenger who buys a ticket has a probability p of turning up for the flight. These events are independent.

- The airline sells six tickets. What is the expected number of passengers, if $p = 0.9$?
- How many tickets should the airline sell to ensure that the expected number of passengers is greater than six, if $p = 0.7$? **Hint:** The easiest way to do this is to write a quick program that computes the expected value of passengers that turn up for each the number of tickets sold, then search the number of tickets sold.

6.8. An airline company runs a flight that has 10 seats. Each passenger who buys a ticket has a probability p of turning up for the flight. The gender of the passengers is not known until they turn up for a flight, and women buy tickets with the same frequency that men do. The pilot is eccentric, and will not fly unless at least two women turn up.

- How many tickets should the airline sell to ensure that the expected number of passengers that turn up is greater than 10?
- The airline sells 10 tickets. What is the expected number of passengers on the aircraft, given that it flies? (i.e. that at least two women turn up). Estimate this value with a simulation.

Mean, Variance and Covariance

6.9. Show that $\text{var}[kX] = k^2\text{var}[X]$.

6.10. Show that if X and Y are independent random variables, then $\text{var}[X + Y] =$

$\text{var}[X] + \text{var}[Y]$. You will find it helpful to remember that, for X and Y independent, $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Using Inequalities

- 6.11. The random variable X takes the values $-2, -1, 0, 1, 2$, but has an unknown probability distribution. You know that $\mathbb{E}[\|X\|] = 0.2$. Use Markov's inequality to give a *lower* bound on $P(\{X = 0\})$. *Hint:* Notice that $P(\{X = 0\}) = 1 - P(\{\|X\| = 1\}) - P(\{\|X\| = 2\})$.
- 6.12. The random variable X takes the values $1, 2, 3, 4, 5$, but has unknown probability distribution. You know that $\mathbb{E}[X] = 2$ and $\text{var}(\{X\}) = 0.01$. Use Chebychev's inequality to give a *lower* bound on $P(\{X = 2\})$.

Using Expectations

- 6.13. Imagine we have a game with two players, who are playing for a stake. There are no draws, the winner gets the whole stake, and the loser gets nothing. The game must end early. We decide to give each player the expected value of the game for that player, from that state. Show that the expected values add up to the value of the stake (i.e. there won't be too little or too much money in the stake).

General Exercises

CHAPTER 7

Useful Probability Distributions

7.1 DISCRETE DISTRIBUTIONS

7.1.1 The Discrete Uniform Distribution

If every value of a discrete random variable has the same probability, then the probability distribution is the discrete uniform distribution. We have seen this distribution before, numerous times. For example, I define a random variable by the number that shows face-up on the throw of a die. This has a uniform distribution. As another example, write the numbers 1-52 on the face of each card of a standard deck of playing cards. The number on the face of the first card drawn from a well-shuffled deck is a random variable with a uniform distribution.

One can construct expressions for the mean and variance of a discrete uniform distribution, but they're not usually much use (too many terms, not often used).

7.1.2 Sums and Differences of Discrete Uniform Random Variables

Assume X and Y are discrete random variables with uniform distributions. Neither $X - Y$ nor $X + Y$ is uniform. We can see this by constructing the distribution. This is easiest to do with concrete ranges, etc. for these random variables. For concreteness, assume that both X and Y are integers in the range 1 – 100. Write $S = X + Y$, $D = X - Y$. Then

$$P(S = k) = P(\bigcup_{u=1}^{u=100} \{\{X = k - u\} \cap \{Y = u\}\})$$

but the events $\{\{X = k - u\} \cap \{Y = u\}\}$ and $\{\{X = k - v\} \cap \{Y = v\}\}$ are disjoint if $u \neq v$. So we can write

$$P(S = k) = \sum_{u=1}^{u=100} P(\{\{X = k - u\} \cap \{Y = u\}\})$$

and the events $\{X = k - u\}$ and $\{Y = u\}$ are independent, so we can write

$$P(S = k) = \sum_{u=1}^{u=100} P(\{X = k - u\})P(\{Y = u\}).$$

Now, although $P(X)$ and $P(Y)$ are uniform, the shifting effect of the subtraction term in $\{X = k - u\}$ has very significant effects. For example, imagine $k = 2$; then there is only one non-zero term in the sum (i.e. $P(\{X = 1\})P(\{Y = 1\})$). But if $k = 3$, there are two (i.e. $P(\{X = 2\})P(\{Y = 1\})$ and $P(\{X = 1\})P(\{Y = 2\})$). And if $k = 100$, there are far more terms (which I'm not going to list here).

By a similar argument,

$$P(D = k) = \sum_{u=1}^{u=100} P(\{X = k + u\})P(\{Y = u\}).$$

Again, this isn't uniform; again, the shifting effect of the addition term in $\{X = k + u\}$ has very significant effects. For example, imagine $k = -99$; then there is only one non-zero term in the sum (i.e. $P(\{X = 1\})P(\{Y = 100\})$). But if $k = 98$, there are two (i.e. $P(\{X = 2\})P(\{Y = 100\})$ and $P(\{X = 1\})P(\{Y = 99\})$). And if $k = 0$, there are far more terms (which I'm not going to list here).

7.1.3 The Geometric Distribution

We have a biased coin. The probability it will land heads up, $P(\{H\})$ is given by p . We flip this coin until the first head appears. The number of flips required is a discrete random variable which takes integer values greater than or equal to one, which we shall call X . To get n flips, we must have $n - 1$ tails followed by 1 head. This event has probability $(1 - p)^{(n-1)}p$. We can now write out the probability distribution that n flips are required.

Definition 7.1 *The Geometric Distribution*

We have an experiment with a binary outcome (i.e. heads or tails; 0 or 1; and so on), with $P(H) = p$ and $P(T) = 1 - p$. We repeat this experiment until the first head occurs. The probability distribution for n , the number of repetitions, is the geometric distribution. It has the form

$$P(\{X = n\}) = (1 - p)^{(n-1)}p.$$

for $0 \leq p \leq 1$ and $n \geq 1$; for other n it is zero. p is called the **parameter** of the distribution.

Worked example 7.1 *Geometric distribution*

Show that the geometric distribution is non-negative and sums to one (and so is a probability distribution).

Solution: Recall that for $0 < r < 1$,

$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}.$$

So

$$\begin{aligned} \sum_{n=1}^{\infty} P(\{X = n\}) &= p \sum_{n=1}^{\infty} (1-p)^{(n-1)} \\ &= p \sum_{i=0}^{\infty} (1-p)^i && \text{just reindexing the sum} \\ &= p \frac{1}{1-(1-p)} \\ &= 1 \end{aligned}$$

Useful Facts 7.1 *The geometric distribution*

1. The mean of the geometric distribution is $\frac{1}{p}$.
2. The variance of the geometric distribution is $\frac{1-p}{p^2}$.

The proof of these facts requires some work with series, and is relegated to the exercises.

7.1.4 The Binomial Probability Distribution

Assume we have a biased coin with probability p of coming up heads in any one flip. The binomial probability distribution gives the probability that it comes up heads i times in N flips.

Worked example 32 yields one way of deriving this distribution. In that example, I showed that if I flip a coin N times, then $N!/(i!(N-i)!)$ of the outcomes will have i heads. These outcomes are disjoint, and each has probability $p^i(1-p)^{(N-i)}$. As a result, we must have the probability distribution below.

Definition 7.2 *The Binomial distribution*

In N independent repetitions of an experiment with a binary outcome (ie heads or tails; 0 or 1; and so on) with $P(H) = p$ and $P(T) = 1 - p$, the probability of observing a total of i H 's and $N - i$ T 's is

$$P_b(i; N, p) = \binom{N}{i} p^i (1 - p)^{(N-i)}$$

(as long as $0 \leq i \leq N$; in any other case, the probability is zero).

Here is another way to derive the binomial distribution. Assume we have a biased coin, so that $P(H) = p$ and $P(T) = 1 - p$. Write $f(i; N, p)$ for the probability we encounter i heads in N flips. This probability distribution satisfies a recurrence relation. In particular

$$f(i; N, p) = pf(i - 1; N - 1, p) + (1 - p)f(i; N - 1, p).$$

This is equivalent to saying that you can get i heads in N flips either by having $i - 1$ heads in $N - 1$ flips, then flipping another, or by having i heads in N flips then flipping a tail. You can verify by induction that the binomial distribution satisfies this recurrence relation.

Worked example 7.2 *The binomial distribution*

Write $P_b(i; N, p)$ for the binomial distribution that one observes i H 's in N trials. Show that

$$\sum_{i=0}^N P_b(i; N, p) = 1$$

Solution:

$$\sum_{i=0}^N P_b(i; N, p) = (p + (1 - p))^N = (1)^N = 1$$

by pattern matching to the binomial theorem

Definition 7.3 *Bernoulli random variable*

A Bernoulli random variable takes the value 1 with probability p and 0 with probability $1 - p$. This is a model for a coin toss, among other things

Useful Facts 7.2 *The binomial distribution*

1. The mean of $P_b(i; N, p)$ is Np .
2. The variance of $P_b(i; N, p)$ is $Np(1 - p)$

The proofs are easy and informative, and so are not banished to the exercises.

Proofs: *The binomial distribution*

Notice that the number of heads in N coin tosses is can be obtained by adding the number of heads in each toss. This means that, if X has the binomial distribution $P_b(X; N, p)$, and Y has the binomial distribution $P_b(Y; 1, p)$, so we can get the mean easily by

$$\begin{aligned}\mathbb{E}[X] &= \mathbb{E}\left[\sum_{j=1}^N Y\right] \\ &= \sum_{j=1}^N \mathbb{E}[Y] \\ &= N\mathbb{E}[Y] \\ &= Np.\end{aligned}$$

The variance is easy, too. Each coin toss is independent, so the variance of the sum of coin tosses is the sum of the variances. This gives

$$\begin{aligned}\text{var}[X] &= \text{var}\left[\sum_{j=1}^N Y\right] \\ &= N\text{var}[Y] \\ &= Np(1 - p)\end{aligned}$$

The binomial distribution can be used to demonstrate that our interpretation of probability as frequency is consistent. In particular, if a coin has probability p of coming up heads, then almost all of the probability in the binomial distribution occurs in values close to $i = pN$. This means that, in N flips, the number of heads you will see is very likely about pN . As N gets bigger, this effect becomes more pronounced. Showing this requires some extra machinery we haven't seen yet; section 22 and the exercises do that.

7.1.5 Multinomial probabilities

The binomial distribution describes what happens when a coin is flipped multiple times. But we could toss a die multiple times too. Assume this die has k sides, and we toss it N times. The distribution of outcomes is known as the **multinomial**

distribution.

We can guess the form of the multinomial distribution in rather a straightforward way. The die has k sides. We toss the die N times. This gives us a sequence of N numbers. Each toss of the die is independent. Assume that side 1 appears n_1 times, side 2 appears n_2 times, ... side k appears n_k times. Any single sequence with this property will appear with probability $p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$, because the tosses are independent. However, there are

$$\frac{N!}{n_1! n_2! \dots n_k!}$$

such sequences. Using this reasoning, we arrive at the distribution below

Definition 7.4 Multinomial Distribution

I perform N independent repetitions of an experiment with k possible outcomes. The i 'th such outcome has probability p_i . I see outcome 1 n_1 times, outcome 2 n_2 times, etc. Notice that $n_1 + n_2 + n_3 + \dots + n_k = N$. The probability of observing this set of outcomes is

$$P_m(n_1, \dots, n_k; N, p_1, \dots, p_k) = \frac{N!}{n_1! n_2! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}.$$

Worked example 7.3 Dice

I throw five fair dice. What is the probability of getting two 2's and three 3's?

Solution: $\frac{5!}{2!3!} \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^3$

7.1.6 The Poisson Distribution

Assume we are interested in counts that occur in an interval of space (e.g. along some ruler) or of time (e.g. within a particular hour). Because they are counts, they are non-negative and integer valued. We know these counts have two important properties. First, they occur with some fixed average rate. Second, an observation occurs independent of the interval since the last observation. Then the Poisson distribution is an appropriate model.

There are numerous such cases. For example, the marketing phone calls you receive during the day time are likely to be well modelled by a Poisson distribution. They come at some average rate — perhaps 5 a day as I write, during the last phases of an election year — and the probability of getting one clearly doesn't depend on the time since the last one arrived. As another example, mark the height of each dead insect on your car windscreens on a ruler; these heights should be well-modelled by a Poisson distribution. Classic examples include the number of Prussian soldiers killed by horse-kicks each year; the number of calls arriving at a call center each

minute; the number of insurance claims occurring in a given time interval (outside of a special event like a hurricane, etc.).

Definition 7.5 *The Poisson Distribution*

A non-negative, integer valued random variable X has a Poisson distribution when its probability distribution takes the form

$$P(\{X = k\}) = \frac{\lambda^k e^{-\lambda}}{k!},$$

where $\lambda > 0$ is a parameter often known as the **intensity** of the distribution.

Notice that the Poisson distribution is a probability distribution, because it is non-negative and because

$$\sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{\lambda}$$

so that

$$\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} = 1$$

Useful Facts 7.3 *The Poisson Distribution*

1. The mean of a Poisson distribution with intensity λ is λ .
2. The variance of a Poisson distribution with intensity λ is λ (no, that's not an accidentally repeated line or typo).

The proof of these facts requires some work with series, and is relegated to the exercises.

I described the Poisson distribution as a natural model for counts of randomly distributed points. For example, assume we have an interval I on the line. A set of points is distributed randomly in this interval by some procedure (for example, you could think of locations of roadkill along a road). With very little effort, this model can be extended to regions in the plane, on surfaces, and in 3D. The points distributed on the interval as form a **Poisson point process** with intensity λ . The points have the property that the number of points in any subinterval $s \subset I$ is a Poisson random variable with intensity $\lambda l(s)$, where $l(s)$ is the length of the subinterval. One can define Poisson point processes for points on the plane, on surfaces, and in 3D as well. In each case, the process is defined on a domain D (which has to meet some very minor conditions that are of no interest to us). The number of points in any subset s of D is a Poisson random variable, with intensity $\lambda m(s)$, where $m(s)$ is the area (resp. volume) of s . These models are useful, because they capture the property that (a) the points are random and (b) the probability you find a point doesn't depend on where you are. You could reasonably believe

models like this apply to, say, dead flies on windscreens; the places where you find acorns at the foot of an oak tree; the distribution of cherries in a fruitcake; and so on.

7.2 CONTINUOUS DISTRIBUTIONS

7.2.1 The Continuous Uniform Distribution

Some continuous random variables have a natural upper bound and a natural lower bound but otherwise we know nothing about them. For example, imagine we are given a coin of unknown properties by someone who is known to be a skillful maker of unfair coins. The manufacturer makes no representations as to the behavior of the coin. The probability that this coin will come up heads is a random variable, about which we know nothing except that it has a lower bound of zero and an upper bound of one.

If we know nothing about a random variable apart from the fact that it has a lower and an upper bound, then a **uniform distribution** is a natural model. Write l for the lower bound and u for the upper bound. The probability density function for the uniform distribution is

$$p(x) = \begin{cases} 0 & x < l \\ 1/(u-l) & l \leq x \leq u \\ 0 & x > u \end{cases}$$

A continuous random variable whose probability distribution is the uniform distribution is often called a **uniform random variable**. The matlab function `rand` will produce independent samples from a continuous uniform distribution, with lower bound 0 and upper bound 1.

7.2.2 The Beta Distribution

It's hard to explain now why the Beta (or β) distribution is useful, but it will come in useful later (section 22). The Beta distribution is a probability distribution for a continuous random variable x in the range $0 \leq x \leq 1$. There are two parameters, $\alpha > 0$ and $\beta > 0$. We have that

$$P_\beta(x|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{(\alpha-1)}(1-x)^{(\beta-1)}.$$

Useful Facts 7.4 The Beta Distribution

1. The mean of a Beta distribution with parameters α, β is $\frac{\alpha}{\alpha+\beta}$.
2. The variance of a Beta distribution with parameters α, β is $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.

7.2.3 The Exponential Distribution

Assume we have an infinite interval of time or space, with points distributed on it. Assume these points form a Poisson point process, as above. For example, we might

consider the times at which email arrives; or the times at which phone calls arrive at a large telephone exchange; or the locations of roadkill on a road. The distance (or span of time) between two consecutive points is a random variable X . This random variable takes an **exponential distribution**. There is a single parameter, λ . We have that

$$P_{\text{exp}}(x|\lambda) = \begin{cases} \lambda \exp^{-\lambda x} & \text{for } x \geq 0 \\ 0 & \text{otherwise} \end{cases}.$$

This distribution is often useful in modelling the failure of objects. We assume that failures form a Poisson process in time; then the time to the next failure is exponentially distributed.

Useful Facts 7.5 *The Exponential Distribution*

1. The mean of an exponential distribution with parameter λ is

$$\frac{1}{\lambda}.$$

2. The variance of an exponential distribution with parameter λ is

$$\frac{1}{\lambda^2}.$$

Notice the relationship between this parameter and the parameter of the Poisson distribution. If (say) the phone calls are distributed with Poisson distribution with intensity λ (per hour), then your expected number of calls per hour is λ . The time between calls will be exponentially distributed with parameter λ , and the expected time to the next call is $1/\lambda$ (in hours).

7.2.4 Sums of Continuous Random Variables

You can guess the expression for a sum of two continuous random variables from the expression for discrete random variables above. Write p_x for the probability density function of X and p_y for the probability density function of Y . Then the probability density function of $S = X + Y$ is

$$p(s) = \int_{-\infty}^{\infty} p_x(s-u)p_y(u)du.$$

Notice that the procedure we have applied to add two random variables could be applied to three, as well. So if we need to know the probability density function for $S_3 = X + Y + Z$, we have

$$p(s) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} p_x((s-v)-u)p_y(u)du \right) p_z(v)dv$$

and so on.

7.2.5 The Normal Distribution

Definition 7.6 *The Standard Normal Distribution*

The probability density function

$$p(x) = \left(\frac{1}{\sqrt{2\pi}} \right) \exp \left(\frac{-x^2}{2} \right).$$

is known as the **standard normal distribution**

The first step is to plot this probability density function (Figure 7.1). You should notice it is quite familiar from work on histograms, etc. in Chapter 22. It has the shape of the histogram of standard normal data, or at least the shape that the histogram of standard normal data aspires to.

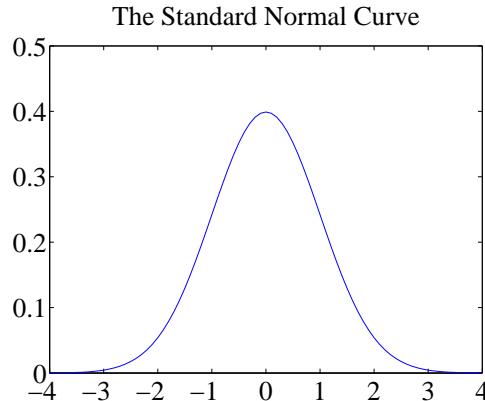


FIGURE 7.1: *A plot of the probability density function of the standard normal distribution. Notice how probability is concentrated around zero, and how there is relatively little probability density for numbers with large absolute values.*

Useful Facts 7.6 *The standard normal distribution*

1. The mean of the standard normal distribution is 0.
2. The variance of the standard normal distribution is 1.

These results are easily established by looking up (or doing!) the relevant integrals; they are relegated to the exercises.

A continuous random variable is a **standard normal random variable** if its probability density function is a standard normal distribution.

Any probability density function that is a standard normal distribution *in standard coordinates* is a **normal distribution**. Now write μ for the mean of a

random variable and σ for its standard deviation; we are saying that, if

$$\frac{x - \mu}{\sigma}$$

has a standard normal distribution, then $p(x)$ is a normal distribution. We can work out the form of the probability density function of a general normal distribution in two steps: first, we notice that for any normal distribution, we must have

$$p(x) \propto \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right].$$

But, for this to be a probability density function, we must have $\int_{-\infty}^{\infty} p(x)dx = 1$. This yields the constant of proportionality, and we get

Definition 7.7 *The Normal Distribution*

The probability density function

$$p(x) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right) \exp \left(\frac{-(x - \mu)^2}{2\sigma^2} \right).$$

is a normal distribution.

Useful Facts 7.7 *The normal distribution*

The probability density function

$$p(x) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right) \exp \left(\frac{-(x - \mu)^2}{2\sigma^2} \right).$$

has

1. mean μ
2. and variance σ^2 .

These results are easily established by looking up (or doing!) the relevant integrals; they are relegated to the exercises.

This argument explains why standard normal data is quite common. A continuous random variable is a **normal random variable** if its probability density function is a **normal distribution**.

Normal distributions are important for two reasons. It turns out that anything that behaves like a binomial distribution with a lot of trials — for example, the number of heads in many coin tosses; as another example, the percentage of times you get the outcome of interest in a simulation in many runs — should produce a normal distribution (Appendix 22). For this reason, pretty much any experiment where you perform a simulation, then count to estimate a probability or an expectation, should give you an answer that has a normal distribution.

The second reason I've hinted at above, but not shown in detail because it's a nuisance to prove. If you add together many random variables, each of pretty much any distribution, then the answer has a distribution close to the normal distribution. For these two reasons, we see normal distributions often. Notice that it is quite usual to call normal distributions **gaussian distributions**.

A normal random variable tends to take values that are quite close to the mean, measured in standard deviation units. We can demonstrate this important fact by computing the probability that a standard normal random variable lies between u and v . We form

$$\int_u^v \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du.$$

It turns out that this integral can be evaluated relatively easily using a special function. The **error function** is defined by

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$$

so that

$$\frac{1}{2} \text{erf}\left(\left(\frac{x}{\sqrt{2}}\right)\right) = \int_0^x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du.$$

Notice that $\text{erf}(x)$ is an odd function (i.e. $\text{erf}(-x) = -\text{erf}(x)$). From this (and tables for the error function, or Matlab) we get that, for a standard normal random variable

$$\frac{1}{\sqrt{2\pi}} \int_{-1}^1 \exp\left(-\frac{x^2}{2}\right) dx \approx 0.68$$

and

$$\frac{1}{\sqrt{2\pi}} \int_{-2}^2 \exp\left(-\frac{x^2}{2}\right) dx \approx 0.95$$

and

$$\frac{1}{\sqrt{2\pi}} \int_{-3}^3 \exp\left(-\frac{x^2}{2}\right) dx \approx 0.99.$$

These are very strong statements. They measure how often a standard normal random variable has values that are in the range $-1, 1, -2, 2$, and $-3, 3$ respectively. But these measurements apply to normal random variables if we recognize that they now measure how often the normal random variable is some number of standard deviations away from the mean. In particular, it is worth remembering that:

Useful Facts 7.8 *Normal Random Variables*

- About 68% of the time, a normal random variable takes a value within one standard deviation of the mean.
- About 95% of the time, a normal random variable takes a value within two standard deviations of the mean.
- About 99% of the time, a normal random variable takes a value within three standard deviations of the mean.

7.3 PROBABILITY AS FREQUENCY

Assume we flip a coin N times, where N is a very large number. The coin has probability p of coming up heads, and so probability $q = 1 - p$ of coming up tails. The number of heads h follows the binomial distribution, so

$$P(h) = \frac{N!}{h!(N-h)!} p^h q^{(N-h)}$$

The mean of this distribution is Np , the variance is Npq , and the standard deviation is \sqrt{Npq} .

Worked example 7.4 *Binomial Probabilities - I*

Assume that $N = 4$, $p = q = 1/2$. What is the probability that you would see 1, 2, or 3 heads?

Solution: To compute this probability, you compute

$$\sum_{h=1}^3 \frac{4!}{h!(4-h)!} \frac{1}{2^4}$$

which you can do with whatever programming environment takes your fancy. I got 0.875.

Worked example 7.5 *Binomial Probabilities - II*

Assume that $N = 16$, $p = q = 1/2$. What is the probability that you would see 6, 7, 8, 9 or 10 heads?

Solution: To compute this probability, you compute

$$\sum_{h=6}^{10} \frac{16!}{h!(16-h)!} \frac{1}{2^{16}}$$

which you can do with whatever programming environment takes your fancy. I got 0.790.

Worked example 7.6 *Binomial Probabilities - III*

Assume that $N = 36$, $p = q = 1/2$. What is the probability that you would see 15, 16, 17, 18, 19, 20, or 21 heads?

Solution: To compute this probability, you compute

$$\sum_{h=15}^{21} \frac{36!}{h!(36-h)!} \frac{1}{2^{36}}$$

which you can do with whatever programming environment takes your fancy. You may find it a bit difficult to actually do the sum, however, because $36!$ is irritatingly large. I got 0.75 — there were more digits, but they're hard to trust.

Worked example 7.7 *Binomial Probabilities - IV*

Assume that $N = 64$, $p = q = 1/2$. What is the probability that you would see a number of heads from 28 to 36, inclusive?

Solution: To compute this probability, you compute

$$\sum_{h=24}^{40} \frac{64!}{h!(64-h)!} \frac{1}{2^{64}}$$

which you can do with whatever programming environment takes your fancy. You may find it a bit difficult to actually do the sum, however, because $64!$ is irritatingly large. I got 0.74 — there were more digits, but they're hard to trust.

You should notice that, in each of these examples, I am computing the probability that the number of heads you see lies within one standard deviation of the mean. Doing so gets difficult when N is large (as you should have noticed). We need a way to approximate the binomial distribution for very large N . When we do this approximation — which requires some manipulation — we will see that about 68% of the time the number of heads I see will be within one standard deviation of the mean.

Now the crucial point is this. As N gets bigger, the size of that interval, *relative to the total number of flips*, gets smaller, because the standard deviation is \sqrt{Npq} . If I flip a coin N times, in principle I could see a number of heads that ranges from 0 to N . But about 68% of the time, the fraction of those numbers that I actually see is within one standard deviation of the mean. This means the fraction of those numbers I will see is

$$2\sqrt{\frac{pq}{N}}$$

which limits to zero as $N \rightarrow \infty$. Figure 7.2 illustrates this effect.

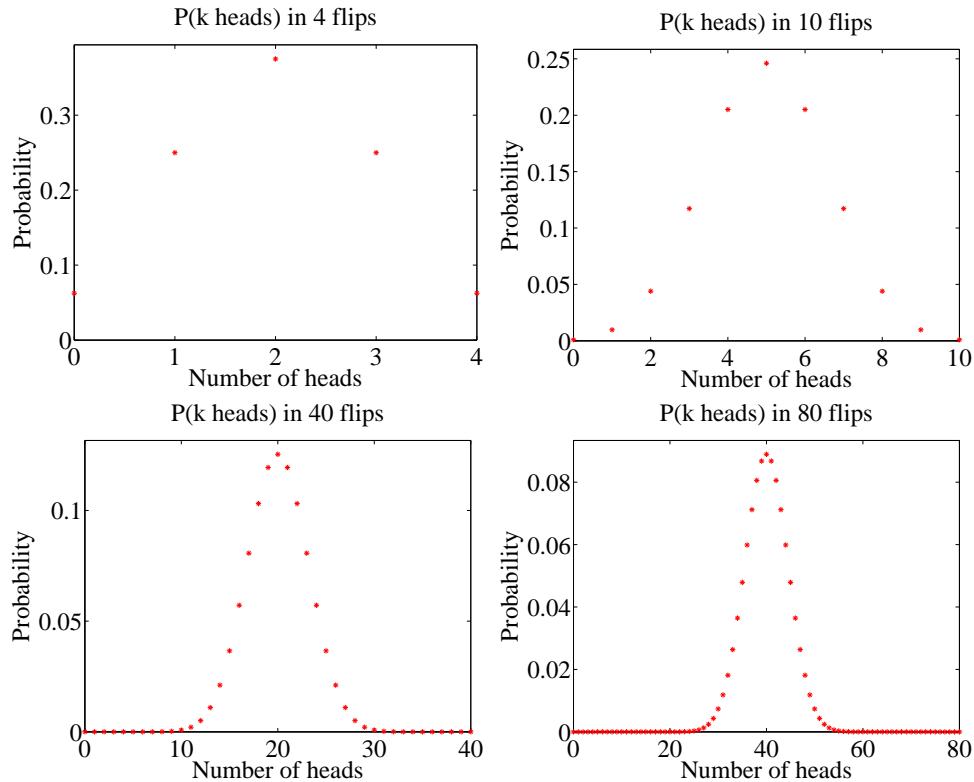


FIGURE 7.2: Plots of the binomial distribution for $p = q = 0.5$ for different values of N . You should notice that the set of values of h (the number of heads) that have substantial probability is quite narrow compared to the range of possible values. This set gets narrower as the number of flips increases. This is because the mean is pN and the standard deviation is \sqrt{Npq} — so the fraction of values that is within one standard deviation of the mean is $1/\sqrt{N}$.

The main difficulty with Figure 7.2 (and with the argument above) is that the mean and standard deviation of the binomial distribution tends to infinity as the number of coin flips tends to infinity. This can confuse issues. For example, the plots of Figure 7.2 show narrowing probability distributions — but is this because the scale is compacted, or is there a real effect? It turns out there is a real effect, and a good way to see it is to consider the normalized number of heads.

7.3.1 Large N

Recall that to normalize a dataset, you subtract the mean and divide the result by the standard deviation. We can do the same for a random variable. We now consider

$$x = \frac{h - Np}{\sqrt{Npq}}.$$

The probability distribution of x can be obtained from the probability distribution for h , because $h = Np + x\sqrt{Npq}$, so

$$P(x) = \left(\frac{N!}{(Np + x\sqrt{Npq})!(Nq - x\sqrt{Npq})!} \right) p^{(Np+x\sqrt{Npq})} q^{(Nq-x\sqrt{Npq})}.$$

I have plotted this probability distribution for various values of N in Figure 7.3.

But it is hard to work with this distribution for very large N . The factorials become very difficult to evaluate. Second, it is a discrete distribution on N points, spaced $1/\sqrt{Npq}$ apart. As N becomes very large, the number of points that have non-zero probability becomes very large, and x can be very large, or very small. For example, there is some probability, though there may be very little indeed, on the point where $h = N$, or, equivalently, $x = N(p + \sqrt{Npq})$. For sufficiently large N , we think of this probability distribution as a probability density function. We can do so, for example, by spreading the probability for x_i (the i 'th value of x) evenly over the interval between x_i and x_{i+1} . We then have a probability density function that looks like a histogram, with bars that become narrower as N increases. But what is the limit?

7.3.2 Getting Normal

To proceed, we need Stirling's approximation, which says that, for large N ,

$$N! \approx \sqrt{2\pi} \sqrt{N} \left(\frac{N}{e} \right)^N.$$

This yields

$$P(h) \approx \left(\frac{Np}{h} \right)^h \left(\frac{Nq}{N-h} \right)^{(N-h)} \sqrt{\frac{N}{2\pi h(N-h)}}.$$

Recall we used the normalized variable

$$x = \frac{h - Np}{\sqrt{Npq}}.$$

We will encounter the term \sqrt{Npq} often, and we use $\sigma = \sqrt{Npq}$ as a shorthand. We can compute h and $N - h$ from x by the equalities

$$h = Np + \sigma x \quad N - h = Nq - \sigma x.$$

So the probability distribution written in this new variable x is

$$P(x) \approx \left(\frac{Np}{(Np + \sigma x)} \right)^{(Np+\sigma x)} \left(\frac{Nq}{(Nq - \sigma x)} \right)^{(Nq-\sigma x)} \sqrt{\frac{N}{2\pi(Np + \sigma x)(Nq - \sigma x)}}$$

There are three terms to deal with here. It is easiest to work with $\log P$. Now

$$\log(1 + x) = x - \frac{1}{2}x^2 + O(x^3)$$

so we have

$$\begin{aligned}\log \left(\frac{Np}{(Np + \sigma x)} \right) &= -\log \left(1 + \frac{\sigma x}{Np} \right) \\ &\approx -\frac{\sigma x}{Np} + \left(\frac{1}{2} \right) \left(\frac{\sigma x}{Np} \right)^2\end{aligned}$$

and

$$\log \left(\frac{Nq}{(Nq - \sigma x)} \right) \approx \frac{\sigma x}{Nq} + \left(\frac{1}{2} \right) \left(\frac{\sigma x}{Nq} \right)^2.$$

From this, we have that

$$\begin{aligned}\log \left[\left(\frac{Np}{Np + \sigma x} \right)^{(Np + \sigma x)} \left(\frac{Nq}{Nq - \sigma x} \right)^{(Nq - \sigma x)} \right] &\approx [Np + \sigma x] \left[-\frac{\sigma x}{Np} + \left(\frac{1}{2} \right) \left(\frac{\sigma x}{Np} \right)^2 \right] + \\ &\quad [Nq - \sigma x] \left[\frac{\sigma x}{Nq} + \left(\frac{1}{2} \right) \left(\frac{\sigma x}{Nq} \right)^2 \right] \\ &= -\left(\frac{1}{2} \right) x^2 + O((\sigma x)^3)\end{aligned}$$

(recall $\sigma = \sqrt{Npq}$ if you're having trouble with the last step). Now we look at the square-root term. We have

$$\begin{aligned}\log \sqrt{\frac{N}{2\pi(Np + \sigma x)(Nq - \sigma x)}} &= -\frac{1}{2} (\log [Np + \sigma x] + \log [Nq - \sigma x] - \log N + \log 2\pi) \\ &= -\frac{1}{2} \left(\begin{array}{l} \log Np + O\left(\left(\frac{\sigma x}{Np}\right)\right) \\ + \log Nq - O\left(\left(\frac{\sigma x}{Nq}\right)\right) \\ - \log N + \log 2\pi \end{array} \right)\end{aligned}$$

but, since N is very large compared to σx , we can ignore the $O\left(\left(\frac{\sigma x}{Np}\right)\right)$ terms. Then this term is not a function of x . So we have

$$\log P(x) \approx \frac{-x^2}{2} + \text{constant.}$$

Now because N is very large, our probability distribution P limits to a probability density function p , with

$$p(x) \propto \exp \left(\frac{-x^2}{2} \right).$$

We can get the constant of proportionality from integrating, to

$$p(x) = \left(\frac{1}{\sqrt{2\pi}} \right) \exp \left(\frac{-x^2}{2} \right).$$

This constant of proportionality deals with the effect in figure 7.3, where the mode of the distribution gets smaller as N gets bigger. It does so because there are more

points with non-zero probability to be accounted for. But we are interested in the limit where N tends to infinity. This must be a probability density function, so it must integrate to one.

Review this blizzard of terms. We started with a binomial distribution, but standardized the variables so that the mean was zero and the standard deviation was one. We then assumed there was a very large number of coin tosses, so large that the distribution started to look like a continuous function. The function we get is the standard normal distribution.

7.3.3 So What?

I have proven an extremely useful fact, which I shall now put in a box.

Useful Fact 7.9 *The Binomial Distribution for Large N*

Assume h follows the binomial distribution with parameters p and q . Write $x = \frac{h - Np}{\sqrt{Npq}}$. Then, for sufficiently large N , the probability distribution $P(x)$ can be approximated by the probability density function

$$\left(\frac{1}{\sqrt{2\pi}} \right) \exp \left(\frac{-x^2}{2} \right)$$

in the sense that

$$P(\{x \in [a, b]\}) \approx \int_a^b \left(\frac{1}{\sqrt{2\pi}} \right) \exp \left(\frac{-u^2}{2} \right) du$$

This justifies our model of probability as frequency. I interpreted an event having probability p to mean that, if I had a large number N of independent repetitions of the experiment, the number that produced the event would be close to Np , and would get closer as N got larger. We know that, for example, 68% of the time a standard normal random variable takes a value between 1 and -1 . In this case, the standard normal random variable is

$$\frac{h - (Np)}{\sqrt{Npq}}$$

so that 68% of the time, h must take a value in the range $[Np - \sqrt{Npq}, Np + \sqrt{Npq}]$. Equivalently, the relative frequency h/N must take a value in the range

$$\left[p - \frac{pq}{\sqrt{N}}, p + \frac{pq}{\sqrt{N}} \right]$$

but as $N \rightarrow \infty$ this range gets smaller and smaller, and h/N limits to p . So our view of probability as a frequency is consistent.

To obtain h , we added N independent binomial random variables. So you can interpret the box as saying that the sum of many independent binomial random variables has a probability distribution that limits to the normal distribution as the number added together gets larger. It is a remarkable and deep fact, known as the **central limit theorem**, that

adding many independent random variables produces a normal distribution *whatever* the distributions of those random variables.

7.4 WHAT YOU SHOULD REMEMBER

You should remember:

- The form of the uniform distribution.
- The form of the geometric distribution, and its mean and variance.
- The form of the binomial distribution, and its mean and variance.
- The form of the Poisson distribution, and its mean and variance.
- The form of the Normal distribution, and its mean and variance.
- The fact that a sum of a large number of IID binomial random variables is normally distributed, and the mean and variance of that distribution.
- The fact that a sum of a large number of IID random variables is normally distributed for most cases you will encounter.

PROBLEMS

The Geometric Distribution

7.1. Write $S_\infty = \sum_{i=0}^{\infty} r^i$. Show that $(1 - r)S_\infty = 1$, so that

$$S_\infty = \frac{1}{1 - r}$$

7.2. Show that

$$\sum_{i=0}^{\infty} ir^i = (\sum_{i=1}^{\infty} r^i) + r(\sum_{i=1}^{\infty} r^i) + r^2(\sum_{i=1}^{\infty} r^i) + \dots$$

(look carefully at the limits of the sums!) and so show that

$$\sum_{i=0}^{\infty} ir^i = \frac{r}{(1 - r)^2}.$$

7.3. Write $S_\infty = \sum_{i=0}^{\infty} r^i$. Show that

$$\sum_{i=0}^{\infty} i^2 r^i = (\gamma - 1) + 3r(\gamma - 1) + 5r^2(\gamma - 1) + \dots$$

and so that

$$\sum_{i=0}^{\infty} i^2 r^i = \frac{r(1 + r)}{(1 - r)^3}$$

7.4. Show that, for a geometric distribution with parameter p , the mean is

$$\sum_{i=1}^{\infty} i(1-p)^{(i-1)}p = \sum_{i=0}^{\infty} (i+1)(1-p)^i p.$$

Now by rearranging and using the previous results, show that the mean is

$$\sum_{i=1}^{\infty} i(1-p)^{(i-1)}p = \frac{1}{p}$$

7.5. Show that, for a geometric distribution with parameter p , the variance is $\frac{1-p}{p^2}$.

To do this, note the variance is $\mathbb{E}[X^2] - \mathbb{E}[X]^2$. Now use the results of the previous exercises to show that

$$\mathbb{E}[X^2] = \sum_{i=1}^{\infty} i^2(1-p)^{(i-1)}p = \frac{p}{1-p} \frac{(1-p)(2-p)}{p^3},$$

then rearrange to get the expression for variance.

The Binomial Distribution

7.6. Show that $P_b(N - i; N, p) = P_b(i; N, p)$ for all i .

7.7. Write h_r for the number of heads obtained in r flips of a coin which has probability p of coming up heads. Compare the following two ways to compute the probability of getting i heads in five coin flips:

- Flip the coin three times, count h_3 , then flip the coin twice, count h_2 , then form $w = h_3 + h_2$.
- Flip the coin five times, and count h_5 .

Show that the probability distribution for w is the same as the probability distribution for h_5 . Do this by showing that

$$P(\{w = i\}) = \sum_{j=0}^5 P(\{h_3 = j\} \cap \{h_2 = i - j\}) = P(\{h_5 = i\}).$$

7.8. Now we will do the previous exercise in a more general form. Again, write h_r for the number of heads obtained in r flips of a coin which has probability p of coming up heads. Compare the following two ways to compute the probability of getting i heads in N coin flips:

- Flip the coin t times, count h_t , then flip the coin $N - t$ times, count h_{N-t} , then form $w = h_t + h_{N-t}$.
- Flip the coin N times, and count h_N .

Show that the probability distribution for w is the same as the probability distribution for h_N . Do this by showing that

$$P(\{w = i\}) = \sum_{j=0}^N P(\{h_t = j\} \cap \{h_{N-t} = i - j\}) = P(\{h_N = i\}).$$

You will likely find the recurrence relation

$$P_b(i; N, p) = pP_b(i - 1; N - 1, p) + (1 - p)P_b(i; N - 1, p).$$

is useful.

7.9. An airline runs a regular flight with six seats on it. The airline sells six tickets. The gender of the passengers is unknown at time of sale, but women are as common as men in the population. All passengers always turn up for the flight. The pilot is eccentric, and will not fly a plane unless at least one passenger is female. What is the probability that the pilot flies?

7.10. An airline runs a regular flight with s seats on it. The airline always sells t tickets for this flight. The probability a passenger turns up for departure is p , and passengers do this independently. What is the probability that the plane travels with exactly 3 empty seats?

7.11. An airline runs a regular flight with s seats on it. The airline always sells t tickets for this flight. The probability a passenger turns up for departure is p , and passengers do this independently. What is the probability that the plane travels with 1 or more empty seats?

7.12. An airline runs a regular flight with 10 seats on it. The probability that a passenger turns up for the flight is 0.95. What is the smallest number of seats the airline should sell to ensure that the probability the flight is full (i.e. 10 or more passengers turn up) is bigger than 0.99? (you'll probably need to use a calculator or write a program for this).

The Multinomial Distribution

7.13. Show that the multinomial distribution

$$P_m(n_1, \dots, n_k; N, p_1, \dots, p_k) = \frac{N!}{n_1!n_2!\dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

must satisfy the recurrence relation

$$\begin{aligned} P_m(n_1, \dots, n_k; N, p_1, \dots, p_k) &= p_1 P_m(n_1 - 1, \dots, n_k; N - 1, p_1, \dots, p_k) + \\ &\quad p_2 P_m(n_1, n_2 - 1, \dots, n_k; N - 1, p_1, \dots, p_k) + \dots \\ &\quad p_k P_m(n_1, n_2, \dots, n_k - 1; N - 1, p_1, \dots, p_k) \end{aligned}$$

The Poisson Distribution

7.14. Compute the Taylor series for xe^x around $x = 0$. Use this and pattern matching to show that the mean of the Poisson distribution with intensity parameter λ is λ .

7.15. Compute the Taylor series for $(x^2 + x)e^x$ around $x = 0$. Use this and pattern matching to show that the variance of the Poisson distribution with intensity parameter λ is λ .

The Normal Distribution

7.16. Write

$$f(x) = \left(\frac{1}{\sqrt{2\pi}} \right) \exp \left(\frac{-x^2}{2} \right).$$

(a) Show that $f(x)$ is non-negative for all x .

(b) By integration, show that

$$\int_{-\infty}^{\infty} f(x)dx = 1,$$

so that $f(x)$ is a probability density function.

(c) Show that

$$\int_{-\infty}^{\infty} xf(x)dx = 0.$$

The easiest way to do this is to notice that $f(x) = f(-x)$

(d) Show that

$$\int_{-\infty}^{\infty} xf(x - \mu)dx = \mu.$$

The easiest way to do this is to change variables, and use the previous two exercises.

(e) Show that

$$\int_{-\infty}^{\infty} x^2 f(x)dx = 1.$$

You'll need to either do, or look up, the integral to do this exercise.

7.17. Write

$$g(x) = \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]$$

Show that

$$\int_{-\infty}^{\infty} g(x)dx = \sqrt{2\pi}\sigma.$$

You can do this by a change of variable, and the results of the previous exercises.

7.18. Write

$$p(x) = \left(\frac{1}{\sqrt{2\pi}\sigma} \right) \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right).$$

(a) Show that

$$\int_{-\infty}^{\infty} xp(x)dx = \mu$$

using the results of the previous exercises.

(b) Show that

$$\int_{-\infty}^{\infty} x^2 p(x)dx = \sigma^2$$

using the results of the previous exercises.

The Binomial Distribution for Large N

7.19. I flip a fair coin N times and count heads. We consider the probability that h , the fraction of heads, is in some range of numbers. *Hint:* If you know the range of numbers for h , you know the range for h/N .

- (a) For $N = 1e6$, what is $P(\{h \in [49500, 50500]\})$?
- (b) For $N = 1e4$, what is $P(\{h > 9000\})$?
- (c) For $N = 1e2$, what is $P(\{h > 60\} \cup \{h < 40\})$?

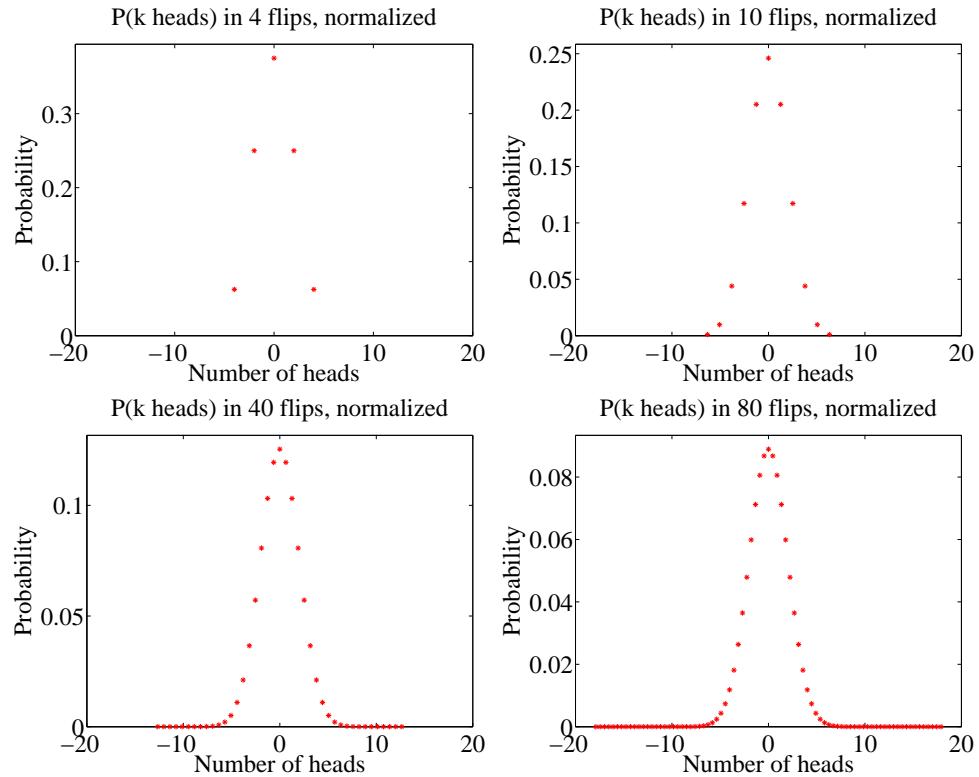


FIGURE 7.3: *Plots of the distribution for the normalized variable x , with $P(x)$ given in the text, obtained from the binomial distribution with $p = q = 0.5$ for different values of N . Because these distributions are normalized, we have that the mean of each is 0 and the standard deviation of each is 1. These distributions look increasingly like a standard normal distribution EXCEPT that the value at their mode gets smaller as N gets bigger. This occurs because there are more possible outcomes; in the text, we will establish that the standard normal distribution is a limit, in a useful sense.*

C H A P T E R 8

Markov Chains and Simulation

There are many situations where one must work with a sequence of random variables. For example, consider a bus queue; people arrive at random, and so do buses. What is the probability that the queue gets to a particular length? and what is the expected length of the queue? As another example, we could have a random model of purchases from a shop — under any particular rule for restoring inventory, what is the largest (resp. smallest) amount of stock on the shelf? what is the expected amount of stock on the shelf? It turns out that there is a simple and powerful model that applies to many sequences of random variables. One can often use this model to make closed-form predictions. In cases where closed-form predictions aren't available, one can use simulation methods to estimate probabilities and expectations.

8.1 MARKOV CHAINS

A Markov chain is a sequence of random variables which has important independence properties. We will describe these properties in some detail below; first, we give some examples. Markov chains are easily represented with the language of finite state machines. For some Markov chains, it is easy to determine probabilities and expectations of interest in closed form using simple methods. For others, it is tricky (straightforward, but unreasonable amounts of straightforward work). In these cases, we can estimate the relevant probabilities and expectations by simulating the finite state machine.

8.1.1 Motivating Example: Multiple Coin Flips

We start with three examples, each of which is easy to work. Each suggests a much harder question, however, which we need new machinery to handle.

Worked example 8.1 *Multiple Coin Flips - 1*

You choose to flip a fair coin until you see two heads in a row, and then stop. What is the probability that you flip the coin twice?

Solution: Because you stopped after two flips, you must have seen two heads. So $P(2 \text{ flips}) = P(\{HH\}) = P(\{H\})^2 = 1/4$.

Worked example 8.2 *Multiple Coin Flips - 2*

You choose to flip a fair coin until you see two heads in a row, and then stop. What is the probability that you flip the coin three times?

Solution: Because you stopped after three flips, you must have seen T , then H , then H ; any other sequence either doesn't stop, or stops too early. We write this with the last flip last, so THH . So $P(3 \text{ flips}) = P(\{THH\}) = P(\{T\})P(\{H\})^2 = 1/8$.

Worked example 8.3 *Multiple Coin Flips - 3*

You choose to flip a fair coin until you see two heads in a row, and then stop. What is the probability that you flip the coin four times?

Solution: This is more interesting. The last three flips must have been THH (otherwise you'd go on too long, or end too early). But, because the second flip must be a T , the first could be either H or T . This means there are two sequences that work: $HTHH$ and $TTHH$. So $P(4 \text{ flips}) = 2/8 = 1/4$.

The harder question here is to ask what is $P(N)$, for N some number (larger than 4, because we know the answers in the other cases). It is unattractive to work this case by case (you could try this, if you don't believe me). One very helpful way to think about the coin flipping experiment is as a finite state machine (Figure 8.1). If you think of this machine as a conventional finite state machine, it accepts any string of T, H , that (a) ends with HH , and (b) has no other HH in it. Alternatively, you could think of this machine as encoding a probabilistic process. At each state, an event occurs with some probability (in this case, a coin comes up H or T , with probability $(1/2)$). The event causes the machine to follow the appropriate edge. If we take this view, this machine stops when we have flipped two heads in succession. It encodes our problem of computing the probability of flipping a coin N times then stopping — this is just the probability that the machine hits the end state after N transitions.

It turns out to be straightforward to construct a recurrence relation for $P(N)$ (i.e. an equation for $P(N)$ in terms of $P(N-1)$, $P(N-2)$, and so on). This property is quite characteristic of repeated experiments. For this example, first, notice that $P(1) = 0$. Now imagine you have flipped the coin N times and stopped. We can assume that $N > 3$, because we know what happens for the other cases. The *last* three flips must have been THH . Write Σ_N for a sequence that is: (a) N flips long; (b) ends in HH ; and (c) contains no other subsequence HH . Equivalently, this is a string accepted by the finite state machine of figure 8.1. We must have that any Σ_N has either the form $T\Sigma_{N-1}$ or the form $HT\Sigma_{N-2}$. But this means that

$$\begin{aligned} P(N) &= P(T)P(N-1) + P(HT)P(N-2) \\ &= (1/2)P(N-1) + (1/4)P(N-2) \end{aligned}$$

It is possible to solve this recurrence relation to get an explicit formula, but doing

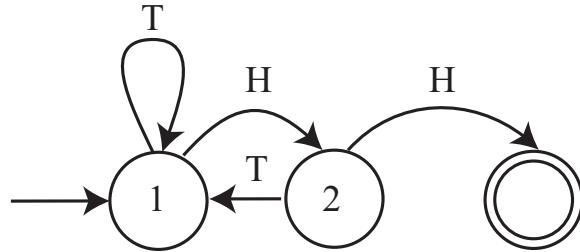


FIGURE 8.1: A finite state machine representing the coin flip example. By convention, the end state is a double circle, and the start state has an incoming arrow. I've labelled the arrows with the event that leads to the transition, but haven't bothered to put in the probabilities, because each is 0.5.

so would take us out of our way. You will check this recurrence relation in an exercise.

One really useful way to think of this recurrence relation is that represents an exercise in counting. We want to count all sequences that are of length N , and are accepted by the finite state machine of figure 8.1. This means they: (a) are N flips long; (b) end in HH ; and (c) contain no other subsequence HH . Now work backward along the FSM. The only way to arrive at the final state is to be in state 1, then see HH . So you can obtain an acceptable N element sequence by (a) prepending a T to an acceptable $N - 1$ element sequence or (b) prepending TH (which takes you to 2, then back to 1) to an acceptable $N - 2$ element sequence. This line of reasoning can be made much more elaborate. There are a few examples in the exercises.

8.1.2 Motivating Example: The Gambler's Ruin

Another useful example is known as the **gambler's ruin**. Assume you bet \$1 a tossed coin will come up heads. If you win, you get \$1 and your original stake back. If you lose, you lose your stake. But this coin has the property that $P(H) = p < 1/2$. We will study what happens when you bet repeatedly.

Assume you have $\$s$ when you start. You will keep betting until either (a) you have $\$0$ (you are ruined; you can't borrow money) or (b) the amount of money you have accumulated is $\$j$, where $j > s$. The coin tosses are independent. We will compute $P(\text{ruined, starting with } s|p)$ the probability that you leave the table with nothing, when you start with $\$s$. For brevity, we write $P(\text{ruined, starting with } s|p) = p_s$. You can represent the gambler's ruin problem with a finite state machine as well. Figure 8.2 shows a representation of the gambler's ruin problem.

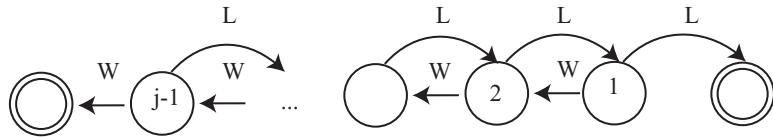


FIGURE 8.2: A finite state machine representing the gambler's ruin example. I have labelled each state with the amount of money the gambler has at that state. There are two end states, where the gambler has zero (is ruined), or has j and decides to leave the table. The problem we discuss is to compute the probability of being ruined, given the start state is s . This means that any state except the end states could be a start state. I have labelled the state transitions with “W” (for win) and “L” for lose, but have omitted the probabilities.

Worked example 8.4 *The gambler's ruin - 1*

Using the notation above, determine p_0 and p_j

Solution: We must have $p_0 = 1$, because if you have \$0, you leave the table. Similarly, if you have \$ j , you leave the table with \$ j , so you don't leave the table with nothing, so $p_j = 0$.

Worked example 8.5 *The gambler's ruin - 2*

Using the notation above, write a recurrence relation for p_s (the probability that you leave the table with nothing when you started with \$ s).

Solution: Assume that you win the first bet. Then you have \$ $s + 1$, so your probability of leaving the table with nothing now becomes p_{s+1} . If you lose the first bet, then you have \$ $s - 1$, so your probability of leaving the table with nothing now becomes p_{s-1} . The coin tosses are independent, so we can write

$$p_s = pp_{s+1} + (1 - p)p_{s-1}.$$

Some fairly lively work with series, relegated to the end of the chapter as exercises, yields

$$p_s = \frac{\left(\frac{1-p}{p}\right)^j - \left(\frac{1-p}{p}\right)^s}{\left(\frac{1-p}{p}\right)^j - 1}.$$

This expression is quite informative. Notice that, if $p < 1/2$, then $(1 - p)/p > 1$. This means that as $j \rightarrow \infty$, we have $p_s \rightarrow 1$. If you gamble repeatedly on an unfair coin, the probability that you run out of money before you hit some threshold (\$ j in this case) tends to one.

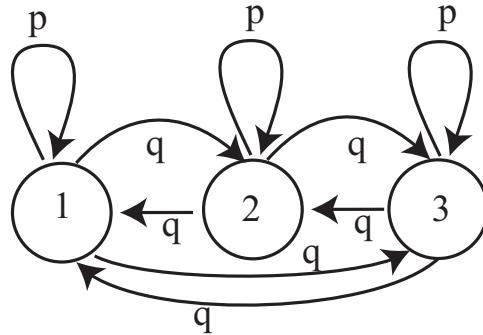


FIGURE 8.3: A virus can exist in one of 3 strains. At the end of each year, the virus mutates. With probability α , it chooses uniformly and at random from one of the 2 other strains, and turns into that; with probability $1 - \alpha$, it stays in the strain it is in. For this figure, we have transition probabilities $p = (1 - \alpha)$ and $q = (\alpha/2)$.

8.1.3 Motivating Example: A Virus

Problems represented with a finite state machine don't need to have an end state. As one example, (which I got from ACC Coolen's lecture notes), we have a virus that can exist in one of k strains. At the end of each year, the virus mutates. With probability α , it chooses uniformly and at random from one of the $k - 1$ other strains, and turns into that; with probability $1 - \alpha$, it stays in the strain it is in (Figure 8.3 shows an example with three strains). For that figure, we have $p = (1 - \alpha)$ and $q = (\alpha/2)$. The virus just keeps on changing, and there is no end state. But there are a variety of very interesting questions we can try to answer. We would like to know, for example, the expected time to see a strain a second time, i.e. if the virus is in strain 1 at time 1, what is the expected time before it is in strain 1 again? If the virus has mutated many times, what is the probability that it is in each strain? and do these probabilities depend on the start strain?

8.1.4 Markov Chains

In Figure 8.1 and Figure 8.2, I showed the event that caused the state transitions. It is more usual to write a probability on the figure, as I did in Figure 8.3, because the probability of a state transition (rather than what caused it) is what really matters. The underlying object is now a weighted directed graph, because we have removed the events and replaced them with probabilities. These probabilities are known as **transition probabilities**; notice that the sum of transition probabilities over *outgoing* arrows must be 1.

We can now think of our process as a **biased random walk** on a weighted directed graph. A bug (or any other small object you prefer) sits on one of the graph's nodes. At each time step, the bug chooses one of the outgoing edges at random. The probability of choosing an edge is given by the probabilities on the drawing of the graph (equivalently, the transition probabilities). The bug then follows that edge. The bug keeps doing this until it hits an end state.

This bug produces a sequence of random variables. If there are k states in the finite state machine, we can label each state with a number, $1 \dots k$. At the n 'th time step, the state of the process — the node that the bug is sitting on — is a random variable, which we write X_n . These random variables have an important property. The probability that X_n takes some particular value depends only on X_{n-1} , and not on any other previous state. If we know where the bug is at step $n-1$ in our model, we know where it could go, and the probability of each transition. Where it was at previous times does not affect this, *as long as we know its state at step $n-1$* .

A sequence of random variables X_n is a **Markov chain** if it has the property that, $P(X_n = j | \text{values of all previous states}) = P(X_n = j | X_{n-1})$, or, equivalently, only the last state matters in determining the probability of the current state. The probabilities $P(X_n = j | X_{n-1} = i)$ are the **transition probabilities**. Any model built by taking the transitions of a finite state machine and labelling them with probabilities must be a Markov chain. However, this is not the only way to build or represent a Markov chain.

One representation of a Markov chain uses a matrix of transition probabilities. We define the matrix \mathcal{P} with $p_{ij} = P(X_n = j | X_{n-1} = i)$. Notice that this matrix has the properties that $p_{ij} \geq 0$ and

$$\sum_j p_{ij} = 1$$

because at the end of each time step the model must be in some state. Equivalently, the sum of transition probabilities for outgoing arrows is one. Non-negative matrices with this property are **stochastic matrices**. By the way, you should look very carefully at the i 's and j 's here — Markov chains are usually written in terms of *row* vectors, and this choice makes sense in that context.

Worked example 8.6 *Viruses*

Write out the transition probability matrix for the virus of Figure 8.3, assuming that $\alpha = 0.2$.

Solution: We have $P(X_n = 1 | X_{n-1} = 1) = (1 - \alpha) = 0.8$, and $P(X_n = 2 | X_{n-1} = 1) = \alpha/2 = P(X_n = 3 | X_{n-1} = 1)$; so we get

$$\begin{pmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$$

Now imagine we do not know the initial state of the chain, but instead have a probability distribution. This gives $P(X_0 = i)$ for each state i . It is usual to take these k probabilities and place them in a k -dimensional row vector, which is usually written π . For example, we might not know what the initial strain of the virus is, but just that each strain is equally likely. So for a 3-strain virus, we would have $\pi = [1/3, 1/3, 1/3]$. From this information, we can compute the probability

distribution over the states at time 1 by

$$\begin{aligned}
 P(X_1 = j) &= \sum_i P(X_1 = j, X_0 = i) \\
 &= \sum_i P(X_1 = j | X_0 = i)P(X_0 = i) \\
 &= \sum_i p_{ij}\pi_i.
 \end{aligned}$$

If we write $\mathbf{p}^{(n)}$ for the row vector representing the probability distribution of the state at step n , we can write this expression as

$$\mathbf{p}^{(1)} = \pi\mathcal{P}.$$

Now notice that

$$\begin{aligned}
 P(X_2 = j) &= \sum_i P(X_2 = j, X_1 = i) \\
 &= \sum_i P(X_2 = j | X_1 = i)P(X_1 = i) \\
 &= \sum_i p_{ij} \left(\sum_{ki} p_{ki}\pi_k \right).
 \end{aligned}$$

so that

$$\mathbf{p}^{(n)} = \pi\mathcal{P}^n.$$

This expression is useful for simulation, and also allows us to deduce a variety of interesting properties of Markov chains.

Worked example 8.7 *Viruses*

We know that the virus of Figure 8.3 started in strain 1. After two state transitions, what is the distribution of states when $\alpha = 0.2$? when $\alpha = 0.9$? What happens after 20 state transitions? If the virus starts in strain 2, what happens after 20 state transitions?

Solution: If the virus started in strain 1, then $\pi = [1, 0, 0]$. We must compute $\pi(\mathcal{P}(\alpha))^2$. This yields $[0.66, 0.17, 0.17]$ for the case $\alpha = 0.2$ and $[0.4150, 0.2925, 0.2925]$ for the case $\alpha = 0.9$. Notice that, because the virus with small α tends to stay in whatever state it is in, the distribution of states after two years is still quite peaked; when α is large, the distribution of states is quite uniform. After 20 transitions, we have $[0.3339, 0.3331, 0.3331]$ for the case $\alpha = 0.2$ and $[0.3333, 0.3333, 0.3333]$ for the case $\alpha = 0.9$; you will get similar numbers even if the virus starts in strain 2. After 20 transitions, the virus has largely “forgotten” what the initial state was.

In example 7, the distribution of virus strains after a long interval appeared not to depend much on the initial strain. This property is true of many Markov chains. Assume that any state can be reached from any other state, by some

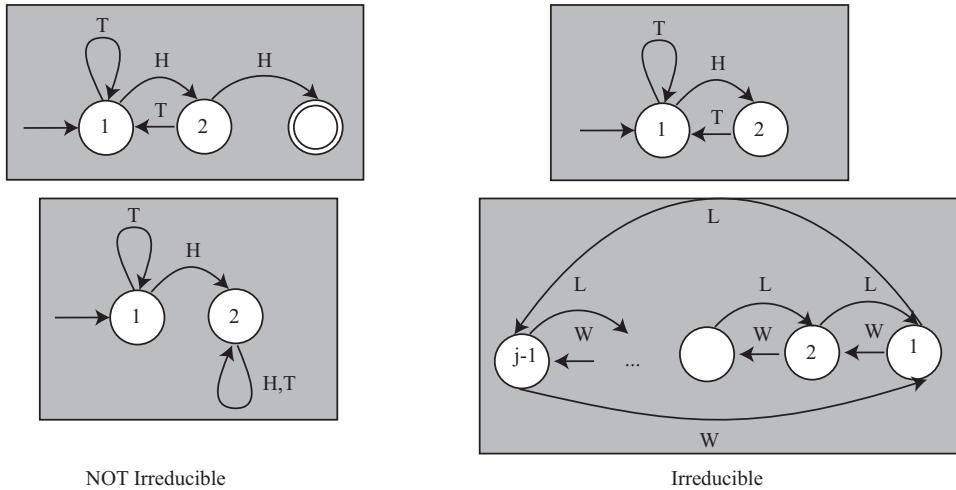


FIGURE 8.4: Examples of finite state machines that give rise to Markov chains that are NOT irreducible (left) and irreducible (right). To obtain Markov chains from these drawings, we would have to give the probabilities of the events that lead to state transitions. We'll assume that none of the probabilities are zero; after that, the values don't matter for irreducibility analysis. The top left FSM is not irreducible, because it has an end state; once the bug reaches this point, it can't go anywhere else. The bottom left FSM is not irreducible, because the bug can get stuck in state 2.

sequence of transitions. Such chains are called **irreducible**; notice this means there is no end state, like the virus example. Irreducibility also means that the chain cannot get “stuck” in a state or a collection of states (Figure 8.4). Then there is a unique vector \mathbf{s} , usually referred to as the **stationary distribution**, such that for *any* initial state distribution π ,

$$\lim_{n \rightarrow \infty} \pi \mathcal{P}^{(n)} = \mathbf{s}.$$

Equivalently, if the chain has run through many steps, it no longer matters what the initial distribution is. You expect that the probability distribution over states is \mathbf{s} .

8.1.5 Example: Particle Motion as a Markov Chain

One can find Markov chains in quite unexpected places, often with useful consequences. In this example, I will obtain a Markov chain without reasoning about graphs or finite state machines. We will investigate a particle moving under gravity, in 3 dimensions. Write the position of the particle as $\mathbf{p}(t)$, its velocity as $\mathbf{v}(t)$, its acceleration as $\mathbf{a}(t)$, its mass as m , and the gravitational force as \mathbf{g} . Then we know

that

$$\begin{aligned}\mathbf{v}(t) &= \frac{d\mathbf{p}}{dt} \\ \mathbf{a}(t) &= \frac{d\mathbf{v}}{dt} \\ &= \mathbf{g}.\end{aligned}$$

Now stack the position and the acceleration into a single vector $X(t) = (\mathbf{p}(t), \mathbf{v}(t))^T$. We could write these equations as

$$\frac{dX}{dt} = \mathcal{A}X + \mathbf{b}$$

where

$$\mathcal{A} = \begin{pmatrix} 0 & \mathcal{I} \\ 0 & 0 \end{pmatrix}$$

and

$$\mathbf{b} = \begin{pmatrix} 0 \\ \mathbf{g} \end{pmatrix}.$$

Now imagine that we look at the position, velocity and acceleration of the particle at fixed time instants, so we are really interested in $X_i = X(t_0 + i\Delta t)$. In this case, we can approximate $\frac{dX}{dt}$ by $(X_{i+1} - X_i)/\Delta t$. We then have

$$X_{i+1} = X_i + (\Delta t)(\mathcal{A}X_i + \mathbf{b}).$$

This is beginning to look like a Markov chain, because X_{i+1} depends only on X_i but not on any previous X . But there isn't any randomness here. We can fix that by assuming that the particle is moving in, say, a light turbulent wind. Then the acceleration at any time consists of (a) the acceleration of gravity and (b) a small, random force produced by the wind. Write \mathbf{w}_i for this small, random force at time i , and $P(\mathbf{w}_i|i)$ for its probability distribution, which could reasonably depend on time. We can then rewrite our equation by writing

$$X_{i+1} = X_i + (\Delta t)(\mathcal{A}X_i + \mathbf{b}_r).$$

where

$$\mathbf{b}_r = \begin{pmatrix} 0 \\ \mathbf{g} + \mathbf{w}_i \end{pmatrix}.$$

Now the X_i are clearly random variables. We could get $P(X_{i+1}|X_i)$ by rearranging terms. If I know X_{i+1} and X_i , I know the value of \mathbf{w}_i ; I could plug this into $P(\mathbf{w}_i|i)$ to yield $P(X_{i+1}|X_i)$.

Using a finite state machine in this example would be a bit unnatural. This example turns out to be surprisingly useful in applications, because (with other algorithmic machinery we can't go into here) it offers the basis for algorithms that can track moving objects by predicting where they will go next. Applications are widespread. Military applications include tracking aircraft, UFO's, missiles, etc. Civilian applications include surveillance in public places; games console interfaces that track moving people; and methods that can follow experimental mice as they move around their cages (useful for testing medicines).

8.2 SIMULATION

Many problems in probability can be worked out in closed form if one knows enough combinatorial mathematics, or can come up with the right trick. Textbooks are full of these, and we've seen some. Explicit formulas for probabilities are often extremely useful. But it isn't always easy or possible to find a formula for the probability of an event in a model. An alternative strategy is to build a simulation, run it many times, and count the fraction of outcomes where the event occurs. This is a simulation experiment.

8.2.1 Obtaining Uniform Random Numbers

Simulation is at its most useful when we try to estimate probabilities that are hard to calculate. Usually we have processes with some random component, and we want to estimate the probability of a particular outcome. To do so, we will need a supply of random numbers to simulate the random component. Here I will describe methods to get uniformly distributed random numbers, and Section 8.2.5 describes a variety of methods to get random numbers from other distributions.

I will describe features in Matlab, because I'm used to Matlab. It's a good programming environment for numerical work, particularly for working with matrices and vectors. You can expect pretty much any programming environment to provide a random number generator that returns a number uniformly distributed in the range $[0 - 1]$. If you know anything about representing numbers, you'll already have spotted something funny. The number that comes out of the random number generator must be represented by a small set of bits, but almost all numbers in the interval $[0 - 1]$ require an infinite number of bits to represent. We'll sweep this issue under the general carpet of floating point representations; it doesn't matter for anything we need to do. The Matlab function function to do this is called `rand`. It can also return matrices; for example, `rand(10, 20)` will get you a 10×20 table of independent uniformly distributed random numbers in the range $[0 - 1]$.

It is useful to get a uniformly distributed random integer in a particular range (for example, you might want to choose a random element in an array). You can do so with a random number generator and a function (like Matlab's `floor`) that returns the largest integer smaller than its argument. If I want a discrete random variable with uniform distribution, maximum value 100 and minimum value 7, I habitually choose a very tiny number (for this example, say $1e - 7$) and do `floor((100-7-1e-7)*rand()+7)`. I use the $1e - 7$ because I can never remember whether `rand` produces a number no larger than one, or one that is guaranteed to be smaller than one, and I never need to care about the very tiny differences in probability caused by the $1e-7$. You might be able to do something cleaner if you bothered checking this point.

8.2.2 Computing Expectations with Simulations

Simulation is also a very good way to estimate expectations. Imagine we have a random variable X with probability distribution $P(X)$ that takes values in some domain D . Assume that we can easily produce independent simulations, and that we wish to know $\mathbb{E}[f]$, the expected value of the function f under the distribution

$P(X)$.

The weak law of large numbers tells us how to proceed. Define a new random variable $F = f(X)$. This has a probability distribution $P(F)$, which might be difficult to know. We want to estimate $\mathbb{E}[f]$, the expected value of the function f under the distribution $P(X)$. This is the same as $\mathbb{E}[F]$. Now if we have a set of IID samples of X , which we write x_i , then we can form a set of IID samples of F by forming $f(x_i) = f_i$. Write

$$F_N = \frac{\sum_{i=1}^N f_i}{N}.$$

This is a random variable, and the weak law of large numbers gives that, for any positive number ϵ

$$\lim_{N \rightarrow \infty} P(\{\|F_N - \mathbb{E}[F]\| > \epsilon\}) = 0.$$

You can interpret this as saying that, that for a set of IID random samples x_i , the probability that

$$\frac{\sum_{i=1}^N f(x_i)}{N}$$

is very close to $\mathbb{E}[f]$ is high for large N

Worked example 8.8 Computing an Expectation

Assume the random variable X is uniformly distributed in the range $[0 - 1]$, and the random variable Y is uniformly distributed in the range $[0 - 10]$. X and Z are independent. Write $Z = (Y - 5X)^3 - X^2$. What is $\text{var}(\{Z\})$?

Solution: With enough work, one could probably work this out in closed form. An easy program will get a good estimate. We have that $\text{var}(\{Z\}) = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2$. My program computed 1000 values of Z (by drawing X and Y from the appropriate random number generator, then evaluating the function). I then computed $\mathbb{E}[Z]$ by averaging those values, and $\mathbb{E}[Z]^2$ by averaging their squares. For a run of my program, I got $\text{var}(\{Z\}) = 2.76 \times 10^4$.

8.2.3 Computing Probabilities with Simulations

You can compute a probability using a simulation, too, because a probability can be computed by taking an expectation. Recall the property of indicator functions that

$$\mathbb{E}[\mathbb{I}_{[\mathcal{E}]}) = P(\mathcal{E})$$

(Section 6.2.5). This means that computing the probability of an event \mathcal{E} involves writing a function that is 1 when the event occurs, and 0 otherwise; we then estimate the expected value of that function.

The weak law of large numbers justifies this procedure. An experiment involves drawing a sample from the relevant probability distribution $P(X)$, then determining

whether event \mathcal{E} occurred or not. We define a new random variable E , which takes the value 1 when the event \mathcal{E} occurs during our experiment (i.e. with probability $P(\mathcal{E})$) and 0 when it doesn't (i.e. with probability $P(\mathcal{E}^c)$). Our experiment yields a sample of this random variable. We perform N experiments yielding a set of IID samples of this distribution e_i and compute $E_N = \frac{\sum_{i=1}^N e_i}{N}$. From the weak law of large numbers, we have that for any $\epsilon > 0$,

$$\lim_{N \rightarrow \infty} P(\{\|E_N - \mathbb{E}[E]\| \geq \epsilon\}) = 0$$

meaning that for large enough N , E_N will be very close to $\mathbb{E}[E] = P(\mathcal{E})$.

Worked example 8.9 *Computing a Probability for Multiple Coin Flips*

You flip a fair coin three times. Use a simulation to estimate the probability that you see three H 's.

Solution: You really should be able to work this out in closed form. But it's amusing to check with a simulation. I wrote a simple program that obtained a 1000x3 table of uniformly distributed random numbers in the range $[0 - 1]$. For each number, if it was greater than 0.5 I recorded an H and if it was smaller, I recorded a T . Then I counted the number of rows that had 3 H 's (i.e. the expected value of the relevant indicator function). This yielded the estimate 0.127, which compares well to the right answer.

Worked example 8.10 *Computing a Probability*

Assume the random variable X is uniformly distributed in the range $[0 - 1]$, and the random variable Y is uniformly distributed in the range $[0 - 10]$. Write $Z = (Y - 5X)^3 - X^2$. What is $P(\{Z > 3\})$?

Solution: With enough work, one could probably work this out in closed form. An easy program will get a good estimate. My program computed 1000 values of Z (by drawing X and Y from the appropriate random number generator, then evaluating the function) and counted the fraction of Z values that was greater than 3 (which is the relevant indicator function). For a run of my program, I got $P(\{Z > 3\}) \approx 0.619$

8.2.4 Simulation Results as Random Variables

The estimate of a probability or of an expectation that comes out of a simulation experiment is a random variable, because it is a function of random numbers. If you run the simulation again, you'll get a different value (unless you did something silly with the random number generator). Generally, you should expect this random variable to behave like a normal random variable. You can check this by constructing a histogram over a large number of runs. The mean of this random variable is the parameter you are trying to estimate. It is useful to know that this random variable tends to be normal, because it means the standard deviation of the random variable tells you a lot about the likely values you will observe.

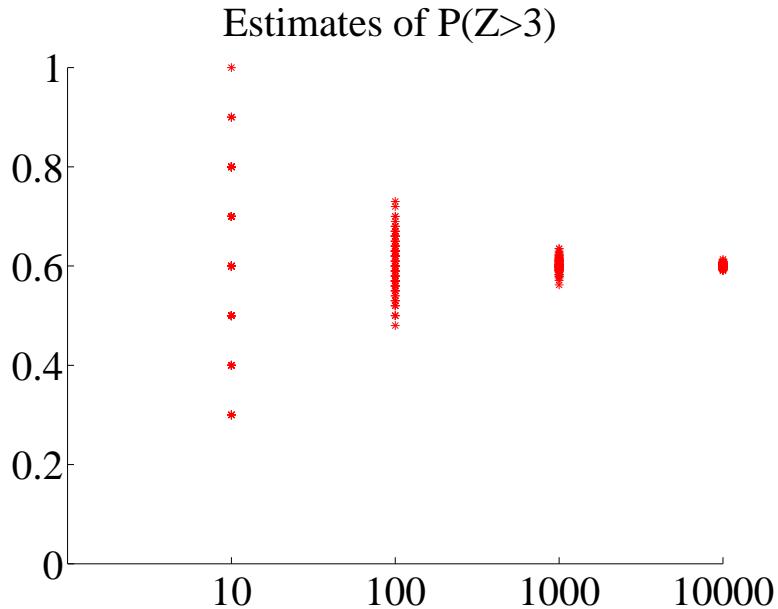


FIGURE 8.5: *Estimates of the probability from example 10, obtained from different runs of my simulator using different numbers of samples. In each case, I used 100 runs; the number of samples is shown on the horizontal axis. You should notice that the estimate varies pretty widely when there are only 10 samples, but the variance (equivalently, the size of the spread) goes down sharply as the number of samples increases to 1000. Because we expect these estimates to be roughly normally distributed, the variance gives a good idea of how accurate the original probability estimate is.*

Another helpful rule of thumb, which is almost always right, is that the standard deviation of this random variable behaves like

$$\frac{C}{\sqrt{N}}$$

where C is a constant that depends on the problem and can be very hard to evaluate, and N is the number of runs of the simulation. What this means is that if you want to (say) double the accuracy of your estimate of the probability or the expectation, you have to run four times as many simulations. Very accurate estimates are tough to get, because they require immense numbers of simulation runs.

Figure 8.5 shows how the result of a simulation behaves when the number of runs changes. I used the simulation of example 10, and ran multiple experiments for each of a number of different samples (i.e. 100 experiments using 10 samples; 100 using 100 samples; and so on).

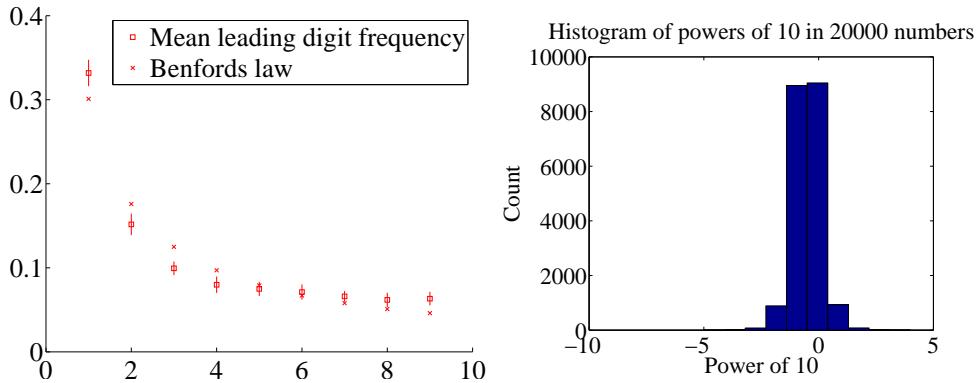


FIGURE 8.6: **Left** summarizes results of a simulation where, for 20 runs, I generated 1000 pairs of independent random numbers uniformly distributed in $[0 - 1]$ and divided one by the other. The boxes show the mean over 20 runs, and the vertical bars show one standard deviation up and down. The crosses are predictions from Benford's law. Numbers generated in this way have a wide range of orders magnitude, so a conventional histogram isn't easy to plot. On the **Right**, a histogram of the first digit of the logarithm (i.e. the power of 10, or order of magnitude) of these numbers. Notice the smallest number is eight orders of magnitude smaller than the biggest.

Worked example 8.11 The First Digit of a Random Number

We have seen (section 7.2.4) that adding random variables tends to produce a normal random variable. What happens if one divides one random number by another? Solving this in closed form is tricky, but simulation gives some insight.

Solution: I wrote a short program that produced 20 experiments, each consisting of 1000 numbers. I obtained the numbers by generating two uniform random numbers in the range $[0 - 1]$, then dividing one by the other. Notice that doing so can produce both very big and very small numbers, so that plotting a histogram is tricky — most boxes will be empty unless we produce an immense quantity of data. Instead, I plot a histogram of the leading digit of the number in Figure 8.7.

Figure 8.7 also shows the mean over all 20 experiments of the fraction of leading digits that is one, etc. together with one standard deviation error bars. The figure also shows a histogram of the rounded log (i.e. the power of 10) to give some idea of the range of values one obtains. It turns out that there is a widely applicable law, called **Benford's law**, that predicts the frequency of the first digit of many types of random number. The main condition for Benford's law to apply is that the numbers cover a wide range of scales. The figure shows predictions from Benford's law as well.

Small probabilities can be rather hard to estimate, as we would expect. In the case of example 10, let us estimate $P(\{Z > 950\})$. A few moments with a computer will show that this probability is of the order of 1e-3 to 1e-4. I obtained a million different simulated values of Z from my program, and saw 310 where $Z > 950$. This means that to know this probability to, say, three digits of numerical accuracy might involve a daunting number of samples. Notice that this does not contradict the rule of thumb that the standard deviation of the random variable defined by a simulation estimate behaves like $\frac{C}{\sqrt{N}}$; it's just that in this case, C is very large indeed.

8.2.5 Obtaining Random Samples

Building a successful simulation requires appropriate random numbers. Recall that anything we compute from a simulation can be thought of as an expectation (we used indicator functions to estimate probabilities). So we have some random variable X with distribution $P(X)$, a function f , and we wish to compute $\mathbb{E}[f]$, where the expectation is with respect to $P(X)$.

Most programming environments provide random number generators for uniform random numbers (I described the one for MATLAB briefly in Section 8.2.1) and for normally distributed random numbers. Building a really good, really fast random number generator is a major exercise. All sorts of tricks are involved, because it really matters to produce executable code that is as fast as possible on the target machine. This means that you don't have to build your own (and shouldn't, unless you can spend a lot of time and trouble on doing so).

Normal Random Variables

In pretty much any programming environment, you would also expect to find a random number generator that returns a normal random variable, with mean zero and standard deviation one. In Matlab, this function is called `randn`. Conveniently, `randn(3, 4)` will give you a 3×4 table of such numbers, which are independent of each other. As you would expect from section 22, to change the mean of this random number, you add a constant; to change the variance, you multiply by a constant. So in Matlab, if you want a normal random variable with mean 3 and standard deviation 4, you use `4*randn() + 3`.

Rejection Sampling

Imagine you know a probability distribution describing a discrete random variable. In particular, you have one probability value for each of the numbers $1, 2, \dots, N$ (all the others are zero). Write $p(i)$ for the probability of i . You can generate a sample of this distribution by the following procedure: first, generate a sample x of a uniform discrete random variable in the range $1, \dots, N$; now generate a sample t of a uniformly distributed continuous random variable in the range $[0, 1]$; finally, if $t < p(x)$ report x , otherwise generate a new x and repeat. This process is known as **rejection sampling** (Algorithm 8.1).

To understand this procedure, it is best to think of it as a loop around a basic process. The basic process generates an x , then decides whether it is acceptable or not. The loop keeps invoking the basic process until it gets an acceptable x . Now

Listing 8.1: Matlab code for simple rejection sampling; this is inefficient, but simple to follow.

```

function rnum=rejectsample (pvec)
%
% pvec is a probability distribution over numbers
% 1, ..., size(pvec, 1)
%
nv=size(pvec, 1);
done=0;
while done==0
    ptr=floor(1+(nv-1e-10)*rand);
    % this gives me a uniform random
    % number in the range 1, .. nv
    pval=pvec(ptr);
    if rand<pval
        done=1;
        % i.e. accept
    end
end
rnum=ptr;

```

the probability that the basic process produces the value x_i , decides it is acceptable, and reports it is:

$$\begin{aligned}
 P(\{\text{report } x_i \text{ acceptable}\}) &= \left(\begin{array}{c} P(\{\text{accept } x_i\} \mid \{\text{generate } x_i\}) \\ \times \\ P(\{\text{generate } x_i\}) \end{array} \right) \\
 &= p(x_i) \times \frac{1}{N}.
 \end{aligned}$$

Now the loop keeps going until the basic process obtains an x_i that it decides is acceptable. This means the probability that the *loop* reports x_i is proportional to $p(x_i)$. But since $\sum_i p(x_i) = 1$, the probability that the *loop* reports x_i is *equal* to $p(x_i)$.

The problem here is that the basic process may not come up with an acceptable value x_i the first time; the loop might have to go on multiple times. If there are many x with small values of $p(x)$, we may find that it takes a very long time indeed to come up with a single sample. In the worst case, all values of $p(x)$ will be small. For example, for a uniform distribution on the range $1, \dots, N$, $p(x)$ is $1/N$.

We can make things more efficient by noticing that multiplying the probability distribution by a constant doesn't change the relative frequencies with which numbers are selected. So this means that we can find the largest value \hat{p} of $p(x)$, and form $q(x) = (1/\hat{p})p(x)$. Our process then becomes that shown in algorithm 8.2.

This process is not the most efficient available.

***** tree and point location algorithm

Listing 8.2: Matlab code for simple rejection sampling; this is somewhat more efficient.

```

function rnum=fasterrejectsample(pvec)
%
% pvec is a probability distribution over numbers
% 1, ..., size(pvec, 1)
%
nv=size(pvec, 1);
wv=max(pvec);
pv2=pvec/wv; % we rescale
done=0;
while done==0
    ptr=floor(1+(nv-1e-10)*rand);
    % this gives me a uniform random
    % number in the range 1, .. nv
    pval=pv2(ptr); % work with rescaled probs
    if rand<pval
        done=1;
        % i.e. accept
    end
end
rnum=ptr ;

```

8.3 SIMULATION EXAMPLES

Computing probabilities and expectations from simulations should be so natural to a computer science student that it can be hard to see the magic. You estimate the probability of an event \mathcal{E} by writing a program that runs N independent simulations of an experiment, counts how many times the event occurs (which we write $\#(\mathcal{E})$), and reports

$$\frac{\#(\mathcal{E})}{N}$$

as an estimate of $P(\mathcal{E})$. This estimate will not be exact, and may be different for different runs of the program. It's often a good, simple estimate.

Choosing N depends on a lot of considerations. Generally, a larger N means a more accurate answer, and also a slower program. If N is too small, you may find that you report 1 or 0 for the probability (think of what would happen if you measured $P(H)$ for a coin with one flip). One strategy is to run several simulations, report the mean, and use the standard deviation as some guide to the accuracy.

8.3.1 Simulating Experiments

Worked example 8.12 *Getting 14's with 20-sided dice*

You throw 3 fair 20-sided dice. Estimate the probability that the sum of the faces is 14 using a simulation. Use $N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6]$. Which estimate is likely to be more accurate, and why?

Solution: You need a fairly fast computer, or this will take a long time. I ran ten versions of each experiment for $N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6]$, yielding ten probability estimates for each N . These were different for each version of the experiment, because the simulations are random. I got means of $[0, 0.0030, 0.0096, 0.0100, 0.0096, 0.0098]$, and standard deviations of $[0.00670, 0.00330, 0.00090, 0.00020, 0.0001]$. This suggests the true value is around 0.0098, and the estimate from $N = 1e6$ is best. The reason that the estimate with $N = 1e1$ is 0 is that the probability is very small, so you don't usually observe this case at all in only ten trials.

Worked example 8.13 *Comparing simulation with computation*

You throw 3 fair six-sided dice. You wish to know the probability the sum is 3. Compare the true value of this probability with estimates from six runs of a simulation using $N = 10000$. What conclusions do you draw?

Solution: I ran six simulations with $N = 10000$, and got $[0.0038, 0.0038, 0.0053, 0.0041, 0.0056, 0.0049]$. The mean is 0.00458, and the standard deviation is 0.0007, which suggests the estimate isn't that great, but the right answer should be in the range $[0.00388, 0.00528]$ with high probability. The true value is $1/216 \approx 0.00463$. The estimate is tolerable, but not super accurate.

Worked example 8.14 *The First Digit of a Random Number*

We have seen (section 7.2.4) that adding random variables tends to produce a normal random variable. What happens if one divides one random number by another? Solving this in closed form is tricky, but simulation gives some insight.

Solution: I wrote a short program that produced 20 experiments, each consisting of 1000 numbers. I obtained the numbers by generating two uniform random numbers in the range $[0 - 1]$, then dividing one by the other. Notice that doing so can produce both very big and very small numbers, so that plotting a histogram is tricky — most boxes will be empty unless we produce an immense quantity of data. Instead, I plot a histogram of the leading digit of the number in Figure 8.7.

Figure 8.7 also shows the mean over all 20 experiments of the fraction of

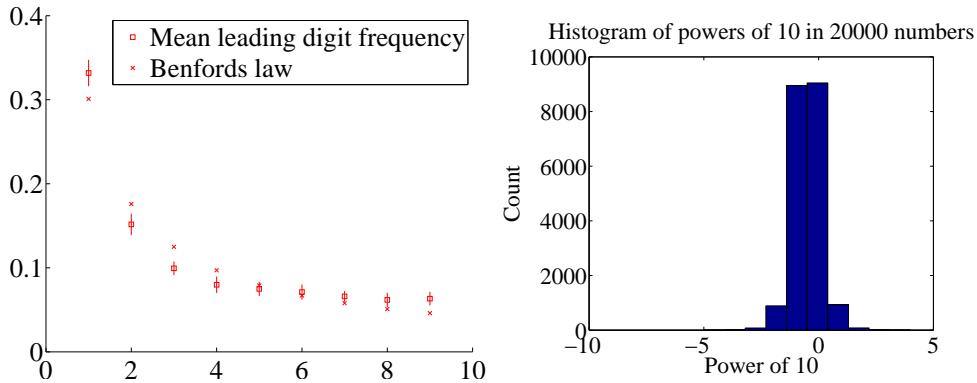


FIGURE 8.7: **Left** summarizes results of a simulation where, for 20 runs, I generated 1000 pairs of independent random numbers uniformly distributed in $[0 - 1]$ and divided one by the other. The boxes show the mean over 20 runs, and the vertical bars show one standard deviation up and down. The crosses are predictions from Benford's law. Numbers generated in this way have a wide range of orders magnitude, so a conventional histogram isn't easy to plot. On the **Right**, a histogram of the first digit of the logarithm (i.e. the power of 10, or order of magnitude) of these numbers. Notice the smallest number is eight orders of magnitude smaller than the biggest.

leading digits that is one, etc. together with one standard deviation error bars. The figure also shows a histogram of the rounded log (i.e. the power of 10) to give some idea of the range of values one obtains. It turns out that there is a widely applicable law, called **Benford's law**, that predicts the frequency of the first digit of many types of random number. The main condition for Benford's law to apply is that the numbers cover a wide range of scales. The figure shows predictions from Benford's law as well.

8.3.2 Simulating Markov Chains

Worked example 8.15 Coin Flips with End Conditions

I flip a coin repeatedly until I encounter a sequence HTHT, at which point I stop. What is the probability that I flip the coin nine times?

Solution: You might well be able to construct a closed form solution to this if you follow the details of example 22 and do quite a lot of extra work. A simulation is really straightforward to write; notice you can save time by not continuing to simulate coin flips once you've flipped past nine times. I got 0.0411 as the mean probability over 10 runs of a simulation of 1000 experiments each, with a standard deviation of 0.0056.

Worked example 8.16 *A Queue*

A bus is supposed to arrive at a bus stop every hour for 10 hours each day. The number of people who arrive to queue at the bus stop each hour has a Poisson distribution, with intensity 4. If the bus stops, everyone gets on the bus and the number of people in the queue becomes zero. However, with probability 0.1 the bus driver decides not to stop, in which case people decide to wait. If the queue is ever longer than 15, the waiting passengers will riot (and then immediately get dragged off by the police, so the queue length goes down to zero). What is the expected time between riots?

Solution: I'm not sure whether one could come up with a closed form solution to this problem. A simulation is completely straightforward to write. I get a mean time of 441 hours between riots, with a standard deviation of 391. It's interesting to play around with the parameters of this problem; a less conscientious bus driver, or a higher intensity arrival distribution, lead to much more regular riots.

Worked example 8.17 *Inventory*

A store needs to control its stock of an item. It can order stocks on Friday evenings, which will be delivered on Monday mornings. The store is old-fashioned, and open only on weekdays. On each weekday, a random number of customers comes in to buy the item. This number has a Poisson distribution, with intensity 4. If the item is present, the customer buys it, and the store makes \$100; otherwise, the customer leaves. Each evening at closing, the store loses \$10 for each unsold item on its shelves. The store's supplier insists that it order a fixed number k of items (i.e. the store must order k items each week). The store opens on a Monday with 20 items on the shelf. What k should the store use to maximise profits?

Solution: I'm not sure whether one could come up with a closed form solution to this problem, either. A simulation is completely straightforward to write. To choose k , you run the simulation with different k values to see what happens. I computed accumulated profits over 100 weeks for different k values, then ran the simulation five times to see which k was predicted. Results were 21, 19, 23, 20, 21. I'd choose 21 based on this information.

For example 17, you should plot accumulated profits. If k is small, the store doesn't lose money by storing items, but it doesn't sell as much stuff as it could; if k is large, then it can fill any order but it loses money by having stock on the shelves. A little thought will convince you that k should be near 20, because that is the expected number of customers each week, so $k = 20$ means the store can expect to sell all its new stock. It may not be exactly 20, because it must depend a little on the balance between the profit in selling an item and the cost of storing it. For

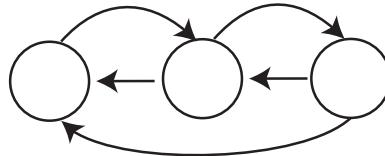


FIGURE 8.8: *A very small fraction of the web, drawn to suggest a finite state machine; each state represents a page, and each directed edge represents an outgoing link. A random web surfer could either (a) follow an outgoing link, chosen at random or (b) type in the URL of any page, chosen at random. Such a surfer would see lots of pages that have many incoming links from pages that have lots of incoming links, and so on. Pages like this are likely important, so that finding important pages is analogous to simulating a random web surfer.*

example, if the cost of storing items is very small compared to the profit, an very large k might be a good choice. If the cost of storage is sufficiently high, it might be better to never have anything on the shelves; this point explains the absence of small stores selling PC's.

8.3.3 Example: Ranking the Web by Simulating a Markov Chain

Perhaps the most valuable technical question of the last thirty years has been: Which web pages are interesting? Some idea of the importance of this question is that it was only really asked about 20 years ago, and at least one gigantic technology company has been spawned by a partial answer. This answer, due to Larry Page and Sergey Brin, and widely known as PageRank, starts with a Markov chain.

Figure 8.8 shows a picture of (a very small fraction of) the world wide web. I have drawn the web using a visual metaphor that should strongly suggest a finite state machine, and so a Markov chain. Each page is a state. Directed edges from page to page represent links. I count only the first link from a page to another page. Some pages are linked, others are not. I want to know how important each page is.

One way to think about importance is to think about what a random web surfer would do. The surfer can either (a) choose one of the outgoing links on a page at random, and follow it or (b) type in the URL of a new page, and go to that instead. As Figure 8.8 suggests, it is useful to think of this as a random walk on a finite state machine. We expect that this random surfer should see a lot of pages that have lots of incoming links from other pages that have lots of incoming links that (and so on). These pages are important, because lots of pages have linked to them.

For the moment, ignore the surfer's option to type in a URL. Write $r(i)$ for the importance of the i 'th page. We model importance as leaking from page to page across outgoing links (the same way the surfer jumps). Page i receives importance down each incoming link. The amount of importance is proportional to the amount of importance at the other end of the link, and inversely proportional to the number of links leaving that page. So a page with only one outgoing link transfers all its importance down that link; and the way for a page to receive a lot of importance

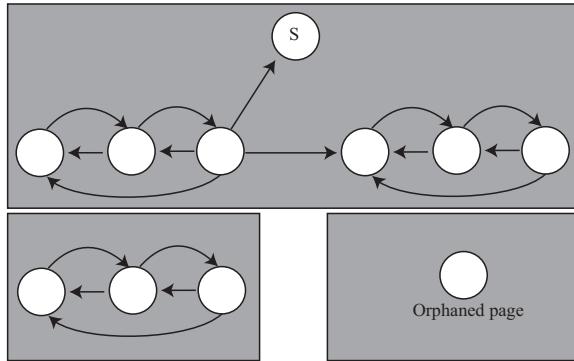


FIGURE 8.9: The web isn't really like Figure 8.8. It's more like this figure (only bigger). In this figure, we see sections of the web that can't be reached by following links from other sections (the gray boxes); orphaned pages; and pages where a random walker would get stuck (S). Any algorithm for assigning importance must be able to deal with these effects.

is for it to have a lot of important pages link to it alone. We write

$$r(j) = \sum_{i \rightarrow j} \frac{r(i)}{|i|}$$

where $|i|$ means the total number of links pointing *out* of page i . We can stack the $r(j)$ values into a *row* vector \mathbf{r} , and construct a matrix \mathcal{P} , where

$$p_{ij} = \begin{cases} \frac{1}{|i|} & \text{if } i \text{ points to } j \\ 0 & \text{otherwise} \end{cases}$$

With this notation, the importance vector has the property

$$\mathbf{r} = \mathbf{r}\mathcal{P}$$

and should look a bit like the stationary distribution of a random walk to you, except that \mathcal{P} isn't stochastic — there may be some rows where the row sum of \mathcal{P} is zero, because there are *no* outgoing links from that page. We can fix this easily by replacing each row that sums to zero with $(1/n)\mathbf{1}$, where n is the total number of pages. Call the resulting matrix \mathcal{G} (it's quite often called the **raw Google matrix**). Notice that doing this doesn't really change anything significant; pages with no outgoing links leak a tiny fraction of their importance to every other page.

Figure 8.8 isn't a particularly good model of the web (and not because it's tiny, either). Figure 8.9 shows some of the problems that occur. There are pages with no outgoing links (which we've dealt with), pages with no incoming links, and even pages with no links at all. Worse, a random walk can get trapped (in one of the gray boxes). One way to fix all this would be to construct a process that wandered around the web inserting links that clean up the structure of the graph. This strategy is completely infeasible, because the real web is much too

big. Allowing the surfer to randomly enter a URL sorts out all of these problems, because it inserts an edge of small weight from every node to every other node. Now the random walk cannot get trapped.

There are a variety of possible choices for the weight of these inserted edges. The original choice was to make each inserted edge have the same weight. Write $\mathbf{1}$ for the n dimensional column vector containing a 1 in each component, and let $0 < \alpha < 1$. We can write the matrix of transition probabilities as

$$\mathcal{G}(\alpha) = \alpha \frac{(\mathbf{1}\mathbf{1}^T)}{n} + (1 - \alpha)\mathcal{G}$$

where \mathcal{G} is the original Google matrix. An alternative choice is to choose a weight for each web page, using anything from advertising revenues to page visit statistics to thaumaturgy (Google keeps quiet about the details). Write this weight vector \mathbf{v} , and require that $\mathbf{1}^T \mathbf{v} = 1$ (i.e. the coefficients sum to one). Then we could have

$$\mathcal{G}(\alpha, \mathbf{v}) = \alpha \frac{(\mathbf{1}\mathbf{v}^T)}{n} + (1 - \alpha)\mathcal{G}.$$

Now the importance vector \mathbf{r} is the (unique, though I won't prove this) *row* vector \mathbf{r} such that

$$\mathbf{r} = \mathbf{r}\mathcal{G}(\alpha, \mathbf{v}).$$

How do we compute this vector? One natural algorithm is to start with some initial estimate, and propagate it. We write $\mathbf{r}^{(k)}$ for the estimated importance after the k 'th step. We define updates by

$$(\mathbf{r}^{(k)}) = (\mathbf{r}^{(k-1)})\mathcal{G}(\alpha, \mathbf{v}).$$

We can't compute this directly, either, because $\mathcal{G}(\alpha, \mathbf{v})$ is unreasonably big so (a) we can't form or store $\mathcal{G}(\alpha, \mathbf{v})$ and (b) we can't multiply by it either. But we could estimate \mathbf{r} with a random walk, because \mathbf{r} is the stationary distribution of a Markov chain. If we simulate this walk for many steps, the probability that the simulation is in state j should be $r(j)$, at least approximately.

This simulation is easy to build. Imagine our random walking bug sits on a web page. At each time step, it transitions to a new page by either (a) picking from all existing pages at random, using \mathbf{v} as a probability distribution on the pages (which it does with probability α); or (b) chooses one of the outgoing links uniformly and at random, and follows it (which it does with probability $1 - \alpha$). The stationary distribution of this random walk is \mathbf{r} . Another fact that I shall not prove is that, when α is sufficiently large, this random walk very quickly "forgets" its initial distribution. As a result, you can estimate the importance of web pages by starting this random walk in a random location; letting it run for a bit; then stopping it, and collecting the page you stopped on. The pages you see like this are independent, identically distributed samples from \mathbf{r} ; so the ones you see more often are more important, and the ones you see less often are less important.

8.3.4 Example: Simulating a Complicated Game

I will build several examples around a highly simplified version of a real card game. This game is Magic: The Gathering, and is protected by a variety of trademarks,

etc. My version — MTGDAF — isn't very interesting as a game, but is simple enough to be studied, and interesting enough it casts some light on the real game. The game is played with decks of 60 cards. There are two types of card: Lands, and Spells. Lands can be placed on the play table and stay there permanently; Spells are played and then disappear. A Land on the table can be “tapped” or “untapped”. Players take turns. Each player draws a hand of seven cards from a shuffled deck. In each turn, a player first untaps any Lands on the table, then draws a card, then plays a land onto the table (if the player has one in hand to play), then finally can play one or more spells. Each spell has a fixed cost (of $1, \dots, 10$), and this cost is played by “tapping” a land (which is not untapped until the start of the next turn). This means that the player can cast only cheap spells in the early turns of the game, and expensive spells in the later turns.

Worked example 8.18 *MTGDAF — The number of lands*

Assume a deck of 60 cards has 24 Lands. It is properly shuffled, and you draw seven cards. You could draw $0, \dots, 7$ Lands. Estimate the probability for each, using a simulation. Furthermore, estimate the error in your estimates.

Solution: The matlab function `randperm` produces a random permutation of given length. This means you can use it to simulate a shuffle of a deck, as in listing 8.3. I then drew 10,000 random hands of seven cards, and counted how many times I got each number. Finally, to get an estimate of the error, I repeated this experiment 10 times and computed the standard deviation of each estimate of probability. This produced

0.0218 0.1215 0.2706 0.3082 0.1956 0.0686 0.0125 0.0012

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0015 0.0037 0.0039 0.0058 0.0027 0.0032 0.0005 0.0004

for the standard deviations of these estimates.

Listing 8.3: Matlab code used to simulate the number of lands

```

simcards=[ones(24, 1); zeros(36, 1)]
% 1 if land, 0 otherwise
ninsim=10000;
nsims=10;
counts=zeros(nsims, 8);
for i=1:10
    for j=1:10000
        shuffle=randperm(60);
        hand=simcards(shuffle(1:7));
        %useful matlab trick here
        nlands=sum(hand);
        %ie number of lands
        counts(i, 1+nlands)=...
            counts(i, 1+nlands)+1;
        % number of lands could be zero
    end
end
probs=counts/ninsim;
mean(probs)
std(probs)
%%

```

Worked example 8.19 *MTGDAF — The number of lands*

What happens to the probability of getting different numbers of lands if you put only 15 Lands in a deck of 60? It is properly shuffled, and you draw seven cards. You could draw 0, ..., 7 Lands. Estimate the probability for each, using a simulation. Furthermore, estimate the error in your estimates.

Solution: You can change one line in the listing to get

0.1159 0.3215 0.3308 0.1749 0.0489 0.0075 0.0006 0.0000

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0034 0.0050 0.0054 0.0047 0.0019 0.0006 0.0003 0.0000

for the standard deviations of these estimates.

Worked example 8.20 *MTGDAF — Playing spells*

Assume you have a deck of 24 Lands, 10 Spells of cost 1, 10 Spells of cost 2, 10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2 Spells of cost 6. Assume you always only play the cheapest spell in your hand (i.e. you never play two spells). What is the probability you will be able to play at least one spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the hand, then simulate the first four turns. In each turn, you can only play a spell whose cost you can pay, and only if you have it. I used the matlab of listing 8.4 and listing 8.5; I found the probability to be 0.64 with standard deviation 0.01. Of course, my code might be wrong....

Worked example 8.21 *MTGDAF — Playing spells*

Now we use a different distribution of cards. Assume you have a deck of 20 Lands, 9 Spells of cost 1, 5 Spells of cost 2, 5 Spells of cost 3, 5 Spells of cost 4, 5 Spells of cost 5, and 11 Spells of cost 6. Assume you always only play the cheapest spell in your hand (i.e. you never play two spells). What is the probability you will be able to play at least one spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the hand, then simulate the first four turns. In each turn, you can only play a spell whose cost you can pay, and only if you have it. I found the probability to be 0.33 with standard deviation 0.05. Of course, my code might be wrong....

One engaging feature of the real game that is revealed by these very simple simulations is the tension between a players goals. The player would like to have few lands — so as to have lots of spells — but doing so means that there's a bigger chance of not being able to play a spell. Similarly, a player would like to have lots of powerful (=expensive) spells, but doing so means there's a bigger chance of not being able to play a spell. Players of the real game spend baffling amounts of time arguing with one another about the appropriate choices for a good set of cards.

Worked example 8.22 *MTGDAF — How long before you can play a spell of cost 3?*

Assume you have a deck of 15 Lands, 15 Spells of cost 1, 14 Spells of cost 2, 10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2 Spells of cost 6. What is the expected number of turns before you can play a spell of cost 3? Assume you always play a land if you can.

Solution: I get 6.3, with a standard deviation of 0.1. The problem is it can take quite a large number of turns to get three lands out. I used the code of listings 8.6 and 8.7

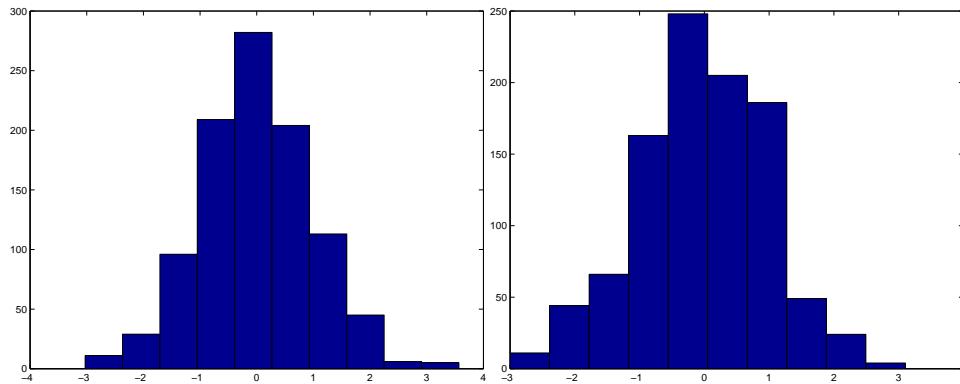


FIGURE 8.10: Estimates of probabilities produced by simulation typically behave like normal data. On the left, I show a histogram of probabilities of having a hand of 3 Lands in the simulation of example 18; these are plotted in standard coordinates. On the right, I show a histogram of probability of playing a spell in each of the first four turns (example 21), from 1000 simulation experiments; again, these are plotted in standard coordinates. Compare these to the standard normal histograms of the previous chapter.

Recall that you can reasonably expect that the probability you compute from a simulation behaves like normal data. Run a simulation experiment a large number of times and construct a data set whose entries are the probability from each experiment. This data should be normal. This means that, if you subtract the mean and divide by the standard deviation, you should get a histogram that looks like the standard normal curve. Figure 8.10 shows some examples of this effect. This effect is important, because it means that the right answer should be very few standard deviations away from the mean you compute — the standard deviation gives you quite a good idea of the accuracy of your estimate.

PROBLEMS

8.1. Multiple coin flips:

- (a) For example ??, show that $P(5) = (3/32)$ by directly writing out the sequences of flips, and summing their probabilities.
- (b) Now check the recurrence relation $P(N) = (1/2)P(N-1) + (1/4)P(N-2)$ for the case $N = 5$.
- (c) What is $P(7)$?

8.2. Multiple die rolls:

You roll a fair die until you see a 5, then a 6; after that, you stop. Write $P(N)$ for the probability that you roll the die N times.

- (a) What is $P(1)$?
- (b) Show that $P(2) = (1/36)$.
- (c) Draw a finite state machine encoding all the sequences of die rolls that you could encounter. Don't write the events on the edges; instead, write their probabilities. There are 5 ways not to get a 5, but only one probability, so this simplifies the drawing.

(d) Show that $P(3) = (1/36)$.
 (e) Now use your finite state machine to argue that $P(N) = (5/6)P(N-1) + (25/36)P(N-2)$.

8.3. More complicated multiple coin flips: You flip a fair coin until you see either HTH or THT , and then you stop. We will compute a recurrence relation for $P(N)$.

(a) Figure ?? shows a finite state machine. Check that this finite state machine represents all coin sequences that you will encounter.
 (b) Write Σ_N for some string of length N accepted by this finite state machine. Use this finite state machine to argue that Σ_N has one of four forms:

1. $TT\Sigma_{N-2}$
2. $HH\Sigma_{N-3}$
3. $THH\Sigma_{N-2}$
4. $HTT\Sigma_{N-3}$

(c) Now use this argument to show that $P(N) = (1/2)P(N-2) + (1/4)P(N-3)$.

8.4. The gambler's ruin:

(a) Show that you can rearrange the recurrence relation of example 22 to get

$$p_{s+1} - p_s = \frac{(1-p)}{p} (p_s - p_{s-1}).$$

Now show that this means that

$$p_{s+1} - p_s = \left(\frac{(1-p)}{p} \right)^2 (p_{s-1} - p_{s-2})$$

so that

$$\begin{aligned} p_{s+1} - p_s &= \left(\frac{(1-p)}{p} \right)^s (p_1 - p_0) \\ &= \left(\frac{(1-p)}{p} \right)^s (p_1 - 1). \end{aligned}$$

(b) Now we need a simple result about series. Assume I have a series u_k , $k \geq 0$, with the property that

$$u_k - u_{k-1} = cr^{k-1}.$$

Show that

$$u_k - u_0 = c \left(\frac{r^k - 1}{r - 1} \right).$$

(c) Use the results of the last two steps to show that

$$p_s - 1 = (p_1 - 1) \left(\frac{\left(\frac{1-p}{p} \right)^s - 1}{\left(\frac{1-p}{p} \right) - 1} \right)$$

(d) Use the fact that $p_j = 0$ and the result of the last exercise to show

$$(p_1 - 1) = \frac{-1}{\left(\frac{\left(\frac{1-p}{p} \right)^j - 1}{\left(\frac{1-p}{p} \right)^j - 1} \right)}.$$

(e) Use the results of the previous exercises to show that

$$p_s = \frac{\left(\frac{1-p}{p} \right)^j - \left(\frac{1-p}{p} \right)^s}{\left(\frac{1-p}{p} \right)^j - 1}.$$

Listing 8.4: Matlab code used to simulate the four turns

```

simcards=[zeros(24, 1); ones(10, 1);...
           2*ones(10, 1);3*ones(10, 1); ...
           4*ones(2, 1); 5*ones(2, 1); 6*ones(2, 1)];
nsims=10;
ninsim=1000;
counts=zeros(nsims, 1);
for i=1:nsims
    for j=1:ninsim
        % draw a hand
        shuffle=randperm(60);
        hand=simcards(shuffle(1:7));
        %reorganize the hand
        cleanhand=zeros(7, 1);
        for k=1:7
            cleanhand(hand(k)+1)=cleanhand(hand(k)+1)+1;
            % ie count of lands, spells, by cost
        end
        landsontable=0;
        [playedspell1, landsontable, cleanhand]=...
            playround(landsontable, cleanhand, shuffle, ...
            simcards, 1);
        [playedspell2, landsontable, cleanhand]=...
            playround(landsontable, cleanhand, shuffle, ...
            simcards, 2);
        [playedspell3, landsontable, cleanhand]=...
            playround(landsontable, cleanhand, shuffle, ...
            simcards, 3);
        [playedspell4, landsontable, cleanhand]=...
            playround(landsontable, cleanhand, shuffle, ...
            simcards, 4);
        counts(i)=counts(i)+...
            playedspell1*playedspell2*...
            playedspell3*playedspell4;
    end
end

```

Listing 8.5: Matlab code used to simulate playing a turn

```
function [ playedspell , landsontable , cleanhand ]=...
    playground(landsontable , cleanhand , shuffle , simcards , ...
    turn)
    % draw
ncard=simcards( shuffle(7+turn) );
cleanhand( ncard+1)=cleanhand( ncard+1)+1;
% play land
if cleanhand(1)>0
    landsontable=landsontable+1;
    cleanhand(1)=cleanhand(1)-1;
end
playedspell=0;
if landsontable>0
    i=1; done=0;
    while done==0
        if cleanhand( i)>0
            cleanhand( i)=cleanhand( i)-1;
            playedspell=1;
            done=1;
        else
            i=i+1;
            if i>landsontable
                done=1;
            end
        end
    end
end
end
```

Listing 8.6: Matlab code used to estimate number of turns before you can play a spell of cost 3

```

simcards=[zeros(15, 1); ones(15, 1);...
           2*ones(14, 1);3*ones(10, 1); ...
           4*ones(2, 1); 5*ones(2, 1); 6*ones(2, 1)];
nsims=10;
ninsim=1000;
counts=zeros(nsims, 1);
for i=1:nsims
    for j=1:ninsim
        % draw a hand
        shuffle=randperm(60);
        hand=simcards(shuffle(1:7));
        %reorganize the hand
        cleanhand=zeros(7, 1);
        for k=1:7
            cleanhand(hand(k)+1)=cleanhand(hand(k)+1)+1;
            % ie count of lands, spells, by cost
        end
        landsontable=0;
        k=0; played3spell=0;
        while played3spell==0;
            [played3spell, landsontable, cleanhand]=...
                play3round(landsontable, cleanhand, shuffle, ...
                simcards, k+1);
            k=k+1;
        end
        counts(i)=counts(i)+k;
    end
    counts(i)=counts(i)/ninsim;
end

```

Listing 8.7: Matlab code used to simulate a turn to estimate the number of turns before you can play a spell of cost 3

```
function [ played3spell , landsontable , cleanhand ]=...
    play3round( landsontable , cleanhand , shuffle , simcards , ...
    turn )
    % draw
ncard=simcards( shuffle(7+turn) );
cleanhand( ncard+1)=cleanhand( ncard+1)+1;
% play land
if cleanhand(1)>0
    landsontable=landsontable+1;
    cleanhand(1)=cleanhand(1)-1;
end
played3spell=0;
if ( landsontable >=3)&&(cleanhand(4)>0)
    played3spell=1;
end
```