
Contents

1 Notation and conventions 2
1.1 Some Useful Mathematical Facts . 3
1.2 Acknowledgements . 4

2 First Tools for Looking at Data 5
2.1 Datasets . 5
2.2 What’s Happening? - Plotting Data 7

2.2.1 Bar Charts . 8
2.2.2 Histograms . 8
2.2.3 How to Make Histograms . 9
2.2.4 Conditional Histograms . 11

2.3 Summarizing 1D Data . 11
2.3.1 The Mean . 12
2.3.2 Standard Deviation and Variance 13
2.3.3 Variance . 16
2.3.4 The Median . 17
2.3.5 Interquartile Range . 18
2.3.6 Using Summaries Sensibly . 20

2.4 Plots and Summaries . 21
2.4.1 Some Properties of Histograms 21
2.4.2 Standard Coordinates and Normal Data 23
2.4.3 Boxplots . 26

2.5 Whose is bigger? Investigating Australian Pizzas 28
2.6 What You Must Remember . 32

3 Intermezzo - Programming Tools 34

4 Looking at Relationships 39
4.1 Plotting 2D Data . 39

4.1.1 Categorical Data, Counts, and Charts 39
4.1.2 Series . 42
4.1.3 Scatter Plots for Spatial Data 44
4.1.4 Exposing Relationships with Scatter Plots 45

4.2 Correlation . 49
4.2.1 The Correlation Coefficient 51
4.2.2 Using Correlation to Predict 56
4.2.3 Confusion caused by correlation 60

4.3 Sterile Males in Wild Horse Herds 61
4.4 What You Must Remember . 64

5 Basic ideas in probability 68
5.1 Experiments, Outcomes, Events, and Probability 68

5.1.1 The Probability of an Outcome 70

1

2

5.1.2 Events . 72
5.1.3 The Probability of Events . 74
5.1.4 Computing Probabilities by Counting Outcomes 77
5.1.5 Computing Probabilities by Reasoning about Sets 80
5.1.6 Independence . 83
5.1.7 Permutations and Combinations 87

5.2 Conditional Probability . 91
5.2.1 Evaluating Conditional Probabilities 92
5.2.2 The Prosecutors Fallacy . 98
5.2.3 Independence and Conditional Probability 99

5.3 Example: The Monty Hall Problem 101
5.4 What you should remember . 103

6 Random Variables and Expectations 107
6.1 Random Variables . 107

6.1.1 Joint and Conditional Probability for Random Variables . . . 109
6.1.2 Just a Little Continuous Probability 112

6.2 Expectations and Expected Values 116
6.2.1 Expected Values of Discrete Random Variables 116
6.2.2 Expected Values of Continuous Random Variables 117
6.2.3 Mean, Variance and Covariance 118
6.2.4 Expectations and Statistics 122
6.2.5 Indicator Functions . 123
6.2.6 Two Inequalities . 124
6.2.7 IID Samples and the Weak Law of Large Numbers 126

6.3 Using Expectations . 128
6.3.1 Should you accept a bet? . 129
6.3.2 Odds, Expectations and Bookmaking — a Cultural Diversion 131
6.3.3 Ending a Game Early . 132
6.3.4 Making a Decision with Decision Trees and Expectations . . 133
6.3.5 Utility . 135

6.4 What you should remember . 137

7 Useful Probability Distributions 141
7.1 Discrete Distributions . 141

7.1.1 The Discrete Uniform Distribution 141
7.1.2 The Geometric Distribution 141
7.1.3 Bernoulli Random Variables 142
7.1.4 The Binomial Probability Distribution 143
7.1.5 Multinomial probabilities . 145
7.1.6 The Poisson Distribution . 146

7.2 Continuous Distributions . 148
7.2.1 The Continuous Uniform Distribution 148
7.2.2 The Beta Distribution . 148
7.2.3 The Gamma Distribution . 149
7.2.4 The Exponential Distribution 150

7.3 The Normal Distribution . 151

3

7.3.1 The Standard Normal Distribution 151
7.3.2 The Normal Distribution . 152
7.3.3 Properties of the Normal Distribution 153

7.4 Approximating Binomials with Large N 154
7.4.1 Large N . 155
7.4.2 Getting Normal . 157
7.4.3 So What? . 159

7.5 What you should remember . 160

8 Markov Chains and Simulation 165
8.1 Markov Chains . 165

8.1.1 Motivating Example: Multiple Coin Flips 165
8.1.2 Motivating Example: The Gambler’s Ruin 167
8.1.3 Motivating Example: A Virus 169
8.1.4 Markov Chains . 169
8.1.5 Example: Particle Motion as a Markov Chain 172

8.2 Simulation . 174
8.2.1 Obtaining Uniform Random Numbers 174
8.2.2 Computing Expectations with Simulations 174
8.2.3 Computing Probabilities with Simulations 175
8.2.4 Simulation Results as Random Variables 176
8.2.5 Obtaining Random Samples 178

8.3 Simulation Examples . 180
8.3.1 Simulating Experiments . 181
8.3.2 Simulating Markov Chains 183
8.3.3 Example: Ranking the Web by Simulating a Markov Chain . 184
8.3.4 Example: Simulating a Complicated Game 187

9 Inference: Making Point Estimates 197
9.1 Estimating Model Parameters with Maximum Likelihood 198

9.1.1 The Maximum Likelihood Principle 199
9.1.2 Cautions about Maximum Likelihood 207

9.2 Incorporating Priors with Bayesian Inference 207
9.2.1 Constructing the Posterior 208
9.2.2 The Posterior for Normal Data 211
9.2.3 MAP Inference . 214
9.2.4 Cautions about Bayesian Inference 216

9.3 Samples, Urns and Populations . 216
9.3.1 Estimating the Population Mean from a Sample 217
9.3.2 The Variance of the Sample Mean 218
9.3.3 The Probability Distribution of the Sample Mean 222
9.3.4 When The Urn Model Works 222

10 Intervals and Testing 224
10.1 Straightforward Constructions of Confidence Intervals 224

10.1.1 Confidence Intervals for Population Means 225
10.1.2 Bayesian Confidence Intervals 228

4

10.2 Using Simulation to Construct Intervals 230
10.2.1 Constructing Confidence Intervals for Parametric Models . . 230
10.2.2 Estimating Standard Error 233

10.3 Using the Standard Error to Evaluate Hypotheses 236
10.3.1 Does this Population have this Mean? 239
10.3.2 Do Two Populations have the same Mean? 243
10.3.3 Variants on the Basic Test . 248

10.4 χ2 Tests: Is Data Consistent with a Model? 249

11 Extracting Important Relationships in High Dimensions 253
11.1 Summaries and Simple Plots . 253

11.1.1 The Mean . 253
11.1.2 Parallel Plots . 254
11.1.3 Using Covariance to encode Variance and Correlation 254

11.2 Blob Analysis of High-Dimensional Data 259
11.2.1 Understanding Blobs with Scatterplot Matrices 259
11.2.2 Transforming High Dimensional Data 260
11.2.3 Transforming Blobs . 262
11.2.4 Whitening Data . 265

11.3 Principal Components Analysis . 268
11.3.1 The Blob Coordinate System and Smoothing 268
11.3.2 The Low-Dimensional Representation of a Blob 270
11.3.3 Smoothing Data with a Low-Dimensional Representation . . 271
11.3.4 The Error of the Low-Dimensional Representation 275
11.3.5 Example: Representing Spectral Reflectances 276
11.3.6 Example: Representing Faces with Principal Components . . 278

11.4 Multi-Dimensional Scaling . 280
11.4.1 Principal Coordinate Analysis 280
11.4.2 Example: Mapping with Multidimensional Scaling 282

11.5 Example: Understanding Height and Weight 284

12 Models of High Dimensional Data 288
12.1 The Curse of Dimension . 288
12.2 The Multivariate Normal Distribution 290

12.2.1 Affine Transformations and Gaussians 291
12.3 Agglomerative and Divisive Clustering 291

12.3.1 Clustering and Distance . 293
12.3.2 Example: Agglomerative Clustering 293

12.4 The K-Means Algorithm . 294

13 Regression 299
13.1 Least Squares and Linear Models . 299

13.1.1 Interpreting a Regression . 302
13.1.2 How Good is a Fit? . 302
13.1.3 Regularizing Linear Regressions 307

5

14 Learning to Classify 309
14.1 Classification, Error, and Loss . 309

14.1.1 Using Loss to Determine Decisions 309
14.1.2 Example: Building a Classifier out of Histograms 311
14.1.3 Example: Classifying Using Nearest Neighbors 313
14.1.4 Training Error, Test Error, and Overfitting 314
14.1.5 Error Rate and Cross-Validation 315

14.2 Basic Ideas for Numerical Minimization 316
14.2.1 Overview . 317
14.2.2 Gradient Descent . 318
14.2.3 Stochastic Gradient Descent 319
14.2.4 Newton’s Method . 320

14.3 Logistic Regression, Minimizing Loss, and Regularization 321
14.3.1 Logistic Regression . 321
14.3.2 Regularization . 324

14.4 The Linear Support Vector Machine 325
14.4.1 Classifying with a Hyperplane 326
14.4.2 The Hinge Loss . 328
14.4.3 Training a Support Vector Machine with Stochastic Gradient

Descent . 328
14.4.4 Example: Training an SVM with Stochastic Gradient Descent 329

14.5 Practical Methods for Building Classifiers 329
14.5.1 Manipulating Training Data to Improve Performance 329
14.5.2 Building Multi-Class Classifiers Out of Binary Classifiers . . 330
14.5.3 Finding the Nearest Neighbors and Hashing 331
14.5.4 Software for SVM’s . 334

14.6 Notes . 334

15 Math Resources 338
15.1 Useful Material about Matrices . 338

15.1.1 Approximating A Symmetric Matrix 339

C H A P T E R 1

Notation and conventions

A dataset as a collection of d-tuples (a d-tuple is an ordered list of d elements).
Tuples differ from vectors, because we can always add and subtract vectors, but
we cannot necessarily add or subtract tuples. There are always N items in any
dataset. There are always d elements in each tuple in a dataset. The number of
elements will be the same for every tuple in any given tuple. Sometimes we may
not know the value of some elements in some tuples.

We use the same notation for a tuple and for a vector. Most of our data will
be vectors. We write a vector in bold, so x could represent a vector or a tuple (the
context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out of
them; we write the dataset made out of these items as {xi} (the i is to suggest you
are taking a set of items and making a dataset out of them). If we need to refer

to the j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold,

because it is a component not a vector, and the j is in parentheses because it isn’t
a power). Vectors are always column vectors.
Terms:

• mean ({x}) is the mean of the dataset {x} (definition 1, page 12).

• std (x) is the standard deviation of the dataset {x} (definition 2, page 13).

• var ({x}) is the standard deviation of the dataset {x} (definition 3, page 17).

• median ({x}) is the standard deviation of the dataset {x} (definition 4, page 18).

• percentile({x}, k) is the k% percentile of the dataset {x} (definition 5, page 19).

• iqr{x} is the interquartile range of the dataset {x} (definition 7, page 19).

• {x̂} is the dataset {x}, transformed to standard coordinates (definition 8,
page 24).

• Standard normal data is defined in definition 9, page 25).

• Normal data is defined in definition 10, page 26).

• corr ({(x, y)}) is the correlation between two components x and y of a dataset
(definition 1, page 52).

• ∅ is the empty set.

• Ω is the set of all possible outcomes of an experiment.

• Sets are written as A.

6

Section 1.1 Some Useful Mathematical Facts 7

• Ac is the complement of the set A (i.e. Ω−A).

• E is an event (page 304).

• P ({E}) is the probability of event E (page 304).

• P ({E}|{F}) is the probability of event E , conditioned on event F (page 304).

• p(x) is the probability that random variable X will take the value x; also
written P ({X = x}) (page 304).

• p(x, y) is the probability that random variable X will take the value x and
random variable Y will take the value y; also written P ({X = x} ∩ {Y = y})
(page 304).

• argmax
x

f(x) means the value of x that maximises f(x).

• θ̂ is an estimated value of a parameter θ.

Background information:

• Cards: A standard deck of playing cards contains 52 cards. These cards are
divided into four suits. The suits are: spades and clubs (which are black);
and hearts and diamonds (which are red). Each suit contains 13 cards: Ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (sometimes called Knave), Queen and King. It
is common to call Jack, Queen and King court cards.

• Dice: If you look hard enough, you can obtain dice with many different
numbers of sides (though I’ve never seen a three sided die). We adopt the
convention that the sides of an N sided die are labeled with the numbers
1 . . .N , and that no number is used twice. Most dice are like this.

• Fairness: Each face of a fair coin or die has the same probability of landing
upmost in a flip or roll.

1.1 SOME USEFUL MATHEMATICAL FACTS

The gamma function Γ(x) is defined by a series of steps. First, we have that for n
an integer,

Γ(n) = (n− 1)!

and then for z a complex number with positive real part (which includes positive
real numbers), we have

Γ(z) =

∫ ∞

0

tz
e−t

t
dt.

By doing this, we get a function on positive real numbers that is a smooth inter-
polate of the factorial function. We won’t do any real work with this function, so
won’t expand on this definition. In practice, we’ll either look up a value in tables
or require a software environment to produce it.

Section 1.2 Acknowledgements 8

1.2 ACKNOWLEDGEMENTS

Typos spotted by: Han Chen (numerous!), Yusuf Sobh, Scott Walters, Eric Huber,
— Your Name Here —

C H A P T E R 2

First Tools for Looking at Data

The single most important question for a working scientist — perhaps the
single most useful question anyone can ask— is: “what’s going on here?” Answering
this question requires creative use of different ways to make pictures of datasets,
to summarize them, and to expose whatever structure might be there. This is an
activity that is sometimes known as “Descriptive Statistics”. There isn’t any fixed
recipe for understanding a dataset, but there is a rich variety of tools we can use
to get insights.

2.1 DATASETS

A dataset is a collection of descriptions of different instances of the same phe-
nomenon. These descriptions could take a variety of forms, but it is important that
they are descriptions of the same thing. For example, my grandfather collected
the daily rainfall in his garden for many years; we could collect the height of each
person in a room; or the number of children in each family on a block; or whether
10 classmates would prefer to be “rich” or “famous”. There could be more than
one description recorded for each item. For example, when he recorded the con-
tents of the rain gauge each morning, my grandfather could have recorded (say)
the temperature and barometric pressure. As another example, one might record
the height, weight, blood pressure and body temperature of every patient visiting
a doctor’s office.

The descriptions in a dataset can take a variety of forms. A description could
be categorical, meaning that each data item can take a small set of prescribed
values. For example, we might record whether each of 100 passers-by preferred to
be “Rich” or “Famous”. As another example, we could record whether the passers-
by are “Male” or “Female”. Categorical data could be ordinal, meaning that we
can tell whether one data item is larger than another. For example, a dataset giving
the number of children in a family for some set of families is categorical, because it
uses only non-negative integers, but it is also ordinal, because we can tell whether
one family is larger than another.

Some ordinal categorical data appears not to be numerical, but can be as-
signed a number in a reasonably sensible fashion. For example, many readers will
recall being asked by a doctor to rate their pain on a scale of 1 to 10 — a question
that is usually relatively easy to answer, but is quite strange when you think about
it carefully. As another example, we could ask a set of users to rate the usability
of an interface in a range from “very bad” to “very good”, and then record that
using -2 for “very bad”, -1 for “bad”, 0 for “neutral”, 1 for “good”, and 2 for “very
good”.

Many interesting datasets involve continuous variables (like, for example,
height or weight or body temperature) when you could reasonably expect to en-
counter any value in a particular range. For example, we might have the heights of

9

Section 2.1 Datasets 10

all people in a particular room; or the rainfall at a particular place for each day of
the year; or the number of children in each family on a list.

You should think of a dataset as a collection of d-tuples (a d-tuple is an
ordered list of d elements). Tuples differ from vectors, because we can always add
and subtract vectors, but we cannot necessarily add or subtract tuples. We will
always write N for the number of tuples in the dataset, and d for the number of
elements in each tuple. The number of elements will be the same for every tuple,
though sometimes we may not know the value of some elements in some tuples
(which means we must figure out how to predict their values, which we will do
much later).

Index net worth
1 100, 360
2 109, 770
3 96, 860
4 97, 860
5 108, 930
6 124, 330
7 101, 300
8 112, 710
9 106, 740
10 120, 170

Index Taste score Index Taste score
1 12.3 11 34.9
2 20.9 12 57.2
3 39 13 0.7
4 47.9 14 25.9
5 5.6 15 54.9
6 25.9 16 40.9
7 37.3 17 15.9
8 21.9 18 6.4
9 18.1 19 18
10 21 20 38.9

TABLE 2.1: On the left, net worths of people you meet in a bar, in US $; I made
this data up, using some information from the US Census. The index column,
which tells you which data item is being referred to, is usually not displayed in
a table because you can usually assume that the first line is the first item, and
so on. On the right, the taste score (I’m not making this up; higher is better)
for 20 different cheeses. This data is real (i.e. not made up), and it comes from
http:// lib.stat. cmu. edu/DASL/ Datafiles/Cheese.html .

Each element of a tuple has its own type. Some elements might be categorical.
For example, one dataset we shall see several times records entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
for 478 children, so d = 11 and N = 478. In this dataset, each entry is categorical
data. Clearly, these tuples are not vectors because one cannot add or subtract (say)
Genders.

Most of our data will be vectors. We use the same notation for a tuple and
for a vector. We write a vector in bold, so x could represent a vector or a tuple
(the context will make it obvious which is intended).

The entire data set is {x}. When we need to refer to the i’th data item, we
write xi. Assume we have N data items, and we wish to make a new dataset out
of them; we write the dataset made out of these items as {xi} (the i is to suggest
you are taking a set of items and making a dataset out of them).

In this chapter, we will work mainly with continuous data. We will see a
variety of methods for plotting and summarizing 1-tuples. We can build these
plots from a dataset of d-tuples by extracting the r’th element of each d-tuple.

Section 2.2 What’s Happening? - Plotting Data 11

Mostly, we will deal with continuous data. All through the book, we will see many
datasets downloaded from various web sources, because people are so generous
about publishing interesting datasets on the web. In the next chapter, we will look
at 2-dimensional data, and we look at high dimensional data in chapter 11.

2.2 WHAT’S HAPPENING? - PLOTTING DATA

The very simplest way to present or visualize a dataset is to produce a table. Tables
can be helpful, but aren’t much use for large datasets, because it is difficult to get
any sense of what the data means from a table. As a continuous example, table 2.1
gives a table of the net worth of a set of people you might meet in a bar (I made
this data up). You can scan the table and have a rough sense of what is going on;
net worths are quite close to $ 100, 000, and there aren’t any very big or very small
numbers. This sort of information might be useful, for example, in choosing a bar.

People would like to measure, record, and reason about an extraordinary
variety of phenomena. Apparently, one can score the goodness of the flavor of
cheese with a number (bigger is better); table 2.1 gives a score for each of thirty
cheeses (I did not make up this data, but downloaded it from http://lib.stat.

cmu.edu/DASL/Datafiles/Cheese.html). You should notice that a few cheeses
have very high scores, and most have moderate scores. It’s difficult to draw more
significant conclusions from the table, though.

Gender Goal Gender Goal
boy Sports girl Sports
boy Popular girl Grades
girl Popular boy Popular
girl Popular boy Popular
girl Popular boy Popular
girl Popular girl Grades
girl Popular girl Sports
girl Grades girl Popular
girl Sports girl Grades
girl Sports girl Sports

TABLE 2.2: Chase and Dunner (?) collected data on what students thought made
other students popular. As part of this effort, they collected information on (a) the
gender and (b) the goal of students. This table gives the gender (“boy” or “girl”)
and the goal (to make good grades —“Grades”; to be popular — “Popular”; or
to be good at sports — “Sports”). The table gives this information for the first
20 of 478 students; the rest can be found at http:// lib.stat. cmu.edu/ DASL/
Datafiles/PopularKids.html . This data is clearly categorical, and not ordinal.

Table 2.2 shows a table for a set of categorical data. Psychologists collected
data from students in grades 4-6 in three school districts to understand what fac-
tors students thought made other students popular. This fascinating data set
can be found at http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html,
and was prepared by Chase and Dunner (?). Among other things, for each student

Section 2.2 What’s Happening? - Plotting Data 12

they asked whether the student’s goal was to make good grades (“Grades”, for
short); to be popular (“Popular”); or to be good at sports (“Sports”). They have
this information for 478 students, so a table would be very hard to read. Table 2.2
shows the gender and the goal for the first 20 students in this group. It’s rather
harder to draw any serious conclusion from this data, because the full table would
be so big. We need a more effective tool than eyeballing the table.

boy girl
0

50

100

150

200

250

300
Number of children of each gender

Sports Grades Popular
0

50

100

150

200

250
Number of children choosing each goal

FIGURE 2.1: On the left, a bar chart of the number of children of each gender in
the Chase and Dunner study (). Notice that there are about the same number of
boys and girls (the bars are about the same height). On the right, a bar chart of
the number of children selecting each of three goals. You can tell, at a glance, that
different goals are more or less popular by looking at the height of the bars.

2.2.1 Bar Charts

A bar chart is a set of bars, one per category, where the height of each bar is
proportional to the number of items in that category. A glance at a bar chart often
exposes important structure in data, for example, which categories are common, and
which are rare. Bar charts are particularly useful for categorical data. Figure 2.1
shows such bar charts for the genders and the goals in the student dataset of Chase
and Dunner (). You can see at a glance that there are about as many boys as girls,
and that there are more students who think grades are important than students
who think sports or popularity is important. You couldn’t draw either conclusion
from Table 2.2, because I showed only the first 20 items; but a 478 item table is
very difficult to read.

2.2.2 Histograms

Data is continuous when a data item could take any value in some range or set of
ranges. In turn, this means that we can reasonably expect a continuous dataset
contains few or no pairs of items that have exactly the same value. Drawing a bar
chart in the obvious way — one bar per value — produces a mess of unit height
bars, and seldom leads to a good plot. Instead, we would like to have fewer bars,
each representing more data items. We need a procedure to decide which data
items count in which bar.

Section 2.2 What’s Happening? - Plotting Data 13

0.95 1 1.05 1.1 1.15 1.2 1.25
0

1

2

3

4

5
N

um
be

r
of

 d
at

a
ite

m
s

Net worth, in $100, 000s

Histogram of net worth for 10 individuals

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

N
um

be
r

of
 d

at
a

ite
m

s

Cheese goodness, in cheese goodness units

Histogram of cheese goodness score for 30 cheeses

FIGURE 2.2: On the left, a histogram of net worths from the dataset described in the
text and shown in table 2.1. On the right, a histogram of cheese goodness scores
from the dataset described in the text and shown in table 2.1.

A simple generalization of a bar chart is a histogram. We divide the range
of the data into intervals, which do not need to be equal in length. We think of
each interval as having an associated pigeonhole, and choose one pigeonhole for
each data item. We then build a set of boxes, one per interval. Each box sits on its
interval on the horizontal axis, and its height is determined by the number of data
items in the corresponding pigeonhole. In the simplest histogram, the intervals that
form the bases of the boxes are equally sized. In this case, the height of the box is
given by the number of data items in the box.

Figure 2.2 shows a histogram of the data in table 2.1. There are five bars —
by my choice; I could have plotted ten bars — and the height of each bar gives the
number of data items that fall into its interval. For example, there is one net worth
in the range between $102, 500 and $107, 500. Notice that one bar is invisible,
because there is no data in that range. This picture suggests conclusions consistent
with the ones we had from eyeballing the table — the net worths tend to be quite
similar, and around $100, 000.

Figure 2.2 shows a histogram of the data in table 2.1. There are six bars
(0-10, 10-20, and so on), and the height of each bar gives the number of data items
that fall into its interval — so that, for example, there are 9 cheeses in this dataset
whose score is greater than or equal to 10 and less than 20. You can also use the
bars to estimate other properties. So, for example, there are 14 cheeses whose score
is less than 20, and 3 cheeses with a score of 50 or greater. This picture is much
more helpful than the table; you can see at a glance that quite a lot of cheeses have
relatively low scores, and few have high scores.

2.2.3 How to Make Histograms

Usually, one makes a histogram by finding the appropriate command or routine in
your programming environment. I use Matlab, and chapter 3 sketches some useful
Matlab commands. However, it is useful to understand the procedures used.

Section 2.2 What’s Happening? - Plotting Data 14

96 98 100 102
0

2

4

6

8

10

12

14
Histogram of body temperatures in Fahrenheit

96 98 100 102
0

2

4

6

8

10

12

14
Gender 1 body temperatures in Fahrenheit

96 98 100 102
0

2

4

6

8

10

12

14
Gender 2 body temperatures in Fahrenheit

FIGURE 2.3: On top, a histogram of body temperatures, from the dataset published
at http: // www2.stetson.edu/~ jrasp/data. htm . These seem to be clustered
fairly tightly around one value. The bottom row shows histograms for each gender
(I don’t know which is which). It looks as though one gender runs slightly cooler
than the other.

Histograms with Even Intervals: The easiest histogram to build uses
equally sized intervals. Write xi for the i’th number in the dataset, xmin for the
smallest value, and xmax for the largest value. We divide the range between the
smallest and largest values into n intervals of even width (xmax−xmin)/n. In this
case, the height of each box is given by the number of items in that interval. We
could represent the histogram with an n-dimensional vector of counts. Each entry
represents the count of the number of data items that lie in that interval. Notice
we need to be careful to ensure that each point in the range of values is claimed by
exactly one interval. For example, we could have intervals of [0− 1) and [1− 2), or
we could have intervals of (0− 1] and (1− 2]. We could not have intervals of [0− 1]
and [1− 2], because then a data item with the value 1 would appear in two boxes.
Similarly, we could not have intervals of (0 − 1) and (1 − 2), because then a data
item with the value 1 would not appear in any box.

Histograms with Uneven Intervals: For a histogram with even intervals,
it is natural that the height of each box is the number of data items in that box.

Section 2.3 Summarizing 1D Data 15

But a histogram with even intervals can have empty boxes (see figure 2.2). In
this case, it can be more informative to have some larger intervals to ensure that
each interval has some data items in it. But how high should we plot the box?
Imagine taking two consecutive intervals in a histogram with even intervals, and
fusing them. It is natural that the height of the fused box should be the average
height of the two boxes. This observation gives us a rule.

Write dx for the width of the intervals; n1 for the height of the box over the
first interval (which is the number of elements in the first box); and n2 for the
height of the box over the second interval. The height of the fused box will be
(n1 + n2)/2. Now the area of the first box is n1dx; of the second box is n2dx; and
of the fused box is (n1 + n2)dx. For each of these boxes, the area of the box is
proportional to the number of elements in the box. This gives the correct rule: plot
boxes such that the area of the box is proportional to the number of elements in
the box.

2.2.4 Conditional Histograms

Most people believe that normal body temperature is 98.4o in Fahrenheit. If you
take other people’s temperatures often (for example, you might have children),
you know that some individuals tend to run a little warmer or a little cooler than
this number. I found data giving the body temperature of a set of individuals at
http://www2.stetson.edu/~jrasp/data.htm. As you can see from the histogram
(figure 2.3), the body temperatures cluster around a small set of numbers. But what
causes the variation?

One possibility is gender. We can investigate this possibility by compar-
ing a histogram of temperatures for males with histogram of temperatures for fe-
males. Such histograms are sometimes called conditional histograms or class-
conditional histograms, because each histogram is conditioned on something (in
this case, the histogram uses only data that comes from gender).

The dataset gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 2.3 gives the class conditional histograms. It does seem like indi-
viduals of one gender run a little cooler than individuals of the other, although we
don’t yet have mechanisms to test this possibility in detail (chapter 1).

2.3 SUMMARIZING 1D DATA

For the rest of this chapter, we will assume that data items take values that are
continuous real numbers. Furthermore, we will assume that values can be added,
subtracted, and multiplied by constants in a meaningful way. Human heights are
one example of such data; you can add two heights, and interpret the result as a
height (perhaps one person is standing on the head of the other). You can subtract
one height from another, and the result is meaningful. You can multiply a height
by a constant — say, 1/2 — and interpret the result (A is half as high as B). Not
all data is like this. Categorical data is often not like this. For example, you could
not add “Grades” to “Popular” in any useful way.

Section 2.3 Summarizing 1D Data 16

2.3.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

Definition: 2.1 Mean

Assume we have a dataset {x} of N data items, x1, . . . , xN . Their mean
is

mean ({x}) = 1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 2.1 (you
can choose who you want to be in this story). The mean of this data is $107, 903.

An important interpretation of the mean is that it is the best guess of the
value of a new data item, given no information at all. In the bar example, if a new
person walked into this bar, and you had to guess that person’s net worth, you
should choose $107, 903.

Properties of the Mean The mean has several important properties you
should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi}) + c.

• The sum of signed differences from the mean is zero. This means that

N
∑

i=1

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points
to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

These properties are easy to prove (and so easy to remember). All but one proof
is relegated to the exercises.

Section 2.3 Summarizing 1D Data 17

Proposition:
arg min

µ

∑

i(xi − µ)2 = mean ({x})

Proof: Choose the number µ such that the sum of squared distances of data
points to µ is minimized. That number is the mean. In notation:

arg min
µ

∑

i

(xi − µ)2 = mean ({x})

We can show this by actually minimizing the expression. We must have that the
derivative of the expression we are minimizing is zero at the value of µ we are
seeking. So we have

d

dµ

N
∑

i=1

(xi − µ)2 =

N
∑

i=1

2(xi − µ)

= 2

N
∑

i=1

(xi − µ)

= 0

so that 2Nmean ({x})− 2Nµ = 0, which means that µ = mean ({x}).
Property 2.1: The Average Squared Distance to the Mean is Minimized

2.3.2 Standard Deviation and Variance

We would also like to know the extent to which data items are close to the mean.
This information is given by the standard deviation, which is the root mean
square of the offsets of data from the mean.

Definition: 2.2 Standard deviation

Assume we have a dataset {x} of N data items, x1, . . . , xN . The stan-
dard deviation of this dataset is is:

std (xi) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2 =
√

mean ({(xi −mean ({x}))2}).

You should think of the standard deviation as a scale. It measures the size of
the average deviation from the mean for a dataset. When the standard deviation
of a dataset is large, there are many items with values much larger than, or much
smaller than, the mean. When the standard deviation is small, most data items
have values close to the mean. This means it is helpful to talk about how many
standard devations away from the mean a particular data item is. Saying that data

Section 2.3 Summarizing 1D Data 18

item xj is “within k standard deviations from the mean” means that

abs (xj −mean ({x})) ≤ kstd (xi).

Similarly, saying that data item xj is “more than k standard deviations from the
mean” means that

abs (xi −mean ({x})) > kstd (x).

As I will show below, there must be some data at least one standard deviation
away from the mean, and there can be very few data items that are many standard
deviations away from the mean.

Properties of the Standard Deviation Standard deviation has very im-
portant properties:

• Translating data does not change the standard deviation, i.e. std (xi + c) =
std (xi).

• Scaling data scales the standard deviation, i.e. std (kxi) = kstd (xi).

• For any dataset, there can be only a few items that are many standard devi-
ations away from the mean. In particular, assume we have N data items, xi,
whose standard deviation is σ. Then there are at most 1

k2 data points lying
k or more standard deviations away from the mean.

• For any dataset, there must be at least one data item that is at least one
standard deviation away from the mean.

The first two properties are easy to prove, and are relegated to the exercises.

Section 2.3 Summarizing 1D Data 19

Proposition: Assume we have a dataset {x} of N data items, x1, . . . , xN .
Assume the standard deviation of this dataset is std (x) = σ. Then there are at
most 1

k2 data points lying k or more standard deviations away from the mean.

Proof: Assume the mean is zero. There is no loss of generality here, because
translating data translates the mean, but doesn’t change the standard deviation.
The way to prove this is to construct a dataset with the largest possible fraction
r of data points lying k or more standard deviations from the mean. To achieve
this, our data should have N(1 − r) data points each with the value 0, because
these contribute 0 to the standard deviation. It should have Nr data points with
the value kσ; if they are further from zero than this, each will contribute more
to the standard deviation, so the fraction of such points will be fewer. Because

std (x) = σ =

√

∑

i x
2
i

N

we have that, for this rather specially constructed dataset,

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

We constructed the dataset so that r would be as large as possible, so

r ≥ 1

k2

for any kind of data at all.

Property 2.2: For any dataset, it is hard for data items to get many standard
deviations away from the mean.

The bound of box 2.3.2 is true for any kind of data. This bound implies that,
for example, at most 100% of any dataset could be one standard deviation away
from the mean, 25% of any dataset is 2 standard deviations away from the mean
and at most 11% of any dataset could be 3 standard deviations away from the
mean. But the configuration of data that achieves this bound is very unusual. This
means the bound tends to wildly overstate how much data is far from the mean
for most practical datasets. Most data has more random structure, meaning that
we expect to see very much less data far from the mean than the bound predicts.
For example, much data can reasonably be modelled as coming from a normal
distribution (a topic we’ll go into later). For such data, we expect that about
68% of the data is within one standard deviation of the mean, 95% is within two
standard deviations of the mean, and 99.7% is within three standard deviations
of the mean, and the percentage of data that is within ten standard deviations of
the mean is essentially indistinguishable from 100%. This kind of behavior is quite
common; the crucial point about the standard deviation is that you won’t see much

Section 2.3 Summarizing 1D Data 20

data that lies many standard deviations from the mean, because you can’t.

Proposition: (std (x))2 ≤ maxi(xi −mean ({x}))2.

Proof: You can see this by looking at the expression for standard deviation.
We have

std (x) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({x}))2.

Now, this means that

N(std (x))2 =

i=N
∑

i−1

(xi −mean ({x}))2.

But
i=N
∑

i−1

(xi −mean ({x}))2 ≤ N max
i

(xi −mean ({x}))2

so
(std (x))2 ≤ max

i
(xi −mean ({x}))2.

Property 2.3: For any dataset, there must be at least one data item that is at
least one standard deviation away from the mean.

Boxes 2.3.2 and 2.3.2 mean that the standard deviation is quite informative.
Very little data is many standard deviations away from the mean; similarly, at least
some of the data should be one or more standard deviations away from the mean.
So the standard deviation tells us how data points are scattered about the mean.

Potential point of confusion: There is an ambiguity that comes up often
here because two (very slightly) different numbers are called the standard deviation
of a dataset. One — the one we use in this chapter — is an estimate of the scale
of the data, as we describe it. The other differs from our expression very slightly;
one computes

√

∑

i(xi −mean ({x}))2
N − 1

(notice the N −1 for our N). If N is large, this number is basically the same as the
number we compute, but for smaller N there is a difference that can be significant.
Irritatingly, this number is also called the standard deviation; even more irritatingly,
we will have to deal with it, but not yet. I mention it now because you may look
up terms I have used, find this definition, and wonder. Don’t worry - the N in our
expressions is the right thing to use for what we’re doing.

2.3.3 Variance

It turns out that thinking in terms of the square of the standard deviation, which
is known as the variance, will allow us to generalize our summaries to apply to
higher dimensional data.

Section 2.3 Summarizing 1D Data 21

Definition: 2.3 Variance

Assume we have a dataset {x} of N data items, x1, . . . , xN . where
N > 1. Their variance is:

var ({x}) = 1

N

(

i=N
∑

i−1

(xi −mean ({x}))2
)

= mean
({

(xi −mean ({x}))2
})

.

One good way to think of the variance is as the mean-square error you would
incur if you replaced each data item with the mean. Another is that it is the square
of the standard deviation.

Properties of the Variance The properties of the variance follow from
the fact that it is the square of the standard deviation. We have that:

• Translating data does not change the variance, i.e. var ({x+ c}) = var ({x}).

• Scaling data scales the variance by a square of the scale, i.e. var ({kx}) =
k2var ({x}).

While one could restate the other two properties of the standard deviation in terms
of the variance, it isn’t really natural to do so. The standard deviation is in the
same units as the original data, and should be thought of as a scale. Because the
variance is the square of the standard deviation, it isn’t a natural scale (unless you
take its square root!).

2.3.4 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 2.3.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is prob-
ably more useful to think of the net worth data as ten people together with one
billionaire. The billionaire is known as an outlier.

One way to get outliers is that a small number of data items are very dif-
ferent, due to minor effects you don’t want to model. Another is that the data
was misrecorded, or mistranscribed. Another possibility is that there is just too
much variation in the data to summarize it well. For example, a small number
of extremely wealthy people could change the average net worth of US residents

Section 2.3 Summarizing 1D Data 22

dramatically, as the example shows. An alternative to using a mean is to use a
median.

Definition: 2.4 Median

The median of a set of data points is obtained by sorting the data
points, and finding the point halfway along the list. If the list is of
even length, it’s usual to average the two numbers on either side of the
middle. We write

median ({xi})
for the operator that returns the median.

For example,
median ({3, 5, 7}) = 5,

median ({3, 4, 5, 6, 7}) = 5,

and
median ({3, 4, 5, 6}) = 4.5.

For much, but not all, data, you can expect that roughly half the data is smaller
than the median, and roughly half is larger than the median. Sometimes this
property fails. For example,

median ({1, 2, 2, 2, 2, 2, 2, 2, 3}) = 2.

With this definition, the median of our list of net worths is $107, 835. If we insert
the billionaire, the median becomes $108, 930. Notice by how little the number has
changed — it remains an effective summary of the data.

Properties of the median You can think of the median of a dataset as
giving the “middle” or “center” value. This means it is rather like the mean, which
also gives a (slightly differently defined) “middle” or “center” value. The mean has
the important properties that if you translate the dataset, the mean translates, and
if you scale the dataset, the mean scales. The median has these properties, too:

• Translating data translates the median, i.e. median ({x+ c}) = median ({x})+
c.

• Scaling data scales the median by the same scale, i.e. median ({kx}) =
kmedian ({x}).

Each is easily proved, and proofs are relegated to the exercises.

2.3.5 Interquartile Range

Outliers can affect standard deviations severely, too. For our net worth data, the
standard deviation without the billionaire is $9265, but if we put the billionaire
in there, it is $3.014 × 108. When the billionaire is in the dataset, all but one of

Section 2.3 Summarizing 1D Data 23

the data items lie about a third of a standard deviation away from the mean; the
other one (the billionaire) is many standard deviations away from the mean. In
this case, the standard deviation has done its work of informing us that there are
huge changes in the data, but isn’t really helpful.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.

Definition: 2.5 Percentile

The k’th percentile is the value such that k% of the data is less than or
equal to that value. We write percentile({x}, k) for the k’th percentile
of dataset {x}.

Definition: 2.6 Quartiles

The first quartile of the data is the value such that 25% of the data is less
than or equal to that value (i.e. percentile({x}, 25)). The second quar-
tile of the data is the value such that 50% of the data is less than or equal
to that value, which is usually the median (i.e. percentile({x}, 50)). The
third quartile of the data is the value such that 75% of the data is less
than or equal to that value (i.e. percentile({x}, 75)).

Definition: 2.7 Interquartile Range

The interquartile range of a dataset {x} is iqr{x} = percentile({x}, 75)−
percentile({x}, 25).

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.

Section 2.3 Summarizing 1D Data 24

Properties of the interquartile range You can think of the interquartile
range of a dataset as giving an estimate of the scale of the difference from the mean.
This means it is rather like the standard deviation, which also gives a (slightly
differently defined) scale. The standard deviation has the important properties
that if you translate the dataset, the standard deviation translates, and if you
scale the dataset, the standard deviation scales. The interquartile range has these
properties, too:

• Translating data does not change the interquartile range, i.e. iqr{x+ c} =
iqr{x}.

• Scaling data scales the interquartile range by the same scale, i.e. iqr{kx} =
k2iqr{x}.

Each is easily proved, and proofs are relegated to the exercises.

2.3.6 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child — no family has 2.6 children. A more accurate way to say things might
be “the average of the number of children in a US family is 2.6”, but this is clumsy.
What is going wrong here is the 2.6 is a mean, but the number of children in a
family is a categorical variable. Reporting the mean of a categorical variable is
often a bad idea, because you may never encounter this value (the 2.6 children).
For a categorical variable, giving the median value and perhaps the interquartile
range often makes much more sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. This is a
particular nuisance in the case of the mean, because you might add many numbers,
then divide by a large number; in this case, you will get many digits, but some
might not be meaningful. For example, Vickers (ibid) describes a paper reporting
the mean length of pregnancy as 32.833 weeks. That fifth digit suggests we know
the mean length of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither
medical interviewing nor people’s memory for past events is that detailed. Further-
more, when you interview them about embarrassing topics, people quite often lie.
There is no prospect of knowing this number with this precision.

People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.

Section 2.4 Plots and Summaries 25

mode

modes

Population 1 Population 2

Bimodal

modes

Population 1 Population 2

Multimodal

Population 3

FIGURE 2.4: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranean mountain dog, etc.).

2.4 PLOTS AND SUMMARIES

Knowing the mean, standard deviation, median and interquartile range of a dataset
gives us some information about what its histogram might look like. In fact, the
summaries give us a language in which to describe a variety of characteristic proper-
ties of histograms that are worth knowing about (Section 2.4.1). Quite remarkably,
many different datasets have the same shape of histogram (Section 2.4.2). For such
data, we know roughly what percentage of data items are how far from the mean.

Complex datasets can be difficult to interpret with histograms alone, because
it is hard to compare many histograms by eye. Section 2.4.3 describes a clever plot
of various summaries of datasets that makes it easier to compare many cases.

2.4.1 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for

Section 2.4 Plots and Summaries 26

left

tail

right

tail

mode, median, mean, all on top of

Symmetric Histogram

one another

left

tail

right

tail

mode
median

mean

Left Skew

left

tail
right

tail

mode
median

mean

Right Skew

FIGURE 2.5: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed (confusingly, this
means the main bump is to the right). Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed (confusingly, this means the main bump is to the left).

the case where there are two peaks (Figure 2.4). The histograms we have seen
have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 2.5). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computa-
tional Resource) publishes a number of datasets. Here we discuss a dataset of
citations to faculty publications. For each of five UCLA faculty members, SOCR
collected the number of times each of the papers they had authored had been
cited by other authors (data at http://wiki.stat.ucla.edu/socr/index.php/

SOCR_Data_Dinov_072108_H_Index_Pubs). Generally, a small number of papers
get many citations, and many papers get few citations. We see this pattern in the
histograms of citation numbers (figure 2.6). These are very different from (say) the
body temperature pictures. In the citation histograms, there are many data items
that have very few citations, and few that have many citations. This means that
the right tail of the histogram is longer, so the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to
compare mean and median (though this is not foolproof). For the first citation

Section 2.4 Plots and Summaries 27

0 100 200 300 400 500
0

100

200

300

400
Histogram of citations for faculty member A

1000 2000 3000 4000 5000
0

5

10

15
Birth weights for 44 babies born in Brisbane

FIGURE 2.6: On the left, a histogram of citations for a faculty member, from
data at http:// wiki.stat. ucla.edu/ socr/index.php/ SOCR_Data_ Dinov_

072108_H_ Index_Pubs . Very few publications have many citations, and many
publications have few. This means the histogram is strongly right-skewed. On the
right, a histogram of birth weights for 44 babies borne in Brisbane in 1997. This
histogram looks slightly left-skewed.

histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 2.6 shows a histogram of the birth weights
of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/publications/

jse/jse_data_archive.htm). This data appears to be somewhat left-skewed, as
birth weights can be a lot smaller than the mean, but tend not to be much larger
than the mean.

Skewed data is often, but not always, the result of constraints. For example,
good obstetrical practice tries to ensure that very large birth weights are rare (birth
is typically induced before the baby gets too heavy), but it may be quite hard to
avoid some small birth weights. This could could skew birth weights to the left
(because large babies will get born, but will not be as heavy as they could be if
obstetricians had not interfered). Similarly, income data can be skewed to the right
by the fact that income is always positive. Test mark data is often skewed —
whether to right or left depends on the circumstances — by the fact that there is
a largest possible mark and a smallest possible mark.

2.4.2 Standard Coordinates and Normal Data

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to

Section 2.4 Plots and Summaries 28

compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.

Definition: 2.8 Standard coordinates

Assume we have a dataset {x} of N data items, x1, . . . , xN . We repre-
sent these data items in standard coordinates by computing

x̂i =
(xi −mean ({x}))

std (x)
.

We write {x̂} for a dataset that happens to be in standard coordinates.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂}) = 0.

We also have that
std (x̂) = 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. Many completely different
datasets produce a histogram that, in standard coordinates, has a very specific
appearance. It is symmetric, unimodal; it looks like a narrow bump. If there were
enough data points and the histogram boxes were small enough, the curve would
look like the curve in figure 2.7. This phenomenon is so important that data of this
form has a special name.

Section 2.4 Plots and Summaries 29

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5
The Standard Normal Curve

−6 −4 −2 0 2 4 6
0

1

2

3

4

5
Volumes of oysters, standard coordinates

−6 −4 −2 0 2 4 6
0

10

20

30

40

50

60
Human heights, standard coordinates

−6 −4 −2 0 2 4 6
0

10

20

30

40

50

60
Human weights, standard coordinates

FIGURE 2.7: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean. Many quite different data sets have histograms that are similar to the
normal curve; I show three such datasets here.

Definition: 2.9 Standard normal data

Data is standard normal data if, when we have a great deal of data,
the histogram is a close approximation to the standard normal curve.
This curve is given by

y(x) =
1√
2pi

e(−x2/2)

(which is shown in figure 2.7).

Section 2.4 Plots and Summaries 30

Definition: 2.10 Normal data

Data is normal data if, when we subtract the mean and divide by
the standard deviation (i.e. compute standard coordinates), it becomes
standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data. Figure 2.7 shows a diverse variety of data sets, plotted
as histograms in standard coordinates. These include: the volumes of 30 oysters
(from http://www.amstat.org/publications/jse/jse_data_archive.htm; look
for 30oysters.dat.txt); human heights (from http://www2.stetson.edu/~jrasp/

data.htm; look for bodyfat.xls, with two outliers removed); and human weights
(from http://www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls, with
two outliers removed).

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal. For example, if I exclude
two outliers from the height and weight data from http://www2.stetson.edu/

~jrasp/data.htm, the data looks pretty close to normal.

2.4.3 Boxplots

It is usually hard to compare multiple histograms by eye. One problem with com-
paring histograms is the amount of space they take up on a plot, because each
histogram involves multiple vertical bars. This means it is hard to plot multiple
overlapping histograms cleanly. If you plot each one on a separate figure, you have
to handle a large number of separate figures; either you print them too small to see
enough detail, or you have to keep flipping over pages.

Section 2.4 Plots and Summaries 31

26

27

28

29

30

31

Dominos EagleBoys

Box

q

q

1

3

In
terq

u
artile ran

g
eMedian

Whisker

Outlier

FIGURE 2.8: A boxplot showing the box, the median, the whiskers and two outliers.
Notice that we can compare the two datasets rather easily; the next section explains
the comparison.

A boxplot is a way to plot data that simplifies comparison. A boxplot dis-
plays a dataset as a vertical picture. There is a vertical box whose height corre-
sponds to the interquartile range of the data (the width is just to make the figure
easy to interpret). Then there is a horizontal line for the median; and the behavior
of the rest of the data is indicated with whiskers and/or outlier markers. This
means that each dataset makes is represented by a vertical structure, making it
easy to show multiple datasets on one plot and interpret the plot (Figure 2.8).

To build a boxplot, we first plot a box that runs from the first to the third
quartile. We then show the median with a horizontal line. We then decide which
data items should be outliers. A variety of rules are possible; for the plots I show, I
used the rule that data items that are larger than q3 + 1.5(q3 − q1) or smaller than
q1 − 1.5(q3 − q1), are outliers. This criterion looks for data items that are more
than one and a half interquartile ranges above the third quartile, or more than one
and a half interquartile ranges below the first quartile.

Once we have identified outliers, we plot these with a special symbol (crosses
in the plots I show). We then plot whiskers, which show the range of non-outlier
data. We draw a whisker from q1 to the smallest data item that is not an outlier,
and from q3 to the largest data item that is not an outlier. While all this sounds

Section 2.5 Whose is bigger? Investigating Australian Pizzas 32

24 26 28 30 32
0

10

20

30

40
Histogram of pizza diameters, in inches

FIGURE 2.9: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.

complicated, any reasonable programming environment will have a function that
will do it for you. Figure 2.8 shows an example boxplot. Notice that the rich
graphical structure means it is quite straightforward to compare two histograms.

2.5 WHOSE IS BIGGER? INVESTIGATING AUSTRALIAN PIZZAS

At http://www.amstat.org/publications/jse/jse_data_archive.htm), you will
find a dataset giving the diameter of pizzas, measured in Australia (search for the
word “pizza”). This website also gives the backstory for this dataset. Apparently,
EagleBoys pizza claims that their pizzas are always bigger than Dominos pizzas,
and published a set of measurements to support this claim (the measurements were
available at http://www.eagleboys.com.au/realsizepizza as of Feb 2012, but
seem not to be there anymore).

Whose pizzas are bigger? and why? A histogram of all the pizza sizes appears
in figure 2.9. We would not expect every pizza produced by a restaurant to have
exactly the same diameter, but the diameters are probably pretty close to one
another, and pretty close to some standard value. This would suggest that we’d
expect to see a histogram which looks like a single, rather narrow, bump about a
mean. This is not what we see in figure 2.9 — instead, there are two bumps, which
suggests two populations of pizzas. This isn’t particularly surprising, because we
know that some pizzas come from EagleBoys and some from Dominos.

If you look more closely at the data in the dataset, you will notice that each
data item is tagged with the company it comes from. We can now easily plot
conditional histograms, conditioning on the company that the pizza came from.
These appear in figure 2.10. Notice that EagleBoys pizzas seem to follow the pattern
we expect — the diameters are clustered tightly around one value — but Dominos
pizzas do not seem to be like that. This is reflected in a boxplot (figure 2.11), which
shows the range of Dominos pizza sizes is surprisingly large, and that EagleBoys
pizza sizes have several large outliers. There is more to understand about this data.
The dataset contains labels for the type of crust and the type of topping — perhaps

Section 2.5 Whose is bigger? Investigating Australian Pizzas 33

26 28 30 32
0

5

10

15

20

25

30
Dominos pizza diameters, in inches

26 28 30 32
0

5

10

15

20

25

30
EagleBoys pizza diameters, in inches

FIGURE 2.10: On the left, the class-conditional histogram of Dominos pizza di-
ameters from the pizza data set; on the right, the class-conditional histogram of
EagleBoys pizza diameters. Notice that EagleBoys pizzas seem to follow the pat-
tern we expect — the diameters are clustered tightly around a mean, and there is a
small standard deviation — but Dominos pizzas do not seem to be like that. There
is more to understand about this data.

26

27

28

29

30

31

Dominos EagleBoys

Box plots of pizzas by maker

FIGURE 2.11: Boxplots of the pizza data, comparing EagleBoys and Dominos pizza.
There are several curiosities here: why is the range for Dominos so large (25.5-29)?
EagleBoys has a smaller range, but has several substantial outliers; why? One would
expect pizza manufacturers to try and control diameter fairly closely, because pizzas
that are too small present risks (annoying customers; publicity; hostile advertising)
and pizzas that are too large should affect profits.

these properties affect the size of the pizza?
EagleBoys produces DeepPan, MidCrust and ThinCrust pizzas, and Dominos

produces DeepPan, ClassicCrust and ThinNCrispy pizzas. This may have some-
thing to do with the observed patterns, but comparing six histograms by eye is
unattractive. A boxplot is the right way to compare these cases (figure 2.12). The

Section 2.5 Whose is bigger? Investigating Australian Pizzas 34

26

27

28

29

30

31

D−ThinNCrispy D−DeepPan D−ClassicCrust E−MidCrust E−DeepPan E−ThinCrust

Box plots of pizzas by maker and type

FIGURE 2.12: Boxplots for the pizza data, broken out by type (thin crust, etc.).

boxplot gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a lot
like the Dominos thin crust. There are outliers, but few for each type.

Another possibility is that the variation in size is explained by the topping.
We can compare types and toppings by producing a set of conditional boxplots (i.e.
the diameters for each type and each topping). This leads to rather a lot of boxes
(figure 2.13), but they’re still easy to compare by eye. The main difficulty is that
the labels on the plot have to be shortened. I made labels using the first letter
from the manufacturer (“D” or “E”); the first letter from the crust type (previous
paragraph); and the first and last letter of the topping. Toppings for Dominos are:
Hawaiian; Supreme; BBQMeatlovers. For EagleBoys, toppings are: Hawaiian; Su-
perSupremo; and BBQMeatlovers. This gives the labels: ’DCBs’; (Dominos; Clas-
sicCrust; BBQMeatlovers); ’DCHn’; ’DCSe’; ’DDBs’; ’DDHn’; ’DDSe’; ’DTBs’;
’DTHn’; ’DTSe’; ’EDBs’; ’EDHn’; ’EDSo’; ’EMBs’; ’EMHn’; ’EMSo’; ’ETBs’;
’ETHn’; ’ETSo’. Figure 2.13 suggests that the topping isn’t what is important, but
the crust (group the boxplots by eye).

Section 2.5 Whose is bigger? Investigating Australian Pizzas 35

26

27

28

29

30

31

DCBsDCHnDCSeDDBsDDHnDDSeDTBsDTHnDTSeEDBsEDHnEDSoEMBsEMHnEMSoETBsETHnETSo

Box plots of pizzas by maker, type, and topping

EagleBoysDominos

ClassicCrust DeepPan

ThinCrust

ThinCrust

MidCrust

DeepPan

FIGURE 2.13: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). I have separated Dominos from Eagleboys
with a vertical line, and grouped each crust type with a box. It looks as though the
issue is not the type of topping, but the crust. Eagleboys seems to have tighter
control over the size of the final pizza.

What could be going on here? One possible explanation is that Eagleboys
have tighter control over the size of the final pizza. One way this could happen is
that all EagleBoys pizzas start the same size and shrink the same amount in baking,
whereas all Dominos pizzas start a standard diameter, but different Dominos crusts
shrink differently in baking. Another way is that Dominos makes different size
crusts for different types, but that the cooks sometimes get confused. Yet another
possibility is that Dominos controls portions by the mass of dough (so thin crust
diameters tend to be larger), but Eagleboys controls by the diameter of the crust.

You should notice that this is more than just a fun story. If you were a manager
at a pizza firm, you’d need to make choices about how to control costs. Labor costs,
rent, and portion control (i.e. how much pizza, topping, etc. a customer gets for
their money) are the main thing to worry about. If the same kind of pizza has a
wide range of diameters, you have a problem, because some customers are getting
too much (which affects your profit) or too little (which means they might call
someone else). But making more regular pizzas might require more skilled (and so

Section 2.6 What You Must Remember 36

more expensive) labor. The fact that Dominos and EagleBoys seem to be following
different strategies successfully suggests that more than one strategy might work.
But you can’t choose if you don’t know what’s happening. As I said at the start,
“what’s going on here?” is perhaps the single most useful question anyone can ask.

2.6 WHAT YOU MUST REMEMBER

You should be able to:

• Plot a bar chart for a dataset.

• Plot a histogram for a dataset.

• Tell whether the histogram is skewed or not, and in which direction.

• Plot a box plot for one or several datasets.

• Interpret a box plot.

You should remember:

• The definition and properties of the mean.

• The definition and properties of the standard deviation.

• The definition and properties of the variance.

• The definition and properties of the median.

• The definition and properties of the interquartile range.

PROBLEMS

2.1. Show that mean ({kx}) = kmean ({x}) by substituting into the definition.
2.2. Show that mean ({x+ c}) = mean ({x})+ c by substituting into the definition.

2.3. Show that
∑N

i=1(xi −mean ({x})) = 0 by substituting into the definition.
2.4. Show that std (x+ c) = std (x) by substituting into the definition (you’ll need

to recall the properties of the mean to do this).
2.5. Show that std (kx) = kstd (x) by substituting into the definition (you’ll need

to recall the properties of the mean to do this).
2.6. Show that median ({x+ c}) = median ({x})+ c by substituting into the defini-

tion.
2.7. Show that median ({kx}) = kmedian ({x}) by substituting into the definition.
2.8. Show that iqr{x+ c} = iqr{x} by substituting into the definition.
2.9. Show that iqr{kx} = kiqr{x} by substituting into the definition.

PROGRAMMING EXERCISES

2.10. You can find a data set showing the number of barrels of oil produced, per
year for the years 1880-1984 at http://lib.stat.cmu.edu/DASL/Datafiles/
Oilproduction.html. Is a mean a useful summary of this dataset? Why?

Section 2.6 What You Must Remember 37

2.11. You can find a dataset giving the cost (in 1976 US dollars), number of megawatts,
and year of construction of a set of nuclear power plants at http://lib.stat.
cmu.edu/DASL/Datafiles/NuclearPlants.html.
(a) Are there outliers in this data?
(b) What is the mean cost of a power plant? What is the standard deviation?
(c) What is the mean cost per megawatt? What is the standard deviation?
(d) Plot a histogram of the cost per megawatt. Is it skewed? Why?

2.12. You can find a dataset giving the sodium content and calorie content of three
types of hot dog at http://lib.stat.cmu.edu/DASL/Datafiles/Hotdogs.html.
The types are Beef, Poultry, and Meat (a rather disturbingly vague label). Use
class-conditional histograms to compare these three types of hot dog with re-
spect to sodium content and calories.

2.13. You will find a dataset giving (among other things) the number of 3 or more
syllable words in advertising copy appearing in magazines at http://lib.

stat.cmu.edu/DASL/Datafiles/magadsdat.html. The magazines are grouped
by the education level of their readers; the groups are 1, 2, and 3 (the variable
is called GRP in the data).
(a) Use a boxplot to compare the number of three or more syllable words for

the ads in magazines in these three groups. What do you see?
(b) Use a boxplot to compare the number of sentences appearing in the ads

in magazines in these three groups. What do you see?

C H A P T E R 3

Intermezzo - Programming Tools

Matlab is a programming environment widely used in numerical analysis and
computer vision circles, among other. I will use Matlab in examples here, because
I’m fairly fluent in Matlab, and give some guidelines. Many universities, including
UIUC, have free student licenses for Matlab, and there are numerous reference
books and tutorials you can look at for details of syntax, etc. Matlab’s focuses
on representations of vectors and matrices. The syntax is rather like Fortran,
except that there are some special matrix and vector operations. Fluent Matlab
programmers replace iterations with these operations to get faster code; some people
are very good at this sort of trick.

An alternative widely used in statistical circles is R, which is an open-source
language rather like S (a paid license statistics package). I didn’t know much R at
start of writing, and haven’t managed to pick up the kind of fluency required to
prepare figures in it, so I won’t show R code here. But you should be aware of it
as an alternative.

If you want to know what a Matlab command does, you can use help or doc.
For example, you could type doc sum. In this chapter, I’ll show code I used to
make some of the figures and examples in chapter one, to give you some examples
for Matlab code.

Listing 3.1 shows how I made the bar chart of genders in Figure 2.1. There
are some points to notice here. I cut-and-pasted the data from the web page
(http://lib.stat.cmu.edu/DASL/Datafiles/PopularKids.html), put the result
into a spreadsheet to make a .xls file, saved that, then read it into Matlab using
xlsread. I did this because it meant I didn’t have to write any kind of file reader.
You can learn more about xlsread by doing doc xlsread. It isn’t perfect — or,
at least, the one on my Mac isn’t — because it doesn’t like some kinds of format,
and it seems not to like very long files. It was enough for this purpose. It produces
a cell array (doc cell) for the text fields, and an ordinary array for the numeric
fields. The cell array is an array whose entries can contain objects like strings,
etc. You will find the question of how to get a dataset from the form in which you
find it into a form you want in your programming environment to be a persistent
nuisance. It’s usually approached with quick-and-dirty solutions like this one.

You should have noticed one nice thing. Once I’ve actually gotten my data
into a reasonable form, making the bar chart is easy (bar does the trick). It’s more
trouble to get the title on the figure and the fonts right, etc. than to make the
figure. This is true for histograms, as well (listing 2.2). In this case, the data was
just a vector, so I cut it out from the web page and stuck it into the code. Look
at doc hist, and notice you can change the number of bars and also the centers of
the bars if you wish.

38

39

I have listed useful commands for computing summaries below. To give you
an example of normalizing data, there is listing 3.3.

Matlab will do boxplots, too. In listing 3.4, I show the Matlab code I used to
make Figure 2.11.

Boxplots can get pretty elaborate, and putting the right marker in the right
place gets interesting. I show the code I used to make Figure 2.13, which required
a certain amount of fooling around with strings to get the right marker and put it
in the right place.
Some useful commands:

• bar makes a bar chart.

• hist makes a histogram.

• xlsread will read many spreadsheet files.

• mean computes the mean of a dataset represented as a column vector. If you
give it an array, it will compute the mean of each column.

• std computes the standard deviation of a dataset represented as a column
vector. If you give it an array, it will compute the standard deviation of each
column.

• var computes the variance of a dataset represented as a column vector. If
you give it an array, it will compute the variance of each column.

• median computes the median of a dataset represented as a column vector. If
you give it an array, it will compute the median of each column.

• prctile can compute a set of percentiles for a dataset represented as a column
vector. If you give it an array, it will compute those percentiles for each
column. Note it takes two argument; you should do doc prctile.

• boxplot will produce a boxplot; there are many arguments and tricks, so you
should do doc boxplot.

40

Listing 3.1: Matlab code used to make the gender bar chart in figure 2.1

cd (’ ˜/Current/ cour s e s /ProbCourse/SomeData/MatlabCode ’) ;
[num, txt]= x l s r e ad (’ . . / Datasets / schoo ldata . x l s ’) ;
%
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’)
set (0 , ’ DefaultAxesFontSize ’ , 28)
% Change d e f a u l t t e x t f on t s f o r f i g u r e s
% so they p r in t w e l l
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’)
set (0 , ’ DefaultTextFontS ize ’ , 28)
wv=zeros (s ize (num, 1) , 1) ;
wv2=zeros (s ize (num, 1) , 1) ;
for i =1: s ize (num, 1)

i f strcmp (txt (i , 7) , ’ Spor ts ’)
wv(i)=1;

e l s e i f strcmp (txt (i , 7) , ’ Grades ’)
wv(i)=2;

e l s e i f strcmp (txt (i , 7) , ’ Popular ’)
wv(i)=3;

end
i f strcmp (txt (i , 1) , ’ boy ’)

wv2(i)=1;
e l s e i f strcmp (txt (i , 1) , ’ g i r l ’)

wv2(i)=2;
end

end
% r e a l l y s t u p i d parser
genders =[sum(wv2==1), sum(wv2==2)];
% sum knows what to do with a vec t or
figure (1) ; % se t s the window in which the f i g u r e
% w i l l be put
c l f % c l e a r s the f i g u r e
bar (genders)
set (gca , ’ XTick ’ , [1 , 2]) ;
set (gca , ’ XTickLabel ’ , { ’ boy ’ , ’ g i r l ’ }) ;
t i t l e (’Number o f c h i l d r en o f each gender ’) ;
figure (1) ;
% br in g s i t to the f r on t
%pr in t −depsc2 . . / Figures / ch i l d g ende r ba r . eps
% t h i s makes an eps f i g u r e and put s in the r i g h t
% p lace

41

Listing 3.2: Matlab code used to make the cheese histogram in figure 2.2

chee s e s =[12 .3 , 20 . 9 , 39 , 47 . 9 , 5 . 6 , 25 . 9 , . . .
3 7 . 3 , 21 . 9 , 18 . 1 , 21 , 34 . 9 , 57 . 2 , 0 . 7 , . . .
2 5 . 9 , 54 . 9 , 40 .9 , 15 . 9 , 6 . 4 , 18 , 38 . 9 , . . .
14 , 15 . 2 , 32 , 56 . 7 , 16 . 8 , 11 . 6 , 26 . 5 , . . .
0 . 7 , 13 .4 , 5 . 5] ;

figure (2) ;
hist (cheeses , [5 , 15 , 25 , 35 , 45 , 5 5])
figure (2) ;
axis ([0 , 70 , 0 , 1 5])
ylabel (’Number o f data items ’) ;
xlabel (’ Cheese goodness , in cheese goodness un i t s ’) ;
t i t l e (’ Histogram o f cheese goodness s co r e f o r 30 chee s e s ’) ;
set (gca , ’ XTick ’ , [0 : 7] ∗ 1 0) ;
set (gca , ’ YTick ’ , [0 : 2 : 1 5]) ;
figure (2) ;

Listing 3.3: Matlab code used to make the normalized oyster volume histogram in
figure 2.7

set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’)
set (0 , ’ DefaultAxesFontSize ’ , 28)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’)
set (0 , ’ DefaultTextFontS ize ’ , 28)
cd (’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’) ;
% t h i s i s where I keep the f i l e , bu t you may have i t somewhere e l s e
[num2 , txt , raw]= x l s r e ad (’ 30 oy s t e r sda ta . x l s ’) ;
% index weight volume
wdat=num2 (: , 4) ; % t h i s i s the volume f i e l d
wm=mean(wdat) ;
wsd=std (wdat) ;
figure (1) ;
hist ((wdat−wm)/wsd) ; figure (1)
axis ([−6 6 0 5])
% se t s the axes o f the p l o t
t i t l e (’ Volumes o f oy s t e r s , standard coo rd ina te s ’) ;
print −depsc2 noys t e r s . eps

42

Listing 3.4: Matlab code used to make the boxplot in figure 2.11

% pi z z a s i z e data
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’)
set (0 , ’ DefaultAxesFontSize ’ , 11)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’)
set (0 , ’ DefaultTextFontS ize ’ , 11)
cd (’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’) ;
[num, txt , raw]= x l s r e ad (’ c l e a np i z z a s i z e . x l s ’) ;
ndat=s ize (num, 1) ;
figure (1) ; boxplot (num(: , 5) , txt (: , 2)) ; figure (1)
t i t l e (’Box p l o t s o f p i z z a s by maker ’) ;
print −depsc2 pmakerboxes . eps

Listing 3.5: Matlab code used to make the boxplot in figure 2.13

% pi z z a s i z e data
set (0 , ’ DefaultAxesFontName ’ , ’ Times New Roman ’)
set (0 , ’ DefaultAxesFontSize ’ , 11)
% Change d e f a u l t t e x t f on t s .
set (0 , ’ DefaultTextFontname ’ , ’ Times New Roman ’)
set (0 , ’ DefaultTextFontS ize ’ , 11)
cd (’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’) ;
[num, txt , raw]= x l s r e ad (’ c l e a np i z z a s i z e . x l s ’) ;
ndat=s ize (num, 1) ;
t2=txt (: , 1) ;
for i =1:ndat

foo=txt (i , 2) ; bar=foo {1} ; c1=bar (1) ;
% th i s g e t s a l e t t e r f o r the maker
foo=txt (i , 3) ; bar=foo {1} ; c2=bar (1) ;
% th i s g e t s a l e t t e r f o r the c ru s t
foo=txt (i , 4) ; bar=foo {1} ; c3=bar (1) ; c4=bar (end) ;
% th i s g e t s f i r s t , l a s t l e t t e r f o r the topping
t2 (i)={ s t r c a t (c1 , c2 , c3 , c4) } ;

end
figure (2) ; boxplot (num(: , 5) , t2 , ’ grouporder ’ , { ’DCBs ’ , ’DCHn ’ , . . .

’DCSe ’ , ’DDBs ’ , ’DDHn’ , ’DDSe ’ , ’DTBs ’ , ’DTHn ’ , ’DTSe ’ , . . .
’EDBs ’ , ’EDHn ’ , ’EDSo ’ , ’EMBs ’ , ’EMHn’ , ’EMSo ’ , ’ETBs ’ , . . .
’ETHn ’ , ’ETSo ’ }) ; figure (2) ;

t i t l e (’Box p l o t s o f p i z z a s by maker , type , and topping ’) ;

C H A P T E R 4

Looking at Relationships

We think of a dataset as a collection of d-tuples (a d-tuple is an ordered list of
d elements). For example, the Chase and Dunner dataset had entries for Gender;
Grade; Age; Race; Urban/Rural; School; Goals; Grades; Sports; Looks; and Money
(so it consisted of 11-tuples). The previous chapter explored methods to visualize
and summarize a set of values obtained by extracting a single element from each
tuple. For example, I could visualize the heights or the weights of a population (as
in Figure 2.7). But I could say nothing about the relationship between the height
and weight. In this chapter, we will look at methods to visualize and summarize
the relationships between pairs of elements of a dataset.

4.1 PLOTTING 2D DATA

We take a dataset, choose two different entries, and extract the corresponding
elements from each tuple. The result is a dataset consisting of 2-tuples, and we
think of this as a two dimensional dataset. The first step is to plot this dataset in a
way that reveals relationships. The topic of how best to plot data fills many books,
and we can only scratch the surface here. Categorical data can be particularly
tricky, because there are a variety of choices we can make, and the usefulness of
each tends to depend on the dataset and to some extent on one’s cleverness in
graphic design (section 4.1.1).

For some continuous data, we can plot the one entry as a function of the other
(so, for example, our tuples might consist of the date and the number of robberies;
or the year and the price of lynx pelts; and so on, section 4.1.2).

Mostly, we use a simple device, called a scatter plot. Using and thinking about
scatter plots will reveal a great deal about the relationships between our data items
(section 4.1.3).

4.1.1 Categorical Data, Counts, and Charts

Categorical data is a bit special. Assume we have a dataset with several categorical
descriptions of each data item. One way to plot this data is to think of it as belong-
ing to a richer set of categories. Assume the dataset has categorical descriptions,
which are not ordinal. Then we can construct a new set of categories by looking
at each of the cases for each of the descriptions. For example, in the Chase and
Dunner data of table 2.2, our new categories would be: “boy-sports”; “girl-sports”;
“boy-popular”; “girl-popular”; “boy-grades”; and “girl-grades”. A large set of cat-
egories like this can result in a poor bar chart, though, because there may be too
many bars to group the bars successfully. Figure 4.1 shows such a bar chart. Notice
that it is hard to group categories by eye to compare; for example, you can see that
slightly more girls think grades are important than boys do, but to do so you need
to compare two bars that are separated by two other bars. An alternative is a pie

43

Section 4.1 Plotting 2D Data 44

b−Pb−G b−S g−Sg−G g−P
0

50

100

150
boy−Popular

boy−Grades

boy−Sports
girl−Sports

girl−Grades

girl−Popular

Number of each gender choosing each goal

FIGURE 4.1: I sorted the children in the Chase and Dunner study into six categories
(two genders by three goals), and counted the number of children that fell into each
cell. I then produced the bar chart on the left, which shows the number of children
of each gender, selecting each goal. On the right, a pie chart of this information.
I have organized the pie chart so it is easy to compare boys and girls by eye — start
at the top; going down on the left side are boy goals, and on the right side are girl
goals. Comparing the size of the corresponding wedges allows you to tell what goals
boys (resp. girls) identify with more or less often.

chart, where a circle is divided into sections whose angle is proportional to the
size of the data item. You can think of the circle as a pie, and each section as a
slice of pie. Figure 4.1 shows a pie chart, where each section is proportional to the
number of students in its category. In this case, I’ve used my judgement to lay the
categories out in a way that makes comparisons easy. I’m not aware of any tight
algorithm for doing this, though.

Pie charts have problems, because it is hard to judge small differences in area
accurately by eye. For example, from the pie chart in figure 4.1, it’s hard to tell
that the “boy-sports” category is slightly bigger than the “boy-popular” category
(try it; check using the bar chart). For either kind of chart, it is quite important
to think about what you plot. For example, the plot of figure 4.1 shows the total
number of respondents, and if you refer to figure 2.1, you will notice that there
are slightly more girls in the study. Is the percentage of boys who think grades are
important smaller (or larger) than the percentage of girls who think so? you can’t
tell from these plots, and you’d have to plot the percentages instead.

An alternative to a pie chart that is very useful for two dimensional data is
a heat map. This is a method of displaying a matrix as an image. Each entry of
the matrix is mapped to a color, and the matrix is represented as an image. For
the Chase and Dunner study, I constructed a matrix where each row corresponds
to a choice of “sports”, “grades”, or “popular”, and each column corresponds to a
choice of “boy” or “girl”. Each entry contains the count of data items of that type.
Zero values are represented as white; the largest values as red; and as the value
increases, we use an increasingly saturated pink. This plot is shown in figure 4.2

If the categorical data is ordinal, the ordering offers some hints for making
a good plot. For example, imagine we are building a user interface. We build an

Section 4.1 Plotting 2D Data 45

bo
y

gir
l

Sports

Grades

Popular
 40

 60

 80

100

120

FIGURE 4.2: A heat map of the Chase and Dunner data. The color of each cell
corresponds to the count of the number of elements of that type. The colorbar at
the side gives the correspondence between color and count. You can see at a glance
that the number of boys and girls who prefer grades is about the same; that about
the same number of boys prefer sports and popularity, with sports showing a mild
lead; and that more girls prefer popularity to sports.

-2 -1 0 1 2
-2 24 5 0 0 1
-1 6 12 3 0 0
0 2 4 13 6 0
1 0 0 3 13 2
2 0 0 0 1 5

TABLE 4.1: I simulated data representing user evaluations of a user interface.
Each cell in the table on the left contains the count of users rating “ease of use”
(horizontal, on a scale of -2 -very bad- to 2 -very good) vs. “enjoyability” (vertical,
same scale). Users who found the interface hard to use did not like using it either.
While this data is categorical, it’s also ordinal, so that the order of the cells is
determined. It wouldn’t make sense, for example, to reorder the columns of the
table or the rows of the table.

initial version, and collect some users, asking each to rate the interface on scales for
“ease of use” (-2, -1, 0, 1, 2, running from bad to good) and “enjoyability” (again,
-2, -1, 0, 1, 2, running from bad to good). It is natural to build a 5x5 table, where
each cell represents a pair of “ease of use” and “enjoyability” values. We then count
the number of users in each cell, and build graphical representations of this table.
One natural representation is a 3D bar chart, where each bar sits on its cell in
the 2D table, and the height of the bars is given by the number of elements in the
cell. Table 4.1 shows a table and figure 4.3 shows a 3D bar chart for some simulated
data. The main difficulty with a 3D bar chart is that some bars are hidden behind
others. This is a regular nuisance. You can improve things by using an interactive
tool to rotate the chart to get a nice view, but this doesn’t always work. Heatmaps
don’t suffer from this problem (Figure 4.3), another reason they are a good choice.

Section 4.1 Plotting 2D Data 46

−2 −1 0 1 2

−2
−1

0
1

2

0

10

20

30

Ease of use

Counts of user responses for a user interface

Enjoyability Ease of use

E
nj

oy
ab

ili
ty

−2 −1 0 1 2

−2

−1

0

1

2
 0

 5

10

15

20

FIGURE 4.3: On the left, a 3D bar chart of the data. The height of each bar is given
by the number of users in each cell. This figure immediately reveals that users
who found the interface hard to use did not like using it either. However, some of
the bars at the back are hidden, so some structure might be hard to infer. On the
right, a heat map of this data. Again, this figure immediately reveals that users
who found the interface hard to use did not like using it either. It’s more apparent
that everyone disliked the interface, though, and it’s clear that there is no important
hidden structure.

4.1.2 Series

Sometimes one component of a dataset gives a natural ordering to the data. For
example, we might have a dataset giving the maximum rainfall for each day of the
year. We could record this either by using a two-dimensional representation, where
one dimension is the number of the day and the other is the temperature, or with a
convention where the i’th data item is the rainfall on the i’th day. For example, at
http://lib.stat.cmu.edu/DASL/Datafiles/timeseriesdat.html, you can find
four datasets indexed in this way. It is natural to plot data like this as a function
of time. From this dataset, I extracted data giving the number of burglaries each
month in a Chicago suburb, Hyde Park. I have plotted part this data in Figure 4.4
(I left out the data to do with treatment effects). It is natural to plot a graph of
the burglaries as a function of time (in this case, the number of the month). The
plot shows each data point explicitly. I also told the plotting software to draw
lines joining data points, because burglaries do not all happen on a specific day.
The lines suggest, reasonably enough, the rate at which burglaries are happening
between data points.

As another example, at http://lib.stat.cmu.edu/datasets/Andrews/ you
can find a dataset that records the number of lynx pelts traded to the Hudson’s Bay
company and the price paid for each pelt. This version of the dataset appeared first
in table 3.2 of Data: a Collection of Problems from many Fields for the Student
and Research Worker by D.F. Andrews and A.M. Herzberg, published by Springer
in 1985. I have plotted it in figure 4.4. The dataset is famous, because it shows
a periodic behavior in the number of pelts (which is a good proxy for the number

Section 4.1 Plotting 2D Data 47

0 10 20 30 40
0

20

40

60

80

100

month

nu
m

be
r

of
 b

ur
gl

ar
ie

s
Burglaries each month in Hyde Park

1840 1860 1880 1900 1920
0

500

1000

1500

year

Lynx pelts traded at Hudson Bay and price

number of pelts/100
price in pence

FIGURE 4.4: Left, the number of burglaries in Hyde Park, by month. Right, a plot
of the number of lynx pelts traded at Hudson Bay and of the price paid per pelt, as
a function of the year. Notice the scale, and the legend box (the number of pelts is
scaled by 100).

FIGURE 4.5: Snow’s scatter plot of cholera deaths on the left. Each cholera death
is plotted as a small bar on the house in which the bar occurred (for example, the
black arrow points to one stack of these bars, indicating many deaths, in the detail
on the right). Notice the fairly clear pattern of many deaths close to the Broad
street pump (grey arrow in the detail), and fewer deaths further away (where it was
harder to get water from the pump).

of lynx), which is interpreted as a result of predator-prey interactions. Lynx eat
rabbits. When there are many rabbits, lynx kittens thrive, and soon there will
be many lynx; but then they eat most of the rabbits, and starve, at which point

Section 4.1 Plotting 2D Data 48

FIGURE 4.6: Left, a scatter plot of arsenic levels in US groundwater, prepared by
the US Geological Survey (you can find the data at http:// water.usgs. gov/

GIS/metadata/usgswrd/XML/ arsenic_map. xml . Here the shape and color of
each marker shows the amount of arsenic, and the spatial distribution of the mark-
ers shows where the wells were sampled. Right, the usage of Nitrogen (a com-
ponent of fertilizer) by US county in 1991, prepared by the US Geological Survey
(you can find the data at http:// water.usgs.gov/ GIS/ metadata/usgswrd/

XML/nit91.xml). In this variant of a scatter plot (which usually takes specialized
software to prepare) one fills each region with a color indicating the data in that
region.

the rabbit population rockets. You should also notice that after about 1900, prices
seem to have gone up rather quickly. I don’t know why this is. There is also some
suggestion, as there should be, that prices are low when there are many pelts, and
high when there are few.

4.1.3 Scatter Plots for Spatial Data

It isn’t always natural to plot data as a function. For example, in a dataset con-
taining the temperature and blood pressure of a set of patients, there is no reason
to believe that temperature is a function of blood pressure, or the other way round.
Two people could have the same temperature, and different blood pressures, or
vice-versa. As another example, we could be interested in what causes people to
die of cholera. We have data indicating where each person died in a particular
outbreak. It isn’t helpful to try and plot such data as a function.

The scatter plot is a powerful way to deal with this situation. In the first
instance, assume that our data points actually describe points on the a real map.
Then, to make a scatter plot, we make a mark on the map at a place indicated by
each data point. What the mark looks like, and how we place it, depends on the
particular dataset, what we are looking for, how much we are willing to work with
complex tools, and our sense of graphic design.

Figure 4.5 is an extremely famous scatter plot, due to John Snow. Snow —
one of the founders of epidemiology — used a scatter plot to reason about a cholera
outbreak centered on the Broad Street pump in London in 1854. At that time,

Section 4.1 Plotting 2D Data 49

96 98 100 102

60

70

80

90

1 1
1

1

1
1

1

1

111
1

1

1

11

1
1
1

1

1

1

1
1
1

1

1
1

1
1

1

1

11
1

11

1

1
1
1

1
1

1
1

11

1

1
1

1

1

11
1
1
1

1
1
1

1

1

1

1

1

2

2

2

2
2

2
2

2

2

2

2

2
22

2
2

2

2

2

2

2

2

22

2
2

2

22
22
2

22

222
22

2

2

2

2

22

2

2

2

2

2

2
2

2

2
2
22

2
2

2
2

2
22 2

Body temperature

H
ea

rt
 r

at
e

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 11
1
11
1

1
111
1
1
1
11
1
1
1

1

1
1

111
1
11
11

1
1
111
11

1

1
11

11

11
11
1

1
1

1

1
111111

11

1

1

1
1
1

2
2

2
22
22

2

2

2

2
222
22
2
2
2

2
2
2
22
22

2

22222
22
22222
2
2
2

2
22

2

2
2

2
2

22
2
22
22
22
22
2 22 2

Normalized body temperature

N
or

m
al

iz
ed

 h
ea

rt
 r

at
e

FIGURE 4.7: A scatter plot of body temperature against heart rate, from the dataset
at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I have sepa-
rated the two genders by plotting a different symbol for each (though I don’t know
which gender is indicated by which letter); if you view this in color, the differences
in color makes for a greater separation of the scatter. This picture suggests, but
doesn’t conclusively establish, that there isn’t much dependence between tempera-
ture and heart rate, and any dependence between temperature and heart rate isn’t
affected by gender.

the mechanism that causes cholera was not known. Snow plotted cholera deaths as
little bars (more bars, more deaths) on the location of the house where the death
occurred. More bars means more deaths, fewer bars means fewer deaths. There
are more bars per block close to the pump, and few far away. This plot offers quite
strong evidence of an association between the pump and death from cholera. Snow
used this scatter plot as evidence that cholera was associated with water, and that
the Broad Street pump was the source of the tainted water.

Figure 4.6 shows a scatter plot of arsenic levels in groundwater for the United
States, prepared by the US Geological Survey. The data set was collected by
Focazio and others in 2000; by Welch and others in 2000; and then updated by
Ryker 2001. It can be found at http://water.usgs.gov/GIS/metadata/usgswrd/
XML/arsenic_map.xml. One variant of a scatter plot that is particularly useful
for geographic data occurs when one fills regions on a map with different colors,
following the data in that region. Figure 4.6 shows the nitrogen usage by US county
in 1991; again, this figure was prepared by the US Geological Survey.

4.1.4 Exposing Relationships with Scatter Plots

Scatter plots are natural for geographic data, but a scatter plot is a useful, simple
tool for ferreting out associations in other kinds of data as well. Now we need
some notation. Assume we have a dataset {x} of N data items, x1, . . . , xN . Each
data item is a d dimensional vector (so its components are numbers). We wish to
investigate the relationship between two components of the dataset. For example,
we might be interested in the 7’th and the 13’th component of the dataset. We
will produce a two-dimensional plot, one dimension for each component. It does

Section 4.1 Plotting 2D Data 50

20 40 60 80
100

150

200

250

300

350

400

Heights

W
ei

gh
ts

60 65 70 75 80
100

150

200

250

300

Heights, outliers removed

W
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

FIGURE 4.8: A scatter plots of weight against height, from the dataset at http://
www2.stetson.edu/ ~ jrasp/data.htm . Left: Notice how two outliers dominate
the picture, and to show the outliers, the rest of the data has had to be bunched up.
Right shows the data with the outliers removed. The structure is now somewhat
clearer.

60 65 70 75 80
100

150

200

250

300

Heights, outliers removed

W
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

60 65 70 75 80
0

100

200

300

400

Heights

W
ei

gh
ts

FIGURE 4.9: Scatter plots of weight against height, from the dataset at http://

www2.stetson.edu/ ~ jrasp/data.htm . Left: data with two outliers removed,
as in figure 4.8. Right: this data, rescaled slightly. Notice how the data looks less
spread out. But there is no difference between the datasets. Instead, your eye is
easily confused by a change of scale.

not really matter which component is plotted on the x-coordinate and which on
the y-coordinate (though it will be some pages before this is clear). But it is very
difficult to write sensibly without talking about the x and y coordinates.

We will make a two-dimensional dataset out of the components that interest
us. We must choose which component goes first in the resulting 2-vector. We will
plot this component on the x-coordinate (and we refer to it as the x-coordinate),
and to the other component as the y-coordinate. This is just to make it easier to
describe what is going on; there’s no important idea here. It really will not matter
which is x and which is y. The two components make a dataset {xi} = {(xi, yi)}.
To produce a scatter plot of this data, we plot a small shape at the location of each

Section 4.1 Plotting 2D Data 51

0 2 4 6 8
x 10

4

0

500

1000

1500

number of pelts traded

pr
ic

e
of

 p
el

ts
, i

n
pe

nn
ie

s

FIGURE 4.10: A scatter plot of the price of lynx pelts against the number of pelts.
I have plotted data for 1901 to the end of the series as circles, and the rest of the
data as *’s. It is quite hard to draw any conclusion from this data, because the scale
is confusing. Furthermore, the data from 1900 on behaves quite differently from the
other data.

data item.
Such scatter plots are very revealing. For example, figure 4.7 shows a scatter

plot of body temperature against heart rate for humans. In this dataset, the gender
of the subject was recorded (as “1” or “2” — I don’t know which is which), and
so I have plotted a “1” at each data point with gender “1”, and so on. Looking
at the data suggests there isn’t much difference between the blob of “1” labels and
the blob of “2” labels, which suggests that females and males are about the same
in this respect.

The scale used for a scatter plot matters. For example, plotting lengths in
meters gives a very different scatter from plotting lengths in millimeters. Figure 4.8
shows two scatter plots of weight against height. Each plot is from the same dataset,
but one is scaled so as to show two outliers. Keeping these outliers means that the
rest of the data looks quite concentrated, just because the axes are in large units.
In the other plot, the axis scale has changed (so you can’t see the outliers), but the
data looks more scattered. This may or may not be a misrepresentation. Figure 4.9
compares the data with outliers removed, with the same plot on a somewhat differ-
ent set of axes. One plot looks as though increasing height corresponds to increasing
weight; the other looks as though it doesn’t. This is purely due to deceptive scaling
— each plot shows the same dataset.

Dubious data can also contribute to scaling problems. Recall that, in fig-
ure 4.4, price data before and after 1900 appeared to behave differently. Figure 4.10
shows a scatter plot of the lynx data, where I have plotted number of pelts against
price. I plotted the post-1900 data as circles, and the rest as asterisks. Notice
how the circles seem to form a quite different figure, which supports the suggestion
that something interesting happened around 1900. The scatter plot does not seem
to support the idea that prices go up when supply goes down, which is puzzling,
because this is a pretty reliable idea. This turns out to be a scale effect. Scale is an

Section 4.1 Plotting 2D Data 52

important nuisance, and it’s easy to get misled by scale effects. The way to avoid
the problem is to plot in standard coordinates.

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

FIGURE 4.11: A normalized scatter plot of weight against height, from the dataset at
http:// www2.stetson.edu/ ~ jrasp/data.htm . Now you can see that someone
who is a standard deviation taller than the mean will tend to be somewhat heavier
than the mean too.

96 98 100 102

60

70

80

90

1 1
1

1

1
1

1

1

111
1

1

1

11

1
1
1

1

1

1

1
1
1

1

1
1

1
1

1

1

11
1

11

1

1
1
1

1
1

1
1

11

1

1
1

1

1

11
1
1
1

1
1
1

1

1

1

1

1

2

2

2

2
2

2
2

2

2

2

2

2
22

2
2

2

2

2

2

2

2

22

2
2

2

22
22
2

22

222
22

2

2

2

2

22

2

2

2

2

2

2
2

2

2
2
22

2
2

2
2

2
22 2

Body temperature

H
ea

rt
 r

at
e

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 11
1
11
1

1
111
1
1
1
11
1
1
1

1

1
1

111
1
11
11

1
1
111
11

1

1
11

11

11
11
1

1
1

1

1
111111

11

1

1

1
1
1

2
2

2
22
22

2

2

2

2
222
22
2
2
2

2
2
2
22
22

2

22222
22
22222
2
2
2

2
22

2

2
2

2
2

22
2
22
22
22
22
2 22 2

Normalized body temperature

N
or

m
al

iz
ed

 h
ea

rt
 r

at
e

FIGURE 4.12: Left: A scatter plot of body temperature against heart rate, from
the dataset at http:// www2.stetson.edu/ ~ jrasp/data.htm ; normtemp.xls. I
have separated the two genders by plotting a different symbol for each (though I
don’t know which gender is indicated by which letter); if you view this in color,
the differences in color makes for a greater separation of the scatter. This picture
suggests, but doesn’t conclusively establish, that there isn’t much dependence between
temperature and heart rate, and any dependence between temperature and heart
rate isn’t affected by gender. The scatter plot of the normalized data, in standard
coordinates, on the right supports this view.

A natural solution to problems with scale is to normalize the x and y coor-
dinates of the two-dimensional data to standard coordinates. We can normalize

Section 4.2 Correlation 53

0 2 4 6 8
x 10

4

0

500

1000

1500

number of pelts traded

pr
ic

e
of

 p
el

ts
, i

n
pe

nn
ie

s

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

normalized number of pelts

no
rm

al
iz

ed
 p

ric
e

FIGURE 4.13: Left: A scatter plot of the price of lynx pelts against the number of
pelts (this is a repeat of figure 4.10 for reference). I have plotted data for 1901 to
the end of the series as circles, and the rest of the data as *’s. It is quite hard
to draw any conclusion from this data, because the scale is confusing. Right: A
scatter plot of the price of pelts against the number of pelts for lynx pelts. I excluded
data for 1901 to the end of the series, and then normalized both price and number
of pelts. Notice that there is now a distinct trend; when there are fewer pelts, they
are more expensive, and when there are more, they are cheaper.

without worrying about the dimension of the data — we normalize each dimen-
sion independently by subtracting the mean of that dimension and dividing by the
standard deviation of that dimension. We continue to use the convention of writing
the normalized x coordinate as x̂ and the normalized y coordinate as ŷ. So, for
example, we can write x̂j = (xj − mean ({x}))/std (x)) for the x̂ value of the j’th
data item in normalized coordinates. Normalizing shows us the dataset on a stan-
dard scale. Once we have done this, it is quite straightforward to read off simple
relationships between variables from a scatter plot.

4.2 CORRELATION

The simplest, and most important, relationship to look for in a scatter plot is this:
when x̂ increases, does ŷ tend to increase, decrease, or stay the same? This is
straightforward to spot in a normalized scatter plot, because each case produces a
very clear shape on the scatter plot. Any relationship is called correlation (we will
see later how to measure this), and the three cases are: positive correlation, which
means that larger x̂ values tend to appear with larger ŷ values; zero correlation,
which means no relationship; and negative correlation, which means that larger x̂
values tend to appear with smaller ŷ values. I have shown these cases together
in one figure using a real data example (Figure 4.15), so you can compare the
appearance of the plots.

Positive correlation occurs when larger x̂ values tend to appear with larger
ŷ values. This means that data points with with small (i.e. negative with large
magnitude) x̂ values must have small ŷ values, otherwise the mean of x̂ (resp. ŷ)
would be too big. In turn, this means that the scatter plot should look like a “smear”

Section 4.2 Correlation 54

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

−4 −2 0 2 4
−4

−2

0

2

4

H
ei

gh
ts

, o
ut

lie
rs

 r
em

ov
ed

, n
or

m
al

iz
ed

Weights, outliers removed, normalized

FIGURE 4.14: On the left, a normalized scatter plot of weight (y-coordinate) against
height (x-coordinate). On the right, a scatter plot of height (y-coordinate) against
weight (x-coordinate). I’ve put these plots next to one another so you don’t have to
mentally rotate (which is what you should usually do).

−4 −2 0 2 4
−4

−2

0

2

4

Heights, outliers removed, normalizedW
ei

g
h

ts
,

o
u
tl

ie
rs

 r
em

o
v

ed
,

n
o

rm
al

iz
ed

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

1 1
1
1

11

1

1
111
1
1

1
11
1
1
1

1

1

1

111
1

1
1

1
1

1
1
111

11

1

1
11

11

1
1
11
1

1
1

1

1
11
1
11
1
11

1

1

1

1
1

2
2

2
22

2
2

2

2

2

2
222

22

2
2
2

2
2
2
22
2
2

2

22222
22

2222
2
2
2
2

2
22

2

2
2

2
2

2
2

2
22
22
22

22
2 22 2

Normalized body temperature

N
o

rm
al

iz
ed

 h
ea

rt
 r

at
e

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

normalized number of pelts

n
o

rm
al

iz
ed

 p
ri

ce

No Correlation Positive Correlation Negative Correlation

FIGURE 4.15: The three kinds of scatter plot are less clean for real data than for
our idealized examples. Here I used the body temperature vs heart rate data for the
zero correlation; the height-weight data for positive correlation; and the lynx data
for negative correlation. The pictures aren’t idealized — real data tends to be messy
— but you can still see the basic structures.

of data from the bottom left of the graph to the top right. The smear might be
broad or narrow, depending on some details we’ll discuss below. Figure 4.11 shows
normalized scatter plots of weight against height, and of body temperature against
heart rate. In the weight-height plot, you can clearly see that individuals who are
higher tend to weigh more. The important word here is “tend” — taller people
could be lighter, but mostly they tend not to be. Notice, also, that I did NOT
say that they weighed more because they were taller, but only that they tend to be
heavier.

Zero correlation occurs when there is no relationship. This produces a
characteristic shape in a scatter plot, but it takes a moment to understand why. If
there really is no relationship, then knowing x̂ will tell you nothing about ŷ. All
we know is that mean ({ŷ}) = 0, and var ({ŷ}) = 1. Our value of ŷ should have

Section 4.2 Correlation 55

this mean and this variance, but it doesn’t depend on x̂ in any way. This is enough
information to predict what the plot will look like. We know that mean ({x̂}) = 0
and var ({x̂}) = 1; so there will be many data points with x̂ value close to zero,
and few with a much larger or much smaller x̂ value. The same applies to ŷ. Now
consider the data points in a strip of x̂ values. If this strip is far away from the
origin, there will be few data points in the strip, because there aren’t many big x̂
values. If there is no relationship, we don’t expect to see large or small ŷ values
in this strip, because there are few data points in the strip and because large or
small ŷ values are uncommon — we see them only if there are many data points,
and then seldom. So for a strip with x̂ close to zero, we might see large ŷ values;
but for one that is far away, we expect to see small ŷ values. We should see a blob,
centered at the origin. In the temperature-heart rate plot of figure 4.12, it looks as
though nothing of much significance is happening. The average heart rate seems to
be about the same for people who run warm or who run cool. There is probably
not much relationship here.

Negative correlation occurs when larger x̂ values tend to appear with
smaller ŷ values. This means that data points with with small x̂ values must
have large ŷ values, otherwise the mean of x̂ (resp. ŷ) would be too big. In turn,
this means that the scatter plot should look like a “smear” of data from the top left
of the graph to the bottom right. The smear might be broad or narrow, depending
on some details we’ll discuss below. Figure 4.13 shows a normalized scatter plot of
the lynx pelt-price data, where I have excluded the data from 1901 on. I did so
because there seemed to be some other effect operating to drive prices up, which
was inconsistent with the rest of the series. This plot suggests that when there were
more pelts, prices were lower, as one would expect.

Notice that leaving out data, as I did here, should be done with care. If you
exclude every data point that might disagree with your hypothesis, you may miss
the fact that you are wrong. Leaving out data is an essential component of many
kinds of fraud. You should always reveal whether you have excluded data, and why,
to allow the reader to judge the evidence.

The correlation is not affected by which variable is plotted on the x-axis and
which is plotted on the y-axis. Figure 4.14 compares a plot of height against weight
to one of weight against height. Usually, one just does this by rotating the page, or
by imagining the new picture. The left plot tells you that data points with higher
height value tend to have higher weight value; the right plot tells you that data
points with higher weight value tend to have higher height value — i.e. the plots
tell you the same thing. It doesn’t really matter which one you look at. Again, the
important word is “tend” — the plot doesn’t tell you anything about why, it just
tells you that when one variable is larger the other tends to be, too.

4.2.1 The Correlation Coefficient

Consider a normalized data set of N two-dimensional vectors. We can write the
i’th data point in standard coordinates (x̂i, ŷi). We already know many important
summaries of this data, because it is in standard coordinates. We havemean ({x̂}) =
0; mean ({ŷ}) = 0; std (x̂) = 1; and std (ŷ) = 1. Each of these summaries is

itself the mean of some monomial. So std (x̂)
2
= mean

({

x̂2
})

= 1; std (ŷ)
2
=

Section 4.2 Correlation 56

mean
({

ŷ2
})

(the other two are easy). We can rewrite this information in terms

of means of monomials, giving mean ({x̂}) = 0; mean ({ŷ}) = 0; mean
({

x̂2
})

= 1;

and mean
({

ŷ2
})

= 1. There is one monomial missing here, which is x̂ŷ.
The term mean ({x̂ŷ}) captures correlation between x and y. The term is

known as the correlation coefficient or correlation.

Definition: 4.1 Correlation coefficient

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. We
compute the correlation coefficient by first normalizing the x and y

coordinates to obtain x̂i = (xi−mean({x}))
std(x) , ŷi = (yi−mean({y}))

std(y) . The

correlation coefficient is the mean value of x̂ŷ, and can be computed
as:

corr ({(x, y)}) =
∑

i x̂iŷi
N

Correlation is a measure of our ability to predict one value from another.
The correlation coefficient takes values between −1 and 1 (we’ll prove this below).
If the correlation coefficient is close to 1, then we are likely to predict very well.
Small correlation coefficients (under about 0.5, say, but this rather depends on what
you are trying to achieve) tend not to be all that interesting, because (as we shall
see) they result in rather poor predictions. Figure 4.16 gives a set of scatter plots
of different real data sets with different correlation coefficients. These all come
from data set of age-height-weight, which you can find at http://www2.stetson.
edu/~jrasp/data.htm (look for bodyfat.xls). In each case, two outliers have been
removed. Age and height are hardly correlated, as you can see from the figure.
Younger people do tend to be slightly taller, and so the correlation coefficient is
-0.25. You should interpret this as a small correlation. However, the variable
called “adiposity” (which isn’t defined, but is presumably some measure of the
amount of fatty tissue) is quite strongly correlated with weight, with a correlation
coefficient is 0.86. Average tissue density is quite strongly negatively correlated with
adiposity, because muscle is much denser than fat, so these variables are negatively
correlated — we expect high density to appear with low adiposity, and vice versa.
The correlation coefficient is -0.86. Finally, density is very strongly correlated with
body weight. The correlation coefficient is -0.98.

It’s not always convenient or a good idea to produce scatter plots in standard
coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
of the correlation coefficient (though it can change the sign if one scale is negative).
This means that it’s worth being able to spot correlation in a scatter plot that
isn’t in standard coordinates (even though correlation is always defined in standard
coordinates). Figure 4.17 shows different correlated datasets plotted in their original

Section 4.2 Correlation 57

−4 −2 0 2 4
−4

−2

0

2

4

Age, normalized

H
ei

gh
t,

no
rm

al
iz

ed
Age and height, correlation=−0.25

−4 −2 0 2 4
−4

−2

0

2

4

Adiposity, normalized

W
ei

gh
ts

, n
or

m
al

iz
ed

Adiposity and weight, correlation=0.86

−4 −2 0 2 4
−4

−2

0

2

4

6

Density, normalized

A
di

po
si

ty
, n

or
m

al
iz

ed

Density and Adiposity, correlation=−0.73

−4 −2 0 2 4
−4

−2

0

2

4

Density, normalized

B
od

yf
at

, n
or

m
al

iz
ed

Density and Body Fat, correlation=−0.98

FIGURE 4.16: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are in standard coordi-
nates (compare to figure 4.17, which shows these data sets plotted in their original
units). The legend names the variables.

units. These data sets are the same as those used in figure 4.16

Properties of the Correlation Coefficient
You should memorize the following properties of the correlation coefficient:

• The correlation coefficient is symmetric (it doesn’t depend on the order of its
arguments), so

corr ({(x, y)}) = corr ({(y, x)})

• The value of the correlation coefficient is not changed by translating the data.
Scaling the data can change the sign, but not the absolute value. For constants
a 6= 0, b, c 6= 0, d we have

corr ({(ax+ b, cx+ d)}) = sign(ab)corr ({(x, y)})

Section 4.2 Correlation 58

20 40 60 80 100
60

65

70

75

80

Age, NOT normalized

H
ei

gh
t,

N
O

T
 n

or
m

al
iz

ed
Age and height, correlation=−0.25

15 20 25 30 35 40
100

150

200

250

300

Adiposity, NOT normalized

W
ei

gh
ts

, N
O

T
 n

or
m

al
iz

ed

Adiposity and weight, correlation=0.86

0.9 1 1.1 1.2 1.3
15

20

25

30

35

40

Density, NOT normalized

A
di

po
si

ty
, N

O
T

 n
or

m
al

iz
ed

Density and Adiposity, correlation=−0.73

0.9 1 1.1 1.2 1.3
0

10

20

30

40

50

Density, NOT normalized

B
od

yf
at

, N
O

T
 n

or
m

al
iz

ed

Density and Body Fat, correlation=−0.98

FIGURE 4.17: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are NOT in standard coor-
dinates (compare to figure 4.16, which shows these data sets plotted in normalized
coordinates). The legend names the variables.

• If ŷ tends to be large (resp. small) for large (resp. small) values of x̂, then
the correlation coefficient will be positive.

• If ŷ tends to be small (resp. large) for large (resp. small) values of x̂, then
the correlation coefficient will be negative.

• If ŷ doesn’t depend on x̂, then the correlation coefficient is zero (or close to
zero).

• The largest possible value is 1, which happens when x̂ = ŷ.

• The smallest possible value is -1, which happens when x̂ = −ŷ.

The first property is easy, and we relegate that to the exercises. One way to
see that the correlation coefficient isn’t changed by translation or scale is to notice
that it is defined in standard coordinates, and scaling or translating data doesn’t

Section 4.2 Correlation 59

change those. Another way to see this is to scale and translate data, then write out
the equations; notice that taking standard coordinates removes the effects of the
scale and translation. In each case, notice that if the scale is negative, the sign of
the correlation coefficient changes.

The property that, if ŷ tends to be large (resp. small) for large (resp. small)
values of x̂, then the correlation coefficient will be positive, doesn’t really admit
a formal statement. But it’s relatively straightforward to see what’s going on.
Because mean ({x̂}) = 0, small values of mean ({x̂}) must be negative and large

values must be positive. But corr ({(x, y)}) =

∑

i
x̂iŷi

N ; and for this sum to be
positive, it should contain mostly positive terms. It can contain few or no hugely
positive (or hugely negative) terms, because std (x̂) = std (ŷ) = 1 so there aren’t
many large (or small) numbers. For the sum to contain mostly positive terms, then
the sign of x̂i should be the same as the sign ŷi for most data items. Small changes
to this argument work to show that if if ŷ tends to be small (resp. large) for large
(resp. small) values of x̂, then the correlation coefficient will be negative.

Showing that no relationship means zero correlation requires slightly more
work. Divide the scatter plot of the dataset up into thin vertical strips. There
are S strips. Each strip is narrow, so the x̂ value does not change much for the
data points in a particular strip. For the s’th strip, write N(s) for the number of
data points in the strip, x̂(s) for the x̂ value at the center of the strip, and ŷ(s)
for the mean of the ŷ values within that strip. Now the strips are narrow, so we
can approximate all data points within a strip as having the same value of x̂. This
yields

mean ({x̂ŷ}) ≈ 1

S

∑

s∈strips

x̂(s)
[

N(s)ŷ(s)
]

(where you could replace ≈ with = if the strips were narrow enough). Now assume
that ŷ(s) does not change from strip to strip, meaning that there is no relation-
ship between x̂ and ŷ in this dataset (so the picture is like the left hand side in
figure 4.15). Then each value of ŷ(s) is the same — we write ŷ — and we can
rearrange to get

mean ({x̂ŷ}) ≈ ŷ
1

S

∑

s∈strips

x̂(s).

Now notice that

0 = mean ({ŷ}) ≈ 1

S

∑

s∈strips

N(s)ŷ(s)

(where again you could replace ≈ with = if the strips were narrow enough). This
means that if every strip has the same value of ŷ(s), then that value must be zero.
In turn, if there is no relationship between x̂ and ŷ, we must have mean ({x̂ŷ}) = 0.

Section 4.2 Correlation 60

Proposition:
−1 ≤ corr ({(x, y)}) ≤ 1

Proof: Writing x̂, ŷ for the normalized coefficients, we have

corr ({(x, y)}) =
∑

i x̂iŷi
N

and you can think of the value as the inner product of two vectors. We write

x =
1√
N

[x̂1, x̂2, . . . x̂N] and y =
1√
N

[ŷ1, ŷ2, . . . ŷN]

and we have corr ({(x, y)}) = xTy. Notice xTx = std (x)
2
= 1, and similarly

for y. But the inner product of two vectors is at its maximum when the two
vectors are the same, and this maximum is 1. This argument is also sufficient to
show that smallest possible value of the correlation is −1, and this occurs when
x̂i = −ŷi for all i.

Property 4.1: The largest possible value of the correlation is 1, and this occurs
when x̂i = ŷi for all i. The smallest possible value of the correlation is −1, and
this occurs when x̂i = −ŷi for all i.

4.2.2 Using Correlation to Predict

Assume we have N data items which are 2-vectors (x1, y1), . . . , (xN , yN), where
N > 1. These could be obtained, for example, by extracting components from
larger vectors. As usual, we will write x̂i for xi in normalized coordinates, and so
on. Now assume that we know the correlation coefficient is r (this is an important,
traditional notation). What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

We want to construct a prediction function which gives a prediction for any
value of x̂. This predictor should behave as well as possible on our existing data.
For each of the (x̂i, ŷi) pairs in our data set, the predictor should take x̂i and
produce a result as close to ŷi as possible. We can choose the predictor by looking
at the errors it makes at each data point.

We write ŷpi for the value of ŷi predicted at x̂i. The simplest form of predictor
is linear. If we predict using a linear function, then we have, for some unknown
a, b, that ŷpi = ax̂i + b. Now think about ui = ŷi − ŷpi , which is the error in our
prediction. We would like to have mean ({u}) = 0 (otherwise, we could reduce the

Section 4.2 Correlation 61

error of the prediction just by subtracting a constant).

mean ({u}) = mean ({ŷ − ŷp})
= mean ({ŷ})−mean ({ax̂i + b})
= mean ({ŷ})− amean ({x̂}) + b

= 0− a0 + b

= 0.

This means that we must have b = 0.
To estimate a, we need to think about var ({u}). We should like var ({u}) to

be as small as possible, so that the errors are as close to zero as possible (remember,
small variance means small standard deviation which means the data is close to the
mean). We have

var ({u}) = var ({ŷ − ŷp})
= mean

({

(ŷ − ax̂)2
})

because mean ({u}) = 0

= mean
({

(ŷ)2 − 2ax̂ŷ + a2(x̂)2
})

= mean
({

(ŷ)2
})

− 2amean ({x̂ŷ}) + a2mean
({

(x̂)2
})

= 1− 2ar + a2,

which we want to minimize by choice of a. At the minimum, we must have

dvar ({ui})
da

= 0 = −2r + 2a

so that a = r and the correct prediction is

ŷp0 = rx̂0

You can use a version of this argument to establish that if we have (?, ŷ0), then
the best prediction for x̂0 (which is in standard coordinates) is rŷ0. It is important
to notice that the coefficient of ŷi is NOT 1/r; you should work this example, which
appears in the exercises. We now have a prediction procedure, outlined below.

Section 4.2 Correlation 62

Procedure: 4.1 Predicting a value using correlation

Assume we have N data items which are 2-vectors
(x1, y1), . . . , (xN , yN), where N > 1. These could be obtained,
for example, by extracting components from larger vectors. Assume
we have an x value x0 for which we want to give the best prediction of
a y value, based on this data. The following procedure will produce a
prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (x)
(xi −mean ({x}))

ŷi =
1

std (y)
(yi −mean ({y}))

x̂0 =
1

std (x)
(x0 −mean ({x})).

• Compute the correlation

r = corr ({(x, y)}) = mean ({x̂ŷ}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to
get

y0 = std (y)rx̂0 +mean ({y})

Now assume we have a y value y0, for which we want to give the best
prediction of an x value, based on this data. The following procedure
will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to
get

x0 = std (x)rŷ0 +mean ({x})

There is another way of thinking about this prediction procedure, which is
often helpful. Assume we need to predict a value for x0. In normalized coordinates,
our prediction is ŷp = rx̂0; if we revert back to the original coordinate system, the

Section 4.2 Correlation 63

prediction becomes

(yp −mean ({y}))
std (y)

= r(
(x0 −mean ({x}))

std (x)
).

This gives a really useful rule of thumb, which I have broken out in the box below.

Procedure: 4.2 Predicting a value using correlation: Rule of thumb - 1

If x0 is k standard deviations from the mean of x, then the predicted
value of y will be rk standard deviations away from the mean of y, and
the sign of r tells whether y increases or decreases.

An even more compact version of the rule of thumb is in the following box.

Procedure: 4.3 Predicting a value using correlation: Rule of thumb - 2

The predicted value of y goes up by r standard deviations when the
value of x goes up by one standard deviation.

We can compute the average root mean square error that this prediction
procedure will make. The square of this error must be

mean
({

u2
})

= mean
({

y2
})

− 2rmean ({xy}) + r2mean
({

x2
})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another intepretation of

correlation; if x and y have correlation close to one, then predictions could have very
small root mean square error, and so might be very accurate. In this case, knowing
one variable is about as good as knowing the other. If they have correlation close
to zero, then the root mean square error in a prediction might be as large as the
root mean square error in ŷ — which means the prediction is nearly a pure guess.

The prediction argument means that we can spot correlations for data in
other kinds of plots — one doesn’t have to make a scatter plot. For example, if
we were to observe a child’s height from birth to their 10’th year (you can often
find these observations in ballpen strokes, on kitchen walls), we could plot height
as a function of year. If we also had their weight (less easily found), we could plot
weight as a function of year, too. The prediction argument above say that, if you
can predict the weight from the height (or vice versa) then they’re correlated. One
way to spot this is to look and see if one curve goes up when the other does (or
goes down when the other goes up). You can see this effect in figure 4.4, where
(before 19h00), prices go down when the number of pelts goes up, and vice versa.
These two variables are negatively correlated.

Section 4.2 Correlation 64

FIGURE 4.18: This figure, from Vickers (ibid, p184) shows a plot of the stork pop-
ulation as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.

4.2.3 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large,
and if one is small the other is small. In turn, this means that one can make
a reasonable prediction of one from the other. However, correlation DOES NOT
mean that changing one variable causes the other to change (sometimes known as
causation).

Two variables in a dataset could be correlated for a variety of reasons. One
important reason is pure accident. If you look at enough pairs of variables, you
may well find a pair that appears to be correlated just because you have a small
set of observations. Imagine, for example, you have a dataset consisting of only
two vectors — there is a pretty good chance that there is some correlation between
the coefficients. Such accidents can occur in large datasets, particularly if the
dimensions are high.

Another reason variables could be correlated is that there is some causal
relationship — for example, pressing the accelerator tends to make the car go
faster, and so there will be some correlation between accelerator position and car
acceleration. As another example, adding fertilizer does tend to make a plant grow
bigger. Imagine you record the amount of fertilizer you add to each pot, and the
size of the resulting potplant. There should be some correlation.

Yet another reason variables could be correlated is that there is some other
background variable — often called a latent variable — linked causally to each of
the observed variables. For example, in children (as Freedman, Pisani and Purves
note in their excellent Statistics), shoe size is correlated with reading skills. This
DOES NOT mean that making your feet grow will make you read faster, or that
you can make your feet shrink by forgetting how to read. The real issue here is

Section 4.3 Sterile Males in Wild Horse Herds 65

the age of the child. Young children tend to have small feet, and tend to have
weaker reading skills (because they’ve had less practice). Older children tend to
have larger feet, and tend to have stronger reading skills (because they’ve had more
practice). You can make a reasonable prediction of reading skills from foot size,
because they’re correlated, even though there is no direct connection.

This kind of effect can mask correlations, too. Imagine you want to study the
effect of fertilizer on potplants. You collect a set of pots, put one plant in each,
and add different amounts of fertilizer. After some time, you record the size of each
plant. You expect to see correlation between fertilizer amount and plant size. But
you might not if you had used a different species of plant in each pot. Different
species of plant can react quite differently to the same fertilizer (some plants just
die if over-fertilized), so the species could act as a latent variable. With an unlucky
choice of the different species, you might even conclude that there was a negative
correlation between fertilizer and plant size. This example illustrates why you need
to take great care in setting up experiments and interpreting their results.

This sort of thing happens often, and it’s an effect you should look for. An-
other nice example comes from Vickers (ibid). The graph, shown in Figure 4.18,
shows a plot of (a) a dataset of the stork population in Europe over a period of
years and (b) a dataset of the birth rate over those years. This isn’t a scatter plot;
instead, the data has been plotted on a graph. You can see by eye that these two
datasets are quite strongly correlated . Even more disturbing, the stork popula-
tion dropped somewhat before the birth rate dropped. Is this evidence that storks
brought babies in Europe during those years? No (the usual arrangement seems
to have applied). For a more sensible explanation, look at the dates. The war
disturbed both stork and human breeding arrangements. Storks were disturbed
immediately by bombs, etc., and the human birth rate dropped because men died
at the front.

4.3 STERILE MALES IN WILD HORSE HERDS

Large herds of wild horses are (apparently) a nuisance, but keeping down numbers
by simply shooting surplus animals would provoke outrage. One strategy that
has been adopted is to sterilize males in the herd; if a herd contains sufficient
sterile males, fewer foals should result. But catching stallions, sterilizing them, and
reinserting them into a herd is a performance — does this strategy work?

We can get some insight by plotting data. At http://lib.stat.cmu.edu/

DASL/Datafiles/WildHorses.html, you can find a dataset covering herd manage-
ment in wild horses. I have plotted part of this dataset in figure 4.19. In this
dataset, there are counts of all horses, sterile males, and foals made on each of a
small number of days in 1986, 1987, and 1988 for each of two herds. I extracted
data for one herd. I have plotted this data as a function of the count of days since
the first data point, because this makes it clear that some measurements were taken
at about the same time, but there are big gaps in the measurements. In this plot,
the data points are shown with a marker. Joining them leads to a confusing plot
because the data points vary quite strongly. However, notice that the size of the
herd drifts down slowly (you could hold a ruler against the plot to see the trend),
as does the number of foals, when there is a (roughly) constant number of sterile

Section 4.3 Sterile Males in Wild Horse Herds 66

0 200 400 600 800
0

20

40

60

80

Day

N
um

be
r

of
 h

or
se

s

Number of horses vs. day

Adults
Sterile Males
Foals

FIGURE 4.19: A plot of the number of adult horses, sterile males, and foals in horse
herds over a period of three years. The plot suggests that introducing sterile males
might cause the number of foals to go down. Data from http:// lib.stat. cmu.

edu/DASL/ Datafiles/WildHorses.html .

males.
Does sterilizing males result in fewer foals? This is likely hard to answer for

this dataset, but we could ask whether herds with more sterile males have fewer
foals. A scatter plot is a natural tool to attack this question. However, the scatter
plots of figure 4.20 suggest, rather surprisingly, that when there are more sterile
males there are more adults (and vice versa), and when there are more sterile
males there are more foals (and vice versa). This is borne out by a correlation
analysis. The correlation coefficient between foals and sterile males is 0.74, and
the correlation coefficient between adults and sterile males is 0.68. You should find
this very surprising — how do the horses know how many sterile males there are in
the herd? You might think that this is an effect of scaling the plot, but there is a
scatter plot in normalized coordinates in figure 4.20 that is entirely consistent with
the conclusions suggested by the unnormalized plot. What is going on here?

The answer is revealed by the scatter plots of figure 4.21. Here, rather than
plotting a ’*’ at each data point, I have plotted the day number of the observation.
This is in days from the first observation. You can see that the whole herd is
shrinking — observations where there are many adults (resp. sterile adults, foals)
occur with small day numbers, and observations where there are few have large day
numbers. Because the whole herd is shrinking, it is true that when there are more
adults and more sterile males, there are also more foals. Alternatively, you can see
the plots of figure 4.19 as a scatter plot of herd size (resp. number of foals, number
of sterile males) against day number. Then it becomes clear that the whole herd
is shrinking, as is the size of each group. To drive this point home, we can look at
the correlation coefficient between adults and days (-0.24), between sterile adults
and days (-0.37), and between foals and days (-0.61). We can use the rule of thumb
in box 3 to interpret this. This means that every 282 days, the herd loses about
three adults; about one sterile adult; and about three foals. For the herd to have
a stable size, it needs to gain by birth as many foals as it loses both to growing up

Section 4.3 Sterile Males in Wild Horse Herds 67

0 5 10 15
0

5

10

15

20

Number of sterile adults

N
um

be
r

of
 fo

al
s

Foals vs. sterile adults

20 30 40 50 60 70
0

5

10

15

Number of adults

N
um

be
r

of
 s

te
ril

e
ad

ul
ts

Sterile adults vs. adults

−2 −1 0 1 2 3
−1

0

1

2

3

N sterile adults (standard coordinates)

N
 fo

al
s

(s
ta

nd
ar

d
co

or
di

na
te

s) Foals vs. sterile adults (standard coordinates)

−2 −1 0 1 2
−2

−1

0

1

2

3

N adults (standard coordinates)N
 s

te
ril

e
ad

ul
ts

 (
st

an
da

rd
 c

oo
rd

in
at

es
)

Sterile adults vs. adults (standard coordinates)

FIGURE 4.20: Scatter plots of the number of sterile males in a horse herd against
the number of adults, and the number of foals against the number of sterile males,
from data of http: // lib. stat.cmu. edu/ DASL/Datafiles/WildHorses.html .
Top: unnormalized; bottom: standard coordinates.

−2 −1 0 1 2

−2

−1

0

1

2

0

6

39

40

66

67

335

336

360

361

374
375

404

696
700

710
738 742

772

N adults (standard coordinates)

N
 fo

al
s

(s
ta

nd
ar

d
co

or
di

na
te

s) Foals vs. adults (standard coordinates)

−2 −1 0 1 2

−2

−1

0

1

2

0

6

39

40

66

67

335

336

360

361 374

375

404

696

700

710 738

742772

N adults (standard coordinates)N
 s

te
ril

e
ad

ul
ts

 (
st

an
da

rd
 c

oo
rd

in
at

es
)

Sterile adults vs. adults (standard coordinates)

FIGURE 4.21:

Section 4.4 What You Must Remember 68

and to death. If the herd is losing three foals every 282 days, then if they all grow
up to replace the missing adults, the herd will be shrinking slightly (because it is
losing four adults in this time); but if it loses foals to natural accidents, etc., then
it is shrinking rather fast.

The message of this example is important. To understand a simple dataset,
you might need to plot it several ways. You should make a plot, look at it and ask
what it says, and then try to use another type of plot to confirm or refute what
you think might be going on.

4.4 WHAT YOU MUST REMEMBER

You should be able to:

• Plot a bar chart, a heat map, and a pie chart for a categorical dataset.

• Plot a dataset as a graph, making sensible choices about markers, lines and
the like.

• Plot a scatter plot for a dataset.

• Plot a normalized scatter plot for a dataset.

• Interpret the scatter plot to tell the sign of the correlation between two vari-
ables, and estimate the size of the correlation coefficient.

• Compute a correlation coefficient.

• Interpret a correlation coefficient.

• Use correlation to make predictions.

You should remember:

• The definition and properties of the correlation coefficient.

PROBLEMS

4.1. Show that corr ({(x, y)}) = corr ({(y, x)}) by substituting into the definition.
4.2. Show that if ŷ tends to be small (resp. large) for large (resp. small) values of

x̂, then the correlation coefficient will be negative.
4.3. We have a 2D dataset consisting of N pairs (x̂i, ŷi) in normalized coordinates.

This data has correlation coefficient r. We observe a new ŷ value ŷ0, and
wish to predict the (unknown) x value. We will do so with a linear prediction,
choosing a, b, to predict an x̂ for any ŷ using the rule x̂p = aŷp + b. Write
ui = x̂i − x̂pi for the error that this rule makes on each data item.
(a) We require mean ({u}) = 0. Show that this means that b = 0.
(b) We require that var ({u}) is minimized. Show that this means that a = r.
(c) We now have a result that seems paradoxical — if I have (x̂0, ?) I predict

(x̂0, rx̂0) and if I have (?, y0), I predict (rŷ0, ŷ0). Use figure 4.22 to explain
why this is right. The important difference between the two lines is that
lies (approximately) in the middle of each vertical span of data, and the
other lies (approximately) in the middle of each horizontal span of data.

Section 4.4 What You Must Remember 69

−4 −2 0 2 4
−4

−2

0

2

4

Adiposity, normalized

W
ei

g
h
ts

,
n
o
rm

al
iz

ed

Adiposity and weight, correlation=0.86

y=0.86 x

x=0.86 y

FIGURE 4.22: This figure shows two lines, y = 0.86x and x = 0.86y, superimposed
on the normalized adiposity-weight scatter plot.

4.4. I did the programming exercise about the earth temperature below. I looked
at the years 1965-2012. Write {(y, T)} for the dataset giving the temperature
(T) of the earth in year y. I computed: mean ({y}) = 1988.5, std (y) = 14,
mean ({T}) = 0.175, std (T) = 0.231 and corr ({y})T = 0.892. What is the
best prediction using this information for the temperature in mid 2014? in
mid 2028? in mid 2042?

4.5. I did the programming exercise about the earth temperature below. It is
straightforward to build a dataset {(T, nt)} where each entry contains the
temperature of the earth (T) and the number of counties where FEMA de-
clared tornadoes nt (for each year, you look up T and nt, and make a data
item). I computed: mean ({T}) = 0.175, std (T) = 0.231, mean ({nt}) = 31.6,
std (nt) = 30.8, and corr ({T})nt = 0.471. What is the best prediction using
this information for the number of tornadoes if the global earth temperature
is 0.5? 0.6? 0.7?

PROGRAMMING EXERCISES

4.6. At http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html, you will
find a dataset recording per capita cigarette sales and cancer deaths per 100K
population for a variety of cancers, recorded for 43 states and the District of
Columbia in 1960.
(a) Plot a scatter plot of lung cancer deaths against cigarette sales, using

the two letter abbreviation for each state as a marker. You should see
two fairly obvious outliers. The backstory at http://lib.stat.cmu.edu/
DASL/Stories/cigcancer.html suggests that the unusual sales in Nevada
are generated by tourism (tourists go home, and die there) and the unusual
sales in DC are generated by commuting workers (who also die at home).

(b) What is the correlation coefficient between per capita cigarette sales and
lung cancer deaths per 100K population? Compute this with, and without
the outliers. What effect did the outliers have? Why?

(c) What is the correlation coefficient between per capita cigarette sales and
bladder cancer deaths per 100K population? Compute this with, and

Section 4.4 What You Must Remember 70

1960 1970 1980 1990 2000 2010 2020
−0.4

−0.2

0

0.2

0.4

0.6
Global temperature

1960 1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120
N counties with tornado disasters

FIGURE 4.23: Plots I prepared from left uea data on temperature and right FEMA
data on tornadoes by county. These should help you tell if you’re on the right track.

without the outliers. What effect did the outliers have? Why?
(d) What is the correlation coefficient between per capita cigarette sales and

kidney cancer deaths per 100K population? Compute this with, and with-
out the outliers. What effect did the outliers have? Why?

(e) What is the correlation coefficient between per capita cigarette sales and
leukemia deaths per 100K population? Compute this with, and without
the outliers. What effect did the outliers have? Why?

(f) You should have computed a positive correlation between cigarette sales
and lung cancer deaths. Does this mean that smoking causes lung cancer?
Why?

(g) You should have computed a negative correlation between cigarette sales
and leukemia deaths. Does this mean that smoking cures leukemia? Why?

4.7. At http://www.cru.uea.ac.uk/cru/info/warming/gtc.csv, you can find a
dataset of global temperature by year. When I accessed this, the years spanned
1880-2012. I don’t know what units the temperatures are measured in. Keep
in mind that measuring the temperature of the earth has non-trivial diffi-
culties (you can’t just insert an enormous thermometer!), and if you look at
http://www.cru.uea.ac.uk/cru and http://www.cru.uea.ac.uk/cru/data/

temperature/ you can see some discussion of the choices made to get these
measurements. There are two kinds of data in this dataset, smoothed and un-
smoothed. I used the unsmoothed data, which should be fine for our purposes.
The government publishes a great deal of data at http://data.gov. From
there, I found a dataset, published by the Federal Emergency Management
Agency (FEMA), of all federally declared disasters (which I found at http://
www.fema.gov/media-library/assets/documents/28318?id=6292). We would
like to see whether weather related disasters are correlated to global tempera-
ture.
(a) The first step is preprocessing the data. The FEMA data has all sorts of

information. From 1965 on, a disaster was declared per county (so you
get one line in the data set for each county), but before 1965, it seems to
have been by state. We divide the disasters into four types: TORNADO,
FLOOD, STORM, HURRICANE. (FEMA seems to have a much richer

Section 4.4 What You Must Remember 71

type system). We want to know how many counties declare a disaster of
each type, in each year. This is a really rough estimate of the number
of people affected by the disaster. If a disaster has two types (in some
rows, you will see “SEVERE STORMS, HEAVY RAINS & FLOODING”
we will allocate the credit evenly between the types (i.e. for this case we
would count 1/2 for STORM and 1/2 for FLOOD). You should write code
that will (a) read the dataset and then (b) compute a table with the count
of the number of counties where a disaster of each type has occurred for
each year. This takes a bit of work. Notice you only need to deal with
two columns of the data (the date it was declared, and the type). Notice
also that FEMA changed the way it represented dates somewhere through
the first column (they added times), which can cause problems. You can
tell the type of the disaster by just using a string match routine with the
four keywords. Figure 4.23 shows the plot of temperature and of number
of counties where FEMA declared a tornado disaster for this data.

(b) Plot a normalized scatter plot of the number of counties where FEMA
declared the disaster against temperature, for each kind.

(c) For each kind of disaster, compute the correlation coefficient between the
number of counties where FEMA declared the disaster and the year. For
each kind of disaster, use this correlation coefficient to predict the number
of disasters of this kind for 2013. Compare this to the true number, and
explain what you see.

(d) For each kind of disaster, compute the correlation coefficient between the
number of counties where FEMA declared the disaster and the global
temperature. For each kind of disaster, use this correlation coefficient to
predict the number of disasters of this kind when the earth reaches 0.6
temperature units and 0.7 temperature units (on the absolute temperature
scale).

(e) Does this data show that warming of the earth causes weather disasters?
Why?

(f) Does this data suggest that more people will be affected by disasters in
the US in the future? Why?

(g) Does this data suggest that the earth will be warmer in the future? Why?

C H A P T E R 5

Basic ideas in probability

We will perform experiments — which could be pretty much anything, from
flipping a coin, to eating too much saturated fat, to smoking, to crossing the road
without looking — and reason about the outcomes (mostly bad, for the examples I
gave). But these outcomes are uncertain, and we need to weigh those uncertainties
against one another. If I flip a coin, I could get heads or tails, and there’s no reason
to expect to see one more often than the other. If I eat too much saturated fat
or smoke, I will very likely have problems, though I might not. If I cross the road
without looking, I may be squashed by a truck or I may not. Our methods need
also to account for information. If I look before I cross the road, I am much less
likely to be squashed.

Probability is the machinery we use to predict what will happen in an exper-
iment. Probability measures the tendency of events to occur frequently or seldom
when we repeat experiments. Building this machinery involves a formal model of
potential outcomes and sets of outcomes. Once we have this, a set of quite simple
axioms allows us, at least in principle, to compute probabilities in most situations.

5.1 EXPERIMENTS, OUTCOMES, EVENTS, AND PROBABILITY

If we flip a fair coin many times, we expect it to come up heads about as often as
it comes up tails. If we toss a fair die many times, we expect each number to come
up about the same number of times. We are performing an experiment each time
we flip the coin, and each time we toss the die. We can formalize this experiment
by describing the set of outcomes that we expect from the experiment. Every run
of the experiment produces one of the set of possible outcomes. There are never
two or more outcomes, and there is never no outcome.

In the case of the coin, the set of outcomes is:

{H,T } .

In the case of the die, the set of outcomes is:

{1, 2, 3, 4, 5, 6} .

We are making a modelling choice by specifying the outcomes of the experiment.
For example, we are assuming that the coin can only come up heads or tails (but
doesn’t stand on its edge; or fall between the floorboards; or land behind the
bookcase; or whatever). We write the set of all outcomes Ω; this is usually known
as the sample space.

72

Section 5.1 Experiments, Outcomes, Events, and Probability 73

Worked example 5.1 Find the lady

We have three playing cards. One is a queen; one is a king, and one
is a knave. All are shown face down, and one is chosen at random and
turned up. What is the set of outcomes?

Solution: Write Q for queen, K for king, N for knave; the outcomes are
{Q,K,N}

Worked example 5.2 Find the lady, twice

We play Find the Lady twice, replacing the card we have chosen. What
is the sample space?

Solution: We now have {QQ,QK,QN,KQ,KK,KN,NQ,NK,NN}

Worked example 5.3 Children

A couple decides to have children until either (a) they have both a boy
and a girl or (b) they have three children. What is the set of outcomes?

Solution: Write B for boy, G for girl, and write them in birth order; we
have {BG,GB,BBG,BBB,GGB,GGG}.

Worked example 5.4 Monty Hall (sigh!)

There are three boxes. There is a goat, a second goat, and a car. These
are placed into the boxes at random. The goats are indistinguishable for
our purposes; equivalently, we do not care about the difference between
goats. What is the sample space?

Solution: Write G for goat, C for car. Then we have {CGG,GCG,GGC}.

Section 5.1 Experiments, Outcomes, Events, and Probability 74

Worked example 5.5 Monty Hall, different goats (sigh!)

There are three boxes. There is a goat, a second goat, and a car. These
are placed into the boxes at random. One goat is male, the other female,
and the distinction is important. What is the sample space?

Solution: Write M for male goat, F for female goat, C for car. Then
we have {CFM,CMF,FCM,MCF,FMC,MFC}. Notice how the num-
ber of outcomes has increased, because we now care about the distinction
between goats.

Worked example 5.6 A poor choice of strategy for planning a family

A couple decides to have children. As they know no mathematics, they
decide to have children until a girl then a boy are born. What is the
sample space? Does this strategy bound the number of children they
could be planning to have?

Solution: Write B for boy, G for girl. The sample space looks like any
string of B’s and G’s that (a) ends in GB and (b) does not contain any other
GB. In regular expression notation, you can write such strings as B∗G+B.
There is a lower bound (two), but no upper bound. As a family planning
strategy, this is unrealistic, but it serves to illustrate the point that sample
spaces don’t have to be finite to be tractable.

5.1.1 The Probability of an Outcome

We represent our model of how often a particular outcome will occur in a repeated
experiment with a probability, a non-negative number. This number gives the
relative frequency of the outcome of interest, when an experiment is repeated a
very large number of times.

Assume an outcome A has probability P . Assume we repeat the experiment
a very large number of times N , and assume that the coins, dice, whatever don’t
communicate with one another from experiment to experiment (or, equivalently,
that experiments don’t “know” about one another). Then, for about N × P of
those experiments the outcome will occur. Furthermore, as N gets larger, the
fraction where the outcome occurs will get closer to P . We write #(A) for the
number of times outcome A occurs. We interpret P as

lim
N→∞

#(A)

N
.

We can draw two important conclusions immediately.

• For any outcome A, 0 ≤ P (A) ≤ 1.

• ∑Ai∈Ω P (Ai) = 1.

Section 5.1 Experiments, Outcomes, Events, and Probability 75

Remember that every run of the experiment produces exactly one outcome. The
probabilities add up to one because each experiment must have one of the outcomes
in the sample space.

Worked example 5.7 A biased coin

Assume we have a coin where the probability of getting heads is P (H) =
1
3 , and so the probability of getting tails is P (T) = 2

3 . We flip this coin
three million times. How many times do we see heads?

Solution: P (H) = 1
3 , so we expect this coin will come up heads in 1

3 of
experiments. This means that we will very likely see very close to a million
heads.

Some problems can be handled by building a set of outcomes and reason-
ing about the probability of each outcome. This is particularly useful when the
outcomes must have the same probability, which happens rather a lot.

Worked example 5.8 Find the Lady

Assume that the card that is chosen is chosen fairly — that is, each
card is chosen with the same probability. What is the probability of
turning up a Queen?

Solution: There are three outcomes, and each is chosen with the same
probability, so the probability is 1/3.

Worked example 5.9 Monty Hall, indistinguishable goats, again

Each outcome has the same probability. We choose to open the first
box. With what probability will we find a goat (any goat)?

Solution: There are three outcomes, each has the same probability, and
two give a goat, so 2/3

Worked example 5.10 Monty Hall, yet again

Each outcome has the same probability. We choose to open the first
box. With what probability will we find the car?

Solution: There are three places the car could be, each has the same
probability, so 1/3

Section 5.1 Experiments, Outcomes, Events, and Probability 76

Worked example 5.11 Monty Hall, with distinct goats, again

Each outcome has the same probability. We choose to open the first
box. With what probability will we find a female goat?

Solution: Using the reasoning of the previous example, but substituting
“female goat” for “car”, 1/3. The point of this example is that the sample
space matters. If you care about the gender of the goat, then it’s important
to keep track of it; if you don’t, it’s a good idea to omit it from the sample
space.

5.1.2 Events

Assume we run an experiment and get an outcome. We know what the outcome
is (that’s the whole point of a sample space). This means we can tell whether the
outcome we get belongs to some particular known set of outcomes. We just look in
the set and see if our outcome is there. This means that we should be able to predict
the probability of a set of outcomes from any reasonable model of an experiment.
For example, we might roll a die and ask what the probability of getting an even
number is. As another example, we might flip a coin ten times, and ask what the
probability of getting three heads is.

An event is a set of outcomes. The set of all outcomes, which we wrote Ω,
must be an event. It is not a particularly interesting event, because we must have
P (Ω) = 1 (because we said that every run of an experiment produces one outcome,
and that outcome must be in Ω). In principle, there could be no outcome, although
this never happens. This means that the empty set, which we write ∅, is an event,
and we have P (∅) = 0. The space of events has a rich structure, which makes it
possible to compute probabilities for other, more interesting, events.

Notation: Generally, we write sets like A; in principle, you could confuse
this notation with the matrix notation, but it’s clear from context which is meant.
We write A∪B for the union of two sets, A∩B for the intersection of two sets, and
A− B for the set theoretic difference (i.e. A− B = {x ∈ A|x /∈ B}). We will write
Ω− U as Uc; read “the complement of U”.

Events have three important properties that follow from their nature as sets
of outcomes:

• If U and V are events — sets of outcomes — then so is U ∩ V . You should
interpret this as the event that we have an outcome that is in U and also in
V .

• If U and V are events, then U ∪ V is also an event. You should interpret this
as the event that we have an outcome that is either in U or in V (or in both).

• If U is an event, then Uc = Ω− U is also an event. You should think of this
as the event we get an outcome that is not in U .

This means that the set of all possible events Σ has a very important structure.

Section 5.1 Experiments, Outcomes, Events, and Probability 77

• ∅ is in Σ.

• Ω is in Σ.

• If U ∈ Σ and V ∈ Σ then U ∪ V ∈ Σ.

• If U ∈ Σ and V ∈ Σ then U ∩ V ∈ Σ.

• If U ∈ Σ then Uc ∈ Σ.

This means that the space of events can be quite big. For a single flip of a
coin, the only possible space of events looks like:

{∅, {H} , {T } , {H,T }}

Many experiments admit more than one space of events. For example, if we flip
two coins, one natural event space is

∅,Ω,
{HH}, {HT }, {TH}, {TT},
{HH,HT }, {HH,TH}, {HH,TT}, {HT, TT}, {HT, TH}, {TT,HH},
{HT, TH, TT }, {HH,TH, TT}, {HH,HT, TT}, {HH,HT, TH}

which can represent any possible event that can be built out of two coin flips. But
this is not the only event space possible with these outcomes.

Worked example 5.12 The structure of event spaces

I flip two coins. Is the following collection of sets an event space?

Σ = {∅,Ω, {HH}, {TT,HT, TH}}

Solution: Yes, because: ∅ ∈ Σ; Ω ∈ Σ; if A ∈ Σ, Ac ∈ Σ; if A ∈ Σ and
B ∈ Σ, A ∪ B ∈ Σ; and if A ∈ Σ and B ∈ Σ, A ∩ B ∈ Σ.

So, from example 12, we can have different consistent collections of events
built on top of the same set of outcomes. This makes sense, because it allows
us to reason about different kinds of result obtained with the same experimental
equipment. You can interpret the event space in example 12 as encoding the events
“two heads” and “anything other than two heads”.

Section 5.1 Experiments, Outcomes, Events, and Probability 78

For a single throw of the die, the set of every possible event is

∅, {1, 2, 3, 4, 5, 6} ,
{1} , {2} , {3} , {4} , {5} , {6} ,

{1, 2} , {1, 3} , {1, 4} , {1, 5} , {1, 6} ,
{2, 3} , {2, 4} , {2, 5} , {2, 6} ,

{3, 4} , {3, 5} , {3, 6} ,
{4, 5} , {4, 6} ,

{5, 6} ,
{1, 2, 3} , {1, 2, 4} , {1, 2, 5} , {1, 2, 6} ,

{1, 3, 4} , {1, 3, 5} , {1, 3, 6} ,
{1, 4, 5} , {1, 4, 6} ,

{1, 5, 6} ,
{2, 3, 4} , {2, 3, 5} , {2, 3, 6} ,
{2, 4, 5} , {2, 4, 6} , {2, 5, 6} ,

{3, 4, 5} , {3, 4, 6} ,
{3, 5, 6} ,
{4, 5, 6} ,

{1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 3, 6} ,
{1, 3, 4, 5} , {1, 3, 4, 6} ,
{2, 3, 4, 5} , {2, 3, 4, 6} ,

{3, 4, 5, 6} ,
{2, 3, 4, 5, 6} , {1, 3, 4, 5, 6} , {1, 2, 4, 5, 6} , {1, 2, 3, 5, 6} , {1, 2, 3, 4, 6} , {1, 2, 3, 4, 5}

(which gives some explanation as to why we don’t usually write out the whole
space of events). In fact, it is seldom necessary to explain which event space one is
working with. We usually assume that the event space consists of all events that
can be obtained with the outcomes (as in the event space shown for a die).

5.1.3 The Probability of Events

So far, we have described the probability of each outcome with a non-negative
number. This number represents the relative frequency of the outcome. Because
we can tell when an event has occurred, we can compute the relative frequency
of events, too. Because it is a relative frequency, the probability of an event is a
non-negative number, and is no greater than one. But the probability of events
must be consistent with the probability of outcomes. This implies a set of quite
straightforward properties:

• The probability of every event is non-negative, which we write P (A) ≥
0 for all A in the collection of events.

• Every experiment has an outcome, which we write P (Ω) = 1.

• The probability of disjoint events is additive, which requires more nota-
tion. Assume that we have a collection of events Ai, indexed by i. We require
that these have the property Ai ∩Aj = ∅ when i 6= j. This means that there
is no outcome that appears in more than one Ai. In turn, if we interpret
probability as relative frequency, we must have that P (∪iAi) =

∑

i P (Ai).

Any function P taking events to numbers that has these properties is a probability.
These very simple properties imply a series of other very important properties.

Section 5.1 Experiments, Outcomes, Events, and Probability 79

Useful Facts: 5.1 The probability of events

• P (Ac) = 1− P (A)

• P (∅) = 0

• P (A− B) = P (A)− P (A ∩ B)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

• P (∪n
1Ai) =

∑

i P (Ai)−
∑

i<j P (Ai ∩Aj) +
∑

i<j<k P (Ai ∩Aj ∩
Ak) + . . . (−1)(n+1)P (A1 ∩ A2 ∩ . . . ∩ An)

I prove each of these below. Looking at the useful facts should suggest a
helpful analogy. Think about the probability of an event as the “size” of that
event. This “size” is relative to Ω, which has “size” 1. I find this a good way to
remember equations.

For example, P (A) + P (Ac) = 1 has to be true, by this analogy, because
A and Ac don’t overlap, and together make up all of Ω. Similarly, P (A − B) =
P (A) − P (A ∩ B) is easily captured — the “size” of the part of A that isn’t B is
obtained by taking the “size” of A and subtracting the “size” of the part that is
also in B. Similarly, P (A ∪ B) = P (A) + P (B) − P (A ∩ B) says — you can get
the “size” of A ∪ B by adding the two “sizes”, then subtracting the “size” of the
intersection because otherwise you would count these terms twice. Some people
find Venn diagrams a useful way to keep track of this argument, and Figure 5.1 is
for them.

Proposition: P (Ac) = 1− P (A)

Proof: Ac and A are disjoint, so that P (Ac ∪ A) = P (Ac) + P (A) =
P (Ω) = 1.

Proposition: P (∅) = 0

Proof: P (∅) = P (Ωc) = P (Ω− Ω) = 1− P (Ω) = 1− 1 = 0.

Section 5.1 Experiments, Outcomes, Events, and Probability 80

A

B

A B

A

Ω

FIGURE 5.1: If you think of the probability of an event as measuring its “size”, many
of the rules are quite straightforward to remember. Venn diagrams can sometimes
help. On the left, a Venn diagram to help remember that P (A) + P (Ac) = 1. The
“size” of Ω is 1, outcomes lie either in A or Ac, and the two don’t intersect. On
the right, you can see that P (A−B) = P (A)−P (A∩B) by noticing that P (A−B)
is the “size” of the part of A that isn’t B. This is obtained by taking the “size” of
A and subtracting the “size” of the part that is also in B, i.e. the “size” of A ∩ B.
Similarly, you can see that P (A ∪ B) = P (A) + P (B)− P (A ∩ B) by noticing that
you can get the “size” of A∪B by adding the “sizes” of A and B, then subtracting
the “size” of the intersection to avoid double counting.

Proposition: P (A− B) = P (A)− P (A ∩ B)

Proof: A−B is disjoint from P (A∩B), and (A− B)∪ (A ∩ B) = A.
This means that P (A− B) + P (A∩ B) = P (A).

Proposition: P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

Proof: P (A ∪ B) = P (A ∪ (B ∩ Ac)) = P (A) + P ((B ∩ Ac)). Now
B = (B ∩ A)∪(B ∩ Ac). Furthermore, (B ∩ A) is disjoint from (B ∩Ac),
so we have P (B) = P ((B ∩ A)) +P ((B ∩Ac)). This means that P (A∪
B) = P (A) + P ((B ∩ Ac)) = P (A) + P (B)− P ((B ∩A)).

Section 5.1 Experiments, Outcomes, Events, and Probability 81

Proposition: P (∪n
1Ai) =

∑

i P (Ai)−
∑

i<j P (Ai∩Aj)+
∑

i<j<k P (Ai∩
Aj ∩Ak) + . . . (−1)(n+1)P (A1 ∩ A2 ∩ . . . ∩ An)

Proof: This can be proven by repeated application of the previous
result. As an example, we show how to work the case where there are
three sets (you can get the rest by induction).

P (A1 ∪ A2 ∪ A3) = P (A1 ∪ (A2 ∪ A3))

= P (A1) + P (A2 ∪A3)− P (A1 ∩ (A2 ∪ A3))

= P (A1) + (P (A2) + P (A3)− P (A2 ∩ A3))−
P ((A1 ∩A2) ∪ (A1 ∩A3))

= P (A1) + (P (A2) + P (A3)− P (A2 ∩ A3))−
P (A1 ∩ A2)− P (A1 ∩ A3)

−(−P ((A1 ∩ A2) ∩ (A1 ∩ A3)))

= P (A1) + P (A2) + P (A3)−
P (A2 ∩ A3)− P (A1 ∩ A2)− P (A1 ∩A3) +

P (A1 ∩ A2 ∩ A3)

5.1.4 Computing Probabilities by Counting Outcomes

The rule P (A ∪ B) = P (A) + P (B) − P (A ∩ B) yields a very useful procedure
for computing the probability of some events. Imagine A and B are disjoint (so
A ∩ B = ∅). Then P (A ∪ B) is just P (A) + P (B). So imagine some event E that
consists of a set of outcomes. Each singleton set — containing just one outcome —
is disjoint from each other one. I can make the set E by: starting with an empty set;
unioning this with one of the outcomes in E ; then repeatedly unioning the result a
new outcome until I get E . I am always unioning disjoint sets, so the probability of
this event is the sum of probabilities of the outcomes. So we have

P (E) =
∑

O∈E
P (O)

where O ranges over the outcomes in E .
This is particularly useful when you know each outcome in Ω has the same

probability. In this case, you can show

P (E) = Number of outcomes in E
Total number of outcomes in Ω

(exercises). Such problems become, basically, advanced counting exercises.

Section 5.1 Experiments, Outcomes, Events, and Probability 82

Worked example 5.13 Odd numbers with fair dice

We throw a fair (each number has the same probability) die twice,
then add the two numbers. What is the probability of getting an odd
number?

Solution: There are 36 outcomes. Each has the same probability (1/36).
18 of them give an odd number, and the other 18 give an even number, so
the probability is 18/36 = 1/2

Worked example 5.14 Drawing a red ten

I shuffle a standard pack of cards, and draw one card. What is the
probability that it is a red ten?

Solution: There are 52 cards, and each is an outcome. Two of these
outcomes are red tens; so 1/26.

Worked example 5.15 Numbers divisible by five with fair dice

We throw a fair (each number has the same probability) die twice, then
add the two numbers. What is the probability of getting a number
divisible by five?

Solution: There are 36 outcomes. Each has the same probability (1/36).
For this event, the spots must add to either 5 or to 10. There are 4 ways
to get 5. There are 3 ways to get 10, so the probability is 7/36.

Worked example 5.16 Children - 1

This example is a version of of example 1.12, p44, in Stirzaker, “Ele-
mentary Probability”. A couple decides to have children. They decide
simply to have three children. Assume that each gender is equally likely
at each birth. Let Bi be the event that there are i boys, and C be the
event there are more girls than boys. Compute P (B1) and P (C).

Solution: There are eight outcomes. Each has the same probability.
Three of them have a single boy, so P (B1) = 3/8. P (C) = P (Cc) (because
Cc is the event there are more boys than than girls, AND the number of
children is odd), so that P (C) = 1/2; you can also get this by counting
outcomes.

Sometimes a bit of fiddling with the space of outcomes makes it easy to

Section 5.1 Experiments, Outcomes, Events, and Probability 83

compute what we want.

Worked example 5.17 Children - 2

This example is a version of of example 1.12, p44, in Stirzaker, “Ele-
mentary Probability”. A couple decides to have children. They decide
to have children until the first girl is born, or until there are three, and
then stop. Assume that each gender is equally likely at each birth. Let
Bi be the event that there are i boys, and C be the event there are
more girls than boys. Compute P (B1) and P (C).

Solution: In this case, we could write the outcomes as {G,BG,BBG},
but if we think about them like this, we have no simple way to compute
their probability. Instead, we could use the sample space from the previous
answer, but assume that some of the later births are fictitious. This gives
us natural collection of events for which it is easy to compute probabilities.
Having one girl corresponds to the event {Gbb,Gbg,Ggb,Ggg}, where I have
used lowercase letters to write the fictitious later births; the probability is
1/2. Having a boy then a girl corresponds to the event {BGb,BGg} (and
so has probability 1/4). Having two boys then a girl corresponds to the
event {BBG} (and so has probability 1/8). Finally, having three boys
corresponds to the event {BBB} (and so has probability 1/8). This means
that P (B1) = 1/4 and P (C) = 1/2.

Worked example 5.18 Children - 2

This example is a version of of example 1.12, p44, in Stirzaker, “Ele-
mentary Probability”. A couple decides to have children. They decide
to have children until there is one of each gender, or until there are
three, and then stop. Assume that each gender is equally likely at each
birth. Let Bi be the event that there are i boys, and C be the event
there are more girls than boys. Compute P (B1) and P (C).

Solution: We could write the outcomes as
{GB,BG,GGB,GGG,BBG,BBB}. Again, if we think about them
like this, we have no simple way to compute their probability; so we use
the sample space from the previous example with the device of the ficti-
tious births again. The important events are {GBb,GBg}; {BGb,BGg};
{GGB}; {GGG}; {BBG}; and {BBB}. Like this, we get P (B1) = 5/8
and P (C) = 1/4.

Section 5.1 Experiments, Outcomes, Events, and Probability 84

Worked example 5.19 Birthdays in succession

We stop three people at random, and ask the day of the week on which
they are born. What is the probability that they are born on three days
of the week in succession (for example, the first on Monday; the second
on Tuesday; the third onWednesday; or Saturday-Sunday-Monday; and
so on).

Solution: We assume that births are equally common on each day of the
week. The space of outcomes consists of triples of days, and each outcome
has the same probability. The event is the set of triples of three days in
succession (which has seven elements, one for each starting day). The space
of outcomes has 73 elements in it, so the probability is

Number of outcomes in the event

Total number of outcomes
=

7

73
=

1

49
.

Worked example 5.20 Shared birthdays

We stop two people at random. What is the probability that they were
born on the same day of the week?

Solution: The day the first person was born doesn’t matter; the proba-
bility the second person was born on that day is 1/7. Or you could count
outcomes explicitly to get

Number of outcomes in the event

Total number of outcomes
=

7

7× 7
=

1

7
.

An important feature of this class of problem is that your intuition can be
quite misleading. This is because, although each outcome can have very small
probability, the number of outcomes in an event can be big.

5.1.5 Computing Probabilities by Reasoning about Sets

The rule P (Ac) = 1 − P (A) is occasionally useful for computing probabilities on
its own; more commonly, you need other reasoning as well.

Section 5.1 Experiments, Outcomes, Events, and Probability 85

Worked example 5.21 Shared birthdays

What is the probability that, in a room of 30 people, there is a pair of
people who have the same birthday?

Solution: We simplify, and assume that each year has 365 days, and that
none of them are special (i.e. each day has the same probability of being
chosen as a birthday). This model isn’t perfect (there tend to be slightly
more births roughly 9 months after: the start of spring; blackouts; major
disasters; and so on) but it’s workable. The easy way to attack this question
is to notice that our probability, P ({shared birthday}), is

1− P ({all birthdays different}).

This second probability is rather easy to compute. Each outcome in the
sample space is a list of 30 days (one birthday per person). Each outcome
has the same probability. So

P ({all birthdays different}) = Number of outcomes in the event

Total number of outcomes
.

The total number of outcomes is easily seen to be 36530, which is the total
number of possible lists of 30 days. The number of outcomes in the event
is the number of lists of 30 days, all different. To count these, we notice
that there are 365 choices for the first day; 364 for the second; and so on.
So we have

P ({shared birthday}) = 1− 365× 364× . . . 336

36530
= 1− 0.2937 = 0.7063

which means there’s really a pretty good chance that two people in a room
of 30 share a birthday.

If we change the birthday example slightly, the problem changes drastically.
If you stand up in a room of 30 people and bet that two people in the room have
the same birthday, you have a probability of winning of about 0.71. If you bet that
there is someone else in the room who has the same birthday that you do, your
probability of winning is very different.

Section 5.1 Experiments, Outcomes, Events, and Probability 86

Worked example 5.22 Shared birthdays

You bet there is someone else in a room of 30 people who has the same
birthday that you do. Assuming you know nothing about the other 29
people, what is the probability of winning?

Solution: The easy way to do this is

P ({winning}) = 1− P ({losing}).

Now you will lose if everyone has a birthday different from you. You can
think of the birthdays of the others in the room as a list of 29 days of the
year. If your birthday is on the list, you win; if it’s not, you lose. The
number of losing lists is the number of lists of 29 days of the year such that
your birthday is not in the list. This number is easy to get. We have 364
days of the year to choose from for each of 29 locations in the list. The
total number of lists is the number of lists of 29 days of the year. Each list
has the same probability. So

P ({losing}) = 36429

36529

and
P ({winning}) ≈ 0.0765.

There is a wide variety of problems like this; if you’re so inclined, you can
make a small but quite reliable profit off people’s inability to estimate probabilities
for this kind of problem correctly (examples 21 and 22 are reliably profitable; you
could probably do quite well out of examples 19 and 20).

The rule P (A−B) = P (A)−P (A∩B) is also occasionally useful for computing
probabilities on its own; more commonly, you need other reasoning as well.

Worked example 5.23 Dice

You flip two fair six-sided dice, and add the number of spots. What is
the probability of getting a number divisible by 2, but not by 5?

Solution: There is an interesting way to work the problem. Write Dn for
the event the number is divisible by n. Now P (D2) = 1/2 (count the cases;
or, more elegantly, notice that each die has the same number of odd and
even faces, and work from there). Now P (D2−D5) = P (D2)−P (D2∩D5).
But D2 ∩ D5 contains only two outcomes (6, 4 and 4, 6), so P (D2 −D5) =
18/36− 2/36 = 4/9

Sometimes it is easier to reason about unions than to count outcomes directly.

Section 5.1 Experiments, Outcomes, Events, and Probability 87

Worked example 5.24 Two fair dice

I roll two fair dice. What is the probability that the result is divisible
by either 2 or 5, or both?

Solution: Write Dn for the event the number is divisible by n. We want
P (D2 ∪ D5) = P (D2) + P (D5) − P (D2 ∩ D5). From example 23, we know
P (D2) = 1/2 and P (D2 ∩ D5) = 2/36. By counting outcomes, P (D5) =
6/36. So P (D2 ∪ D5) = (18 + 6− 2)/36 = 22/36.

5.1.6 Independence

Some experimental results do not affect others. For example, if I flip a coin twice,
whether I get heads on the first flip has no effect on whether I get heads on the
second flip. As another example, I flip a coin; the outcome does not affect whether
I get hit on the head by a falling apple later in the day. We refer to events with
this property as independent.

Useful Facts: 5.2 Independent events

Two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B)

The “size” analogy helps motivate this expression. We think of P (A) as the
“size” of A relative to Ω, and so on. Now P (A ∩ B) measures the “size” of A ∩ B
— that is, the part of A that lies inside B. But if A and B are independent, then
the size of A ∩ B relative to B should be the same as the size of A relative to Ω
(Figure 5.2). Otherwise, B affects A, because A is more (or less) likely when B has
occurred.

So for A and B to be independent, we must have

“Size” of A =
“Size” of piece of A in B

“Size” of B ,

or, equivalently,

P (A) =
P (A ∩ B)
P (B)

which yields our expression. Independence is important, because it is straightfor-
ward to compute probabilities for sequences of independent outcomes.

Section 5.1 Experiments, Outcomes, Events, and Probability 88

Ω

A

B

Ω

A

B

Independent Events Dependent Events

FIGURE 5.2: On the left, A and B are independent. A spans 1/4 of Ω, and A ∩ B
spans 1/4 of B. This means that B can’t affect A. 1/4 of the outcomes of Ω lie in
A, and 1/4 of the outcomes in B lie in A ∩ B. On the right, they are not. Very
few of the outcomes in B lie in B ∩ A, so that observing B means that A becomes
less likely, because very few of the outcomes in B also lie in A ∩ B.

Worked example 5.25 A fair coin

A fair coin (or die, or whatever) is one where each outcome has the
same probability. A fair coin has two sides, so the probability of each
outcome must be 1/2. We flip this coin twice - what is the probability
we see two heads?

Solution: The flips are independent. Write H1 for the event that the first
flip comes up heads, H2 for the event the second comes up heads. We
have H1 = {HH,HT } and H2 = {HH,TH}. We seek P (H1 ∩ H2) =
P (H1)P (H2). The coin is fair, so P (H1) = P (H2) = 1/2. So the probabil-
ity is 1

4 .

The reasoning of example 25 is moderately rigorous (if you want real rigor,
you should specify the event space, etc.; I assumed that it would be obvious), but
it’s a bit clumsy for everyday use. The rule to remember is this: the probability
that both events occur is P (A ∩ B) and, if A and B are independent, then this is
P (A)P (B).

Section 5.1 Experiments, Outcomes, Events, and Probability 89

Worked example 5.26 A fair die

The space of outcomes for a fair six-sided die is

{1, 2, 3, 4, 5, 6} .

The die is fair means that each outcome has the same probability. Now
we toss two fair dice — with what probability do we get two threes?

Solution:

P (first toss yields 3 ∩ second toss yields 3) = P (first toss yields 3)×
P (second toss yields 3)

= (1/6)(1/6)

= 1/36

Worked example 5.27 Find the Lady, twice

Assume that the card that is chosen is chosen fairly — that is, each
card is chosen with the same probability. The game is played twice,
and the cards are reshuffled between games. What is the probability of
turning up a Queen and then a Queen again?

Solution: The events are independent, so 1/9.

Worked example 5.28 Children

A couple decides to have two children. Genders are assigned to chil-
dren at random, fairly, independently and at birth (our models have to
abstract a little!). What is the probability of having a boy and then a
girl?

Solution:

P (first is boy ∩ second is girl) = P (first is boy)P (second is girl)

= (1/2)(1/2)

= 1/4

You can use the expression to tell whether events are independent or not.
Quite small changes to a problem affect whether events are independent. For ex-

Section 5.1 Experiments, Outcomes, Events, and Probability 90

ample, simply removing a card from a deck can make some events dependent.

Worked example 5.29 Independent cards

We shuffle a standard deck of 52 cards and draw one card. The event
A is “the card is a red suit” and the event B is “the card is a 10”. Are
they independent?

Solution: P (A) = 1/2, P (B) = 1/13 and in example 14 we determined
P (A∩B) = 2/52. But 2/52 = 1/26 = P (A)P (B), so they are independent.

Worked example 5.30 Independent cards

We take a standard deck of cards, and remove the ten of hearts. We
now shuffle this deck, and draw one card. The event A is “the card is a
red suit” and the event B is “the card is a 10”. Are they independent?

Solution: These are not independent because P (A) = 25/51, P (B) = 3/51
and P (A ∩ B) = 1/51 6= P (A)P (B) = 75/(512)

The probability of a sequence of independent events can become very small
very quickly, and this often misleads people.

Worked example 5.31 Accidental DNA Matches

I search a DNA database with a sample. Each time I attempt to match
this sample to an entry in the database, there is a probability of an
accidental chance match of 1e − 4. Chance matches are independent.
There are 20, 000 people in the database. What is the probability I get
at least one match, purely by chance?

Solution: This is 1− P (no chance matches). But P (no chance matches)
is much smaller than you think. We have

P (no chance matches) = P

no chance match to record 1∩
no chance match to record 2∩

. . .∩
no chance match to record 20, 000

= P (no chance match to a record)20,000

= (1− 1e− 4)20,000

so the probability is about 0.86 that you get at least one match by chance.
Notice that if the database gets bigger, the probability grows; so at 40, 000
the probability of one match by chance is 0.98.

Section 5.1 Experiments, Outcomes, Events, and Probability 91

5.1.7 Permutations and Combinations

Counting outcomes in an event can require pretty elaborate combinatorial argu-
ments. One form of argument that is particularly important is to reason about
permutations. You should recall that the number of permutations of k items is k!.

Worked example 5.32 Counting outcomes with permutations

I flip a coin k times. How many of the possible outcomes have exactly
r heads?

Solution: Here is one natural way to think about this problem. Each
outcome we are interested in is a string of r H’s and k− r T’s, and we need
to count the number of such strings. We can do so with permutations.
Write down any string of r H’s and k−r T’s. Any other string of r H’s and
k−r T’s is a permutation of this one. However, many of these permutations
simply swap one H with another, or one T with another. The total number
of permutations of a string of k entries is k!. The number of permutations
that swap H’s with one another is r! (because there are r H’s), and the
number of permutations that swap T’s with one another is (k − r)!. The
total number of strings must then be

k!

r!(k − r)!
=

(

k
r

)

There is another way to think about example 32, which is more natural if
you’ve seen combinations before. You start with a string of k T’s, then you choose
r distinct elements to turn into H’s. The number of choices of r distinct elements
in k items is:

k!

r!(k − r)!
=

(

k
r

)

,

so there must be this number of strings. We can use this result to investigate our
model of probability as frequency.

Worked example 5.33 A fair coin, revisited

We conduct N experiments, where each experiment is to flip a fair coin
twice. In what fraction of these experiments do we see both sides of the
coin?

Solution: The sample space is {HH,HT, TH, TT }. The coin is fair, so
each outcome has the same probability. This means that (1/4)N experi-
ments produce HT ; (1/4)N produce TH ; and so on. We see both sides of
the coin in an experiment for about (1/2)N experiments.

Example 33 might seem like a contradiction to you. I claimed that we could

Section 5.1 Experiments, Outcomes, Events, and Probability 92

interpret P as the relative frequency of outcomes, and that my coin was fair; but,
in only half of my experiments did I see both sides of the coin. In the other half,
the coin behaved as if the probability of seeing one side is 1, and the probability
of seeing the other side is 0. This occurs because the number of flips in each
experiment is very small. If the number of flips is larger, you are much more likely
to see about the right frequencies.

Worked example 5.34 A fair coin, yet again

We conduct N experiments, where each experiment is to flip a fair coin
six times. In what fraction of these experiments do we get three heads
and three tails?

Solution: There are 64 = 26 outcomes in total for six coin flips. Each has
the same probability. By the argument of example 32, there are

6!

3!3!
= 20

outcomes with three heads. So the fraction is 20/64 = 1/3.

At first glance, example 34 suggests that making the number of experiments
get bigger doesn’t help. But in the definition of probability, I said that there would
be “about” N × P experiments with the outcome of interest.

Worked example 5.35 A fair coin, yet again

We conduct N experiments, where each experiment is to flip a fair coin
10 times. In what fraction of these experiments do we get between 4
and 6 heads?

Solution: There are 1024 = 210 outcomes for an experiment. We are
interested in the four head outcomes, the five head outcomes and the six
head outcomes. Using the argument of example 34 gives

total outcomes = 4H outcomes + 5H outcomes + 6H outcomes

=
10!

4!6!
+

10!

5!5!
+

10!

6!4!
= 210 + 252 + 210

= 692

so in 692/1024 ≈ 0.68 of the experiments, we will see between four and six
heads

Section 5.1 Experiments, Outcomes, Events, and Probability 93

Worked example 5.36 A fair coin, and a lot of flipping

We conduct N experiments, where each experiment is to flip a fair coin
100 times. In what fraction of these experiments do we get between 45
and 65 heads?

Solution: There are 2100 outcomes for an experiment. Using the argument
of example 35 gives

total outcomes =

65
∑

i=45

100!

i!(100− i)!

which isn’t particularly easy to evaluate.

As these examples suggest, if an experiment consists of flipping a large number
of coins, then a high fraction of those experiments will show heads with a frequency
very close to the right number. We will establish this later, with rather more
powerful machinery.

Worked example 5.37 Overbooking - 1

An airline has a regular flight with six seats. It always sells seven
tickets. Passengers turn up for the flight with probability p, and do
so independent of other passengers. What is the probability that the
flight is overbooked?

Solution: This is like a coin-flip problem; think of each passenger as a
biased coin. With probability p, it comes up T (for turn up) and with
probability (1− p), it turns up N (for no-show). This coin is flipped seven
times, and we are interested in the probability that there are seven T ’s.
This is p7, because the flips are independent.

Section 5.1 Experiments, Outcomes, Events, and Probability 94

Worked example 5.38 Overbooking - 2

An airline has a regular flight with six seats. It always sells eight tickets.
Passengers turn up for the flight with probability p, and do so indepen-
dent of other passengers. What is the probability that six passengers
arrive? (i.e. the flight is not overbooked or underbooked).

Solution: Now we flip the coin eight times, and are interested in the
probability of getting exactly six T ’s. We get, by the reasoning of worked
example 32,

8!

2!6!
p6(1− p)2 = 28p6(1− p)2

Worked example 5.39 Overbooking - 3

An airline has a regular flight with six seats. It always sells eight tickets.
Passengers turn up for the flight with probability p, and do so indepen-
dent of other passengers. What is the probability that the flight is
overbooked?

Solution: Now we flip the coin eight times, and are interested in the
probability of getting more than six T ’s. This is the union of two disjoint
events (seven T ’s and eight T ’s). For the case of seven T ’s, one flip must be
N ; there are eight choices. For the case of eight T ’s, all eight flips must be
T , and there is only one way to achieve this. So the probability the flight
is overbooked is

P (overbooked) = P (7 T ’s ∪ 8 T ’s)

= P (7 T ’s) + P (8 T ’s)

= 8p7(1− p) + p8

Section 5.2 Conditional Probability 95

Worked example 5.40 Overbooking - 4

An airline has a regular flight with s seats. It always sells t tickets.
Passengers turn up for the flight with probability p, and do so inde-
pendent of other passengers. What is the probability that u passengers
turn up?

Solution: Now we flip the coin t times, and are interested in the probability
of getting u T ’s. By the argument of worked example 32, there are

t!

u!(t− u)!

disjoint outcomes with u T ’s and t−u N ’s. Each such outcome is indepen-
dent, and has probability pu(1− p)t−u. So

P (u passengers turn up) =
t!

u!(t− u)!
pu(1− p)t−u

Worked example 5.41 Overbooking - 5

An airline has a regular flight with s seats. It always sells t tickets.
Passengers turn up for the flight with probability p, and do so inde-
pendent of other passengers. What is the probability that the flight is
oversold?

Solution: We need P ({s+ 1 turn up}∪{s+ 2 turn up}∪. . .∪{t turn up}).
But the events {i turn up} and {j turn up} are disjoint if i 6= j. So we can
exploit example 40, and write

P (overbooked) = P ({s+ 1 turn up}) + P ({s+ 2 turn up}) +
. . . P ({t turn up})

=

t
∑

i=s+1

P ({i turn up})

=
t
∑

i=s+1

t!

i!(t− i)!
pi(1− p)t−i

5.2 CONDITIONAL PROBABILITY

If you throw a fair die twice and add the numbers, then the probability of getting
a number less than six is 10

36 . Now imagine you know that the first die came up

Section 5.2 Conditional Probability 96

three. In this case, the probability that the sum will be less than six is 1
3 , which is

slightly larger. If the first die came up four, then the probability the sum will be
less than six is 1

6 , which is rather less than 10
36 . If the first die came up one, then

the probability that the sum is less than six becomes 2
3 , which is much larger.

Each of these probabilities is an example of a conditional probability. We
assume we have a space of outcomes and a collection of events. The conditional
probability of B, conditioned on A, is the probability that B occurs given that A
has definitely occurred. We write this as

P (B|A)

5.2.1 Evaluating Conditional Probabilities

Now to get an expression for P (B|A), notice that, because A is known to have
occurred, our space of outcomes or sample space is now reduced to A. We know
that our outcome lies in A; P (B|A) is the probability that it also lies in B ∩A.

The outcome lies in A, and so it must lie in either P (B ∩A) or in P (Bc ∩A).
This means that

P (B|A) + P (Bc|A) = 1.

Now recall the idea of probabilities as relative frequencies. If P (C ∩ A) =
kP (B ∩ A), this means that we will see outcomes in C ∩ A k times as often as we
will see outcomes in B ∩ A. But this must apply even if we know in advance that
the outcome is in A. So we must have

P (B|A) ∝ P (B ∩ A).

Now we need to determine the constant of proportionality; write c for this constant,
meaning

P (B|A) = cP (B ∩ A).

We have that

P (B|A) + P (Bc|A) = cP (B ∩ A) + cP (Bc ∩ A) = cP (A) = 1,

so that

P (B|A) =
P (B ∩ A)

P (A)
.

Using the “size” metaphor, this says the probability that an outcome, which
is known to be in A, is also in B is the fraction of A that is also in B.

Another, very useful, way to write this expression is

P (B|A)P (A) = P (B ∩ A).

Now, since B ∩ A = A∩ B, we must have that

Section 5.2 Conditional Probability 97

P (B|A) =
P (A|B)P (B)

P (A)

Worked example 5.42 Two dice

We throw two fair dice. What is the conditional probability that the
sum of spots on both dice is greater than six, conditioned on the event
that the first die comes up five?

Solution: Write the event that the first die comes up 5 as F , and the
event the sum is greather than six as S. There are five outcomes where the
first die comes up 5 and the number is greater than 6, so P (F ∩S) = 5/36.
P (S|F) = P (F ∩ S)/P (F) = (5/36)/(1/6) = 5/6.

Notice that A∩B and A∩Bc are disjoint sets, and that A = (A∩B)∪(A∩Bc).
So, because P (A) = P (A ∩ B) + P (A ∩ Bc), we have

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

a tremendously important and useful fact. Another version of this fact is also very
useful. Assume we have a set of disjoint sets Bi. These sets must have the property
that (a) Bi ∩ Bj = ∅ for i 6= j and (b) they cover A, meaning that A∩ (∪iBi) = A.
Then, because P (A) =

∑

i P (A ∩ Bi), so we have

P (A) =
∑

i

P (A|Bi)P (Bi)

Section 5.2 Conditional Probability 98

Worked example 5.43 Car factories

There are two car factories, A and B. Each year, factory A produces
1000 cars, of which 10 are lemons. Factory B produces 2 cars, each of
which is a lemon. All cars go to a single lot, where they are thoroughly
mixed up. I buy a car.

• What is the probability it is a lemon?

• What is the probability it came from factory B?

• The car is now revealed to be a lemon. What is the probability
it came from factory B, conditioned on the fact it is a lemon?

Solution:

• Write the event the car is a lemon as L. There are 1002 cars, of which
12 are lemons. The probability that I select any given car is the same,
so we have 12/1002.

• Same argument yields 2/1002.

• Write B for the event the car comes from factory B. I need P (B|L).
This is P (L|B)P (B)/P (L) = (1× 2/1002)/(12/1002) = 1/6.

Worked example 5.44 Royal flushes in poker - 1

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt
five cards face down. A royal flush is a hand of AKQJ10 all in one suit.
What is the probability that you are dealt a royal flush?

Solution: This is

number of hands that are royal flushes, ignoring card order

total number of different five card hands, ignoring card order
.

There are four hands that are royal flushes (one for each suit). Now the
total number of five card hands is

(

52
5

)

= 2598960

so we have
4

2598960
=

1

649740
.

Section 5.2 Conditional Probability 99

Worked example 5.45 Royal flushes in poker - 2

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt
five cards face down. A royal flush is a hand of AKQJ10 all in one
suit. The fifth card that you are dealt lands face up. It is the nine of
spades. What now is the probability that your have been dealt a royal
flush? (i.e. what is the conditional probability of getting a royal flush,
conditioned on the event that one card is the nine of spades)

Solution: No hand containing a nine of spades is a royal flush, so this is
easily zero.

Section 5.2 Conditional Probability 100

Worked example 5.46 Royal flushes in poker - 3

This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt
five cards face down. A royal flush is a hand of AKQJ10 all in one
suit. The fifth card that you are dealt lands face up. It is the Ace of
spades. What now is the probability that your have been dealt a royal
flush? (i.e. what is the conditional probability of getting a royal flush,
conditioned on the event that one card is the Ace of spades)

Solution: There are two ways to do this. The easiest is to notice that the
answer is the probability that the other four cards are KQJ10 of spades,
which is

1/

(

51
4

)

=
1

249900
.

Harder is to consider the events

A = event that you receive a royal flush and last card is the ace of spades

and

B = event that the last card you receive is the ace of spades,

and the expression

P (A|B) = P (A ∩ B)
P (B) .

Now P (A) = 1
52 . P (A ∩ B) is given by

number of five card royal flushes where card five is Ace of spades

total number of different five card hands
.

where we DO NOT ignore card order. This is

4× 3× 2× 1

52× 51× 50× 49× 48

yielding

P (A|B) = 1

249900
.

Notice the interesting part: the conditional probability is rather larger than
the probability. If you see this ace, the conditional probability is 13

5 times
the probability that you will get a flush if you don’t. Seeing this card has
really made a difference.

Section 5.2 Conditional Probability 101

Worked example 5.47 False positives

After Stirzaker, p55. You have a blood test for a rare disease that
occurs by chance in 1 person in 100, 000. If you have the disease, the
test will report that you do with probability 0.95 (and that you do not
with probability 0.05). If you do not have the disease, the test will
report a false positive with probability 1e-3. If the test says you do
have the disease, what is the probability it is correct?

Solution: Write S for the event you are sick and R for the event the test
reports you are sick. We need P (S|R). We have

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
0.95× 1e− 5

0.95× 1e− 5 + 1e− 3× (1− 1e− 5)

= 0.0094

which should strike you as being a bit alarming. The disease is so rare that
the test is almost useless.

Section 5.2 Conditional Probability 102

Worked example 5.48 False positives -2

After Stirzaker, p55. You want to design a blood test for a rare disease
that occurs by chance in 1 person in 100, 000. If you have the disease,
the test will report that you do with probability p (and that you do not
with probability (1 − p)). If you do not have the disease, the test will
report a false positive with probability q. You want to choose the value
of p so that if the test says you have the disease, there is at least a 50%
probability that you do.

Solution: Write S for the event you are sick and R for the event the test
reports you are sick. We need P (S|R). We have

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
p× 1e− 5

p× 1e− 5 + q × (1− 1e− 5)

≥ 0.5

which means that p ≥ 99999q which should strike you as being very alarm-
ing indeed, because p ≤ 1 and q ≥ 0. One plausible pair of values is
q = 1e− 5, p = 1− 1e− 5. The test has to be spectacularly accurate to be
of any use.

5.2.2 The Prosecutors Fallacy

It is quite easy to make mistakes in conditional probability. Several such mistakes
have names, because they’re so common. One is the prosecutor’s fallacy. This
often occurs in the following form: A prosecutor has evidence E against a suspect.
Write I for the event that the suspect is innocent. The evidence has the property
that P (E|I) is extremely small. The prosecutor argues that the suspect must be
guilty, because P (E|I) is so small, and this is the fallacy.

The problem here is that the conditional probability of interest is P (I|E)
(rather than P (E|I)). The fact that P (E|I) is small doesn’t mean that P (I|E) is
small, because

P (I|E) = P (E|I)P (I)
P (E) =

P (E|I)P (I)
(P (E|I)P (I) + P (E|Ic)(1− P (I)))

Notice how, if P (I) is large or if P (E|Ic) is much smaller than P (E|I), then P (I|E)
could be close to one. The question to look at is not how unlikely the evidence is
if the subject is innocent; instead, the question is how likely the subject is to be
guilty compared to some other source of the evidence. These are two very different
questions.

Section 5.2 Conditional Probability 103

One useful analogy may be helpful. If you buy a lottery ticket (L), the
probability of winning (W) is small. So P (W|L) may be very small. But P (L|W)
is 1 — the winner is always someone who bought a ticket.

The prosecutor’s fallacy has contributed to a variety of miscarriages of justice.
One famous incident involved a mother, Sally Clark, convicted of murdering two
of her children. Expert evidence by paediatrician Roy Meadow argued that the
probability of both deaths resulting from Sudden Infant Death Syndrome was ex-
tremely small. Her first appeal cited, among other grounds, statistical error in the
evidence (you should spot the prosecutors fallacy; others were involved, too). The
appeals court rejected this appeal, calling the statistical point “a sideshow”. This
prompted a great deal of controversy, both in the public press and various profes-
sional journals, including a letter from the then president of the Royal Statistical
Society to the Lord Chancellor, pointing out that “statistical evidence . . . (should
be) . . . presented only by appropriately qualified statistical experts”. A second appeal
(on other grounds) followed, and was successful. The appelate judges specifically
criticized the statistical evidence, although it was not a point of appeal. Clark never
recovered from this horrific set of events and died in tragic circumstances shortly
after the second appeal. Roy Meadow was then struck off the rolls for serious pro-
fessional misconduct as an expert witness, a ruling he appealed successfully. You
can find a more detailed account of this case, with pointers to important documents
including the letter to the Lord Chancellor (which is well worth reading), at http:
//en.wikipedia.org/wiki/Roy_Meadow; there is further material on the prosecu-
tors fallacy at http://en.wikipedia.org/wiki/Prosecutor\%27s_fallacy.

5.2.3 Independence and Conditional Probability

As we have seen, two events are independent if

P (A ∩ B) = P (A)P (B).

If two events A and B are independent, then

P (A|B) = P (A)

and
P (B|A) = P (B).

Again, this means that knowing that A occurred tells you nothing about B — the
probability that B will occur is the same whether you know that A occurred or not.

Events A1 . . .An are pairwise independent if each pair is independent (i.e.
A1 and A2 are independent, etc.). They are independent if for any collection of
distinct indices i1 . . . ik we have

P (Ai1 ∩ . . . ∩ Aik) = P (Ai1) . . . P (Aik)

Notice that independence is a much stronger assumption than pairwise indepen-
dence.

Section 5.2 Conditional Probability 104

Worked example 5.49 Cards and pairwise independence

We draw three cards from a properly shuffled standard deck, with re-
placement and reshuffling (i.e., draw a card, make a note, return to
deck, shuffle, draw the next, make a note, shuffle, draw the third). Let
A be the event that “card 1 and card 2 have the same suit”; let B be
the event that “card 2 and card 3 have the same suit”; let C be the
event that “card 1 and card 3 have the same suit”. Show these events
are pairwise independent, but not independent.

Solution: By counting, you can check that P (A) = 1/4; P (B) = 1/4;
and P (A ∩ B) = 1/16, so that these two are independent. This argument
works for other pairs, too. But P (C ∩ A ∩ B) = 1/16 which is not 1/43, so
the events are not independent; this is because the third event is logically
implied by the first two.

We usually do not have the information required to prove that events are
independent. Instead, we use intuition (for example, two flips of the same coin are
likely to be independent unless there is something very funny going on) or simply
choose to apply models in which some variables are independent.

Some events are pretty obviously independent. On other occasions, one needs
to think about whether they are independent or not. Sometimes, it is reasonable
to choose to model events as being independent, even though they might not be
exactly independent. In cases like this, it is good practice to state your assumptions,
because it helps you to keep track of what your model means. For example, we have
worked with the event that a person, selected fairly and randomly from a set of
people in a room, has a birthday on a particular day of the year. We assumed that,
for different people, the events are independent. This seems like a fair assumption,
but one might want to be cautious if you know that the people in the room are
drawn from a population where multiple births are common.

Independent events can lead very quickly to very small probabilities, as we saw
in example 31. This can mislead intuition quite badly, and lead to serious problems.
In particular, these small probabilities can interact with the prosecutor’s fallacy in
a dangerous way. In example 31, we saw how the probability of getting a chance
match in a large DNA database could be quite big, even though the probability
of a single match is small. One version of the prosecutors fallacy is to argue that,
because the probability of a single match is small, the person who matched the
DNA must have committed the crime. The fallacy is to ignore the fact that the
probability of a chance match to a large database is quite high.

People quite often reason poorly about independent events. The most com-
mon problem is known as the gambler’s fallacy. This occurs when you reason
that the probability of an independent event has been changed by previous out-
comes. For example, imagine I toss a coin that is known to be fair 20 times and get
20 heads. The probability that the next toss will result in a head has not changed
at all — it is still 0.5 — but many people will believe that it has changed. This
idea is also sometimes referred to as antichance.

Section 5.3 Example: The Monty Hall Problem 105

It might in fact be sensible to behave as if you’re committing some version of
the gambler’s fallacy in real life, because you hardly ever know for sure that your
model is right. So in the coin tossing example, if the coin wasn’t known to be fair,
it might be reasonable to assume that it has been weighted in some way, and so
to believe that the more heads you see, the more likely you will see a head in the
next toss. At time of writing, Wikipedia has some fascinating stories about the
gambler’s fallacy; apparently, in 1913, a roulette wheel in Monte Carlo produced
black 26 times in a row, and gamblers lost an immense amount of money betting
on red. Here the gambler’s reasoning seems to have been that the universe should
ensure that probabilities produce the right frequencies in the end, and so will adjust
the outcome of the next spin of the wheel to balance the sums. This is an instance
of the gambler’s fallacy. However, the page also contains the story of one Joseph
Jagger, who hired people to keep records of the roulette wheels, and notice that one
wheel favored some numbers (presumably because of some problem with balance).
He won a lot of money, until the casino started more careful maintenance on the
wheels. This isn’t the gambler’s fallacy; instead, he noticed that the numbers
implied that the wheel was not a fair randomizer. He made money because the
casino’s odds on the bet assumed that it was fair.

5.3 EXAMPLE: THE MONTY HALL PROBLEM

Careless thinking about probability, particularly conditional probability, can cause
wonderful confusion. The Monty Hall problem is a relatively simple exercise in
conditional probability. Nonetheless, it has been the subject of extensive, lively, and
often quite inaccurate correspondence in various national periodicals — it seems to
catch the attention, which is why we describe it in some detail. The problem works
like this: There are three doors. Behind one is a car. Behind each of the others is
a goat. The car and goats are placed randomly and fairly, so that the probability
that there is a car behind each door is the same. You will get the object that lies
behind the door you choose at the end of the game. The goats are interchangeable,
and, for reasons of your own, you would prefer the car to a goat.

The game goes as follows. You select a door. The host then opens a door and
shows you a goat. You must now choose to either keep your door, or switch to the
other door. What should you do?

You cannot tell what to do, by the following argument. Label the door you
chose at the start of the game 1; the other doors 2 and 3. Write Ci for the event
that the car lies behind door i. Write Gm for the event that a goat is revealed
behind door m, where m is the number of the door where the goat was revealed
(which could be 1, 2, or 3). You need to know P (C1|Gm). But

P (C1|Gm) =
P (Gm|C1)P (C1)

P (Gm|C1)P (C1) + P (Gm|C2)P (C2) + P (Gm|C3)P (C3)

and you do not know P (Gm|C1), P (Gm|C2), P (Gm|C3), because you don’t know
the rule by which the host chooses which door to open to reveal a goat. Different
rules lead to quite different analyses.

There are several possible rules for the host to show a goat:

• Rule 1: choose a door uniformly at random.

Section 5.3 Example: The Monty Hall Problem 106

• Rule 2: choose from the doors with goats behind them that are not door 1
uniformly and at random.

• Rule 3: if the car is at 1, then choose 2; if at 2, choose 3; if at 3, choose 1.

• Rule 4: choose from the doors with goats behind them uniformly and at
random.

We should keep track of the rules in the conditioning, so we write P (Gm|C1, r1) for
the conditional probability that a goat was revealed behind door m when the car
is behind door 1, using rule 1 (and so on). This means we are interested in

P (C1|Gm, rn) =
P (Gm|C1, rn)P (C1)

P (Gm|C1, rn)P (C1) + P (Gm|C2, rn)P (C2) + P (Gm|C3, rn)P (C3)
.

Worked example 5.50 Monty Hall, rule one

Assume the host uses rule one, and shows you a goat behind door two.
What is P (C1|G2, r1)?

Solution: To work this out, we need to know P (G2|C1, r1), P (G2|C2, r1)
and P (G2|C3, r1). Now P (G2|C2, r1) must be zero, because the host could
not reveal a goat behind door two if there was a car behind that door.
Write O2 for the event the host chooses to open door two, and B2 for
the event there happens to be a goat behind door two. These two events
are independent — the host chose the door uniformly at random. We can
compute

P (G2|C1, r1) = P (O2 ∩B2|C1, r1)

= P (O2|C1, r1)P (B2|C1, r1)

= (1/3)(1)

= 1/3

where P (B2|C1, r1) = 1 because we conditioned on the fact there was a car
behind door one, so there is a goat behind each other door. This argument
establishes P (G2|C3, r1) = 1/3, too. So P (C1|G2, r1) = 1/2 — the host
showing you the goat does not motivate you to do anything, because if
P (C1|G2, r1) = 1/2, then P (C3|G2, r1) = 1/2, too — there’s nothing to
choose between the two closed doors.

Section 5.4 What you should remember 107

Worked example 5.51 Monty Hall, rule two

Assume the host uses rule two, and shows you a goat behind door two.
What is P (C1|G2, r2)?

Solution: To work this out, we need to know P (G2|C1, r2), P (G2|C2, r2)
and P (G2|C3, r2). Now P (G2|C2, r2) = 0, because the host chooses from
doors with goats behind them. P (G2|C1, r2) = 1/2, because the host
chooses uniformly and at random from doors with goats behind them that
are not door one; if the car is behind door one, there are two such doors.
P (G2|C3, r2) = 1, because there is only one door that (a) has a goat be-
hind it and (b) isn’t door one. Plug these numbers into the formula, to get
P (C1|G2, r2) = 1/3. This is the source of all the fuss. It says that, if you
know the host is using rule two, you should switch doors if the host shows
you a goat behind door two (because P (C3|G2, r2) = 2/3).

Notice what is happening: if the car is behind door three, then the only choice
of goat for the host is the goat behind two. So by choosing a door under rule two,
the host is signalling some information to you, which you can use. By using rule
three, the host can tell you precisely where the car is (exercises).

Many people find the result of example 51 counterintuitive, and object (some-
times loudly, in newspaper columns, letters to the editor, etc.). One example that
some people find helpful is an extreme case. Imagine that, instead of three doors,
there are 1002. The host is using rule two, modified in the following way: open all
but one of the doors that are not door one, choosing only doors that have goats
behind them to open. You choose door one; the host opens 1000 doors — say, all
but doors one and 1002. What would you do?

5.4 WHAT YOU SHOULD REMEMBER

You should be able to:

• Write out a set of outcomes for an experiment.

• Construct an event space.

• Compute the probabilities of outcomes and events.

• Determine when events are independent.

• Compute the probabilities of outcomes by counting events, when the count is
straightforward.

• Compute a conditional probability.

You should remember:

• The definition of an event space.

• The properties of a probability function.

Section 5.4 What you should remember 108

• The definition of independence.

• The definition of conditional probability.

PROBLEMS

Outcomes

5.1. You roll a four sided die. What is the space of outcomes?
5.2. King Lear decides to allocate three provinces (1, 2, and 3) to his daughters

(Goneril, Regan and Cordelia - read the book) at random. Each gets one
province. What is the space of outcomes?

5.3. You randomly wave a flyswatter at a fly. What is the space of outcomes?
5.4. You read the book, so you know that King Lear had family problems. As a

result, he decides to allocate two provinces to one daughter, one province to
another daughter, and no provinces to the third. Because he’s a bad problem
solver, he does so at random. What is the space of outcomes?

Probability of outcomes

5.5. You roll a fair four sided die. What is the probability of getting a 3?
5.6. You roll a fair four sided die, and then a fair six sided die. You add the numbers

on the two dice. What is the probability the result is even?
5.7. You roll a fair 20 sided die. What is the probability of getting an even number?
5.8. You roll a fair five sided die. What is the probability of getting an even

number?

Events

5.9. At a particular University, 1/2 of the students drink alcohol and 1/3 of the
students smoke cigarettes.
(a) What is the largest possible fraction of students who do neither?
(b) It turns out that, in fact, 1/3 of the students do neither. What fraction

of the students does both?
5.10. I flip two coins. What one set needs to be added to this collection of sets to

form an event space?

Σ = {∅,Ω, {TH}, {HT, TH,TT}, {HH}, {HT, TT}, {HH,TH}}

Probability of Events

5.11. Assume each outcome in Ω has the same probability. In this case, show

P (E) = Number of outcomes in E
Total number of outcomes in Ω

5.12. You flip a fair coin three times. What is the probability of seeing HTH? (i.e.
Heads, then Tails, then Heads)

5.13. You flip a fair coin three times. What is the probability of seeing two heads
and one tail?

5.14. You remove the king of hearts from a standard deck of cards, then shuffle it
and draw a card.
(a) What is the probability this card is a king?
(b) What is the probability this card is a heart?

Section 5.4 What you should remember 109

5.15. You shuffle a standard deck of cards, then draw four cards.
(a) What is the probability all four are the same suit?
(b) What is the probability all four are red?
(c) What is the probability each has a different suit?

5.16. You roll three fair six-sided dice and add the numbers. What is the probability
the result is even?

5.17. You roll three fair six-sided dice and add the numbers. What is the probability
the result is even and not divisible by 20?

5.18. You shuffle a standard deck of cards, then draw seven cards. What is the
probability that you see no aces?

5.19. Show that P (A− (B ∪ C)) = P (A)− P (A∩ B)− P (A∩ C) + P (A∩ B ∩ C).
5.20. You draw a single card from a standard 52 card deck. What is the probability

that it is red?
5.21. You remove all heart cards from a standard 52 card deck, then draw a single

card from the result. What is the probability that the card you draw is red?

Conditional Probability

5.22. You roll two fair six-sided dice. What is the conditional probability the sum
of numbers is greater than three, conditioned on the first die coming up even.

5.23. You take a standard deck of cards, shuffle it, and remove one card. You then
draw a card.
(a) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a king?
(b) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a red king?
(c) What is the conditional probability that the card you draw is a red king,

conditioned on the removed card being a black ace?
5.24. A royal flush is a hand of five cards, consisting of Ace, King, Queen, Jack and

10 of a single suit. Poker players like this hand, but don’t see it all that often.
(a) You draw five cards from a standard deck of playing cards. What is the

probability of getting a royal flush?
(b) You draw three cards from a standard deck of playing cards. These are

Ace, King, Queen of hearts. What is the probability that the next two
cards you draw will result in a getting a royal flush? (this is the conditional
probability of getting a royal flush, conditioned on the first three cards
being AKQ of hearts).

5.25. You roll a fair five-sided die, and a fair six-sided die.
(a) What is the probability that the sum of numbers is even?
(b) What is the conditional probability that the sum of numbers is even,

conditioned on the six-sided die producing an odd number?

Independence

5.26. You take a standard deck of cards, shuffle it, and remove both red kings. You
then draw a card.
(a) Is the event {card is red} independent of the event {card is a queen}?
(b) Is the event {card is black} independent of the event {card is a king}?

Section 5.4 What you should remember 110

The Monty Hall Problem

5.27. Monty Hall, Rule 3: If the host uses rule 3, then what is P (C1|G2, r3)? Do
this by computing conditional probabilities.

5.28. Monty Hall, Rule 4: If the host uses rule 4, and shows you a goat behind
door 2, what is P (C1|G2, r4)? Do this by computing conditional probabilities.

C H A P T E R 6

Random Variables and Expectations

6.1 RANDOM VARIABLES

Quite commonly, we would like to deal with numbers that are random. We can
do so by linking numbers to the outcome of an experiment. We define a random
variable:

Definition: 6.1 Discrete random variable

Given a sample space Ω, a set of events F , and a probability function
P , and a countable set of of real numbers D, a discrete random variable
is a function with domain Ω and range D.

This means that for any outcome ω there is a number X(ω). P will play an
important role, but first we give some examples.

Example: 6.1 Numbers from coins

We flip a coin. Whenever the coin comes up heads, we report 1; when
it comes up tails, we report 0. This is a random variable.

Example: 6.2 Numbers from coins II

We flip a coin 32 times. We record a 1 when it comes up heads, and
when it comes up tails, we record a 0. This produces a 32 bit random
number, which is a random variable.

Example: 6.3 The number of pairs in a poker hand

(from Stirzaker). We draw a hand of five cards. The number of pairs in
this hand is a random variable, which takes the values 0, 1, 2 (depending
on which hand we draw)

111

Section 6.1 Random Variables 112

A function of a discrete random variable is also a discrete random variable.

Example: 6.4 Parity of coin flips

We flip a coin 32 times. We record a 1 when it comes up heads, and
when it comes up tails, we record a 0. This produces a 32 bit random
number, which is a random variable. The parity of this number is also
a random variable.

Associated with any value x of the random variable X are a series of events.
The most important is the set of outcomes such that X = x, which we can write
{ω : X(ω) = x}; it is usual to simplify to {X = x}, and we will do so. The proba-
bility that a random variable X takes the value x is given by P ({X = x}). This is
sometimes written as P (X = x), and rather often written as P (x).

We could also be interested in the set of outcomes such that X ≤ x (i.e. in
{ω : X(ω) ≤ x}), which we will write {X ≤ x}; The probability that X takes the
value x is given by P ({X ≤ x}). This is sometimes written as P (X ≤ x). Similarly,
we could be interested in {X > x}, and so on.

Definition: 6.2 The probability distribution of a discrete random variable

The probability distribution of a discrete random variable is the set of
numbers P ({X = x}) for each value x thatX can take. The distribution
takes the value 0 at all other numbers. Notice that this is non-negative.

Definition: 6.3 The cumulative distribution of a discrete random vari-
able

The cumulative distribution of a discrete random variable is the set of
numbers P ({X <= x}) for each value x that X can take. Notice that
this is a non-decreasing function of x. Cumulative distributions are
often written with an f , so that f(x) might mean P ({X <= x}).

Section 6.1 Random Variables 113

Worked example 6.1 Numbers from coins III

We flip a biased coin 2 times. The flips are independent. The coin has
P (H) = p, P (T) = 1− p. We record a 1 when it comes up heads, and
when it comes up tails, we record a 0. This produces a 2 bit random
number, which is a random variable taking the values 0, 1, 2, 3. What is
the probability distribution and cumulative distribution of this random
variable?

Solution: Probability distribution: P (0) = (1 − p)2; P (1) = (1 − p)p;
P (2) = p(1 − p); P (3) = p2. Cumulative distribution: f(0) = (1 − p)2;
f(1) = (1− p); f(2) = p(1− p) + (1− p) = (1− p2); f(3) = 1.

Worked example 6.2 Betting on coins

One way to get a random variable is to think about the reward for a
bet. We agree to play the following game. I flip a coin. The coin has
P (H) = p, P (T) = 1− p. If the coin comes up heads, you pay me q; if
the coin comes up tails, I pay you r. The number of dollars that change
hands is a random variable. What is its probability distribution?

Solution: We see this problem from my perspective. If the coin comes up
heads, I get q; if it comes up tails, I get −r. So we have P (X = q) = p and
P (X = −r) = (1− p), and all other probabilities are zero.

6.1.1 Joint and Conditional Probability for Random Variables

All the concepts of probability that we described for events carry over to random
variables. This is as it should be, because random variables are really just a way of
getting numbers out of events. However, terminology and notation change a bit.

Assume we have two random variablesX and Y . The probability thatX takes
the value x and Y takes the value y could be written as P ({X = x} ∩ {Y = y}). It
is more usual to write it as P (x, y). You can think of this as a table of values, one
for each possible pair of x and y values. This table is usually referred to as the joint
probability distribution of the random variables. Nothing (except notation) has
really changed here, but the change of notation is useful.

We will simplify notation further. Usually, we are interested in random vari-
ables, rather than potentially arbitrary outcomes or sets of outcomes. We will
write P (X) to denote the probability distribution of a random variable, and P (x)
or P (X = x) to denote the probability that that random variable takes a particular
value. This means that, for example, the rule we could write as

P ({X = x} | {Y = y})P ({Y = y}) = P ({X = x} ∩ {Y = y})
will be written as

P (x|y)P (y) = P (x, y).

Section 6.1 Random Variables 114

This yields Bayes’ rule, which is important enough to appear in its own box.

Definition: 6.4 Bayes’ rule

P (x|y) = P (y|x)P (x)

P (y)

Random variables have another useful property. If x0 6= x1, then the event
{X = x0} must be disjoint from the event {X = x1}. This means that

∑

x

P (x) = 1

and that, for any y,
∑

x

P (x|y) = 1

(if you’re uncertain on either of these points, check them by writing them out in
the language of events).

Now assume we have the joint probability distribution of two random vari-
ables, X and Y . Recall that we write P ({X = x} ∩ {Y = y}) as P (x, y). Now
consider the sets of outcomes {Y = y} for each different value of y. These sets
must be disjoint, because y cannot take two values at the same time. Furthermore,
each element of the set of outcomes {X = x} must lie in one of the sets {Y = y}.
So we have

∑

y

P ({X = x} ∩ {Y = y}) = P ({X = x})

which is usually written as
∑

y

P (x, y) = P (x)

and is often referred to as the marginal probability of X .

Definition: 6.5 Independent random variables

The random variablesX and Y are independent if the events {X = x}
and {Y = y} are independent. This means that

P ({X = x} ∩ {Y = y}) = P ({X = x})P ({Y = y}),

which we can rewrite as

P (x, y) = P (x)P (y)

Section 6.1 Random Variables 115

Worked example 6.3 Sums and differences of dice

You throw two dice. The number of spots on the first die is a random
variable (call it X); so is the number of spots on the second die (Y).
Now define S = X + Y and D = X − Y . What is the probability
distribution of S and of D?

Solution: S can have values in the range 2, . . . , 12. There is only one
way to get a S = 2; two ways to get S = 3; and so on. Using the methods
of chapter 1 for each case, the probabilities for [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
are [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36. Similarly, D can have values in the range
−5, . . . , 5. Again, using the methods of chapter 1, the probabilities for
[−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] are [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]/36.

Worked example 6.4 Sums and differences of dice, II

Using the terminology of example 3, what is the joint probability dis-
tribution of S and D?

Solution: This is more interesting to display, because it’s an 11x11 table.
Each entry of the table represents a pair of S, D values. Many pairs can’t
occur (for example, for S = 2, D can only be zero; if S is even, then D
must be even; and so on). You can work out the table by checking each
case; it’s in Table 6.1.

Worked example 6.5 Sums and differences of dice, III

Using the terminology of example 3, are X and Y independent? are S
and D independent?

Solution: X and Y are clearly independent. But S and D are not. There
are several ways to see this. One way is to notice that, if you know S = 2,
then you know the value of D precisely; but if you know S = 3, D could
be either 1 or −1. This means that P (S|D) depends on D, so they’re
not independent. Another way is to notice that the rank of the table, as a
matrix, is 6, which means that it can’t be the outer product of two vectors.

Section 6.1 Random Variables 116

1

36
×

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

TABLE 6.1: A table of the joint probability distribution of S (vertical axis; scale
2, . . . , 12) and D (horizontal axis; scale −5, . . . , 5) from example 4

Worked example 6.6 Sums and differences of dice, IV

Using the terminology of example 3, what is P (S|D = 0)? what is
P (D|S = 11)?

Solution: You could work it out either of these from the table, or by first
principles. If D = 0, S can have values 2, 4, 6, 8, 10, 12, and each value has
conditional probability 1/6. If S = 11, D can have values 1, or −1, and
each value has conditional probability 1/2.

6.1.2 Just a Little Continuous Probability

Our random variables take values from a discrete set of numbers D. This makes
the underlying machinery somewhat simpler to describe, and is often, but not
always, enough for model building. Some phenomena are more naturally modelled
as being continuous — for example, human height; human weight; the mass of a
distant star; and so on. Giving a complete formal description of probability on a
continuous space is surprisingly tricky, and would involve us in issues that do not
arise much in practice.

These issues are caused by two interrelated facts: real numbers have infinite
precision; and you can’t count real numbers. A continuous random variable is still
a random variable, and comes with all the stuff that a random variable comes with.
We will not speculate on what the underlying sample space is, nor on the underlying
events. This can all be sorted out, but requires moderately heavy lifting that isn’t
particularly illuminating for us. The most interesting thing for us is specifying the
probability distribution. Rather than talk about the probability that a real number
takes a particular value (which we can’t really do satisfactorily most of the time),
we will instead talk about the probability that it lies in some interval. So we can
specify a probability distribution for a continuous random variable by giving a set

Section 6.1 Random Variables 117

of (very small) intervals, and for each interval providing the probability that the
random variable lies in this interval.

The easiest way to do this is to supply a probability density function. Let
p(x) be a probability density function for a continuous random variable X . We
interpret this function by thinking in terms of small intervals. Assume that dx is
an infinitesimally small interval. Then

p(x)dx = P ({event that X takes a value in the range [x, x+ dx]}).

Important properties of probability density functions follow from this definition.

Useful Facts: 6.1 Probability density functions

• Probability density functions are non-negative. This follows from
the definition; a negative value at some x would imply a negative
probability.

• For a < b

P ({event that X takes a value in the range [a, b]}) =
∫ b

a

p(x)dx.

which we obtain by summing p(x)dx over all the infinitesimal
intervals between a and b.

• We must have that
∫ ∞

−∞
p(x)dx = 1.

This is because

P ({X takes a value in the range [−∞,∞]}) = 1 =

∫ ∞

−∞
p(x)dx

• Probability density functions are usually called pdf’s.

• It is quite usual to write all pdf’s as lower-case p’s. If one specif-
ically wishes to refer to probability, one writes an upper case P ,
as in the previous points.

One good way to think about pdf’s is as the limit of a histogram. Imagine
you collect an arbitrarily large dataset of data items, each of which is independent.
You build a histogram of that dataset, using arbitrarily narrow boxes. You scale
the histogram so that the sum of the box areas is one. The result is a probability
density function.

The pdf doesn’t represent the probability that a random variable takes a
value. Instead, you should think of p(x) as being the limit of a ratio (which is why

Section 6.1 Random Variables 118

it’s called a density):

the probability that the random variable will lie in a small interval centered on x

the length of the small interval centered on x

Notice that, while a pdf has to be non-negative, and it has to integrate to 1, it does
not have to be smaller than one. A ratio like this could be a lot larger than one, as
long as it isn’t larger than one for too many x (because the integral must be one).

Probability density functions can be moderately strange functions.

Section 6.1 Random Variables 119

Worked example 6.7 Strange probability density functions

There is some (small!) voltage over the terminals of a warm resistor
caused by noise (electrons moving around in the heat and banging into
one another). This is a good example of a continuous random variable,
and we can assume there is some probability density function for it, say
p(x). We assume that p(x) has the property that

lim
ǫ→0

∫ v+ǫ

v−ǫ

p(x)dx = 0

which is what you’d expect for any function you’re likely to have dealt
with. Now imagine I define a new random variable by the following
procedure: I flip a coin; if it comes up heads, I report 0; if tails, I report
the voltage over the resistor. This random variable, u, has a probability
1/2 of taking the value 0, and 1/2 of taking a value from p(x). Write
this random variable’s probability density function q(u). Compute

lim
ǫ→0

∫ ǫ

−ǫ

q(u)du

Solution: We can do this from the definition. We have

P ({u ∈ [−ǫ, ǫ]}) =
∫ ǫ

−ǫ

q(u)du.

But u will take the value 0 with probability 1/2, and otherwise takes the
value over the resistor. So

P ({u ∈ [−ǫ, ǫ]}) = 1/2 +

∫ ǫ

−ǫ

p(x)dx.

and

lim
ǫ→0

∫ ǫ

−ǫ

q(u)du = lim
ǫ→0

P ({u ∈ [−ǫ, ǫ]}) = 1/2.

This means q(x) has the property that

lim
ǫ→0

∫ ǫ

−ǫ

q(u)du = 1/2,

which means that q(u) is displaying quite unusual behavior at u = 0. We
will not need to deal with probability density functions that behave like
this; but you should be aware of the possibility.

Every probability density function p(x) has the property that
∫∞
−∞ p(x)dx =

1; this is useful, because when we are trying to determine a probability density

Section 6.2 Expectations and Expected Values 120

function, we can ignore a constant factor. So if g(x) is a non-negative function that
is proportional to the probability density function (often pdf) we are interested in,
we can recover the pdf by computing

p(x) =
1

∫∞
−∞ g(x)dx

g(x).

This procedure is sometimes known as normalizing, and
∫∞
−∞ g(x)dx is the nor-

malizing constant.

6.2 EXPECTATIONS AND EXPECTED VALUES

Imagine we play the game of example 2 multiple times. Our frequency definition of
probability means that in N games, we expect to see about pN heads and (1−p)N
tails. In turn, this means that my total income from these N games should be
about (pN)q − ((1 − p)N)r. The N in this expression is inconvenient; instead, we
could say that for any single game, my income is

pq − (1− p)r.

This isn’t the actual income from a single game (which would be either q or −r,
depending on what the coin did). Instead, it’s an estimate of what would happen
over a large number of games, on a per-game basis. This is an example of an
expected value.

6.2.1 Expected Values of Discrete Random Variables

Definition: 6.6 Expected value

Given a discrete random variable X which takes values in the set D and
which has probability distribution P , we define the expected value

E[X] =
∑

x∈D
xP (X = x).

This is sometimes written which is EP [X], to clarify which distribution
one has in mind

Notice that an expected value could take a value that the random variable
doesn’t take.

Section 6.2 Expectations and Expected Values 121

Example: 6.5 Betting on coins

We agree to play the following game. I flip a fair coin (i.e. P (H) =
P (T) = 1/2). If the coin comes up heads, you pay me 1; if the coin
comes up tails, I pay you 1. The expected value of my income is 0, even
though the random variable never takes that value.

Definition: 6.7 Expectation

Assume we have a function f that maps a discrete random variable X
into a set of numbers Df . Then f(x) is a discrete random variable,
too, which we write F . The expected value of this random variable is
written

E[f] =
∑

u∈Df

uP (F = u) =
∑

x∈D
f(x)P (X = x)

which is sometimes referred to as “the expectation of f”. The process
of computing an expected value is sometimes referred to as “taking
expectations”.

Expectations are linear, so that E[0] = 0 and E[A+B] = E[A] + E[B]. The
expectation of a constant is that constant (or, in notation, E[k] = k), because
probabilities sum to 1. Because probabilities are non-negative, the expectation of
a non-negative random variable must be non-negative.

6.2.2 Expected Values of Continuous Random Variables

We can compute expectations for continuous random variables, too, though sum-
ming over all values now turns into an integral. This should be expected. Imagine
you choose a set of closely spaced values for x which are xi, and then think about
x as a discrete random variable. The values are separated by steps of width ∆x.
Then the expected value of this discrete random variable is

E[X] =
∑

i

xiP (X ∈ interval centered on xi) =
∑

i

xip(xi)∆x

and, as the values get closer together and ∆x gets smaller, the sum limits to an
integral.

Section 6.2 Expectations and Expected Values 122

Definition: 6.8 Expected value

Given a continuous random variable X which takes values in the set D
and which has probability distribution P , we define the expected value

E[X] =

∫

x∈D
xp(x)dx.

This is sometimes written Ep[X], to clarify which distribution one has
in mind

The expected value of a continuous random variable could be a value that
the random variable doesn’t take, too. Notice one attractive feature of the E[X]
notation; we don’t need to make any commitment to whetherX is a discrete random
variable (where we would write a sum) or a continuous random variable (where we
would write an integral). The reasoning by which we turned a sum into an integral
works for functions of continuous random variables, too.

Definition: 6.9 Expectation

Assume we have a function f that maps a continuous random variable
X into a set of numbers Df . Then f(x) is a continuous random variable,
too, which we write F . The expected value of this random variable is

E[f] =

∫

x∈D
f(x)p(x)dx

which is sometimes referred to as “the expectation of f”. The process
of computing an expected value is sometimes referred to as “taking
expectations”.

Again, for continuous random variables, expectations are linear, so that E[0] =
0 and E[A+B] = E[A]+E[B]. The expectation of a constant is that constant (or, in
notation, E[k] = k), because probabilities sum to 1. Because probabilities are non-
negative, the expectation of a non-negative random variable must be non-negative.

6.2.3 Mean, Variance and Covariance

There are three very important expectations with special names.

Section 6.2 Expectations and Expected Values 123

Definition: 6.10 The mean or expected value

The mean or expected value of a random variable X is

E[X]

Definition: 6.11 The variance

The variance of a random variable X is

var[X] = E
[

(X − E[X])2
]

Notice that

E
[

(X − E[X])2
]

= E

[

(X2 − 2XE[X] + E[X]2)
]

= E
[

X2
]

− 2E[X]E[X] + E[X]
2

= E
[

X2
]

− (E[X])2

Definition: 6.12 The covariance

The covariance of two random variables X and Y is

cov (X,Y) = E[(X − E[X])(Y − E[Y])]

Notice that

E[(X − E[X])(Y − E[Y])] = E[(XY − Y E[X]−XE[Y] + E[X]E[Y])]

= E[XY]− 2E[Y]E[X] + E[X]E[Y]

= E[XY]− E[X]E[Y].

We also have var[X] = cov (X,X).
Now assume that we have a probability distribution P (X) defined on some

discrete set of numbers. There is some random variable that produced this proba-
bility distribution. This means that we could talk about the mean of a probability

Section 6.2 Expectations and Expected Values 124

distribution P (rather than the mean of a random variable whose probability dis-
tribution is P (X)). It is quite usual to talk about the mean of a probability distri-
bution. Furthermore, we could talk about the variance of a probability distribution
P (rather than the variance of a random variable whose probability distribution is
P (X)).

Worked example 6.8 Variance

Can a random variable have E[X] >
√

E[X2]?

Solution: No, because that would mean that E
[

(X − E[X])2
]

< 0. But
this is the expected value of a non-negative quantity; it must be non-
negative.

Worked example 6.9 More variance

We just saw that a random variable can’t have E[X] >
√

E[X2]. But I
can easily have a random variable with large mean and small variance
- isn’t this a contradiction?

Solution: No, you’re confused. Your question means you think that the
variance of X is given by E

[

X2
]

; but actually var[X] = E
[

X2
]

− E[X]
2

Worked example 6.10 Mean of a coin flip

We flip a biased coin, with P (H) = p. The random variable X has
value 1 if the coin comes up heads, 0 otherwise. What is the mean of
X? (i.e. E[X]).

Solution: E[X] =
∑

x∈D xP (X = x) = 1p+ 0(1− p) = p

Section 6.2 Expectations and Expected Values 125

Useful Facts: 6.2 Expectations

1. E[0] = 0

2. E[X + Y] = E[X] + E[Y]

3. E[kX] = kE[X]

4. E[1] = 1

5. if X and Y are independent, then E[XY] = E[X]E[Y].

6. if X and Y are independent, then cov (X,Y) = 0.

All but 5 and 6 are obvious from the definition. If 5 is true, then 6 is
obviously true. I prove 5.

Proposition: If X and Y are independent random variables, then
E[XY] = E[X]E[Y].

Proof: Recall that E[X] =
∑

x∈D xP (X = x), so that

E[XY] =
∑

(x,y)∈Dx×Dy

xyP (X = x, Y = y)

=
∑

x∈Dx

∑

y∈Dy

(xyP (X = x, Y = y))

=
∑

x∈Dx

∑

y∈Dy

(xyP (X = x)P (Y = y))

because X and Y are independent

=
∑

x∈Dx

∑

y∈Dy

(xP (X = x)) (yP (Y = y))

=

(

∑

x∈Dx

xP (X = x)

)

∑

y∈Dy

yP (Y = y)

= (E[X])(E[Y]).

This is certainly not true when X and Y are not independent (try
Y = −X).

Section 6.2 Expectations and Expected Values 126

Useful Facts: 6.3 Variance

It is quite usual to write var[X] for the variance of the random variable
X .

1. var[0] = 0

2. var[1] = 0

3. var[X] ≥ 0

4. var[kX] = k2var[X]

5. if X and Y are independent, then var[X + Y] = var[X] + var[Y]

1, 2, 3 are obvious. You will prove 4 and 5 in the exercises.

Worked example 6.11 Variance of a coin flip

We flip a biased coin, with P (H) = p. The random variable X has
value 1 if the coin comes up heads, 0 otherwise. What is the variance
of X? (i.e. var[X]).

Solution: var[X] = E
[

(X − E[X])2
]

= E
[

X2
]

−E[X]
2
= (1p−0(1−p))−

p2 = p(1− p)

The variance of a random variable is often inconvenient, because its units are
the square of the units of the random variable. Instead, we could use the standard
deviation.

Definition: 6.13 Standard deviation

The standard deviation of a random variable X is defined as

std (X) =
√

var[X]

You do need to be careful with standard deviations. If X and Y are inde-
pendent random variables, then var[X + Y] = var[X] + var[Y], but std (X + Y) =
√

std (X)
2
+ std (Y)

2
. One way to avoid getting mixed up is to remember that

variances add, and derive expressions for standard deviations from that.

6.2.4 Expectations and Statistics

You should have noticed we now have two notions each for mean, variance, covari-
ance, and standard deviation. One, which we expounded in sections 1, describes

Section 6.2 Expectations and Expected Values 127

datasets. We will call these descriptive statistics. The other, described above, is
a property of probability distributions. We will call these expectations. In each
case, the reason we have one name for two notions is that the notions are not really
all that different.

Imagine we have a dataset {x} of N items, where the i’th item is xi. We can
build a probability distribution out of this dataset, by placing a probability on each
data item. We will give each data item the same probability (which must be 1/N ,
so all probabilities add to 1). Write E[x] for the mean of this distribution. We have

E[x] =
∑

i

xip(xi) =
1

N

∑

i

xi = mean ({x}).

The variances, standard deviations and covariance have the same property: For
this particular distribution (sometimes called the empirical distribution), the
expectations have the same value as the descriptive statistics (exercises).

In section 1, we will see a form of converse to this fact. Imagine we have a
dataset that consists of independent, identically distributed samples from a prob-
ability distribution. That is, we know that each data item was obtained indepen-
dently from the distribution. For example, we might have a count of heads in each
of a number of coin flip experiments. Then the descriptive statistics will turn out
to be accurate estimates of the expectations.

6.2.5 Indicator Functions

It is sometimes convenient when working with random variables to use indicator
functions. This is a function that is one when some condition is true, and zero oth-
erwise. The reason they are useful is that their expectated values have interesting
properties.

Definition: 6.14 Indicator functions

An indicator function for an event is a function that takes the value
zero for values of X where the event does not occur, and one where the
event occurs. For the event E , we write

I[E](X)

for the relevant indicator function.

For example,

I[{|X|}≤a](X) =

{

1 if −a < X < a
0 otherwise

Indicator functions have one useful property.

E
[

I[E]
]

= P (E)

which you can establish by checking the definition of expectations.

Section 6.2 Expectations and Expected Values 128

6.2.6 Two Inequalities

Mean and variance tell us quite a lot about a random variable, as two important
inequalities show.

Definition: 6.15 Markov’s inequality

Markov’s inequality is

P ({||X || ≥ a}) ≤ E[||X ||]
a

.

You should read this as indicating that a random variable is most unlikely to
have an absolute value a lot larger than the mean of its absolute value. This should
seem fairly intuitive from the definition of expectation. Recall that

E[X] =
∑

x∈D

xP ({X = x})

Assume that D contains only non-negative numbers (that absolute value). Then
the only way to have a small value of E[X] is to be sure that, when x is large,
P ({X = x}) is small. The proof is a rather more formal version of this observation,
below.

Definition: 6.16 Chebyshev’s inequality

Chebyshev’s inequality is

P ({|X − E[X]| ≥ a}) ≤ var[X]

a2
.

It is common to see this in another form, obtained by writing σ for the
standard deviation of X , substituting kσ for a, and rearranging

P ({|X − E[X]| ≥ kσ}) ≤ 1

k2

This means that the probability of a random variable taking a particular
value must fall off rather fast as that value moves away from the mean, in units
scaled to the variance. This probably doesn’t seem intuitive from the definition of
expectation. But think about it this way: values of a random variable that are
many standard deviations above the mean must have low probability, otherwise
the standard deviation would be bigger. The proof, again, is a rather more formal
version of this observation, and appears below.

Section 6.2 Expectations and Expected Values 129

Proposition: Markov’s inequality

P ({||X || ≥ a}) ≤ E[||X ||]
a

.

Proof: (from Wikipedia). Notice that, for a > 0,

aI[{|X|≥a}](X) ≤ |X |

(because if |X | ≥ a, the LHS is a; otherwise it is zero). Now we have

E
[

aI[{|X|≥a}]
]

≤ E[|X |]

but, because expectations are linear, we have

E
[

aI[{|X|≥a}]
]

= aE
[

I[{|X|≥a}]
]

= aP ({|X | ≥ a})

and so we have
aP ({|X | ≥ a}) ≤ E[|X |]

and we get the inequality by division, which we can do because a > 0.

Proposition: Chebyshev’s inequality

P ({|X − E[X]| ≥ a}) ≤ var[X]

a2
.

Proof: Write U for the random variable (X − E[X])2. Markov’s in-
equality gives us

P ({|U | ≥ w}) ≤ E[|U |]
w

Now notice that, if a2 = w,

P ({|U | ≥ w}) = P ({|X − E[X]|} ≥ a)

so we have

P ({|U | ≥ w}) = P ({|X − E[X]|} ≥ a) ≤ E[|U |]
w

=
var[X]

a2

Section 6.2 Expectations and Expected Values 130

6.2.7 IID Samples and the Weak Law of Large Numbers

Imagine a random variable X , obtained by flipping a fair coin and reporting 1 for
an H and −1 for a T . We can talk about the probability distribution P (X) of this
random variable; we can talk about the expected value that the random variable
takes; but the random variable itself doesn’t have a value. However, if we actually
flip a coin, we get either a 1 or a −1. This number is often called a sample of the
random variable (or of its probability distribution). Similarly, if we flipped a coin
many times, we’d have a set of numbers (or samples). These numbers would be
independent. Their histogram would look like P (X). Collections of data items like
this are important enough to have their own name.

Assume we have a set of data items xi such that (a) they are independent;
(b) each is produced from the same process; and (c) the histogram of a very large
set of data items looks increasingly like the probability distribution P (X) as the
number of data items increases. Then we refer to these data items as independent
identically distributed samples of P (X); for short, iid samples or even just
samples. For all of the cases we will deal with, it will be obvious how to get IID
samples. However, it’s worth knowing that obtaining IID samples from arbitrary
probability distributions is very difficult.

Now assume we have a set of N IID samples xi of a probability distribution
P (X). Write

XN =

∑N
i=1 xi

N
.

Now XN is a random variable (the xi are IID samples, and for a different set
of samples you will get a different, random, XN). Notice that P (X = x1, X =
x2, . . . , X = xn) = P (X = x1)P (X = x2) . . . P (X = xn), because the samples are
independent and each is a sample of P (X). Now

E[XN] = E[X]

because

E[XN] =

(

1

N

) N
∑

i=1

E[X].

This means that
∑N

i=1 xi

N

should be give an accurate estimate of E[X]. In fact, as N gets large, the estimate
becomes more accurate.

Section 6.2 Expectations and Expected Values 131

Definition: 6.17 The Weak Law of Large Numbers

The weak law of large numbers states that, if P (X) has finite vari-
ance, then for any positive number ǫ

lim
N→∞

P ({||XN − E[X] || ≥ ǫ}) = 0.

Equivalently, we have

lim
N→∞

P ({||XN − E[X] || < ǫ}) = 1.

Each form means that, for a large enough set of IID samples, the average
of the samples (i.e. XN) will, with high probability, be very close to
the expectation E[X].

Section 6.3 Using Expectations 132

Proposition: Weak law of large numbers

lim
N→∞

P ({||XN − E[X] || ≥ ǫ}) = 0.

Proof: Assume that P (X) has finite variance; that is, var ({X}) = σ2.
Choose ǫ > 0. Now we have that

var ({XN}) = var

({∑

i=1 Nxi

N

})

= (
1

N2
)var

({

∑

i=1

Nxi

})

= (
1

N2
)(Nσ2)

because the xi are independent

=
σ2

N

and that
E[XN] = E[X].

Now Chebyshev’s inequality gives

P ({||XN − E[X] || ≥ ǫ}) ≤ σ2

Nǫ2

so

lim
N→∞

P ({||XN − E[X] || ≥ ǫ}) = lim
N→∞

σ2

Nǫ2
= 0.

Notice that

1− P ({||XN − E[X] || ≥ ǫ}) = P ({||XN − E[X] || < ǫ}) ≥ 1− σ2

Nǫ2
.

so that

lim
N→∞

P ({||XN − E[X] || < ǫ}) = lim
N→∞

(

1− σ2

Nǫ2

)

= 1.

6.3 USING EXPECTATIONS

The weak law of large numbers gives us a very valuable way of thinking about
expectations. Assume we have a random variable X . Then the weak law says that,
if you observe this random variable over a large number of trials, the mean value

Section 6.3 Using Expectations 133

you observe should be very close to E[X]. Notice that this extends to functions of
random variables (because they are random variables, too). For example, I observe
values xi of a random variable X over a large number N of trials, and compute

1

N

∑

i=1

Nf(xi).

The weak law says that the value I get should be very close to E[f]. You can
show this by defining a new random variable F = f(X). This has a probability
distribution P (F), which might be difficult to know — but we don’t need to. E[f],
the expected value of the function f under the distribution P (X). This is the same
as E[F], and the weak law applies.

Remember: the average over repeated trials of a random variable is very close
to the expectation. You can use this information to make many kinds of decision
in uncertain circumstances.

6.3.1 Should you accept a bet?

We can’t answer this as a moral question, but we can as a practical question,
using expectations. Generally, a bet involves an agreement that amounts of money
will change hands, depending on the outcome of an experiment. Mostly, you are
interested in how much you get from the bet, so it is natural to give sums of
money you receive a positive sign, and sums of money you pay out a negative sign.
Under this convention, the practical answer is easy: accept a bet enthusiastically
if its expected value is positive, otherwise decline it. It is interesting to notice how
poorly this advice describes actual human behavior.

Section 6.3 Using Expectations 134

Worked example 6.12 Red or Black?

A roulette wheel has 36 numbers, 18 of which are red and 18 of which
are black. Different wheels also have one, two, or even three zeros,which
are colorless. A ball is thrown at the wheel when it is spinning, and it
falls into a hole corresponding to one of the numbers (when the number
is said to “come up”). The wheel is set up so that there is the same
probability of each number coming up. You can bet on (among other
things) whether a red number or a black number comes up. If you bet
1 on red, and a red number comes up, you keep your stake and get 1,
otherwise you get −1 (i.e. the house keeps your bet).

• On a wheel with one zero, what is the expected value of a 1 bet
on red?

• On a wheel with two zeros, what is the expected value of a 1 bet
on red?

• On a wheel with three zeros, what is the expected value of a 1
bet on red?

Solution: Write pr for the probability a red number comes up. The ex-
pected value is 1× pr + (−1)(1− pr) which is 2pr − 1.

• In this case, pr = (number of red numbers)/(total number of numbers) =
18/37. So the expected value is −1/37 (you lose about 3 cents each
time you bet).

• In this case, pr = 18/38. So the expected value is −2/38 = −1/19
(you lose slightly more than five cents each time you bet).

• In this case, pr = 18/39. So the expected value is −3/39 = −1/13
(you lose slightly less than 8 cents each time you bet).

Notice that in the roulette game, the money you lose will go to the house. So
the expected value to the house is just the negative of the expected value to you.
This is positive, which is a partial explanation of why there are lots of roulette
wheels, and usually free food nearby. Not all bets are like this, though.

Section 6.3 Using Expectations 135

Worked example 6.13 Coin game

In this game, P1 flips a fair coin and P2 calls “H” or “T”. If P2 calls
right, then P1 throws the coin into the river; otherwise, P1 keeps the
coin. What is the expected value of this game to P2? and to P1?

Solution: To P2, which we do first, because it’s easiest: P2 gets 0 if P2
calls right, and 0 if P2 calls wrong; these are the only cases, so the expected
value is 0. To P1: P1 gets −1 if P2 calls right, and 0 if P1 calls wrong.
The coin is fair, so the probability P2 calls right is 1/2. The expected value
is −1/2. While I can’t explain why people would play such a game, I’ve
actually seen this done.

We call a bet fair when its expected value is zero. Taking a bet with a negative
expected value is unwise, because, on average, you will lose money. Worse, the more
times you play, the more you lose. Taking a bet with a positive expected value is
likely to be profitable. However, you do need to be careful you computed the
expected value right.

Worked example 6.14 Birthdays in succession

P1 and P2 agree to the following bet. P1 gives P2 a stake of 1. If three
people, stopped at random on the street, have birthdays in succession
(i.e. Mon-Tue-Wed, and so on), then P2 gives P1 100. Otherwise, P1
loses the stake. What is the expected value of this bet to P1?

Solution: Write p for the probability of winning. Then the expected value
is p× 100− (1− p)× 1. We computed p in example 1 (it was 1/49). So the
bet is worth (52/49), or slightly more than a dollar, to P1. P1 should be
happy to agree to this as often as possible.

The reason P2 agrees to bets like that of example 14 is most likely that P2
can’t compute the probability exactly. P2 thinks the event is quite unlikely, so the
expected value is negative; but it isn’t as unlikely as P2 thought it was, and this is
how P1 makes a profit. This is one of the reasons you should be careful accepting
a bet from a stranger: they might be able to compute better than you.

6.3.2 Odds, Expectations and Bookmaking — a Cultural Diversion

Gamblers sometimes use a terminology that is a bit different from ours. In par-
ticular, the term odds is important. The term comes from the following idea: P1
pays a bookmaker b (the stake) to make a bet; if the bet is successful, P1 receives
a, and if not, loses the original stake.

Assume the bet is fair, so that the expected value is zero. Write p for the
probability of winning. The net income to P1 is ap− b(1− p). If this is zero, then
p = b/(a+ b). So you can interpret odds in terms of probability, if you assume the

Section 6.3 Using Expectations 136

bet is fair.
A bookmaker sets adds at which to accept bets from gamblers. The book-

maker does not wish to lose money at this business, and so must set odds which are
potentially profitable. Doing so is not simple (bookmakers can, and occasionally
do, lose catastrophically, and go out of business). In the simplest case, assume
that the bookmaker knows the probability p that a particular bet will win. Then
the bookmaker could set odds of (1 − p)/p : 1. In this case, the expected value of
the bet is zero; this is fair, but not attractive business, so the bookmaker will set
odds assuming that the probability is a bit higher than it really is. There are other
bookmakers out there, so there is some reason for the bookmaker to try to set odds
that are close to fair.

In some cases, you can tell when you are dealing with a bookmaker who is
likely to go out of business soon. For example, imagine there are two horses running
in a race, both at 10 : 1 odds — whatever happens, you could win by betting 1
on each. There is a more general version of this phenomenon. Assume the bet is
placed on a horse race, and that bets pay off only for the winning horse. Assume
also that exactly one horse will win (i.e. the race is never scratched, there aren’t
any ties, etc.), and write the probability that the i’th horse will win as pi. Then
∑

i∈horses pi must be 1. Now if the bookmaker’s odds yield a set of probabilities
that is less than 1, their business should fail, because there is at least one horse
on which they are paying out too much. Bookmakers deal with this possibility by
writing odds so that

∑

i∈horses pi is larger than one.
But this is not the only problem a bookmaker must deal with. The bookmaker

doesn’t actually know the probability that a particular horse will win, and must ac-
count for errors in this estimate. One way to do so is to collect as much information
as possible (talk to grooms, jockeys, etc.). Another is to look at the pattern of bets
that have been placed already. If the bookmaker and the gamblers agree on the
probability that each horse will win, then there should be no expected advantage
to choosing one horse over another — each should pay out slightly less than zero
to the gambler (otherwise the bookmaker doesn’t eat). But if the bookmaker has
underestimated the probability that a particular horse will win, a gambler may get
a positive expected payout by betting on that horse. This means that if one partic-
ular horse attracts a lot of money from bettors, it is wise for the bookmaker to offer
less generous odds on that horse. There are two reasons: first, the bettors might
know something the bookmaker doesn’t, and they’re signalling it; second, if the
bets on this horse are very large and it wins, the bookmaker may not have enough
capital left to pay out or to stay in business. All this means that real bookmaking
is a complex, skilled business.

6.3.3 Ending a Game Early

Imagine two people are playing a game for a stake, but must stop early — who
should get what percentage of the stake? One way to do this is to give each player
what they put in at the start, but this is (mildly) unfair if one has an advantage
over the other. The alternative is to give each player the expected value of the
game at that state for that player. Sometimes one can compute that expectation
quite easily.

Section 6.3 Using Expectations 137

Worked example 6.15 Ending a game early

(from Durrett), two players each pay 25 to play the following game.
They toss a fair coin. If it comes up heads, player H wins that toss; if
tails, player T wins. The first player to reach 10 wins takes the stake of
50. But one player is called away when the state is 8-7 (H-T) — how
should the stake be divided?

Solution: In this state, each player can either win — and
so get 50 — or lose — and so get 0. The expectation
for H is 50P ({H wins from 8-7}) + 0P ({T wins from 8-7}), so we
need to compute P ({H wins from 8-7}). Similarly, the expecta-
tion for T is 50P ({T wins from 8-7}) + 0P ({H wins from 8-7}), so we
need to compute P ({T wins from 8-7}); but P ({T wins from 8-7}) =
1 − P ({H wins from 8-7}). Now it is slightly easier to compute
P ({T wins from 8-7}), because T can only win in two ways: 8-10 or 9-
10. These are independent. For T to win 8-10, the next three flips must
come up T, so that event has probability 1/8. For T to win 9-10, the next
four flips must have one H in them, but the last flip may not be H (or
else H wins); so the next four flips could be HTTT, THTT, or TTHT. The
probability of this is 3/16. This means the total probability that T wins
is 5/16. So T should get 16.625 and H should get the rest (although they
might have to flip for the odd half cent).

6.3.4 Making a Decision with Decision Trees and Expectations

Imagine we have to choose an action. Once we have chosen, a sequence of random
events occurs, and we get a reward with some probability. Which action should we
choose? A good answer is to choose the action with the best expected outcome.
In fact, choosing any other action is unwise, because if we encounter this situation
repeatedly and make a choice that is even only slightly worse than the best, we
could lose heavily. This is a very common recipe, and it can be applied to many
situations. Usually, but not always, the reward is in money, and we will compute
with money rewards for the first few examples.

For such problems, it can be useful to draw a decision tree. A decision
tree is a drawing of possible outcomes of decisions, which makes costs, benefits and
random elements explicit. Each node of the tree represents a test of an attribute
(which could be either a decision, or a random variable), and each edge represents
a possible outcome of a test. The final outcomes are leaves. Usually, decision nodes
are drawn as squares, chance elements as circles, and leaves as triangles.

Section 6.3 Using Expectations 138

No disease $0

Minor disease -$1000

Major disease -$1e6

Minor disease -$1000

Major disease -$1e6

Vaccinate -$10

0.95

0.9

0.95

1e-7

FIGURE 6.1: A decision tree for the vaccination problem. The only decision is
whether to vaccinate or not (the box at the root of the tree). I have only labelled
edges where this is essential, so I did not annotate the “no vaccination” edge with
zero cost. Once you decide whether to vaccinate or not, there is a random node
(whether you get the disease or not), and, if you get it, another (minor or major).

Worked example 6.16 Vaccination

It costs 10 to be vaccinated against a common disease. If you have the
vaccination, the probability you will get the disease is 1e− 7. If you do
not, the probability is 0.1. The disease is unpleasant; with probability
0.95, you will experience effects that cost you 1000 (eg several days in
bed), but with probability 0.05, you will experience effects that cost
you 1e6. Should you be vaccinated?

Solution: Figure 6.1 shows a decision tree for this problem. I have anno-
tated some edges with the choices represented, and some edges with proba-
bilities; the sum of probabilities over all rightward (downgoing) edges leav-
ing a random node is 1. It is straightforward to compute expectations. The
expected cost of the disease is 0.95×1000+0.05×1e6 = 50, 950. If you are
vaccinated, your expected income will be −(10+1e−7×50, 950) = −10.01
(rounding to the nearest cent). If you are not, your expected income is
−5, 095. You should be vaccinated.

Sometimes there is more than one decision. We can still do simple examples,
though drawing a decision tree is now quite important, because it allows us to keep
track of cases and avoid missing anything. For example, assume I wish to buy a
cupboard. Two nearby towns have used furniture shops (usually called antique
shops these days). One is further away than the other. If I go to town A, I will
have time to look in two (of three) shops; if I go to town B, I will have time to look
in one (of two) shops. I could lay out this sequence of decisions (which town to go
to; which shop to visit when I get there) as Figure 6.2.

You should notice that this figure is missing a lot of information. What is the
probability that I will find what I’m looking for in the shops? What is the value of

Section 6.3 Using Expectations 139

Town A

Town B

Shops 1, 2

Shops 2, 3

Shops 1, 3

Shop 1

Shop 2

FIGURE 6.2: The decision tree for the example of visiting furniture shops. Town A
is nearer than town B, so if I go there I can choose to visit two of the three shops
there; if I go to town B, I can visit only one of the two shops there. To decide what
to do, I could fill in the probabilities and values of outcomes, compute the expected
value of each pair of decisions, and choose the best. This could be tricky to do
(where do I get the probabilities from?) but offers a rational and principled way to
make the decision.

finding it? What is the cost of going to each town? and so on. This information is
not always easy to obtain. In fact, I might simply need to give my best subjective
guess of these numbers. Furthermore, particularly if there are several decisions,
computing the expected value of each possible sequence could get difficult. There
are some kinds of model where one can compute expected values easily, but a good
viable hypothesis about why people don’t make optimal decisions is that optimal
decisions are actually too hard to compute.

6.3.5 Utility

Sometimes it is hard to work with money. For example, in the case of a serious
disease, choosing treatments often boils down to expected survival times, rather
than money.

Section 6.3 Using Expectations 140

Radical

Standard

Toxicity

Can’t complete

Complete

Minor response

No response

Major response

0

6

60

10

10

6

m
o

n
th

s su
rv

iv
al

0.1

0.3

0.6
0.1

0.9

0.5

0.5

Minor response

FIGURE 6.3: A decision tree for example 17. Notations vary a bit, and here I have
put boxes around the labels for the edges.

Worked example 6.17 Radical treatment

(This example largely after Vickers, p97). Imagine you have a nasty dis-
ease. There are two kinds of treatment: standard, and radical. Radical
treatment might kill you (with probability 0.1); might be so damaging
that doctors stop (with probability 0.3); but otherwise you will com-
plete the treatment. If you do complete radical treatment, there could
be a major response (probability 0.1) or a minor response. If you fol-
low standard treatment, there could be a major response (probability
0.5) or a minor response, but the outcomes are less good. All this is
best summarized in a decision tree (Figure 6.3). What gives the longest
expected survival time?

Solution: In this case, expected survival time with radical treatment is
(0.1 × 0 + 0.3 × 6 + 0.6 × (0.1 × 60 + 0.9 × 10)) = 10.8 months; expected
survival time without radical treatment is 0.5× 10 + 0.5× 6 = 8 months.

Working with money values is not always a good idea. For example, many
people play state lotteries. The expected value of a 1 bet on a state lottery is well
below 1 — why do people play? It’s easy to assume that all players just can’t do
sums, but many players are well aware that the expected value of a bet is below the
cost. It seems to be the case that people value money in a way that doesn’t depend
linearly on the amount of money. So, for example, people may value a million
dollars rather more than a million times the value they place on one dollar. If this
is true, we need some other way to keep track of value; this is sometimes called
utility. It turns out to be quite hard to know how people value things, and there
is quite good evidence that (a) human utility is complicated and (b) it is difficult
to explain human decision making in terms of expected utility.

Section 6.4 What you should remember 141

Worked example 6.18 Human utility is not expected payoff

Here are four games:

• Game 1: The player is given 1. A biased coin is flipped, and
the money is taken back with probability p; otherwise, the player
keeps it.

• Game 2: The player stakes 1, and a fair coin is flipped; if the
coin comes up heads, the player gets r and the stake back, but
otherwise loses the original stake.

• Game 3: The player bets nothing; a biased coin is flipped, and
if it comes up heads (probability q), the player gets 1e6.

• Game 4: The player stakes 1000; a fair coin is flipped, and if
it comes up heads, the player gets s and the stake back, but
otherwise loses the original stake.

In particular, what happens if r = 3 − 2p and q = (1 − p)/1e6 and
s = 2− 2p+ 1000?

Solution: Game 1 has expected value (1−p)1. Game 2 has expected value
(1/2)(r− 1). Game 3 has expected value q1e6. Game 4 has expected value
(1/2)s− 500.
In the case given, each game has the same expected value. Nonetheless,
people usually have decided preferences for which game they would play.
Generally, 4 is unattractive (seems expensive to play); 3 seems like free
money, and so a good thing; 2 might be OK but is often seen as unin-
teresting; and 1 is unattractive. This should suggest to you that people’s
reasoning about money and utility is not what simple expectations can
predict.

6.4 WHAT YOU SHOULD REMEMBER

You should be able to:

• Interpret notation for joint and conditional probability for random variables;
in particular, understand notation such as: P ({X}), P ({X = x}), p(x),
p(x, y), p(x|y)

• Interpret a probability density function p(x) as P ({X ∈ [x, x + dx]}).

• Interpret the expected value of a discrete random variable.

• Interpret the expected value of a continuous random variable.

• Compute expected values of random variables for straightforward cases.

Section 6.4 What you should remember 142

• Write down expressions for mean, variance and covariance for random vari-
ables.

• Write out a decision tree.

You should remember:

• The definition of a random variable.

• The definition of an expected value.

• The definitions of mean, variance and covariance.

• The definition of an indicator function.

• Bayes rule.

• The definition of marginalization.

• The Markov inequality.

• The Chebyshev Inequality.

• The weak law of large numbers.

PROBLEMS

Joint and Conditional Probability for Random Variables

6.1. Define a random variable X by the following procedure. Draw a card from
a standard deck of playing cards. If the card is knave, queen, or king, then
X = 11. If the card is an ace, then X = 1; otherwise, X is the number of the
card (i.e. two through ten). Now define a second random variable Y by the
following procedure. When you evaluate X, you look at the color of the card.
If the card is red, then Y = X − 1; otherwise, Y = X + 1.
(a) What is P ({X ≤ 2})?
(b) What is P ({X ≥ 10})?
(c) What is P ({X ≥ Y })?
(d) What is the probability distribution of Y −X?
(e) What is P ({Y ≥ 12}?

6.2. Define a random variable by the following procedure. Flip a fair coin. If it
comes up heads, the value is 1. If it comes up tails, roll a die: if the outcome
is 2 or 3, the value of the random variable is 2. Otherwise, the value is 3.
(a) What is the probability distribution of this random variable?
(b) What is the cumulative distribution of this random variable?

6.3. Define three random variables, X, Y and Z by the following procedure. Roll
a six-sided die and a four-sided die. Now flip a coin. If the coin comes up
heads, then X takes the value of the six-sided die and Y takes the value of the
four-sided die. Otherwise, X takes the value of the four-sided die and Y takes
the value of the six-sided die. Z always takes the value of the sum of the dice.
(a) What is P (X), the probability distribution of this random variable?
(b) What is P (X,Y), the joint probability distribution of these two random

variables?
(c) Are X and Y independent?

Section 6.4 What you should remember 143

(d) Are X and Z independent?
6.4. Define two random variables X and Y by the following procedure. Flip a fair

coin; if it comes up heads, then X = 1, otherwise X = −1. Now roll a six-sided
die, and call the value U . We define Y = U +X.
(a) What is P (Y |X = 1)?
(b) What is P (X|Y = 0)?
(c) What is P (X|Y = 7)?
(d) What is P (X|Y = 3)?
(e) Are X and Y independent?

Expected Values

6.5. A simple coin game is as follows: we have a box, which starts empty. P1 flips
a fair coin. If it comes up heads, P2 gets the contents of the box, and the game
ends. If it comes up tails, P1 puts a dollar in the box and they flip again; this
repeats until it comes up heads
(a) With what probability will P2 win exactly 10 units?
(b) What is the expected value of the game?
(c) How much should P2 pay to play, to make the game fair?

6.6. A simple card game is as follows. P1 pays a stake of 1 to play. P1 and P2
then each draw a card. If both cards are the same color, P2 keeps the stake
and the game ends. If they are different colors, P2 pays P1 the stake and 1
extra (a total of 2).
(a) What is the expected value of the game to P1?
(b) P2 modifies the game, as follows. If both cards are court cards (that is,

knave, queen, king), then P2 keeps the stake and the game ends; otherwise,
the game works as before. Now what is the expected value of the game
to P1?

6.7. An airline company runs a flight that has six seats. Each passenger who buys
a ticket has a probability p of turning up for the flight. These events are
independent.
(a) The airline sells six tickets. What is the expected number of passengers,

if p = 0.9?
(b) How many tickets should the airline sell to ensure that the expected num-

ber of passengers is greater than six, if p = 0.7? Hint: The easiest way to
do this is to write a quick program that computes the expected value of
passengers that turn up for each the number of tickets sold, then search
the number of tickets sold.

6.8. An airline company runs a flight that has 10 seats. Each passenger who buys
a ticket has a probability p of turning up for the flight. The gender of the
passengers is not known until they turn up for a flight, and women buy tickets
with the same frequency that men do. The pilot is eccentric, and will not fly
unless at least two women turn up.
(a) How many tickets should the airline sell to ensure that the expected num-

ber of passengers that turn up is greater than 10?
(b) The airline sells 10 tickets. What is the expected number of passengers

on the aircraft, given that it flies? (i.e. that at least two women turn up).
Estimate this value with a simulation.

Mean, Variance and Covariance

6.9. Show that var[kX] = k2var[X].

Section 6.4 What you should remember 144

6.10. Show that if X and Y are independent random variables, then var[X + Y] =
var[X] + var[Y]. You will find it helpful to remember that, for X and Y
independent, E[XY] = E[X]E[Y].

Using Inequalities

6.11. The random variable X takes the values −2, −1, 0, 1, 2, but has an unknown
probability distribution. You know that E[||X ||] = 0.2. Use Markov’s inequal-
ity to give a lower bound on P ({X = 0}). Hint: Notice that P ({X = 0}) =
1− P ({||X || = 1}) − P ({||X ||} = 2).

6.12. The random variable X takes the values 1, 2, 3, 4, 5, but has unknown prob-
ability distribution. You know that E[X] = 2 and var ({X}) = 0.01. Use
Chebychev’s inequality to give a lower bound on P ({X = 2}).

Using Expectations

6.13. Imagine we have a game with two players, who are playing for a stake. There
are no draws, the winner gets the whole stake, and the loser gets nothing. The
game must end early. We decide to give each player the expected value of the
game for that player, from that state. Show that the expected values add up
to the value of the stake (i.e. there won’t be too little or too much money in
the stake.

General Exercises

C H A P T E R 7

Useful Probability Distributions

In most practical problems, we observe some data, then try to infer properties
of the process or processes that produced the data. For example, we might ask what
new data would look like, or whether two datasets come from the same or different
sources. When we do this, we are usually trying to determine some properties of
the probability distribution of a random variable. The data represent values that
the random variable has taken. In many cases, the probability distribution involved
can be modelled using one of a small set of standard probability distributions. In
this chapter, I collect facts about the distributions we will use in following chapters.

7.1 DISCRETE DISTRIBUTIONS

7.1.1 The Discrete Uniform Distribution

If every value of a discrete random variable has the same probability, then the
probability distribution is the discrete uniform distribution. We have seen this
distribution before, numerous times. For example, I define a random variable by the
number that shows face-up on the throw of a die. This has a uniform distribution.
As another example, write the numbers 1-52 on the face of each card of a standard
deck of playing cards. The number on the face of the first card drawn from a
well-shuffled deck is a random variable with a uniform distribution.

One can construct expressions for the mean and variance of a discrete uniform
distribution, but they’re not usually much use (too many terms, not often used).
Keep in mind that if two random variables have a uniform distribution, their sum
and difference will not (recall example 3).

7.1.2 The Geometric Distribution

We have a biased coin. The probability it will land heads up, P ({H}) is given by
p. We flip this coin until the first head appears. The number of flips required is a
discrete random variable which takes integer values greater than or equal to one,
which we shall call X . To get n flips, we must have n− 1 tails followed by 1 head.
This event has probability (1 − p)(n−1)p. We can now write out the probability
distribution that n flips are required.

145

Section 7.1 Discrete Distributions 146

Definition: 7.1 The Geometric Distribution

We have an experiment with a binary outcome (i.e. heads or tails; 0
or 1; and so on), with P (H) = p and P (T) = 1 − p. We repeat this
experiment until the first head occurs. The probability distribution for
n, the number of repetitions, is the geometric distribution. It has the
form

P ({X = n}) = (1 − p)(n−1)p.

for 0 ≤ p ≤ 1 and n ≥ 1; for other n it is zero. p is called the parameter
of the distribution.

Notice that the geometric distribution is non-negative everywhere. It is straight-
forward to show that it sums to one, and so is a probability distribution (exercises).

Useful Facts: 7.1 The geometric distribution

1. The mean of the geometric distribution is 1
p .

2. The variance of the geometric distribution is 1−p
p2 .

The proof of these facts requires some work with series, and is relegated
to the exercises.

7.1.3 Bernoulli Random Variables

A Bernoulli random variable models a biased coin with probability p of coming up
heads in any one flip.

Definition: 7.2 Bernoulli Random Variable

A Bernoulli random variable takes the value 1 with probability p and
0 with probability 1 − p. This is a model for a coin toss, among other
things

Section 7.1 Discrete Distributions 147

Useful Facts: 7.2 Bernoulli Random Variables

1. A Bernoulli random variable has mean p.

2. A Bernoulli random variable has variance p(1 − p).

Proofs are easy, and in the exercises.

7.1.4 The Binomial Probability Distribution

Assume we have a biased coin with probability p of coming up heads in any one
flip. The binomial probability distribution gives the probability that it comes up
heads h times in N flips.

Worked example 32 yields one way of deriving this distribution. In that
example, I showed that there are

N !/(h!(N − h)!)

outcomes of N coin flips that have h heads. These outcomes are disjoint, and
each has probability ph(1 − p)(N−h). As a result, we must have the probability
distribution below.

Definition: 7.3 The Binomial distribution

In N independent repetitions of an experiment with a binary outcome
(ie heads or tails; 0 or 1; and so on) with P (H) = p and P (T) = 1− p,
the probability of observing a total of h H ’s and N − h T ’s is

Pb(h;N, p) =

(

N
h

)

ph(1− p)(N−h)

as long as 0 ≤ h ≤ N ; in any other case, the probability is zero.

Section 7.1 Discrete Distributions 148

Useful Fact: 7.3 The binomial distribution

Write Pb(i;N, p) for the binomial distribution that one observes i H ’s
in N trials.

N
∑

i=0

Pb(i;N, p) = (p+ (1− p))N = (1)N = 1

by pattern matching to the binomial theorem. As a result,

N
∑

i=0

Pb(i;N, p) = 1

The binomial distribution satisfies a recurrence relation. We must have that

Pb(h;N, p) = pPb(h− 1;N − 1, p) + (1 − p)Pb(h;N − 1, p).

This is because can get h heads in N flips either by having h − 1 heads in N − 1
flips, then flipping another, or by having h heads in N flips then flipping a tail.
You can verify by induction that the binomial distribution satisfies this recurrence
relation.

Useful Facts: 7.4 The binomial distribution

1. The mean of Pb(i;N, p) is Np.

2. The variance of Pb(i;N, p) is Np(1− p)

The proofs are informative, and so are not banished to the exercises.

Section 7.1 Discrete Distributions 149

Proof: 7.1 The binomial distribution

Notice that the number of heads in N coin tosses is can be obtained
by adding the number of heads in each toss. Write Yi for the Bernoulli
random variable representing the i’th toss. If the coin comes up heads,
Yi = 1, otherwise Yi = 0. The Yi are independent. Now

E[X] = E

N
∑

j=1

Yi

=

N
∑

j=1

E[Yi]

= NE[Y1] because the Yi are independent

= Np.

The variance is easy, too. Each coin toss is independent, so the variance
of the sum of coin tosses is the sum of the variances. This gives

var[X] = var

N
∑

j=1

Yi

= Nvar[Y1]

= Np(1− p)

7.1.5 Multinomial probabilities

The binomial distribution describes what happens when a coin is flipped multiple
times. But we could toss a die multiple times too. Assume this die has k sides, and
we toss it N times. The distribution of outcomes is known as the multinomial
distribution.

We can guess the form of the multinomial distribution in rather a straightfor-
ward way. The die has k sides. We toss the die N times. This gives us a sequence
of N numbers. Each toss of the die is independent. Assume that side 1 appears n1

times, side 2 appears n2 times, ... side k appears nk times. Any single sequence
with this property will appear with probability pn1

1 pn2

2 ...pnk

k , because the tosses are
independent. However, there are

N !

n1!n2!...nk!

such sequences. Using this reasoning, we arrive at the distribution below

Section 7.1 Discrete Distributions 150

Definition: 7.4 Multinomial Distribution

I perform N independent repetitions of an experiment with k possible
outcomes. The i’th such outcome has probability pi. I see outcome 1 n1

times, outcome 2 n2 times, etc. Notice that n1+n2+n3+ . . .+nk = N .
The probability of observing this set of outcomes is

Pm(n1, . . . , nk;N, p1, . . . , pk) =
N !

n1!n2!...nk!
pn1

1 pn2

2 . . . pnk

k .

Worked example 7.1 Dice

I throw five fair dice. What is the probability of getting two 2’s and
three 3’s?

Solution: 5!
2!3! (

1
6)

2(16)
3

7.1.6 The Poisson Distribution

Assume we are interested in counts that occur in an interval of time (e.g. within
a particular hour). Because they are counts, they are non-negative and integer
valued. We know these counts have two important properties. First, they occur
with some fixed average rate. Second, an observation occurs independent of the
interval since the last observation. Then the Poisson distribution is an appropriate
model.

There are numerous such cases. For example, the marketing phone calls you
receive during the day time are likely to be well modelled by a Poisson distribution.
They come at some average rate — perhaps 5 a day as I write, during the last
phases of an election year — and the probability of getting one clearly doesn’t
depend on the time since the last one arrived. Classic examples include the number
of Prussian soldiers killed by horse-kicks each year; the number of calls arriving at
a call center each minute; the number of insurance claims occurring in a given time
interval (outside of a special event like a hurricane, etc.).

Section 7.1 Discrete Distributions 151

Definition: 7.5 The Poisson Distribution

A non-negative, integer valued random variable X has a Poisson distri-
bution when its probability distribution takes the form

P ({X = k}) = λke−λ

k!
,

where λ > 0 is a parameter often known as the intensity of the distri-
bution.

Notice that the Poisson distribution is a probability distribution, because it
is non-negative and because

∞
∑

i=0

λi

i!
= eλ

so that ∞
∑

k=0

λke−λ

k!
= 1

Useful Facts: 7.5 The Poisson Distribution

1. The mean of a Poisson distribution with intensity λ is λ.

2. The variance of a Poisson distribution with intensity λ is λ (no,
that’s not an accidentally repeated line or typo).

The proof of these facts requires some work with series, and is relegated
to the exercises.

I described the Poisson distribution as a natural model for counts of randomly
distributed points along a time axis. But it doesn’t really matter that this is a time
axis — it could be a space axis instead. For example, you could take a length of
road, divide it into even intervals, then count the number of road-killed animals is
in each interval. If the location of each animal is independent of the location of
any other animal, then you could expect a Poisson model to apply to the count
data. Assume that the Poisson model that best describes the data has parameter
λ. One property of such models is that if you doubled the length of the intervals,
then the resulting dataset would be described by a Poisson model with parameter
2λ; similarly, if you halved the length of the intervals, the best model would have
parameter λ/2. This corresponds to our intuition about such data; roughly, the
number of road-killed animals in two miles of road should be twice the number in
one mile of road. This property means that no pieces of the road are “special” —
each behaves the same as the other.

Section 7.2 Continuous Distributions 152

We can build a really useful model of spatial randomness by observing this
fact and generalizing very slightly. A Poisson point process with intensity λ is a
set of random points with the property that the number of points in an interval of
length s is a Poisson random variable with parameter λs. Notice how this captures
our intuition that if points are “very randomly” distributed, there should be twice
as many of them in an interval that is twice as long.

This model is easily, and very usefully, extended to points on the plane, on
surfaces, and in 3D. In each case, the process is defined on a domain D (which has
to meet some very minor conditions that are of no interest to us). The number
of points in any subset s of D is a Poisson random variable, with intensity λm(s),
where m(s) is the area (resp. volume) of s. These models are useful, because they
capture the property that (a) the points are random and (b) the probability you
find a point doesn’t depend on where you are. You could reasonably believe models
like this apply to, say, dead flies on windscreens; the places where you find acorns
at the foot of an oak tree; the distribution of cowpats in a field; the distribution of
cherries in a fruitcake; and so on.

7.2 CONTINUOUS DISTRIBUTIONS

7.2.1 The Continuous Uniform Distribution

Some continuous random variables have a natural upper bound and a natural lower
bound but otherwise we know nothing about them. For example, imagine we are
given a coin of unknown properties by someone who is known to be a skillful maker
of unfair coins. The manufacturer makes no representations as to the behavior of
the coin. The probability that this coin will come up heads is a random variable,
about which we know nothing except that it has a lower bound of zero and an
upper bound of one.

If we know nothing about a random variable apart from the fact that it has
a lower and an upper bound, then a uniform distribution is a natural model.
Write l for the lower bound and u for the upper bound. The probability density
function for the uniform distribution is

p(x) =

0 x < l
1/(u− l) l ≤ x ≤ u
0 x > u

A continuous random variable whose probability distribution is the uniform distri-
bution is often called a uniform random variable.

7.2.2 The Beta Distribution

It’s hard to explain now why the Beta (or β) distribution is useful, but it will come
in useful later (section 1). The Beta distribution is a probability distribution for a
continuous random variable x in the range 0 ≤ x ≤ 1. There are two parameters,
α > 0 and β > 0. Recall the definition of the Γ function from section 1.1. We have
that

Pβ(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
x(α−1)(1− x)(β−1).

From this expression, you can see that:

Section 7.2 Continuous Distributions 153

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
PDF of Beta(x) for various alpha, beta

alpha: 1, beta: 1
alpha: 10, beta: 10
alpha: 50, beta: 50

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
PDF of Beta(x) for various alpha, beta

alpha: 1, beta: 10
alpha: 10, beta: 1
alpha: 3, beta: 15
alpha: 20, beta: 100

FIGURE 7.1: Probability density functions for the Beta distribution with a variety of
different choices of α and β.

• Pβ(x|1, 1) is a uniform distribution on the unit interval.

• Pβ(x|α, β) has a single maximum at x = (α−1)/(α+β−2) for α > 1, β > 1)
(differentiate and set to zero).

• Generally, as α and β get larger, this peak gets narrower.

• For α = 1, β > 1 the largest value of Pβ(x|α, β) is at x = 0.

• For α > 1, β = 1 the largest value of Pβ(x|α, β) is at x = 1.

Figure 7.1 shows plots of the probability density function of the Beta distribution
for a variety of different values of α and β.

Useful Facts: 7.6 The Beta Distribution

For a Beta distribution with parameters α, β

1. The mean is α
α+β .

2. The variance is αβ
(α+β)2(α+β+1) .

7.2.3 The Gamma Distribution

The Gamma (or γ) distribution will also come in useful later on (section 1). The
Gamma distribution is a probability distribution for a non-negative continuous
random variable x ≥ 0. There are two parameters, α > 0 and β > 0. The
probability density function is

Pγ(x|α, β) =
βα

Γ(α)
x(α−1)e−βx.

Section 7.2 Continuous Distributions 154

0 2 4 6 8 10
0

0.5

1

1.5

2
PDF of Gamma(x) for various alpha, beta

alpha: 1, beta: 1
alpha: 5, beta: 5
alpha: 15, beta: 15

0 2 4 6 8 10
0

0.5

1

1.5

2
PDF of Gamma(x) for various alpha, beta

alpha: 1, beta: 5
alpha: 5, beta: 1
alpha: 15, beta: 5

FIGURE 7.2: Probability density functions for the Gamma distribution with a variety
of different choices of α and β.

Figure 7.2 shows plots of the probability density function of the Gamma distribution
for a variety of different values of α and β.

Useful Facts: 7.7 The Gamma Distribution

For a Gamma distribution with parameters α, β

1. The mean is α
β .

2. The variance is α
β2 .

7.2.4 The Exponential Distribution

Assume we have an infinite interval of time or space, with points distributed on it.
Assume these points form a Poisson point process, as above. For example, we might
consider the times at which email arrives; or the times at which phone calls arrive
at a large telephone exchange; or the locations of roadkill on a road. The distance
(or span of time) between two consecutive points is a random variable X . This
random variable takes an exponential distribution. There is a single parameter,
λ. We have that

Pexp(x|λ) =
{

λ exp−λx for x ≥ 0
0 otherwise

.

This distribution is often useful in modelling the failure of objects. We assume
that failures form a Poisson process in time; then the time to the next failure is
exponentially distributed.

Section 7.3 The Normal Distribution 155

Useful Facts: 7.8 The Exponential Distribution

For an exponential distribution with parameter λ

1. The mean is
1

λ
.

2. The variance is
1

λ2
.

Notice the relationship between this parameter and the parameter of the Pois-
son distribution. If (say) the phone calls are distributed with Poisson distribution
with intensity λ (per hour), then your expected number of calls per hour is λ. The
time between calls will be exponentially distributed with parameter λ, and the
expected time to the next call is 1/λ (in hours).

7.3 THE NORMAL DISTRIBUTION

7.3.1 The Standard Normal Distribution

Definition: 7.6 The Standard Normal Distribution

The probability density function

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

is known as the standard normal distribution

The first step is to plot this probability density function (Figure 7.3). You
should notice it is quite familiar from work on histograms, etc. in Chapter 1. It
has the shape of the histogram of standard normal data, or at least the shape that
the histogram of standard normal data aspires to.

Useful Facts: 7.9 The standard normal distribution

1. The mean of the standard normal distribution is 0.

2. The variance of the standard normal distribution is 1.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

Section 7.3 The Normal Distribution 156

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5
The Standard Normal Curve

FIGURE 7.3: A plot of the probability density function of the standard normal dis-
tribution. Notice how probability is concentrated around zero, and how there is
relatively little probability density for numbers with large absolute values.

A continuous random variable is a standard normal random variable if
its probability density function is a standard normal distribution.

7.3.2 The Normal Distribution

Any probability density function that is a standard normal distribution in standard
coordinates is a normal distribution. Now write µ for the mean of a random
variable and σ for its standard deviation; we are saying that, if

x− µ

σ

has a standard normal distribution, then p(x) is a normal distribution. We can work
out the form of the probability density function of a general normal distribution in
two steps: first, we notice that for any normal distribution, we must have

p(x) ∝ exp

[

− (x− µ)2

2σ2

]

.

But, for this to be a probability density function, we must have
∫∞
−∞ p(x)dx = 1.

This yields the constant of proportionality, and we get

Definition: 7.7 The Normal Distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

is a normal distribution.

Section 7.3 The Normal Distribution 157

Useful Facts: 7.10 The normal distribution

The probability density function

p(x) =

(

1√
2πσ

)

exp

(−(x− µ)2

2σ2

)

.

has

1. mean µ

2. and variance σ.

These results are easily established by looking up (or doing!) the rele-
vant integrals; they are relegated to the exercises.

A continuous random variable is a normal random variable if its probability
density function is a normal distribution. Notice that it is quite usual to call
normal distributions gaussian distributions.

7.3.3 Properties of the Normal Distribution

Normal distributions are important, because one often runs into data that is well
described by a normal distribution. It turns out that anything that behaves like a
binomial distribution with a lot of trials — for example, the number of heads in
many coin tosses; as another example, the percentage of times you get the outcome
of interest in a simulation in many runs — should produce a normal distribution
(Section 7.4). For this reason, pretty much any experiment where you perform a
simulation, then count to estimate a probability or an expectation, should give you
an answer that has a normal distribution.

It is a remarkable and deep fact, known as the central limit theorem, that
adding many independent random variables produces a normal distribution pretty
much whatever the distributions of those random variables. I’ve not shown this
in detail because it’s a nuisance to prove. However, if you add together many
random variables, each of pretty much any distribution, then the answer has a
distribution close to the normal distribution. It turns out that many of the processes
we observe add up subsidiary random variables. This means that you will see normal
distributions very often in practice.

A normal random variable tends to take values that are quite close to the
mean, measured in standard deviation units. We can demonstrate this important
fact by computing the probability that a standard normal random variable lies
between u and v. We form

∫ v

u

1√
2π

exp

(

−u2

2

)

du.

It turns out that this integral can be evaluated relatively easily using a special

Section 7.4 Approximating Binomials with Large N 158

function. The error function is defined by

erf(x) =
2√
π

∫ x

0

exp
(

−t2
)

dt

so that
1

2
erf

(

(
x√
2
)

)

=

∫ x

0

1√
2π

exp

(

−u2

2

)

du.

Notice that erf(x) is an odd function (i.e. erf(−x) = erf(x)). From this (and
tables for the error function, or Matlab) we get that, for a standard normal random
variable

1√
2π

∫ 1

−1

exp

(

−x2

2

)

dx ≈ 0.68

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.95

and
1√
2π

∫ 2

−2

exp

(

−x2

2

)

dx ≈ 0.99.

These are very strong statements. They measure how often a standard normal
random variable has values that are in the range−1, 1, −2, 2, and −3, 3 respectively.
But these measurements apply to normal random variables if we recognize that they
now measure how often the normal random variable is some number of standard
deviations away from the mean. In particular, it is worth remembering that:

Useful Facts: 7.11 Normal Random Variables

• About 68% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 95% of the time, a normal random variable takes a value
within one standard deviation of the mean.

• About 99% of the time, a normal random variable takes a value
within one standard deviation of the mean.

7.4 APPROXIMATING BINOMIALS WITH LARGE N

The Binomial distribution appears to be a straightforward thing. We assume we
flip a coin N times, where N is a very large number. The coin has probability p of
coming up heads, and so probability q = 1 − p of coming up tails. The number of
heads h follows the binomial distribution, so

P (h) =
N !

h!(N − h)!
phq(N−h)

Section 7.4 Approximating Binomials with Large N 159

The mean of this distribution isNp, the variance isNpq, and the standard deviation
is
√
Npq.
Evaluating this probability distribution for large N is very difficult, because

factorials grow fast. We will construct an approximation to the binomial distribu-
tion for large N that allows us to evaluate the probability that h lies in some range.
This approximation will show that the probability that h is within one standard
deviation of the mean is approximately 68%.

This is important, because it shows that our model of probability as frequency
is consistent. Consider the probability that the number of heads you see lies within
one standard deviation of the mean. The size of that interval is 2

√
Npq. As N gets

bigger, the size of that interval, relative to the total number of flips, gets smaller.
If I flip a coin N times, in principle I could see a number of heads h that ranges
from 0 to N . However, we will establish that about 68% of the time, h will lie in
the interval within one standard deviation of the mean. The size of this interval,
relative to the total number of flips is

2

√
Npq

N
= 2

√

pq

N
.

As a result, as N → ∞,
h

N
→ p

because h will tend to land in an interval around pN that gets narrower as N gets
larger.

The main difficulty with Figure 7.4 (and with the argument above) is that
the mean and standard deviation of the binomial distribution tends to infinity as
the number of coin flips tends to infinity. This can confuse issues. For example, the
plots of Figure 7.4 show narrowing probability distributions — but is this because
the scale is compacted, or is there a real effect? It turns out there is a real effect,
and a good way to see it is to consider the normalized number of heads.

7.4.1 Large N

Recall that to normalize a dataset, you subtract the mean and divide the result
by the standard deviation. We can do the same for a random variable. We now
consider

x =
h−Np√

Npq
.

The probability distribution of x can be obtained from the probability distribution
for h, because h = Np+ x

√
Npq, so

P (x) =

(

N !

(Np+ x
√
Npq)!(Nq − x

√
Npq)!

)

p(Np+x
√

Npq)q(Nq−x
√

Npq).

I have plotted this probability distribution for various values of N in Figure 7.5.
But it is hard to work with this distribution for very large N . The factorials

become very difficult to evaluate. Second, it is a discrete distribution on N points,
spaced 1/

√
Npq apart. As N becomes very large, the number of points that have

Section 7.4 Approximating Binomials with Large N 160

0 1 2 3 4
0

0.1

0.2

0.3

P(k heads) in 4 flips

Number of heads

P
ro

ba
bi

lit
y

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

P(k heads) in 10 flips

Number of heads

P
ro

ba
bi

lit
y

0 10 20 30 40
0

0.05

0.1

P(k heads) in 40 flips

Number of heads

P
ro

ba
bi

lit
y

0 20 40 60 80
0

0.02

0.04

0.06

0.08

P(k heads) in 80 flips

Number of heads

P
ro

ba
bi

lit
y

FIGURE 7.4: Plots of the binomial distribution for p = q = 0.5 for different values
of N . You should notice that the set of values of h (the number of heads) that have
substantial probability is quite narrow compared to the range of possible values. This
set gets narrower as the number of flips increases. This is because the mean is pN
and the standard deviation is

√
Npq — so the fraction of values that is within one

standard deviation of the mean is O(1/
√
N).

non-zero probability becomes very large, and x can be very large, or very small. For
example, there is some probability, though there may be very little indeed, on the
point where h = N , or, equivalently, x = N(p +

√
Npq). For sufficiently large N ,

we think of this probability distribution as a probability density function. We can
do so, for example, by spreading the probability for xi (the i’th value of x) evenly
over the interval between xi and xi+1. We then have a probability density function
that looks like a histogram, with bars that become narrower as N increases. But
what is the limit?

Section 7.4 Approximating Binomials with Large N 161

−20 −10 0 10 20
0

0.1

0.2

0.3

P(k heads) in 4 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

P(k heads) in 10 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.05

0.1

P(k heads) in 40 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

P(k heads) in 80 flips, normalized

Number of heads

P
ro

ba
bi

lit
y

FIGURE 7.5: Plots of the distribution for the normalized variable x, with P (x) given
in the text, obtained from the binomial distribution with p = q = 0.5 for different
values of N . These distributions are normalized (mean 0, variance 1. They look
increasingly like a standard normal distribution EXCEPT that the value at their
mode gets smaller as N gets bigger (there are more possible outcomes). In the text,
we will establish that the standard normal distribution is a limit, in a useful sense.

7.4.2 Getting Normal

To proceed, we need Stirling’s approximation, which says that, for large N ,

N ! ≈
√
2π

√
N

(

N

e

)N

.

This yields

P (h) ≈
(

Np

h

)h(
Nq

N − h

)(N−h)
√

N

2πh(N − h)

Recall we used the normalized variable

x =
h−Np√

Npq
.

Section 7.4 Approximating Binomials with Large N 162

We will encounter the term
√
Npq often, and we use σ =

√
Npq as a shorthand.

We can compute h and N − h from x by the equalities

h = Np+ σx N − h = Nq − σx.

So the probability distribution written in this new variable x is

P (x) ≈
(

Np

(Np+ σx)

)(Np+σx)(
Nq

(Nq − σx)

)(Nq−σx)
√

N

2π(Np+ σx)(Nq − σx)

There are three terms to deal with here. It is easiest to work with logP . Now

log(1 + x) = x− 1

2
x2 +O(x3)

so we have

log

(

Np

(Np+ σx)

)

= − log

(

1 +
σx

Np

)

≈ − σx

Np
+ (

1

2
)(

σx

Np
)2

and

log

(

Nq

(Nq − σx)

)

≈ σx

Nq
+ (

1

2
)(
σx

Nq
)2.

From this, we have that

log

[

(

Np

Np+ σx

)(Np+σx)(
Nq

Nq − σx

)(Nq−σx)
]

≈ [Np+ σx]

[

− σx

Np
+

(

1

2

)(

σx

Np

)2
]

+

[Nq − σx]

[

σx

Nq
+

(

1

2

)(

σx

Nq

)2
]

= −
(

1

2

)

x2 +O((σx)3)

(recall σ =
√
Npq if you’re having trouble with the last step). Now we look at the

square-root term. We have

log

√

N

2π(Np+ σx)(Nq − σx)
= −1

2
(log [Np+ σx] + log [Nq − σx] − logN + log 2π)

= −1

2

logNp+O
((

σx
Np

))

+ logNq −O
((

σx
Nq

))

− logN + log 2π

but, since N is very large compared to σx, we can ignore the O(
(

σx
Np

)

) terms. Then

this term is not a function of x. So we have

logP (x) ≈ −x2

2
+ constant.

Section 7.4 Approximating Binomials with Large N 163

Now because N is very large, our probability distribution P limits to a probability
density function p, with

p(x) ∝ exp

(−x2

2

)

.

We can get the constant of proportionality from integrating, to

p(x) =

(

1√
2π

)

exp

(−x2

2

)

.

This constant of proportionality deals with the effect in figure 7.5, where the mode
of the distribution gets smaller as N gets bigger. It does so because there are more
points with non-zero probability to be accounted for. But we are interested in the
limit where N tends to infinity. This must be a probability density function, so it
must integrate to one.

Review this blizzard of terms. We started with a binomial distribution, but
standardized the variables so that the mean was zero and the standard deviation
was one. We then assumed there was a very large number of coin tosses, so large
that that the distribution started to look like a continuous function. The function
we get is the standard normal distribution.

7.4.3 So What?

I have proven an extremely useful fact, which I shall now put in a box.

Useful Fact: 7.12 The Binomial Distribution for Large N

Assume h follows the binomial distribution with parameters p and q.
Write x = h−Np√

Npq
. Then, for sufficiently large N , the probability distri-

bution P (x) can be approximated by the probability density function

(

1√
2π

)

exp

(−x2

2

)

in the sense that

P ({x ∈ [a, b]}) ≈
∫ b

a

(

1√
2π

)

exp

(−u2

2

)

du

This justifies our model of probability as frequency. I interpreted an event
having probability p to mean that, if I had a large number N of independent
repetitions of the experiment, the number that produced the event would be close
to Np, and would get closer as N got larger. We know that, for example, 68% of
the time a standard normal random variable takes a value between 1 and −1. In
this case, the standard normal random variable is

h− (Np)√
Npq

Section 7.5 What you should remember 164

so that 68% of the time, h must take a value in the range [Np−√
Npq,Np+

√
Npq].

Equivalently, the relative frequency h/N must take a value in the range

[p− pq√
N

, p+
pq√
N

]

but as N → ∞ this range gets smaller and smaller, and h/N limits to p. So our
view of probability as a frequency is consistent.

To obtain h, we added N independent Bernoulli random variables. So you can
interpret the box as saying that the sum of many independent Bernoulli random
variables has a probability distribution that limits to the normal distribution as
the number added together gets larger. Remember that I have stated, though not
precisely, but not proved the deep and useful fact that the sum of pretty much
any independent random variables has a distribution that gets closer to a normal
distribution as the number added together gets larger.

7.5 WHAT YOU SHOULD REMEMBER

You should remember:

• The form of the uniform distribution.

• The form of the geometric distribution, and its mean and variance.

• The form of the binomial distribution, and its mean and variance.

• The form of the Poisson distribution, and its mean and variance.

• The form of the Normal distribution, and its mean and variance.

• The fact that a sum of a large number of IID binomial random variables is
normally distributed, and the mean and variance of that distribution.

• The fact that a sum of a large number of IID random variables is normally
distributed for most cases you will encounter.

PROBLEMS

Sums and Differences of Discrete Random Variables

7.1. Assume X and Y are discrete random variables which take integer values in
the range 1 . . . 100 (inclusive). Write S = X + Y .
(a) Show that

P (S = k) =

u=100
∑

u=1

P ({{X = k − u} ∩ {Y = u}}).

(b) Show that

P (D = k) =

u=100
∑

u=1

P ({X = k + u})P ({Y = u}).

(c) Now assume that both X and Y are uniform random variables. Show that
S is not uniform by considering P (S = 2), P (S = 3), and P (S = 100).

Section 7.5 What you should remember 165

The Geometric Distribution

7.2. Recall that for 0 < r < 1,
∞
∑

i=0

ri =
1

1− r
.

Now show that

∞
∑

n=1

P ({X = n}) = p

∞
∑

n=1

(1− p)(n−1)

= 1

7.3. Write S∞ =
∑∞

i=0 r
i. Show that (1− r)S∞ = 1, so that

S∞ =
1

1− r

7.4. Show that ∞
∑

i=0

iri = (

∞
∑

i=1

ri) + r(

∞
∑

i=1

ri) + r2(

∞
∑

i=1

ri) + . . .

(look carefully at the limits of the sums!) and so show that

∞
∑

i=0

iri =
r

(1− r)2
.

7.5. Write S∞ =
∑∞

i=0 r
i. Show that

∞
∑

i=0

i2ri = (γ − 1) + 3r(γ − 1) + 5r2(γ − 1) + . . .

and so that ∞
∑

i=0

i2ri =
r(1 + r)

(1− r)3

7.6. Show that, for a geometric distribution with parameter p, the mean is

∞
∑

i=1

i(1− p)(i−1)p =

∞
∑

i=0

(i+ 1)(1− p)ip.

Now by rearranging and using the previous results, show that the mean is

∞
∑

i=1

i(1− p)(i−1)p =
1

p

7.7. Show that, for a geometric distribution with parameter p, the variance is 1−p
p2 .

To do this, note the variance is E
[

X2
]

− E[X]2. Now use the results of the
previous exercises to show that

E
[

X2] =

∞
∑

i=1

i2(1− p)(i−1)p =
p

1− p

(1− p)(2− p)

p3
,

then rearrange to get the expression for variance.

Section 7.5 What you should remember 166

Bernoulli Random Variables

7.8. Write X for a Bernoulli random variable which takes the value 1 with proba-
bility p (and 0 with probability (1− p)).
(a) Show that E[X] = p.

(b) Show that E
[

X2
]

− E[X]2 = p(1− p)

The Binomial Distribution

7.9. Show that Pb(N − i;N, p) = Pb(i;N, p) for all i.
7.10. Write hr for the number of heads obtained in r flips of a coin which has

probability p of coming up heads. Compare the following two ways to compute
the probability of getting i heads in five coin flips:

• Flip the coin three times, count h3, then flip the coin twice, count h2,
then form w = h3 + h2.

• Flip the coin five times, and count h5.

Show that the probability distribution for w is the same as the probability
distribution for h5. Do this by showing that

P ({w = i}) =
5
∑

j=0

P ({h3 = j} ∩ {h2 = i− j}) = P ({h5 = i}).

7.11. Now we will do the previous exercise in a more general form. Again, write hr
for the number of heads obtained in r flips of a coin which has probability p of
coming up heads. Compare the following two ways to compute the probability
of getting i heads in N coin flips:

• Flip the coin t times, count ht, then flip the coin N − t times, count
hN−t, then form w = ht + hN−t.

• Flip the coin N times, and count hN .

Show that the probability distribution for w is the same as the probability
distribution for hN . Do this by showing that

P ({w = i}) =
N
∑

j=0

P ({ht = j} ∩ {hN−t = i− j}) = P ({hN = i}).

You will likely find the recurrence relation

Pb(i;N, p) = pPb(i− 1;N − 1, p) + (1− p)Pb(i;N − 1, p).

is useful.
7.12. An airline runs a regular flight with six seats on it. The airline sells six tickets.

The gender of the passengers is unknown at time of sale, but women are as
common as men in the population. All passengers always turn up for the flight.
The pilot is eccentric, and will not fly a plane unless at least one passenger is
female. What is the probability that the pilot flies?

7.13. An airline runs a regular flight with s seats on it. The airline always sells t
tickets for this flight. The probability a passenger turns up for departure is p,
and passengers do this independently. What is the probability that the plane
travels with exactly 3 empty seats?

Section 7.5 What you should remember 167

7.14. An airline runs a regular flight with s seats on it. The airline always sells t
tickets for this flight. The probability a passenger turns up for departure is p,
and passengers do this independently. What is the probability that the plane
travels with 1 or more empty seats?

7.15. An airline runs a regular flight with 10 seats on it. The probability that a
passenger turns up for the flight is 0.95. What is the smallest number of seats
the airline should sell to ensure that the probability the flight is full (i.e. 10
or more passengers turn up) is bigger than 0.99? (you’ll probably need to use
a calculator or write a program for this).

The Multinomial Distribution

7.16. Show that the multinomial distribution

Pm(n1, . . . , nk;N, p1, . . . , nk) =
N !

n1!n2!...nk !
pn1

1 pn2

2 . . . pnk

k

must satisfy the recurrence relation

Pm(n1, . . . , nk;N, p1, . . . , pk) = p1Pm(n1 − 1, . . . , nk;N − 1, p1, . . . , pk) +

p2Pm(n1, n2 − 1, . . . , nk;N − 1, p1, . . . , pk) + . . .

pkPm(n1, n2, . . . , nk − 1;N − 1, p1, . . . , pk)

The Poisson Distribution

7.17. Compute the Taylor series for xex around x = 0. Use this and pattern match-
ing to show that the mean of the Poisson distribution with intensity parameter
λ is λ.

7.18. Compute the Taylor series for (x2 + x)ex around x = 0. Use this and pattern
matching to show that the variance of the Poisson distribution with intensity
parameter λ is λ.

Sums of Continuous Random Variables

7.19. Write px for the probability density function of a continuous random variable
X and py for the probability density function of a continuous random variable
Y . Show that the probability density function of S = X + Y is

p(s) =

∫ ∞

−∞
px(s− u)py(u)du =

∫ ∞

−∞
px(u)py(s− u)du

The Normal Distribution

7.20. Write

f(x) =

(

1√
2π

)

exp

(

−x2

2

)

.

(a) Show that f(x) is non-negative for all x.
(b) By integration, show that

∫ ∞

−∞
f(x)dx = 1,

so that f(x) is a probability density function.

Section 7.5 What you should remember 168

(c) Show that
∫ ∞

−∞
xf(x)dx = 0.

The easiest way to do this is to notice that f(x) = f(−x)
(d) Show that

∫ ∞

−∞
xf(x− µ)dx = µ.

The easiest way to do this is to change variables, and use the previous
two exercises.

(e) Show that
∫ ∞

−∞
x2f(x)dx = 1.

You’ll need to either do, or look up, the integral to do this exercise.
7.21. Write

g(x) = exp

[

− (x− µ)2

2σ2

]

Show that
∫ ∞

−∞
g(x)dx =

√
2πσ.

You can do this by a change of variable, and the results of the previous exer-
cises.

7.22. Write

p(x) =

(

1√
2πσ

)

exp

(

−(x− µ)2

2σ2

)

.

(a) Show that
∫ ∞

−∞
xp(x)dx = µ

using the results of the previous exercises.
(b) Show that

∫ ∞

−∞
x2p(x)dx = σ

using the results of the previous exercises.

The Binomial Distribution for Large N

7.23. I flip a fair coin N times and count heads. We consider the probability that
h, the fraction of heads, is in some range of numbers. Hint: If you know the
range of numbers for h, you know the range for h/N .
(a) For N = 1e6, what is P ({h ∈ [49500, 50500]})?
(b) For N = 1e4, what is P ({h > 9000})?
(c) For N = 1e2, what is P ({h > 60} ∪ {h < 40})?

C H A P T E R 8

Markov Chains and Simulation

There are many situations where one must work with a sequence of random
variables. For example, consider a bus queue; people arrive at random, and so
do buses. What is the probability that the queue gets to a particular length?
and what is the expected length of the queue? As another example, we could
have a random model of purchases from a shop — under any particular rule for
restoring inventory, what is the largest (resp. smallest) amount of stock on the
shelf? what is the expected amount of stock on the shelf? It turns out that
there is a simple and powerful model that applies to many sequences of random
variables. One can often use this model to make closed-form predictions. In cases
where closed-form predictions aren’t available, one can use simulation methods to
estimate probabilities and expectations.

8.1 MARKOV CHAINS

A Markov chain is a sequence of random variables which has important indepen-
dence properties. We will describe these properties in some detail below; first, we
give some examples. Markov chains are easily represented with the language of
finite state machines. For some Markov chains, it is easy to determine probabilities
and expectations of interest in closed form using simple methods. For others, it
is tricky (straightforward, but unreasonable amounts of straightforward work). In
these cases, we can estimate the relevant probabilities and expectations by simu-
lating the finite state machine.

8.1.1 Motivating Example: Multiple Coin Flips

We start with three examples, each of which is easy to work. Each suggests a much
harder question, however, which we need new machinery to handle.

Worked example 8.1 Multiple Coin Flips - 1

You choose to flip a fair coin until you see two heads in a row, and then
stop. What is the probability that you flip the coin twice?

Solution: Because you stopped after two flips, you must have seen two
heads. So P (2 flips) = P ({HH}) = P ({H})2 = 1/4.

169

Section 8.1 Markov Chains 170

Worked example 8.2 Multiple Coin Flips - 2

You choose to flip a fair coin until you see two heads in a row, and then
stop. What is the probability that you flip the coin three times?

Solution: Because you stopped after three flips, you must have seen T ,
then H , then H ; any other sequence either doesn’t stop, or stops too early.
We write this with the last flip last, so THH . So P (3 flips) = P ({THH}) =
P ({T })P ({H})2 = 1/8.

Worked example 8.3 Multiple Coin Flips - 3

You choose to flip a fair coin until you see two heads in a row, and then
stop. What is the probability that you flip the coin four times?

Solution: This is more interesting. The last three flips must have been
THH (otherwise you’d go on too long, or end too early). But, because the
second flip must be a T , the first could be either H or T . This means there
are two sequences that work: HTHH and TTHH . So P (4 flips) = 2/8 =
1/4.

The harder question here is to ask what is P (N), for N some number (larger
than 4, because we know the answers in the other cases). It is unattractive to
work this case by case (you could try this, if you don’t believe me). One very
helpful way to think about the coin flipping experiment is as a finite state machine
(Figure 8.1). If you think of this machine as a conventional finite state machine, it
accepts any string of T , H , that (a) ends with HH , and (b) has no other HH in it.
Alternatively, you could think of this machine as encoding a probabilistic process.
At each state, an event occurs with some probability (in this case, a coin comes
up H or T , with probability (1/2)). The event causes the machine to follow the
appropriate edge. If we take this view, this machine stops when we have flipped two
heads in succession. It encodes our problem of computing the probability of flipping
a coin N times then stopping — this is just the probability that the machine hits
the end state after N transitions.

It turns out to be straightforward to construct a recurrence relation for P (N)
(i.e. an equation for P (N) in terms of P (N−1), P (N−2), and so on). This property
is quite characteristic of repeated experiments. For this example, first, notice that
P (1) = 0. Now imagine you have flipped the coin N times and stopped. We can
assume that N > 3, because we know what happens for the other cases. The last
three flips must have been THH . Write ΣN for a sequence that is: (a) N flips long;
(b) ends in HH ; and (c) contains no other subsequence HH . Equivalently, this is
a string accepted by the finite state machine of figure 8.1. We must have that any

Section 8.1 Markov Chains 171

T

1 2

HH

T

FIGURE 8.1: A finite state machine representing the coin flip example. By conven-
tion, the end state is a double circle, and the start state has an incoming arrow. I’ve
labelled the arrows with the event that leads to the transition, but haven’t bothered
to put in the probabilities, because each is 0.5.

ΣN has either the form TΣN−1 or the form HTΣN−2. But this means that

P (N) = P (T)P (N − 1) + P (HT)P (N − 2)

= (1/2)P (N − 1) + (1/4)P (N − 2)

It is possible to solve this recurrence relation to get an explicit formula, but doing
so would take us out of our way. You will check this recurrence relation in an
exercise.

One really useful way to think of this recurrence relation is that represents
an exercise in counting. We want to count all sequences that are of length N , and
are accepted by the finite state machine of figure 8.1. This means they: (a) are
N flips long; (b) end in HH ; and (c) contain no other subsequence HH . Now
work backward along the FSM. The only way to arrive at the final state is to be in
state 1, then see HH . So you can obtain an acceptable N element sequence by (a)
prepending a T to an acceptable N − 1 element sequence or (b) prepending TH
(which takes you to 2, then back to 1) to an acceptable N − 2 element sequence.
This line of reasoning can be made much more elaborate. There are a few examples
in the exercises.

8.1.2 Motivating Example: The Gambler’s Ruin

Another useful example is known as the gambler’s ruin. Assume you bet $1 a
tossed coin will come up heads. If you win, you get $1 and your original stake back.
If you lose, you lose your stake. But this coin has the property that P (H) = p < 1/2.
We will study what happens when you bet repeatedly.

Assume you have $s when you start. You will keep betting until either (a) you
have $0 (you are ruined; you can’t borrow money) or (b) the amount of money you
have accumulated is $j, where j > s. The coin tosses are independent. We will com-
pute P (ruined, starting with s|p) the probability that you leave the table with noth-
ing, when you start with $s. For brevity, we write P (ruined, starting with s|p) = ps.
You can represent the gambler’s ruin problem with a finite state machine as well.
Figure 8.2 shows a representation of the gambler’s ruin problem.

Section 8.1 Markov Chains 172

2 1j-1
W

L L L L

W W W

...

FIGURE 8.2: A finite state machine representing the gambler’s ruin example. I have
labelled each state with the amount of money the gambler has at that state. There
are two end states, where the gambler has zero (is ruined), or has j and decides
to leave the table. The problem we discuss is to compute the probability of being
ruined, given the start state is s. This means that any state except the end states
could be a start state. I have labelled the state transitions with “W” (for win) and
“L” for lose, but have omitted the probabilities.

Worked example 8.4 The gambler’s ruin - 1

Using the notation above, determine p0 and pj

Solution: We must have p0 = 1, because if you have $0, you leave the
table. Similarly, if you have $j, you leave the table with $j, so you don’t
leave the table with nothing, so pj = 0.

Worked example 8.5 The gambler’s ruin - 2

Using the notation above, write a recurrence relation for ps (the prob-
ability that you leave the table with nothing when you started with
$s.

Solution: Assume that you win the first bet. Then you have $s + 1, so
your probability of leaving the table with nothing now becomes ps+1. If
you lose the first bet, then you have $s− 1, so your probability of leaving
the table with nothing now becomes ps−1. The coin tosses are independent,
so we can write

ps = pps+1 + (1 − p)ps−1.

Some fairly lively work with series, relegated to the end of the chapter as
exercises, yields

ps =

(

1−p
p

)j

−
(

1−p
p

)s

(

1−p
p

)j

− 1

.

This expression is quite informative. Notice that, if p < 1/2, then (1 − p)/p > 1.
This means that as j → ∞, we have ps → 1. If you gamble repeatedly on an unfair

Section 8.1 Markov Chains 173

21 3

p

q

p p

q

q q

q

q

FIGURE 8.3: A virus can exist in one of 3 strains. At the end of each year, the virus
mutates. With probability α, it chooses uniformly and at random from one of the 2
other strains, and turns into that; with probability 1− α, it stays in the strain it is
in. For this figure, we have transition probabilities p = (1− α) and q = (α/2).

coin, the probability that you run out of money before you hit some threshold ($j
in this case) tends to one.

8.1.3 Motivating Example: A Virus

Problems represented with a finite state machine don’t need to have an end state.
As one example, (which I got from ACC Coolen’s lecture notes), we have a virus
that can exist in one of k strains. At the end of each year, the virus mutates.
With probability α, it chooses uniformly and at random from one of the k − 1
other strains, and turns into that; with probability 1 − α, it stays in the strain it
is in (Figure 8.3 shows an example with three strains). For that figure, we have
p = (1− α) and q = (α/2). The virus just keeps on changing, and there is no end
state. But there are a variety of very interesting questions we can try to answer.
We would like to know, for example, the expected time to see a strain a second
time, i.e. if the virus is in strain 1 at time 1, what is the expected time before it
is in strain 1 again? If the virus has mutated many times, what is the probability
that it is in each strain? and do these probabilities depend on the start strain?

8.1.4 Markov Chains

In Figure 8.1 and Figure 8.2, I showed the event that caused the state transitions.
It is more usual to write a probability on the figure, as I did in Figure 8.3, because
the probability of a state transition (rather than what caused it) is what really
matters. The underlying object is now a weighted directed graph, because we have
removed the events and replaced them with probabilities. These probabilities are
known as transition probabilities; notice that the sum of transition probabilities
over outgoing arrows must be 1.

We can now think of our process as a biased random walk on a weighted
directed graph. A bug (or any other small object you prefer) sits on one of the
graph’s nodes. At each time step, the bug chooses one of the outgoing edges at

Section 8.1 Markov Chains 174

random. The probability of choosing an edge is given by the probabilities on the
drawing of the graph (equivalently, the transition probabilities). The bug then
follows that edge. The bug keeps doing this until it hits an end state.

This bug produces a sequence of random variables. If there are k states in the
finite state machine, we can label each state with a number, 1 . . . k. At the n’th time
step, the state of the process — the node that the bug is sitting on — is a random
variable, which we write Xn. These random variables have an important property.
The probability that Xn takes some particular value depends only on Xn−1, and
not on any other previous state. If we know where the bug is at step n− 1 in our
model, we know where it could go, and the probability of each transition. Where
it was at previous times does not affect this, as long as we know its state at step
n− 1.

A sequence of random variables Xn is a Markov chain if it has the property
that, P (Xn = j|values of all previous states) = P (Xn = j|Xn−1), or, equivalently,
only the last state matters in determining the probability of the current state. The
probabilities P (Xn = j|Xn−1 = i) are the transition probabilities. Any model
built by taking the transitions of a finite state machine and labelling them with
probabilities must be a Markov chain. However, this is not the only way to build
or represent a Markov chain.

One representation of a Markov chain uses a matrix of transition probabilities.
We define the matrix P with pij = P (Xn = j|Xn−1 = i). Notice that this matrix
has the properties that pij ≥ 0 and

∑

j

pij = 1

because at the end of each time step the model must be in some state. Equivalently,
the sum of transition probabilities for outgoing arrows is one. Non-negative matrices
with this property are stochastic matrices. By the way, you should look very
carefully at the i’s and j’s here — Markov chains are usually written in terms of
row vectors, and this choice makes sense in that context.

Worked example 8.6 Viruses

Write out the transition probability matrix for the virus of Figure 8.3,
assuming that α = 0.2.

Solution: We have P (Xn = 1|Xn−1 = 1) = (1 − α) = 0.8, and P (Xn =
2|Xn−1 = 1) = α/2 = P (Xn = 3|Xn−1 = 1); so we get

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

Now imagine we do not know the initial state of the chain, but instead have
a probability distribution. This gives P (X0 = i) for each state i. It is usual to
take these k probabilities and place them in a k-dimensional row vector, which is

Section 8.1 Markov Chains 175

usually written π. For example, we might not know what the initial strain of the
virus is, but just that each strain is equally likely. So for a 3-strain virus, we would
have π = [1/3, 1/3, 1/3]. From this information, we can compute the probability
distribution over the states at time 1 by

P (X1 = j) =
∑

i

P (X1 = j,X0 = i)

=
∑

i

P (X1 = j|X0 = i)P (X0 = i)

=
∑

i

pijπi.

If we write p(n) for the row vector representing the probability distribution of the
state at step n, we can write this expression as

p(1) = πP .

Now notice that

P (X2 = j) =
∑

i

P (X2 = j,X1 = i)

=
∑

i

P (X2 = j|X1 = i)P (X1 = i)

=
∑

i

pij

(

∑

ki

pkiπk

)

.

so that
p(n) = πPn.

This expression is useful for simulation, and also allows us to deduce a variety of
interesting properties of Markov chains.

Worked example 8.7 Viruses

We know that the virus of Figure 8.3 started in strain 1. After two
state transitions, what is the distribution of states when α = 0.2? when
α = 0.9? What happens after 20 state transitions? If the virus starts
in strain 2, what happens after 20 state transitions?

Solution: If the virus started in strain 1, then π = [1, 0, 0]. We must
compute π(P(α))2. This yields [0.66, 0.17, 0.17] for the case α = 0.2 and
[0.4150, 0.2925, 0.2925] for the case α = 0.9. Notice that, because the virus
with small α tends to stay in whatever state it is in, the distribution of states
after two years is still quite peaked; when α is large, the distribution of
states is quite uniform. After 20 transitions, we have [0.3339, 0.3331, 0.3331]
for the case α = 0.2 and [0.3333, 0.3333, 0.3333] for the case α = 0.9;
you will get similar numbers even if the virus starts in strain 2. After 20
transitions, the virus has largely “forgotten” what the initial state was.

Section 8.1 Markov Chains 176

T

1 2

HH

T

T

1 2

H

H,T

T

1 2

H

T

2 1j-1

W

L L L

L

W W W

...

NOT Irreducible Irreducible

FIGURE 8.4: Examples of finite state machines that give rise to Markov chains
that are NOT irreducible (left) and irreducible (right). To obtain Markov chains
from these drawings, we would have to give the probabilities of the events that lead
to state transitions. We’ll assume that none of the probabilities are zero; after
that, the values don’t matter for irreducibility analysis. The top left FSM is not
irreducible, because it has an end state; once the bug reaches this point, it can’t go
anywhere else. The bottom left FSM is not irreducible, because the bug can get
stuck in state 2.

In example 7, the distribution of virus strains after a long interval appeared
not to depend much on the initial strain. This property is true of many Markov
chains. Assume that any state can be reached from any other state, by some
sequence of transitions. Such chains are called irreducible; notice this means
there is no end state, like the virus example. Irreducibility also means that the
chain cannot get “stuck” in a state or a collection of states (Figure 8.4). Then
there is a unique vector s, usually referred to as the stationary distribution,
such that for any initial state distribution π,

lim
n → ∞ πP(n) = s.

Equivalently, if the chain has run through many steps, it no longer matters what
the initial distribution is. You expect that the probability distribution over states
is s.

8.1.5 Example: Particle Motion as a Markov Chain

One can find Markov chains in quite unexpected places, often with useful conse-
quences. In this example, I will obtain a Markov chain without reasoning about
graphs or finite state machines. We will investigate a particle moving under gravity,
in 3 dimensions. Write the position of the particle as p(t), its velocity as v(t), its

Section 8.1 Markov Chains 177

acceleration as a(t), its mass as m, and the gravitational force as g. Then we know
that

v(t) =
dp

dt

a(t) =
dv

dt
= g.

Now stack the position and the acceleration into a single vectorX(t) = (p(t),v(t))
T
.

We could write these equations as

dX

dt
= AX + b

where

A =

(

0 I
0 0

)

and

b =

(

0
g

)

.

Now imagine that we look at the position, velocity and acceleration of the particle
at fixed time instants, so we are really interested in Xi = X(t0+ i∆t). In this case,
we can approximate dX

dt by (Xi+1 −Xi)/∆t. We then have

Xi+1 = Xi + (∆t) (AXi + b) .

This is beginning to look like a Markov chain, because Xi+1 depends only on Xi

but not on any previous X . But there isn’t any randomness here. We can fix that
by assuming that the particle is moving in, say, a light turbulent wind. Then the
acceleration at any time consists of (a) the acceleration of gravity and (b) a small,
random force produced by the wind. Write wi for this small, random force at time
i, and P (wi|i) for its probability distribution, which could reasonably depend on
time. We can then rewrite our equation by writing

Xi+1 = Xi + (∆t) (AXi + br) .

where

br =

(

0
g +wi

)

.

Now the Xi are clearly random variables. We could get P (Xi+1|Xi) by rearranging
terms. If I know Xi+1 and Xi, I know the value of wi; I could plug this into P (wi|i)
to yield P (Xi+1|Xi).

Using a finite state machine in this example would be a bit unnatural. This
example turns out to be surprisingly useful in applications, because (with other
algorithmic machinery we can’t go into here) it offers the basis for algorithms that
can track moving objects by predicting where they will go next. Applications are
widespread. Military applications include tracking aircraft, UFO’s, missiles, etc.
Civilian applications include surveillance in public places; games console interfaces
that track moving people; and methods that can follow experimental mice as they
move around their cages (useful for testing medicines).

Section 8.2 Simulation 178

8.2 SIMULATION

Many problems in probability can be worked out in closed form if one knows enough
combinatorial mathematics, or can come up with the right trick. Textbooks are
full of these, and we’ve seen some. Explicit formulas for probabilities are often
extremely useful. But it isn’t always easy or possible to find a formula for the
probability of an event in a model. An alternative strategy is to build a simulation,
run it many times, and count the fraction of outcomes where the event occurs. This
is a simulation experiment.

8.2.1 Obtaining Uniform Random Numbers

Simulation is at its most useful when we try to estimate probabilities that are hard
to calculate. Usually we have processes with some random component, and we
want to estimate the probability of a particular outcome. To do so, we will need a
supply of random numbers to simulate the random component. Here I will describe
methods to get uniformly distributed random numbers, and Section 8.2.5 describes
a variety of methods to get random numbers from other distributions.

I will describe features in Matlab, because I’m used to Matlab. It’s a good
programming environment for numerical work, particularly for working with ma-
trices and vectors. You can expect pretty much any programming environment to
provide a random number generator that returns a number uniformly distributed in
the range [0− 1]. If you know anything about representing numbers, you’ll already
have spotted something funny. The number that comes out of the random number
generator must be represented by a small set of bits, but almost all numbers in
the interval [0− 1] require an infinite number of bits to represent. We’ll sweep this
issue under the general carpet of floating point representations; it doesn’t matter
for anything we need to do. The Matlab function function to do this is called rand.
It can also return matrices; for example, rand(10, 20) will get you a 10× 20 table
of independent uniformly distributed random numbers in the range [0− 1].

It is useful to get a uniformly distributed random integer in a particular range
(for example, you might want to choose a random element in an array). You can
do so with a random number generator and a function (like Matlab’s floor) that
returns the largest integer smaller than its argument. If I want a discrete random
variable with uniform distribution, maximum value 100 and minimum value 7, I
habitually choose a very tiny number (for this example, say 1e− 7) and do
floor((100-7-1e-7)*rand()+7). I use the 1e − 7 because I can never remember
whether rand produces a number no larger than one, or one that is guaranteed to
be smaller than one, and I never need to care about the very tiny differences in
probability caused by the 1e-7. You might be able to do something cleaner if you
bothered checking this point.

8.2.2 Computing Expectations with Simulations

Simulation is also a very good way to estimate expectations. Imagine we have a
random variable X with probability distribution P (X) that takes values in some
domain D. Assume that we can easily produce independent simulations, and that
we wish to know E[f], the expected value of the function f under the distribution

Section 8.2 Simulation 179

P (X).
The weak law of large numbers tells us how to proceed. Define a new random

variable F = f(X). This has a probability distribution P (F), which might be
difficult to know. We want to estimate E[f], the expected value of the function f
under the distribution P (X). This is the same as E[F]. Now if we have a set of
IID samples of X , which we write xi, then we can form a set of IID samples of F
by forming f(xi) = fi. Write

FN =

∑N
i=1 fi
N

.

This is a random variable, and the weak law of large numbers gives that, for any
positive number ǫ

lim
N→∞

P ({||FN − E[F] || > ǫ}) = 0.

You can interpret this as saying that, that for a set of IID random samples xi, the
probability that

∑N
i=1 f(xi)

N

is very close to E[f] is high for large N

Worked example 8.8 Computing an Expectation

Assume the random variable X is uniformly distributed in the range
[0−1], and the random variable Y is uniformly distributed in the range
[0− 10]. X and Z are independent. Write Z = (Y − 5X)3 −X2. What
is var ({Z})?

Solution: With enough work, one could probably work this out in closed
form. An easy program will get a good estimate. We have that var ({Z}) =
E
[

Z2
]

− E[Z]
2
. My program computed 1000 values of Z (by drawing X

and Y from the appropriate random number generator, then evaluating
the function). I then computed E[Z] by averaging those values, and E[Z]

2

by averaging their squares. For a run of my program, I got var ({Z}) =
2.76× 104.

8.2.3 Computing Probabilities with Simulations

You can compute a probability using a simulation, too, because a probability can
be computed by taking an expectation. Recall the property of indicator functions
that

E
[

I[E]
]

= P (E)
(Section 6.2.5). This means that computing the probability of an event E involves
writing a function that is 1 when the event occurs, and 0 otherwise; we then estimate
the expected value of that function.

The weak law of large numers justifies this procedure. An experiment involves
drawing a sample from the relevant probability distribution P (X), then determining

Section 8.2 Simulation 180

whether event E occurred or not. We define a new random variable E, which takes
the value 1 when the event E occurs during our experiment (i.e. with probability
P (E)) and 0 when it doesn’t (i.e. with probability P (Ec)). Our experiment yields
a sample of this random variable. We perform N experiments yielding a set of IID

samples of this distribution ei and compute EN =

∑

N

i=1
ei

N . From the weak law of
large numbers, we have that for any ǫ > 0,

lim
N→∞

P ({||EN − E[E] || ≥ ǫ}) = 0

meaning that for large enough N , EN will be very close to E[E] = P (E).

Worked example 8.9 Computing a Probability for Multiple Coin Flips

You flip a fair coin three times. Use a simulation to estimate the prob-
ability that you see three H ’s.

Solution: You really should be able to work this out in closed form. But
it’s amusing to check with a simulation. I wrote a simple program that
obtained a 1000x3 table of uniformly distributed random numbers in the
range [0 − 1]. For each number, if it was greater than 0.5 I recorded an H
and if it was smaller, I recorded a T . Then I counted the number of rows
that had 3 H ’s (i.e. the expected value of the relevant indicator function).
This yielded the estimate 0.127, which compares well to the right answer.

Worked example 8.10 Computing a Probability

Assume the random variable X is uniformly distributed in the range
[0−1], and the random variable Y is uniformly distributed in the range
[0− 10]. Write Z = (Y − 5X)3 −X2. What is P ({Z > 3})?

Solution: With enough work, one could probably work this out in closed
form. An easy program will get a good estimate. My program computed
1000 values of Z (by drawingX and Y from the appropriate random number
generator, then evaluating the function) and counted the fraction of Z
values that was greater than 3 (which is the relevant indicator function).
For a run of my program, I got P ({Z > 3}) ≈ 0.619

8.2.4 Simulation Results as Random Variables

The estimate of a probability or of an expectation that comes out of a simulation
experiment is a random variable, because it is a function of random numbers. If
you run the simulation again, you’ll get a different value (unless you did some-
thing silly with the random number generator). Generally, you should expect this
random variable to behave like a normal random variable. You can check this by
constructing a histogram over a large number of runs. The mean of this random

Section 8.2 Simulation 181

10 100 1000 10000
0

0.2

0.4

0.6

0.8

1
Estimates of P(Z>3)

FIGURE 8.5: Estimates of the probability from example 10, obtained from different
runs of my simulator using different numbers of samples. In each case, I used
100 runs; the number of samples is shown on the horizontal axis. You should
notice that the estimate varies pretty widely when there are only 10 samples, but
the variance (equivalently, the size of the spread) goes down sharply as the number of
samples increases to 1000. Because we expect these estimates to be roughly normally
distributed, the variance gives a good idea of how accurate the original probability
estimate is.

variable is the parameter you are trying to estimate. It is useful to know that this
random variable tends to be normal, because it means the standard deviation of
the random variable tells you a lot about the likely values you will observe.

Another helpful rule of thumb, which is almost always right, is that the stan-
dard deviation of this random variable behaves like

C√
N

where C is a constant that depends on the problem and can be very hard to evaluate,
and N is the number of runs of the simulation. What this means is that if you want
to (say) double the accuracy of your estimate of the probability or the expectation,
you have to run four times as many simulations. Very accurate estimates are tough
to get, because they require immense numbers of simulation runs.

Figure 8.5 shows how the result of a simulation behaves when the number of
runs changes. I used the simulation of example 10, and ran multiple experiments
for each of a number of different samples (i.e. 100 experiments using 10 samples;
100 using 100 samples; and so on).

Section 8.2 Simulation 182

Small probabilities can be rather hard to estimate, as we would expect. In the
case of example 10, let us estimate P ({Z > 950}). A few moments with a computer
will show that this probability is of the order of 1e-3 to 1e-4. I obtained a million
different simulated values of Z from my program, and saw 310 where Z > 950.
This means that to know this probability to, say, three digits of numerical accuracy
might involve a daunting number of samples. Notice that this does not contradict
the rule of thumb that the standard deviation of the random variable defined by
a simulation estimate behaves like C√

N
; it’s just that in this case, C is very large

indeed.

8.2.5 Obtaining Random Samples

Building a successful simulation requires appropriate random numbers. Recall that
anything we compute from a simulation can be thought of as an expectation (we
used indicator functions to estimate probabilities). So we have some random vari-
able X with distribution P (X), a function f , and we wish to compute E[f], where
the expectation is with respect to P (X).

Most programming environments provide random number generators for uni-
form random numbers (I described the one for MATLAB briefly in Section 8.2.1)
and for normally distributed random numbers. Building a really good, really fast
random number generator is a major exercise. All sorts of tricks are involved, be-
cause it really matters to produce executable code that is as fast as possible on the
target machine. This means that you don’t have to build your own (and shouldn’t,
unless you can spend a lot of time and trouble on doing so).

Normal Random Variables
In pretty much any programming environment, you would also expect to find

a random number generator that returns a normal random variable, with mean zero
and standard deviation one. In Matlab, this function is called randn. Conveniently,
randn(3, 4) will give you a 3× 4 table of such numbers, which are independent of
each other. As you would expect from section 1, to change the mean of this random
number, you add a constant; to change the variance, you multiply by a constant.
So in Matlab, if you want a normal random variable with mean 3 and standard
deviation 4, you use 4*randn()+3.

Rejection Sampling
Imagine you know a probability distribution describing a discrete random

variable. In particular, you have one probability value for each of the numbers
1, 2, . . . , N (all the others are zero). Write p(i) for the probability of i. You can
generate a sample of this distribution by the following procedure: first, generate a
sample x of a uniform discrete random variable in the range 1, . . . , N ; now generate
a sample t of a uniformly distributed continuous random variable in the range [0, 1];
finally, if t < p(x) report x, otherwise generate a new x and repeat. This process is
known as rejection sampling (Algorithm 8.1).

To understand this procedure, it is best to think of it as a loop around a basic
process. The basic process generates an x, then decides whether it is acceptable or
not. The loop keeps invoking the basic process until it gets an acceptable x. Now

Section 8.2 Simulation 183

Listing 8.1: Matlab code for simple rejection sampling; this is inefficient, but simple
to follow.

function rnum=re j e c t s amp l e (pvec)
%
% pvec i s a p r o b a b i l i t y d i s t r i b u t i o n over numbers
% 1 , . . . , s i z e (pvec , 1)
%
nv=s ize (pvec , 1) ;
done=0;
while done==0

ptr=f loor (1+(nv−1e−10)∗rand) ;
% th i s g i v e s me a uniform random
% number in the range 1 , . . nv
pval=pvec (ptr) ;
i f rand<pval

done=1;
% i . e . accept

end
end
rnum=ptr ;

the probability that the basic process produces the value xi, decides it is acceptable,
and reports it is:

P ({report xi acceptable}) =

P ({accept xi} | {generate xi})
×

P ({generate xi})

= p(xi)×
1

N
.

Now the loop keeps going until the basic process obtains an xi that it decides is
acceptable. This means the probability that the loop reports xi is proportional to
p(xi). But since

∑

i p(xi) = 1, the probability that the loop reports xi is equal to
p(xi).

The problem here is that the basic process may not come up with an accept-
able value xi the first time; the loop might have to go on multiple times. If there
are many x with small values of p(x), we may find that it takes a very long time
indeed to come up with a single sample. In the worst case, all values of p(x) will be
small. For example, for a uniform distribution on the range 1, . . . , N , p(x) is 1/N .

We can make things more efficient by noticing that multiplying the probabil-
ity distribution by a constant doesn’t change the relative frequencies with which
numbers are selected. So this means that we can find the largest value p̂ of p(x),
and form q(x) = (1/p̂)p(x). Our process then becomes that shown in algorithm 8.2.

This process is not the most efficient available.
***** tree and point location algorithm

Section 8.3 Simulation Examples 184

Listing 8.2: Matlab code for simple rejection sampling; this is somewhat more effi-
cient.

function rnum=f a s t e r r e j e c t s amp l e (pvec)
%
% pvec i s a p r o b a b i l i t y d i s t r i b u t i o n over numbers
% 1 , . . . , s i z e (pvec , 1)
%
nv=s ize (pvec , 1) ;
wv=max(pvec) ;
pv2=pvec/wv ; % we r e s c a l e
done=0;
while done==0

ptr=f loor (1+(nv−1e−10)∗rand) ;
% th i s g i v e s me a uniform random
% number in the range 1 , . . nv
pval=pv2 (ptr) ; % work with r e s ca l e d probs
i f rand<pval

done=1;
% i . e . accept

end
end
rnum=ptr ;

8.3 SIMULATION EXAMPLES

Computing probabilities and expectations from simulations should be so natural to
a computer science student that it can be hard to see the magic. You estimate the
probability of an event E by writing a program that runs N independent simulations
of an experiment, counts how many times the event occurs (which we write #(E)),
and reports

#(E)
N

as an estimate of P (E). This estimate will not be exact, and may be different for
different runs of the program. It’s often a good, simple estimate.

Choosing N depends on a lot of considerations. Generally, a larger N means
a more accurate answer, and also a slower program. If N is too small, you may
find that you report 1 or 0 for the probability (think of what would happen if you
measured P (H) for a coin with one flip). One strategy is to run several simulations,
report the mean, and use the standard deviation as some guide to the accuracy.

Section 8.3 Simulation Examples 185

8.3.1 Simulating Experiments

Worked example 8.11 Getting 14’s with 20-sided dice

You throw 3 fair 20-sided dice. Estimate the probability that the sum of
the faces is 14 using a simulation. Use N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6].
Which estimate is likely to be more accurate, and why?

Solution: You need a fairly fast computer, or this will take a long time.
I ran ten versions of each experiment for N = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6],
yielding ten probability estimates for each N . These were different for
each version of the experiment, because the simulations are random. I
got means of [0, 0.0030, 0.0096, 0.0100, 0.0096, 0.0098], and standard devia-
tions of [00.00670.00330.00090.00020.0001]. This suggests the true value is
around 0.0098, and the estimate from N = 1e6 is best. The reason that
the estimate with N = 1e1 is 0 is that the probability is very small, so you
don’t usually observe this case at all in only ten trials.

Worked example 8.12 Comparing simulation with computation

You throw 3 fair six-sided dice. You wish to know the probability the
sum is 3. Compare the true value of this probability with estimates
from six runs of a simulation using N = 10000. What conclusions do
you draw?

Solution: I ran six simulations with N = 10000, and got
[0.0038, 0.0038, 0.0053, 0.0041, 0.0056, 0.0049]. The mean is 0.00458, and
the standard deviation is 0.0007, which suggests the estimate isn’t that
great, but the right answer should be in the range [0.00388, 0.00528] with
high probability. The true value is 1/216 ≈ 0.00463. The estimate is toler-
able, but not super accurate.

Section 8.3 Simulation Examples 186

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Mean leading digit frequency
Benfords law

−10 −5 0 5
0

2000

4000

6000

8000

10000

Power of 10

C
ou

nt

Histogram of powers of 10 in 20000 numbers

FIGURE 8.6: Left summarizes results of a simulation where, for 20 runs, I gener-
ated 1000 pairs of independent random numbers uniformly distributed in [0−1] and
divided one by the other. The boxes show the mean over 20 runs, and the vertical
bars show one standard deviation up and down. The crosses are predictions from
Benford’s law. Numbers generated in this way have a wide range of orders magni-
tude, so a conventional histogram isn’t easy to plot. On the Right, a histogram of
the first digit of the logarithm (i.e. the power of 10, or order of magnitude) of these
numbers. Notice the smallest number is eight orders of magnitude smaller than the
biggest.

Worked example 8.13 The First Digit of a Random Number

We have seen (section ??) that adding random variables tends to pro-
duce a normal random variable. What happens if one divides one ran-
dom number by another? Solving this in closed form is tricky, but
simulation gives some insight.

Solution: I wrote a short program that produced 20 experiments, each
consisting of 1000 numbers. I obtained the numbers by generating two
uniform random numbers in the range [0 − 1], then dividing one by the
other. Notice that doing so can produce both very big and very small
numbers, so that plotting a histogram is tricky — most boxes will be empty
unless we produce an immense quantity of data. Instead, I plot a histogram
of the leading digit of the number in Figure 8.6.

Figure 8.6 also shows the mean over all 20 experiments of the fraction of
leading digits that is one, etc. together with one standard deviation error bars.
The figure also shows a histogram of the rounded log (i.e. the power of 10) to give
some idea of the range of values one obtains. It turns out that there is a widely
applicable law, called Benford’s law, that predicts the frequency of the first digit
of many types of random number. The main condition for Benford’s law to apply
is that the numbers cover a wide range of scales. The figure shows predictions from

Section 8.3 Simulation Examples 187

Benford’s law as well.

8.3.2 Simulating Markov Chains

Worked example 8.14 Coin Flips with End Conditions

I flip a coin repeatedly until I encounter a sequence HTHT, at which
point I stop. What is the probability that I flip the coin nine times?

Solution: You might well be able to construct a closed form solution to
this if you follow the details of example 1 and do quite a lot of extra work.
A simulation is really straightforward to write; notice you can save time by
not continuing to simulate coin flips once you’ve flipped past nine times.
I got 0.0411 as the mean probability over 10 runs of a simulation of 1000
experiments each, with a standard deviation of 0.0056.

Worked example 8.15 A Queue

A bus is supposed to arrive at a bus stop every hour for 10 hours
each day. The number of people who arrive to queue at the bus stop
each hour has a Poisson distribution, with intensity 4. If the bus stops,
everyone gets on the bus and the number of people in the queue becomes
zero. However, with probability 0.1 the bus driver decides not to stop,
in which case people decide to wait. If the queue is ever longer than
15, the waiting passengers will riot (and then immediately get dragged
off by the police, so the queue length goes down to zero). What is the
expected time between riots?

Solution: I’m not sure whether one could come up with a closed form
solution to this problem. A simulation is completely straightforward to
write. I get a mean time of 441 hours between riots, with a standard
deviation of 391. It’s interesting to play around with the parameters of
this problem; a less conscientious bus driver, or a higher intensity arrival
distribution, lead to much more regular riots.

Section 8.3 Simulation Examples 188

Worked example 8.16 Inventory

A store needs to control its stock of an item. It can order stocks on
Friday evenings, which will be delivered on Monday mornings. The
store is old-fashioned, and open only on weekdays. On each weekday, a
random number of customers comes in to buy the item. This number
has a Poisson distribution, with intensity 4. If the item is present, the
customer buys it, and the store makes $100; otherwise, the customer
leaves. Each evening at closing, the store loses $10 for each unsold item
on its shelves. The store’s supplier insists that it order a fixed number k
of items (i.e. the store must order k items each week). The store opens
on a Monday with 20 items on the shelf. What k should the store use
to maximise profits?

Solution: I’m not sure whether one could come up with a closed form
solution to this problem, either. A simulation is completely straightforward
to write. To choose k, you run the simulation with different k values to see
what happens. I computed accumulated profits over 100 weeks for different
k values, then ran the simulation five times to see which k was predicted.
Results were 21, 19, 23, 20, 21. I’d choose 21 based on this information.

For example 16, you should plot accumulated profits. If k is small, the store
doesn’t lose money by storing items, but it doesn’t sell as much stuff as it could;
if k is large, then it can fill any order but it loses money by having stock on the
shelves. A little thought will convince you that k should be near 20, because that is
the expected number of customers each week, so k = 20 means the store can expect
to sell all its new stock. It may not be exactly 20, because it must depend a little
on the balance between the profit in selling an item and the cost of storing it. For
example, if the cost of storing items is very small compared to the profit, an very
large k might be a good choice. If the cost of storage is sufficiently high, it might
be better to never have anything on the shelves; this point explains the absence of
small stores selling PC’s.

8.3.3 Example: Ranking the Web by Simulating a Markov Chain

Perhaps the most valuable technical question of the last thirty years has been:
Which web pages are interesting? Some idea of the importance of this question is
that it was only really asked about 20 years ago, and at least one gigantic technology
company has been spawned by a partial answer. This answer, due to Larry Page
and Sergey Brin, and widely known as PageRank, starts with a Markov chain.

Figure 8.7 shows a picture of (a very small fraction of) the world wide web. I
have drawn the web using a visual metaphor that should strongly suggest a finite
state machine, and so a Markov chain. Each page is a state. Directed edges from
page to page represent links. I count only the first link from a page to another
page. Some pages are linked, others are not. I want to know how important each
page is.

Section 8.3 Simulation Examples 189

FIGURE 8.7: A very small fraction of the web, drawn to suggest a finite state ma-
chine; each state represents a page, and each directed edge represents an outgoing
link. A random web surfer could either (a) follow an outgoing link, chosen at ran-
dom or (b) type in the URL of any page, chosen at random. Such a surfer would see
lots of pages that have many incoming links from pages that have lots of incoming
links, and so on. Pages like this are likely important, so that finding important
pages is analogous to simulating a random web surfer.

One way to think about importance is to think about what a random web
surfer would do. The surfer can either (a) choose one of the outgoing links on a
page at random, and follow it or (b) type in the URL of a new page, and go to that
instead. As Figure 8.7 suggests, it is useful to think of this as a random walk on a
finite state machine. We expect that this random surfer should see a lot of pages
that have lots of incoming links from other pages that have lots of incoming links
that (and so on). These pages are important, because lots of pages have linked to
them.

For the moment, ignore the surfer’s option to type in a URL. Write r(i) for
the importance of the i’th page. We model importance as leaking from page to page
across outgoing links (the same way the surfer jumps). Page i receives importance
down each incoming link. The amount of importance is proportional to the amount
of importance at the other end of the link, and inversely proportional to the number
of links leaving that page. So a page with only one outgoing link transfers all its
importance down that link; and the way for a page to receive a lot of importance
is for it to have a lot of important pages link to it alone. We write

r(j) =
∑

i→j

r(i)

| i |

where | i | means the total number of links pointing out of page i. We can stack the
r(j) values into a row vector r, and construct a matrix P , where

pij =

{ 1
|i| if i points to j

0 otherwise

With this notation, the importance vector has the property

r = rP

and should look a bit like the stationary distribution of a random walk to you,
except that P isn’t stochastic — there may be some rows where the row sum of P
is zero, because there are no outgoing links from that page. We can fix this easily

Section 8.3 Simulation Examples 190

Orphaned page

S

FIGURE 8.8: The web isn’t really like Figure 8.7. It’s more like this figure (only
bigger). In this figure, we see sections of the web that can’t be reached by following
links from other sections (the gray boxes); orphaned pages; and pages where a ran-
dom walker would get stuck (S). Any algorithm for assigning importance must be
able to deal with these effects.

by replacing each row that sums to zero with (1/n)1, where n is the total number
of pages. Call the resulting matrix G (it’s quite often called the raw Google
matrix). Notice that doing this doesn’t really change anything significant; pages
with no outgoing links leak a tiny fraction of their importance to every other page.

Figure 8.7 isn’t a particularly good model of the web (and not because it’s
tiny, either). Figure 8.8 shows some of the problems that occur. There are pages
with no outgoing links (which we’ve dealt with), pages with no incoming links,
and even pages with no links at all. Worse, a random walk can get trapped (in
one of the gray boxes). One way to fix all this would be to construct a process
that wandered around the web inserting links that clean up the structure of the
graph. This strategy is completely infeasible, because the real web is much too
big. Allowing the surfer to randomly enter a URL sorts out all of these problems,
because it inserts an edge of small weight from every node to every other node.
Now the random walk cannot get trapped.

There are a variety of possible choices for the weight of these inserted edges.
The original choice was to make each inserted edge have the same weight. Write
1 for the n dimensional column vector containing a 1 in each component, and let
0 < α < 1. We can write the matrix of transition probabilities as

G(α) = α
(11T)

n
+ (1− α)G

where G is the original Google matrix. An alternative choice is to choose a weight
for each web page, using anything from advertising revenues to page visit statistics
to thaumaturgy (Google keeps quiet about the details). Write this weight vector
v, and require that 1Tv = 1 (i.e. the coefficients sum to one). Then we could have

G(α,v) = α
(1vT)

n
+ (1 − α)G.

Section 8.3 Simulation Examples 191

Now the importance vector r is the (unique, though I won’t prove this) row vector
r such that

r = rG(α,v).
How do we compute this vector? One natural algorithm is to start with some

initial estimate, and propagate it. We write r(k) for the estimated importance after
the k’th step. We define updates by

(r(k)) = (r(k−1))G(α,v).

We can’t compute this directly, either, because G(α,v) is unreasonably big so (a)
we can’t form or store G(α,v) and (b) we can’t multiply by it either. But we could
estimate r with a random walk, because r is the stationary distribution of a Markov
chain. If we simulate this walk for many steps, the probability that the simulation
is in state j should be r(j), at least approximately.

This simulation is easy to build. Imagine our random walking bug sits on a
web page. At each time step, it transitions to a new page by either (a) picking
from all existing pages at random, using v as a probability distribution on the
pages (which it does with probability α); or (b) chooses one of the outgoing links
uniformly and at random, and follows it (which it does with probability 1 − α).
The stationary distribution of this random walk is r. Another fact that I shall not
prove is that, when α is sufficiently large, this random walk very quickly “forgets”
it’s initial distribution. As a result, you can estimate the importance of web pages
by starting this random walk in a random location; letting it run for a bit; then
stopping it, and collecting the page you stopped on. The pages you see like this
are independent, identically distributed samples from r; so the ones you see more
often are more important, and the ones you see less often are less important.

8.3.4 Example: Simulating a Complicated Game

I will build several examples around a highly simplified version of a real card game.
This game is Magic: The Gathering, and is protected by a variety of trademarks,
etc. My version — MTGDAF — isn’t very interesting as a game, but is simple
enough to be studied, and interesting enough it casts some light on the real game.
The game is played with decks of 60 cards. There are two types of card: Lands,
and Spells. Lands can be placed on the play table and stay there permanently;
Spells are played and then disappear. A Land on the table can be “tapped” or
“untapped”. Players take turns. Each player draws a hand of seven cards from a
shuffled deck. In each turn, a player first untaps any Lands on the table, then draws
a card, then plays a land onto the table (if the player has one in hand to play), then
finally can play one or more spells. Each spell has a fixed cost (of 1, . . . , 10), and
this cost is played by “tapping” a land (which is not untapped until the start of
the next turn). This means that the player can cast only cheap spells in the early
turns of the game, and expensive spells in the later turns.

Section 8.3 Simulation Examples 192

Worked example 8.17 MTGDAF — The number of lands

Assume a deck of 60 cards has 24 Lands. It is properly shuffled, and
you draw seven cards. You could draw 0, . . . , 7 Lands. Estimate the
probability for each, using a simulation. Furthermore, estimate the
error in your estimates.

Solution: The matlab function randperm produces a random permutation
of given length. This means you can use it to simulate a shuffle of a deck,
as in listing 8.3. I then drew 10, 000 random hands of seven cards, and
counted how many times I got each number. Finally, to get an estimate of
the error, I repeated this experiment 10 times and computed the standard
deviation of each estimate of probability. This produced

0.0218 0.1215 0.2706 0.3082 0.1956 0.0686 0.0125 0.0012

for the probabilities (for 0 to 7, increasing number of lands to the right)
and

0.0015 0.0037 0.0039 0.0058 0.0027 0.0032 0.0005 0.0004

for the standard deviations of these estimates.

Worked example 8.18 MTGDAF — The number of lands

What happens to the probability of getting different numbers of lands
if you put only 15 Lands in a deck of 60? It is properly shuffled, and
you draw seven cards. You could draw 0, . . . , 7 Lands. Estimate the
probability for each, using a simulation. Furthermore, estimate the
error in your estimates.

Solution: You can change one line in the listing to get

0.1159 0.3215 0.3308 0.1749 0.0489 0.0075 0.0006 0.0000

for the probabilities (for 0 to 7, increasing number of lands to the right)
and

0.0034 0.0050 0.0054 0.0047 0.0019 0.0006 0.0003 0.0000

for the standard deviations of these estimates.

Section 8.3 Simulation Examples 193

Listing 8.3: Matlab code used to simulate the number of lands

s imcards=[ones (24 , 1) ; zeros (36 , 1)]
% 1 i f land , 0 o therw i s e
ninsim=10000;
nsims=10;
counts=zeros (nsims , 8) ;
for i =1:10

for j =1:10000
s h u f f l e=randperm (6 0) ;
hand=simcards (s h u f f l e (1 : 7)) ;
%us e f u l matlab t r i c k here
nlands=sum(hand) ;
%ie number o f lands
counts (i , 1+nlands)= . . .

counts (i , 1+nlands)+1;
% number o f lands cou ld be zero

end
end
probs=counts /ninsim ;
mean(probs)
std (probs)
%%

Worked example 8.19 MTGDAF — Playing spells

Assume you have a deck of 24 Lands, 10 Spells of cost 1, 10 Spells of
cost 2, 10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and
2 Spells of cost 6. Assume you always only play the cheapest spell in
your hand (i.e. you never play two spells). What is the probability you
will be able to play at least one spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the
hand, then simulate the first four turns. In each turn, you can only play a
spell whose cost you can pay, and only if you have it. I used the matlab of
listing 8.4 and listing 8.5; I found the probability to be 0.64 with standard
deviation 0.01. Of course, my code might be wrong....

Section 8.3 Simulation Examples 194

Worked example 8.20 MTGDAF — Playing spells

Now we use a different distribution of cards. Assume you have a deck
of 20 Lands, 9 Spells of cost 1, 5 Spells of cost 2, 5 Spells of cost 3, 5
Spells of cost 4, 5 Spells of cost 5, and 11 Spells of cost 6. Assume you
always only play the cheapest spell in your hand (i.e. you never play
two spells). What is the probability you will be able to play at least
one spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the
hand, then simulate the first four turns. In each turn, you can only play a
spell whose cost you can pay, and only if you have it. I found the probability
to be 0.33 with standard deviation 0.05. Of course, my code might be
wrong....

One engaging feature of the real game that is revealed by these very simple
simulations is the tension between a players goals. The player would like to have
few lands — so as to have lots of spells — but doing so means that there’s a bigger
chance of not being able to play a spell. Similarly, a player would like to have lots
of powerful (=expensive) spells, but doing so means there’s a bigger chance of not
being able to play a spell. Players of the real game spend baffling amounts of time
arguing with one another about the appropriate choices for a good set of cards.

Worked example 8.21 MTGDAF — How long before you can play a
spell of cost 3?

Assume you have a deck of 15 Lands, 15 Spells of cost 1, 14 Spells of
cost 2, 10 Spells of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2
Spells of cost 6. What is the expected number of turns before you can
play a spell of cost 3? Assume you always play a land if you can.

Solution: I get 6.3, with a standard deviation of 0.1. The problem is it
can take quite a large number of turns to get three lands out. I used the
code of listings 8.6 and 8.7

Recall that you can reasonably expect that the probability you compute from
a simulation behaves like normal data. Run a simulation experiment a large num-
ber of times and construct a data set whose entries are the probability from each
experiment. This data should be normal. This means that, if you subtract the
mean and divide by the standard deviation, you should get a histogram that looks
like the standard normal curve. Figure 8.9 shows some examples of this effect.
This effect is important, because it means that the right answer should be very few
standard deviations away from the mean you compute — the standard deviation
gives you quite a good idea of the accuracy of your estimate.

Section 8.3 Simulation Examples 195

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

−3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

FIGURE 8.9: Estimates of probabilities produced by simulation typically behave like
normal data. On the left, I show a histogram of probabilities of having a hand of
3 Lands in the simulation of example 17; these are plotted in standard coordinates.
On the right, I show a histogram of probability of playing a spell in each of the
first four turns (example 20), from 1000 simulation experiments; again, these are
plotted in standard coordinates. Compare these to the standard normal histograms
of the previous chapter.

PROBLEMS

8.1. Multiple coin flips:
(a) For example ??, show that P (5) = (3/32) by directly writing out the

sequences of flips, and summing their probabilities.
(b) Now check the recurrence relation P (N) = (1/2)P (N−1)+(1/4)P (N−2)

for the case N = 5.
(c) What is P (7)?

8.2. Multiple die rolls: You roll a fair die until you see a 5, then a 6; after that,
you stop. Write P (N) for the probability that you roll the die N times.
(a) What is P (1)?
(b) Show that P (2) = (1/36).
(c) Draw a finite state machine encoding all the sequences of die rolls that you

could encounter. Don’t write the events on the edges; instead, write their
probabilities. There are 5 ways not to get a 5, but only one probability,
so this simplifies the drawing.

(d) Show that P (3) = (1/36).
(e) Now use your finite state machine to argue that P (N) = (5/6)P (N −1)+

(25/36)P (N − 2).
8.3. More complicated multiple coin flips: You flip a fair coin until you see

eitherHTH or THT , and then you stop. We will compute a recurrence relation
for P (N).
(a) Figure ?? shows a finite state machine. Check that this finite state ma-

chine represents all coin sequences that you will encounter.
(b) Write ΣN for some string of lengthN accepted by this finite state machine.

Use this finite state machine to argue that SigmaN has one of four forms:

1. TTΣN−2

Section 8.3 Simulation Examples 196

2. HHΣN−3

3. THHΣN−2

4. HTTΣN−3

(c) Now use this argument to show that P (N) = (1/2)P (N−2)+(1/4)P (N−
3).

8.4. The gambler’s ruin:
(a) Show that you can rearrange the recurrence relation of example 1 to get

ps+1 − ps =
(1− p)

p
(ps − ps−1) .

Now show that this means that

ps+1 − ps =

(

(1− p)

p

)2

(ps−1 − ps−2)

so that

ps+1 − ps =

(

(1− p)

p

)s

(p1 − p0)

=

(

(1− p)

p

)s

(p1 − 1) .

(b) Now we need a simple result about series. Assume I have a series uk,
k ≥ 0, with the property that

uk − uk−1 = crk−1.

Show that

uk − u0 = c

(

rk − 1

r − 1

)

.

(c) Use the results of the last two steps to show that

ps − 1 = (p1 − 1)

(

1−p
p

)s

− 1
(

1−p
p

)

− 1

(d) Use the fact that pj = 0 and the result of the last exercise to show

(p1 − 1) =
−1

(

(

1−p

p

)j
−1

(

1−p
p

)

−1

) .

(e) Use the results of the previous exercises to show that

ps =

(

1−p
p

)j

−
(

1−p
p

)s

(

1−p
p

)j

− 1

.

Section 8.3 Simulation Examples 197

Listing 8.4: Matlab code used to simulate the four turns

s imcards=[zeros (24 , 1) ; ones (10 , 1) ; . . .
2∗ ones (10 , 1) ; 3 ∗ ones (10 , 1) ; . . .
4∗ ones (2 , 1) ; 5∗ ones (2 , 1) ; 6∗ ones (2 , 1)] ;

nsims=10;
ninsim=1000;
counts=zeros (nsims , 1) ;
for i =1: nsims

for j =1: ninsim
% draw a hand
s h u f f l e=randperm (6 0) ;
hand=simcards (s h u f f l e (1 : 7)) ;
%reorgan i z e the hand
cleanhand=zeros (7 , 1) ;
for k=1:7

cleanhand (hand (k)+1)=cleanhand (hand (k)+1)+1;
% ie count o f lands , s p e l l s , by cos t

end
l andsontab l e=0;
[p l ayedspe l l 1 , landsontab le , cleanhand] = . . .

playround (landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 1) ;

[p l ayedspe l l 2 , landsontab le , cleanhand] = . . .
playround (landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 2) ;

[p l ayedspe l l 3 , landsontab le , cleanhand] = . . .
playround (landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 3) ;

[p l ayedspe l l 4 , landsontab le , cleanhand] = . . .
playround (landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 4) ;

counts (i)=counts (i)+ . . .
p l a y ed sp e l l 1 ∗ p l a y ed sp e l l 2 ∗ . . .
p l a y ed sp e l l 3 ∗ p l a y ed sp e l l 4 ;

end
end

Section 8.3 Simulation Examples 198

Listing 8.5: Matlab code used to simulate playing a turn

function [p l ayedspe l l , l andsontab le , cleanhand] = . . .
playround (landsontab le , cleanhand , s h u f f l e , s imcards , . . .
turn)

% draw
ncard=simcards (s h u f f l e (7+turn)) ;
cleanhand (ncard+1)=cleanhand (ncard+1)+1;
% play land
i f cleanhand (1)>0

landsontab l e=landsontab l e+1;
cleanhand (1)= cleanhand (1)−1;

end
p l a y ed sp e l l =0;
i f l andsontab le>0

i =1; done=0;
while done==0

i f cleanhand (i)>0
cleanhand (i)=cleanhand (i)−1;
p l a y ed sp e l l =1;
done=1;

else
i=i +1;
i f i>l andsontab l e

done=1;
end

end
end

end

Section 8.3 Simulation Examples 199

Listing 8.6: Matlab code used to estimate number of turns before you can play a
spell of cost 3

s imcards=[zeros (15 , 1) ; ones (15 , 1) ; . . .
2∗ ones (14 , 1) ; 3 ∗ ones (10 , 1) ; . . .
4∗ ones (2 , 1) ; 5∗ ones (2 , 1) ; 6∗ ones (2 , 1)] ;

nsims=10;
ninsim=1000;
counts=zeros (nsims , 1) ;
for i =1: nsims

for j =1: ninsim
% draw a hand
s h u f f l e=randperm (6 0) ;
hand=simcards (s h u f f l e (1 : 7)) ;
%reorgan i z e the hand
cleanhand=zeros (7 , 1) ;
for k=1:7

cleanhand (hand (k)+1)=cleanhand (hand (k)+1)+1;
% ie count o f lands , s p e l l s , by cos t

end
l andsontab l e=0;
k=0; p l a y ed3 sp e l l =0;
while p l a y ed3 sp e l l==0;

[p l ayed3 spe l l , l andsontab le , cleanhand] = . . .
play3round (landsontab le , cleanhand , s h u f f l e , . . .
s imcards , k+1);

k=k+1;
end
counts (i)=counts (i)+k ;

end
counts (i)=counts (i)/ ninsim ;

end

Section 8.3 Simulation Examples 200

Listing 8.7: Matlab code used to simulate a turn to estimate the number of turns
before you can play a spell of cost 3

function [p l ayed3 spe l l , l andsontab le , cleanhand] = . . .
play3round (landsontab le , cleanhand , s h u f f l e , s imcards , . . .
turn)

% draw
ncard=simcards (s h u f f l e (7+turn)) ;
cleanhand (ncard+1)=cleanhand (ncard+1)+1;
% play land
i f cleanhand (1)>0

landsontab l e=landsontab l e+1;
cleanhand (1)= cleanhand (1)−1;

end
p l a y ed3 sp e l l =0;
i f (landsontab le>=3)&&(cleanhand (4)>0)

p l a y ed3 sp e l l =1;
end

C H A P T E R 9

Inference: Making Point Estimates

Inference is the process of drawing conclusions from data. One form of
inference is to estimate a number, or set of numbers, that describes a dataset. The
result is known as a point estimate. An alternative is to estimate an interval
within which a number lies, with some degree of certainty. Such estimates are
known as interval estimates. Finally, one might wish to assess the extent to
which a body of evidence supports rejecting an hypothesis — known as hypothesis
testing. In this chapter, we deal with point estimates. In the following chapter, we
deal with interval estimates and hypothesis testing, which require an understanding
of point estimates. There are two, somewhat distinct, situations in which we could
make point estimates.

In the first, we have a dataset {x}, and a probability model we believe applies
to that dataset. But we need to select appropriate values of the parameters to
ensure that the model describes the data. For example, we might have a set of N
coin flips which we believe to be independent and identically distributed. Of these,
k flips came up H . We know that a binomial distribution with p(H) = p is a good
model — but what value of p should we use? Your intuition is likely to suggest using
k/N , but we’d like a more robust procedure than guessing. We need an inference
procedure to obtain the unknown parameter from the data. Notice that this will be
an estimate, rather than the “true” value. As we shall see, there is more than one
possible procedure to apply, depending to some extent on the problem. In some
cases (section 9.1), we estimate parameter values based solely on data; in others
(section 9.2), we are able to use prior information about the parameters to affect
the estimate.

In the second situation, we want to know some property of a population. For
example, we may wish to know the mean weight of a person, or the mean response
of a mouse to a drug. It would be a stretch to describe this population with one of
the probability models that we have seen. In principle, the number we want is not
even necessarily random; in principle, we could measure everyone on the planet and
average the weights. In practice, this doesn’t make sense, for quite straightforward
reasons. You can’t really weigh every person, or dose every mouse, on the planet.
Instead, to estimate this property, we obtain a sample (some people; some mice;
etc.) of the population, and estimate the property from the sample. There is now
an important problem. Different samples lead to different estimates of the property.
We will arrange to have the sample drawn randomly from the population, so the
sample we see represents the value of a set of random variables. If you followed the
proof of the weak law of large numbers, you should suspect that the mean of this
sample could be a good estimate of the population mean. This turns out to be the
case (section 1). However, there is some random error in the estimate, and we can
tell (on average) how large the error caused by random sampling could be.

201

Section 9.1 Estimating Model Parameters with Maximum Likelihood 202

9.1 ESTIMATING MODEL PARAMETERS WITH MAXIMUM LIKELIHOOD

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. Generally, application logic suggests the type of model (i.e. normal
probability density; Poisson probability; geometric probability; and so on). But
usually, we do not know the parameters of the model — for example, the mean and
standard deviation of a normal distribution; the intensity of a poisson distribution;
and so on. Our model will be better or worse depending on how well we choose
the parameters. We need a strategy to estimate the parameters of a model from a
sample dataset. Notice how each of the following examples fits this pattern.

Example: 9.1 Inferring p from repeated flips — binomial

We could flip the coin N times, and count the number of heads k. We
know that an appropriate probability model for a set of independent
coin flips is the binomial model P (k;N, p). But we do not know p,
which is the parameter — we need a strategy to extract a value of p
from the data.

Example: 9.2 Inferring p from repeated flips — geometric

We could flip the coin repeatedly until we see a head. We know that,
in this case, the number of flips has the geometric distribution with
parameter p. In this case, the data is a sequence of T ’s with a final H
from the coin flips. There are N flips (or terms) and the last flip is a
head. We know that an appropriate probability model is the geometric
distribution Pg(N ; p). But we do not know p, which is the parameter
— we need a strategy to extract a value of p from the data.

Example: 9.3 Inferring the intensity of spam — poisson

It is reasonable to assume that the number of spam emails one gets in
an hour has a Poisson distribution. But what is the intensity parameter
λ? We could count the number of spam emails that arrive in each of a
set of distinct hours, giving a dataset of counts D. We need a strategy
to wrestle an estimate of λ from this dataset.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 203

Example: 9.4 Inferring the mean and standard deviation of normal data

Imagine we know for some reason that our data is well described by
a normal distribution. We could ask what is the mean and standard
deviation of the normal distribution that best represents the data?

We can write that model as P (D|θ), where θ are parameters of the probability
mode. The model is conditioned on θ, because if we knew θ we could evaluate the
model. The expression P (D|θ) is known as the likelihood of the data, and is often
written L(θ) (or L(θ;D) if you want to remember that data is involved). Notice
that this is unlike our models to date. In chapter 1, we assumed that we knew θ,
and could then use the model to assign a probability to a data item. Here we know
the value of D. The likelihood is a function of θ.

9.1.1 The Maximum Likelihood Principle

We need a “reasonable” procedure to choose a value of θ to report. One — and
we stress this is not the only one — is the maximum likelihood principle. This
says: Choose θ such that L(θ) = P (D|θ) is maximised, as a function of θ.

For the examples we work with, the data will be independent and iden-
tically distributed or IID. This means that each data item is an idependently
obtained sample from the same probability distribution (see section 8.2.5). In turn,
this means that the likelihood is a product of terms, one for each data item, which
we can write as

L(θ) = P (D|θ) =
∏

i∈dataset

P (di|θ).

It is traditional to write θ for any set of parameters that are unknown. There
are two, distinct, important concepts we must work with. One is the unknown
parameter(s), which we will write θ. The other is the estimate of the value of that

parameter, which we will write θ̂. This estimate is the best we can do — it may
not be the “true” value of the parameter.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 204

Worked example 9.1 Inferring p(H) for a coin from flips using a
binomial model

In N independent coin flips, you observe k heads. Use the maximum
likelihood principle to infer p(H).

Solution: The coin has θ = p(H), which is the unknown parameter.
We know that an appropriate probability model is the binomial model
P (k;N, θ). We have that

L(θ) = P (D|θ) = Pb(k;N, θ) =

(

N
k

)

θk(1− θ)(N−k)

which is a function of θ — the unknown probability that a coin comes up
heads; k and N are known. We must find the value of θ that maximizes
this expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0.

We have

∂L(θ)
∂θ

=

(

N
k

)

(

kθk−1(1− θ)(N−k) − θk(N − k)(1 − θ)(n−k−1)
)

and this is zero when

kθk−1(1− θ)(N−k) = θk(N − k)(1− θ)(N−k−1)

so the maximum occurs when

k(1− θ) = θ(N − k).

This means the maximum likelihood estimate is

θ̂ =
k

N

which is what we guessed would happen, but now we know why that guess
“makes sense”.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 205

Worked example 9.2 Inferring p(H) from coin flips using a geometric
model

You flip a coin N times, stopping when you see a head. Use the maxi-
mum likelihood principle to infer p(H) for the coin.

Solution: The coin has θ = p(H), which is the unknown parameter.
We know that an appropriate probability model is the geometric model
Pg(N ; θ). We have that

L(θ) = P (D|θ) = Pg(N ; θ) = (1 − θ)(N−1)θ

which is a function of θ — the unknown probability that a coin comes
up heads; N is known. We must find the value of θ that maximizes this
expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0 = ((1− θ)(N−1) − (N − 1)(1− θ)(N−2)θ)

So the maximum likelihood estimate is

θ̂ =
1

N
.

We didn’t guess this.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 206

Worked example 9.3 Inferring die probabilities from multiple rolls
and a multinomial distribution

You throw a die N times, and see n1 ones, . . . and n6 sixes. Write
p1, . . . , p6 for the probabilities that the die comes up one, . . ., six. Use
the maximum likelihood principle to estimate p1, . . . , p6.

Solution: The data are n, n1, . . . , n6. The parameters are θ =
(p1, . . . , p6). P (D|θ) comes from the multinomial distribution. In par-
ticular,

L(θ) = P (D|θ) = n!

n1! . . . n6!
pn1

1 pn2

2 . . . pn6

6

which is a function of θ = (p1, . . . , p6). Now we want to maximize this
function by choice of θ. Notice that we could do this by simply making all pi
very large — but this omits a fact, which is that p1+p2+p3+p4+p5+p6 = 1.
So we substitute using p6 = 1 − p1 − p2 − p3 − p4 − p5 (there are other,
neater, ways of dealing with this issue, but they take more background
knowledge). At the maximum, we must have that for all i,

∂L(θ)
∂pi

= 0

which means that, for pi, we must have

nip
(ni−1)
i (1−p1−p2−p3−p4−p5)

n6−pni

i n6(1−p1−p2−p3−p4−p5)
(n6−1) = 0

so that, for each pi, we have

ni(1− p1 − p2 − p3 − p4 − p5)− n6pi = 0

or
pi

1− p1 − p2 − p3 − p4 − p5
=

ni

n6
.

You can check that this equation is solved by

θ̂ =
1

(n1 + n2 + n3 + n4 + n5 + n6)
(n1, n2, n3, n4, n5, n6)

The logarithm is a monotonic function (i.e. if x > 0, y > 0, x > y, then
log(x) > log(y)). This means that the values of θ that maximise the log-likelihood
are the same as the values that maximise the likelihood. This observation is very
useful, because it allows us to transform a product into a sum. The derivative of a
product involves numerous terms; the derivative of a sum is easy to take. We have

logP (D|θ) = log
∏

i∈dataset

P (di|θ) =
∑

i∈dataset

logP (di|θ)

Section 9.1 Estimating Model Parameters with Maximum Likelihood 207

and in some cases, logP (di|θ) takes a convenient, easy form. The log-likelihood
of a dataset under a model is a function of the unknown parameters, and you will
often see it written as

logL(θ) =
∑

i∈dataset

logP (di|θ).

Worked example 9.4 Poisson distributions

You observe N intervals, each of the same, fixed length (in time, or
space). You know that, in these intervals, events occur with a Poisson
distribution (for example, you might be observing Prussian officers be-
ing kicked by horses, or telemarketer calls...). You know also that the
intensity of the Poisson distribution is the same for each observation.
The number of events you observe in the i’th interval is ni. What is
the intensity, λ?

Solution: The likelihood is

L(θ) =
∏

i∈intervals

P ({ni events} |θ) =
∏

i∈intervals

θnie−θ

ni!
.

It will be easier to work with logs. The log-likelihood is

logL(θ) =
∑

i

(ni log θ − θ − logni!)

so that we must solve

∂ logL(θ)
∂θ

=
∑

i

(
ni

θ
− 1) = 0

which yields a maximum likelihood estimate of

θ̂ =

∑

i ni

N

Section 9.1 Estimating Model Parameters with Maximum Likelihood 208

Worked example 9.5 The intensity of swearing

A famously sweary politician gives a talk. You listen to the talk, and for
each of 30 intervals 1 minute long, you record the number of swearwords.
You record this as a histogram (i.e. you count the number of intervals
with zero swear words, with one, etc.). For the first 10 intervals, you
see

no. of swear words no. of intervals

0 4
1 2
2 2
3 1
4 0

and for the following 20 intervals, you see
no. of swear words no. of intervals

0 9
1 6
2 3
3 2
4 1

Assume that the politician’s use of swearwords is Poisson. What is the
intensity using the first 10 intervals? the second 20 intervals? all the
intervals? why are they different?

Solution: Use the expression from worked example 4 to find

λ̂10 =
total number of swearwords

number of intervals

=
7

10

λ̂20 =
total number of swearwords

number of intervals

=
22

20

λ̂30 =
total number of swearwords

number of intervals

=
29

30
.

These are different because the maximum likelihood estimate is an estimate
— we can’t expect to recover the exact value from a dataset. Notice,
however, that the estimates are quite close.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 209

Worked example 9.6 Normal distributions

Assume we have x1, . . . , xN which are data that can be modelled with a
normal distribution. Use the maximum likelihood principle to estimate
the mean of that normal distribution.

Solution: The likelihood of a set of data values under the normal distri-
bution with unknown mean θ and standard deviation σ is

L(θ) = P (x1, . . . xN |θ, σ)
= P (x1|θ, σ)P (x2|θ, σ) . . . P (xN |θ, σ)

=

N
∏

i=1

1√
2πσ

exp

(

− (xi − θ)2

2σ2

)

and this expression is a moderate nuisance to work with. The log of the
likelihood is

logL(θ) =
(

N
∑

i=1

− (xi − θ)2

2σ2

)

+ term not depending on θ.

We can find the maximum by differentiating wrt θ and setting to zero,
which yields

∂ logL(θ)
∂θ

=

N
∑

i=1

2(xi − θ)

2σ2

= 0

=
1

σ2

(

N
∑

i=1

xi −Nθ

)

so the maximum likelihood estimate is

θ̂ =

∑N
i=1 xi

N

which probably isn’t all that surprising. Notice we did not have to pay
attention to σ in this derivation — we did not assume it was known, it just
doesn’t do anything.

Section 9.1 Estimating Model Parameters with Maximum Likelihood 210

Worked example 9.7 Normal distributions -II

Assume we have x1, . . . , xN which are data that can be modelled with a
normal distribution. Use the maximum likelihood principle to estimate
the standard deviation of that normal distribution.

Solution: Now we have to write out the log of the likelihood in more
detail. Write µ for the mean of the normal distribution and θ for the
unknown standard deviation of the normal distribution. We get

logL(θ) =
(

N
∑

i=1

− (xi − µ)2

2θ2

)

−N log θ +Term not depending on θ

We can find the maximum by differentiating wrt σ and setting to zero,
which yields

∂ logL(θ)
∂θ

=
−2

θ3

N
∑

i=1

−(xi − θ)

2
− N

θ
= 0

so the maximum likelihood estimate is

θ̂ =

√

∑N
i=1(xi − µ)2

N

which probably isn’t all that surprising, either.

The maximum likelihood principle has a variety of neat properties we cannot
expound. One worth knowing about is consistency; for our purposes, this means
that the maximum likelihood estimate of parameters can be made arbitrarily close
to the right answer by having a sufficiently large dataset.

Another is that, in some cases, you can make online estimates. Assume, rather
than seeing N elements of a dataset in one go, you get to see each one once, and you
cannot store them. Assume that this dataset is modelled as normal data. Write µ̂k

for the maximum likelihood estimate of the mean based on data items 1 . . . k (and
σ̂k for the maximum likelihood estimate of the standard deviation, etc.). Notice
that

µ̂k+1 =
(kµ̂k) + xk+1

(k + 1)

and that

σ̂k+1 =

√

(kσ̂2
k) + (xk+1 − µ̂k+1)2

(k + 1)

This means that you can incorporate new data into your estimate as it arrives
without keeping all the data. This process of updating a representation of a dataset
as new data arrives is known as filtering.

Section 9.2 Incorporating Priors with Bayesian Inference 211

9.1.2 Cautions about Maximum Likelihood

Our examples suggest some difficulties could occur in inference. The first is that
it might be hard to find the maximum of the likelihood exactly. There are strong
numerical methods for maximizing functions, and these are very helpful, but even
today there are likelihood functions where it is very hard to find the maximum.

The second is that small amounts of data can present nasty problems. There
is a body of mathematics, well outside the scope of this book, that implies that
for lots of data that is well described by our model, maximum likelihood will give
an answer very close to the “right” answer. This doesn’t apply to small datasets.
For example, in the binomial case, if we have only one flip we will estimate p as
either 1 or 0. We should find this report unconvincing. In the geometric case,
with a fair coin, there is a probability 0.5 that we will perform the estimate and
then report that the coin has p = 1. This should also worry you. As another
example, if we throw a die only a few times, we could reasonably expect that, for
some i, ni = 0. This doesn’t necessarily mean that pi = 0, though that’s what the
maximum likelihood inference procedure will tell us.

This creates a very important technical problem — how can I estimate the
probability of events that haven’t occurred? This might seem like a slightly silly
question to you, but it isn’t. Solving this problem has really significant practical
consequences. For example, a really important part of natural language processing
involves estimating the probability of groups of three words. These groups are
usually known as “trigrams”. People typically know an awful lot of words (tens
to hundreds of thousands, depending on what you mean by a word). This means
that there are a tremendous number of trigrams, and you can expect that any real
dataset lacks almost all of them, because it isn’t big enough. Some are missing
because they don’t occur in real life, but others are not there simply because they
are unusual (eg “Atom Heart Mother” actually occurs in real life, but you may not
have seen it all that often). Modern speech recognition systems need to know how
probable every trigram is. Worse, if a trigram is modelled as having zero probability
and actually occurs, the system will make a mistake, so it is important to model
all such events as having a very small, but not zero, probability.

In summary, the maximum likelihood estimate is useful, and is consistent with
intuition, but small datasets present some worries because there is a real prospect
that the best estimate is wrong in a way that presents problems.

9.2 INCORPORATING PRIORS WITH BAYESIAN INFERENCE

Sometimes when we wish to estimate parameters of a model we have prior infor-
mation. For example, we may have good reason to believe that some parameter
is close to some value. We would like to take this information into account when
we estimate the model. One way to do so is to place a prior probability distri-
bution p(θ) on the parameters θ. Then, rather than working with the likelihood
p(D|θ), we could apply Bayes’ rule, and form the posterior p(θ|D). This posterior
represents the probability that θ takes various values, given the data D. Extracting
information from the posterior is usually called Bayesian inference. A natural
estimate of θ is the value that maximizes the posterior. This estimate is sometimes
known as a maximum a priori estimate or MAP estimate.

Section 9.2 Incorporating Priors with Bayesian Inference 212

0 0.2 0.4 0.6 0.8 1
0

1

2

3

P(H)

P
os

te
rio

r
va

lu
e

Posterior of P(H), given 7H and 3T

0 0.2 0.4 0.6 0.8 1
0

1

2

3

P(H)

P
os

te
rio

r
va

lu
e

Posterior of P(H), given 3H and 7T

FIGURE 9.1: The curves show a function proportional to the posterior on θ, for
the two cases of example ??. Notice that this information is rather richer than the
single value we would get from maximum likelihood inference.

9.2.1 Constructing the Posterior

Bayes’ rule tells us that

p(θ|D) =
P (D|θ)P (θ)

P (D)

but (as we shall see) it can be hard to work out P (D). For some problems, we
might not need to know it.

Worked example 9.8 Flipping a coin

We have a coin with probability θ of coming up heads when flipped.
We start knowing nothing about θ. We then flip the coin 10 times,
and see 7 heads (and 3 tails). Plot a function proportional to
p(θ| {7 heads and 3 tails}). What happens if there are 3 heads and
7 tails?

Solution: We know nothing about p, except that 0 ≤ θ ≤ 1, so we choose
a uniform prior on p. We have that p({7 heads and 3 tails} |θ) is binomial.
The joint distribution is p({7 heads and 3 tails} |θ) × p(θ) but p(θ) is uni-
form, so doesn’t depend on θ. So the posterior is proportional to: θ7(1−θ)3

which is graphed in figure 9.1. The figure also shows θ3(1 − θ)7 which is
proportional to the posterior for 3 heads and 7 tails. In each case, the
evidence does not rule out the possibility that θ = 0.5, but tends to dis-
courage the conclusion. Maximum likelihood would give θ = 0.7 or θ = 0.3,
respectively.

In Example 8, it is interesting to follow how the posterior on p changes as
evidence come in, which is easy to do because the posterior is proportional to a
binomial distribution. Figure 9.2 shows a set of these posteriors for different sets

Section 9.2 Incorporating Priors with Bayesian Inference 213

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

p(H)

po
st

er
io

r
on

 p
(H

)
Posterior on p(H), given 3H and 0T.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

p(H)

po
st

er
io

r
on

 p
(H

)

Posterior on p(H), given 7H and 3T.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

p(H)

po
st

er
io

r
on

 p
(H

)

Posterior on p(H), given 17H and 13T.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

p(H)

po
st

er
io

r
on

 p
(H

)

Posterior on p(H), given 72H and 28T.

FIGURE 9.2: The probability that an unknown coin will come up heads when flipped
is p(H). For these figures, I simulated coin flips from a coin with p = 0.75. I then
plotted the posterior for various data. Notice how, as we see more flips, we get
more confident about p.

of evidence.
For other problems, we will need to marginalize out θ, by computing

P (D) =

∫

θ

P (D|θ)P (θ)dθ.

It is usually impossible to do this in closed form, so we would have to use a numerical
integral. In some cases, P (θ) and P (D|θ) are conjugate, meaning that P (θ|D) will
take a familiar form and P (D) follows easily.

Section 9.2 Incorporating Priors with Bayesian Inference 214

Worked example 9.9 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped.
We model the prior on θ with a Beta distribution, with parameters
α > 0, β > 0. We then flip the coin N times, and see h heads. What is
P (θ|N, h, α, β)?

Solution: We have that P (N, h|θ) is binomial, and that P (θ|N, h, α, β) ∝
P (N, h|θ)P (θ|α, β). This means that

P (θ|N, h, α, β) ∝
(

N
h

)

θh(1− θ)(N−h) Γ(α+ β)

Γ(α)Γ(β)
θ(α−1)(1 − θ)(β−1).

and we can write

P (θ|N, h, α, β) ∝ θ(α+h−1)(1− θ)(β+N−h−1).

Notice this has the form of a Beta distribution, so it is easy to recover the
constant of proportionality. We have

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α + h)Γ(β +N − h)
θ(α+h−1)(1− θ)(β+N−h−1).

Worked example 9.10 More sweary politicians

Example 5 gives some data from a sweary politician. Assume we have
only the first 10 intervals of observations, and we wish to estimate the
intensity using a Poisson model. Write θ for this parameter. Use a
Gamma distribution as a prior, and write out the posterior.

Solution: We have that

p(θ|α, β) = βα

Γ(α)
θ(α−1)e−βθ and p(D|θ) = θ7e−θ

24
.

This means that
p(θ|D) ∝ θ(α−1+7)e−(β+1)θ.

Notice this has the form of another Gamma distribution, so we can write

p(θ|D) =
(β + 1)(α+7)

Γ(α+ 7)
θ(α−1+7)e−(β+1)θ

Section 9.2 Incorporating Priors with Bayesian Inference 215

9.2.2 The Posterior for Normal Data

There is a very useful construction for the posterior for data where the likelihood
is normal. We start with a simple example. Assume we drop a measuring device
down a borehole. It is designed to stop falling and catch onto the side of the hole
after it has fallen µ0 meters. On board is a device to measure its depth. This device
reports a known constant times the correct depth plus a zero mean normal random
variable, which we call “noise”. The device reports depth every second.

The first question to ask is what depth do we believe the device is at before
we receive any measurement? We designed the device to stop at µ0 meters, so we
are not completely ignorant about where it is. However, it may not have worked
absolutely correctly. We choose to model the depth at which it stops as µ0 meters
plus a zero mean normal random variable. The second term could be caused by error
in the braking system, etc. We could estimate the standard deviation of the second
term (which we write σ0) either by dropping devices down holes, then measuring
with tape measures, or by analysis of likely errors in our braking system. The depth
of the object is the unknown parameter of the model; we write this depth θ. Now
the model says that θ is a normal random variable with mean µ0 and standard
deviation σ0.

Notice that this model probably isn’t exactly right — for example, there must
be some probability in the model that the object falls beyond the bottom of the
hole, which it can’t do — but it captures some important properties of our system.
The device should stop at or close to µ0 meters most of the time, and it’s unlikely
to be too far away.

Now assume we receive a single measurement — what do we now know about
the device’s depth? The first thing to notice is that there is something to do here.
Ignoring the prior and taking the measurement might not be wise. For example,
imagine that the noise in the wireless system is large, so that the measurement is
often corrupted — our original guess about the device’s location might be better
than the measurement. Write x1 for the measurement. Notice that the scale of
the measurement may not be the same as the scale of the depth, so the mean of
the measurement is c1θ, where c1 is a change of scale (for example, from inches to
meters). We have that p(x1|θ) is normal with mean c1θ and standard deviation
σn1. We would like to know p(θ|x1).

We have that

log p(θ, x1) = log p(x1|θ) + log p(θ)

= − (x1 − c1θ)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ or x.

We have two estimates of the position, θ, and we wish to come up with a represen-
tation of what we know about θ. One is x1, which is a measurement — we know
its value. The expected value of x1 is c1θ, so we could infer θ from x1. But we
have another estimate of the position, which is µ0. The posterior, p(θ|x1), is a
probability distribution on the variable θ; it depends on the known values x1, µ0,
σ0 and σn1. We need to determine its form. We can do so by some rearrangement
of the expression for log p(θ, x1).

Section 9.2 Incorporating Priors with Bayesian Inference 216

Notice first that this expression is of degree 2 in θ (i.e. it has terms θ2, θ
and things that don’t depend on θ). This means that p(θ|x1) must be a normal
distribution, because we can rearrange its log into the form of the log of a normal
distribution. This yields a fact of crucial importance.

Useful Fact: 9.1 Normal distributions are conjugate

A normal prior and a normal likelihood yield a normal posterior.

Write µ1 for the mean of this distribution, and σn1 for its standard deviation.
The log of the distribution must be

− (θ − µ1)
2

2σ2
1

+ terms not depending on θ.

The terms not depending on θ are not interesting, because if we know σ1 those
terms must add up to

log

(

1√
2πσ1

)

so that the probability density function sums to one. Our goal is to rearrange terms
into the form above. Notice that

− (θ − µ1)
2

2σ2
p

= −θ2
(

1

2σ2
1

)

+ 2θ
µ1

2σ2
p

+ term not depending on θ

We have

log p(θ|x1) = − (c1θ − x1)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ

= −θ2

1

2
(

σ2

n1
σ2

0

σ2

n1
+c2

1
σ2

0

)

+ 2θ

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

+ terms not depending on θ

which means that

σ2
1 =

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

and

µ1 = 2

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=

(

c1x1σ
2
0 + µ0σ

2
n1

σ2
n1σ

2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=
c1x1σ

2
0 + µ0σ

2
n1

σ2
n1 + c21σ

2
0

.

Section 9.2 Incorporating Priors with Bayesian Inference 217

These equations “make sense”. Imagine that σ0 is very small, and σn1 is very
big; then our new expected value of θ — which is µ1 — is about µ0. Equivalently,
because our prior was very accurate, and the measurement was unreliable, our
expected value is about the prior value. Similarly, if the measurement is reliable
(i.e. σn1 is small) and the prior has high variance (i.e. σ0 is large), then our
expected value of θ is about x1/c1 — i.e. the measurement, rescaled. I have put
these equations, in a more general form, in a box below.

Useful Fact: 9.2 Normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . We
receive a single data item x. The likelihood of this data item is normal
with mean cθ and standard deviation σm, where c and σm are known.
Then the posterior, p(θ|x, c, σm, µπ, σπ), is normal, with mean

cxσ2
π + µπσ

2
m

σ2
m + c2σ2

π

and standard deviation
√

σ2
mσ2

π

σ2
m + c2σ2

π

.

Assume a second measurement, x2 arrives. We know that p(x2|θ, c2, σn2) is
normal with mean c2θ and standard deviation σn2. In the example, we have a new
measurement of depth — perhaps in a new, known, scale — with new noise (which
might have larger, or smaller, standard deviation than the old noise) added. Then
we can use p(θ|x1, c1, σn1) as a prior to get a posterior p(θ|x1, x2, c1, c2, σn1, σn2).
Each is normal, by useful fact 1. Not only that, but we can easily obtain the
expressions for the mean µ2 and the standard deviation σ2 recursively as functions
of µ1 and σ1.

Applying useful fact 2, we have

µ2 =
c2x2σ

2
1 + µ1σ

2
n2

σ2
n2 + c22σ

2
1

and

σ2
2 =

σ2
n2σ

2
1

σ2
n2 + c22σ

2
1

.

But what works for 2 and 1 will work for k+1 and k. We know the posterior after
k measurements will be normal, with mean µk and standard deviation σk. The
k+1’th measurement xk+1 arrives, and we have p(xk+1|θ, ck+1, σn(k+1)) is normal.
Then the posterior is normal, and we can write the mean µk+1 and the standard
deviation σk+1 recursively as functions of µk and σk. The result is worth putting
in a box.

Section 9.2 Incorporating Priors with Bayesian Inference 218

Useful Fact: 9.3 Online updating of normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ. All
data is normal conditioned on θ. We have already received k data items.
The posterior p(θ|x1, . . . , xk, c1, . . . , ck, σn1, . . . , σnk, µπ, σπ) is normal,
with mean µk and standard deviation σk. We receive a new data item
xk+1. The likelihood of this data item is normal with mean cθ and stan-
dard deviation σn(k+1), where ck+1 and σn(k+1) are known. Then the
posterior, p(θ|x1, . . . , xk+1, c1, . . . , ck, ck+1, σn1, . . . , σn(k+1), µπ, σπ), is
normal, with mean

µk+1 =
ck+1xk+1σ

2
k + µkσ

2
n(k+1)

σ2
n(k+1) + c2k+1σ

2
k

and

σ2
k+1 =

σ2
n(k+1)σ

2
k

σ2
n(k+1) + c2k+1σ

2
k

.

Again, notice the very useful fact that, if everything is normal, we can update
our posterior representation when new data arrives using a very simple recursive
form.

9.2.3 MAP Inference

Look at example 1, where we estimated the probability a coin would come up heads
with maximum likelihood. We could not change our estimate just by knowing the
coin was fair, but we could come up with a number for θ = p(H) (rather than,
say, a posterior distribution). A natural way to produce a point estimate for θ that

incorporates prior information is to choose θ̂ such that

θ̂ =
argmax

θ
P (θ|D) =

argmax
θ

P (θ,D)

P (D)

This is the MAP estimate. If we wish to perform MAP inference, P (D) doesn’t
matter (it changes the value, but not the location, of the maximum). This means
we can work with P (θ,D), often called the joint distribution.

Section 9.2 Incorporating Priors with Bayesian Inference 219

Worked example 9.11 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We
model the prior on θ with a Beta distribution, with parameters α > 0,
β > 0. We then flip the coin N times, and see h heads. What is the
MAP estimate of θ?

Solution: We have that

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α + h)Γ(β +N − h)
θ(α+h−1)(1− θ)(β+N−h−1).

You can get the MAP estimate by differentiating and setting to 0, yielding

θ̂ =
α− 1 + h

α+ β − 2 +N
.

This has rather a nice interpretation. You can see α and β as extra counts of
heads (resp. tails) that are added to the observed counts. So, for example,
if you were fairly sure that the coin should be fair, you might make α and
β large and equal. When α = 1 and β = 1, we have a uniform prior as in
the previous examples.

Worked example 9.12 More sweary politicians

We observe our swearing politician for N intervals, seeing ni swear
words in the i’th interval. We model the swearing with a Poisson model.
We wish to estimate the intensity, which we write θ. We use a Gamma
distribution for the prior on θ. What is the MAP estimate of θ?

Solution: Write T =
∑N

i=1. We have that

p(θ|D) =
(β + 1)(α+T)

Γ(α+ T)
θ(α−1+T)e−(β+1)θ

and the MAP estimate is

θ̂ =
(α− 1 + T)

(β + 1)

(which you can get by differentiating with respect to θ, then setting to
zero). Notice that if β is close to zero, you can interpret α as extra counts;

if β is large, then it strongly discourages large values of θ̂, even if the counts
are large.

Section 9.3 Samples, Urns and Populations 220

Worked example 9.13 Normal data

Assume you see N datapoints xi which are modelled by a normal dis-
tribution with unknown mean θ and with known standard deviation σ.
You model the prior on θ using a normal distribution with mean µ0 and
standard deviation σ0. What is the MAP estimate of the mean?

Solution: Recall that the maximum value of a normal distribution occurs
at its mean. Now problem is covered by useful fact 2, but in this case we
have ci = 1 for each data point, and σi = σ. We can write

µN =
xNσ2

N−1 + µN−1σ
2

σ2 + σ2
N−1

and

σ2
N =

σ2σ2
N−1

σ2 + σ2
N−1

.

and evaluate the recursion down to µ0, σ0.

9.2.4 Cautions about Bayesian Inference

Just like maximum likelihood inference, bayesian inference is not a recipe that can
be applied without thought. It turns out that, when there is a lot of data, the
prior has little inference on the outcome of the inference, and the MAP solution
looks a lot like the maximum likelihood solution. So the difference between the two
approaches is most interesting when there is little data, where the prior matters.
The difficulty is that it might be hard to know what to use as a good prior. In
the examples, I emphasized mathematical convenience, choosing priors that lead
to clean posteriors. There is no reason to believe that nature uses conjugate priors
(even though conjugacy is a neat property). How should one choose a prior for a
real problem?

This isn’t an easy point. If there is little data, then the choice could really
affect the inference. Sometimes we’re lucky, and the logic of the problem dictates
a choice of prior. Mostly, we have to choose and live with the consequences of the
choice. Often, doing so is succesful in applications.

The fact we can’t necessarily justify a choice of prior seems to be one of life’s
inconveniences, but it represents a significant philosophical problem. It’s been at
the core of a long series of protracted, often quite intense, arguments about the
philosophical basis of statistics. I haven’t followed these arguments closely enough
to summarize them; they seem to have largely died down without any particular
consensus being reached.

9.3 SAMPLES, URNS AND POPULATIONS

Very often the data we see is a small part of the data we could have seen, if we’d
been able to collect enough data. We need to know how the measurements we make

Section 9.3 Samples, Urns and Populations 221

on the dataset relate to the measurements we could have made, if we had all the
data. This situation occurs very often. For example, imagine we wish to know the
average weight of a rat. This isn’t random; you could weigh every rat on the planet,
and then average the answers. But doing so would absurd (among other things,
you’d have to weigh them all at the same time, which would be tricky). Instead,
we weight a small set of rats, chosen rather carefully. If we have chosen sufficiently
carefully, then the answer from the small set is quite a good representation of the
answer from the whole set.

The data we could have observed, if we could have seen everything, is the
population. The data we actually have is the sample. We would like to know
the mean of the population, but can see only the sample; surprisingly, we can say
a great deal from the sample alone, assuming that it is chosen appropriately.

Assume we have a population {x}, for i = 1, . . . , Np. Notice the subscript
here — this is the number of items in the population. The population could be
unreasonably big: for example, it could consist of all the people in the world. We
want to know the mean of this dataset, but we do not get to see the whole dataset.
Instead, we see the sample.

9.3.1 Estimating the Population Mean from a Sample

How the sample is obtained is key to describing the population. We will focus on
only one model (there are lots of others). In our model, the sample is obtained by
choosing a fixed number of data items. Write k for the number of data items in the
sample. We expect k is a lot smaller than Np. Each item is chosen independently,
and fairly. This means that each time we choose, we choose one from the entire
set of Np data items, and each has the same probability of being chosen. This is
sometimes referred to as “sampling with replacement”.

One natural way to think about sampling with replacement is to imagine the
data items as being written on tickets, which are placed in an urn (old-fashioned
word for a jar, now used mainly by statisticians and morticians). You obtain the
sample by repeating the following experiment k times: shake the urn; take a ticket
from the urn and write down the data on the ticket; put it back in the urn. Notice
that, in this case, each sample is drawn from the same urn. This is important, and
makes the analysis easier. If we had not put the ticket back, the urn would change
between samples.

We summarize the whole dataset with its mean, which we write popmean ({x}).
This is known as the population mean. The notation is just to drive home the
facts that it’s the mean of the whole population, and that we don’t, and can’t,
know it. The whole point of this exercise is to estimate this mean.

We would like to estimate the mean of the whole dataset from the items that
we actually see. Imagine we draw k tickets from the urn as above, and average the
values. The result is a random variable, because different draws of k tickets will
give us different values. Write X(k) for this random variable, which is referred to
as the sample mean. Because expectations are linear, we must have that

E

[

X(k)
]

=
1

k

(

E

[

X(1)
]

+ . . .+ E

[

X(1)
])

= E

[

X(1)
]

(where X(1) is the random variable whose value is obtained by drawing one ticket

Section 9.3 Samples, Urns and Populations 222

from the urn). Now

E

[

X(1)
]

=
∑

i∈1,...Np

xip(i)

=
∑

i∈1,...Np

xi
1

Np
because we draw fairly from the urn

=

∑

i∈1,...Np
xi

Np

= popmean ({x})
which is the mean value of the items in the urn. This means that

E

[

X(k)
]

= popmean ({xi}).

Under our sampling model, the expected value of the sample mean is the population
mean.

Useful Facts: 9.4 Sample means and population means

The sample mean is a random variable. It is random, because different
samples from the population will have different values of the sample
mean. The expected value of this random variable is the population
mean.

We will not get the same value of X(k) each time we perform the experiment,
because we see different data items in each sample. So X(k) has variance, and this
variance is important. If it is large, then each estimate is quite different. If it is
small, then the estimates cluster. Knowing the variance of X(k) would tell us how
accurate our estimate of the population mean is.

9.3.2 The Variance of the Sample Mean

We write popsd ({x}) for the standard deviation of the whole population of {x}.
Again, we write it like this to keep track of the facts that (a) it’s for the whole
population and (b) we don’t — and usually can’t — know it.

We can compute the variance of X(k) (the sample mean) easily. We have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

= E

[

(X(k))2
]

− (popmean ({x}))2

so we need to know E
[

(X(k))2
]

. We can compute this by writing

X(k) =
1

k
(X1 +X2 + . . .Xk)

where X1 is the value of the first ticket drawn from the urn, etc. We then have

X(k)2 =

(

1

k

)2(
X2

1 +X2
2 + . . . X2

k +X1X2 + . . .
X1Xk +X2X1 + . . . X2Xk + . . . Xk−1Xk

)

.

Section 9.3 Samples, Urns and Populations 223

Expectations are linear, so we have that

E

[

X(k)
]2

=

(

1

k

)2(
E
[

X2
1

]

+ E
[

X2
2

]

+ . . .E
[

X2
k

]

+ E[X1X2]+
. . .E[X1Xk] + E[X2X1] + . . .E[X2Xk] + . . .E[Xk−1Xk]

)

.

The order in which the tickets are drawn from the urn doesn’t matter, because
each time we draw a ticket we draw from the same urn. This means that E

[

X2
1

]

=

E
[

X2
2

]

= . . .E
[

X2
k

]

. You can think of this term as the expected value of the
random variable generated by: drawing a single number out of the urn; squaring
that number; and reporting the square. Notice that E

[

X2
1

]

= E
[

(X(1))2
]

(look at

the definition of X(1)).
Because the order doesn’t matter, we also have that E[X1X2] = E[X1X3] =

. . .E[Xk−1Xk]. You can think of this term as the expected value of the random
variable generated by: drawing a number out of the urn; writing it down; returning
it to the urn; then drawing a second number from the urn; and reporting the
product of these two numbers. So we can write

E

[

X(k)2
]

= (
1

k
)2
(

kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]
)

and these two terms are quite easy to evaluate.

Worked example 9.14 Urn variances

Show that

E

[

(X(1))2
]

=

∑Np

i=1 x
2
i

Np
= popsd ({x})2 + popmean ({x})2

Solution: First, we have (X(1))2 is the number obtained by taking a
ticket out of the urn and squaring its data item. Now

popsd ({x})2 = E

[

(X(1))2
]

− E

[

X(1)
]2

= E

[

(X(1))2
]

− popmean ({x})2

so
E

[

(X(1))2
]

= popsd ({x})2 + popmean ({x})2

Section 9.3 Samples, Urns and Populations 224

Worked example 9.15 Urn variances

Show that
E[X1X2] = popmean ({x})2

Solution: This looks hard, but isn’t. Recall from the facts in chapter 6
(useful facts 2, page 121) that ifX and Y are independent random variables,
E[XY] = E[X]E[Y]. But X1 and X2 are independent — they are different
random draws from the same urn. So

E[X1X2] = E[X1]E[X2]

but E[X1] = E[X2] (they are draws from the same urn) and E[X] =
popmean ({x}). So

E[X1X2] = popmean ({x})2.

Now

E

[

(X(k))2
]

=
kE
[

(X(1))2
]

+ k(k − 1)E[X1X2]

k2

=
E
[

(X(1))2
]

+ (k − 1)E[X1X2]

k

=
(popsd ({x})2 + popmean ({x})2) + (k − 1)popmean ({x})2

k

=
popsd ({x})2

k
+ popmean ({x})2

so we have

var
[

X(k)
]

= E

[

(X(k))2
]

− E

[

X(k)
]2

=
popsd ({x})2

k
+ popmean ({x})2 − popmean ({x})2

=
popsd ({x})2

k
.

This is a very useful result which is well worth remembering together with our facts
on the sample mean, so we’ll put them in a box together.

Section 9.3 Samples, Urns and Populations 225

Useful Fact: 9.5 The sample mean

The sample mean is a random variable. Write X(k) for the mean of k
samples. We have that:

E

[

X(k)
]

= popmean ({x})

var
[

X(k)
]

=
popsd ({x})2

k

std
(

X(k)
)

=
popsd ({x})√

k

The consequence is this: If you draw k samples, the standard deviation of
your estimate of the mean is

popsd ({x})√
k

which means that (a) the more samples you draw, the better your estimate becomes
and (b) the estimate improves rather slowly — for example, to halve the standard
deviation in your estimate, you need to draw four times as many samples. The
standard deviation of the estimate of the mean is often known as the standard
error of the mean. This allows us to draw a helpful distinction: the population
has a standard deviation, and our estimate of its mean (or other things — but we
won’t go into this) has a standard error.

Notice we cannot state the standard error of our estimate exactly, because we
do not know popsd ({x}). But we could make a good estimate of popsd ({x}), by
computing the standard deviation of the examples that we have. It is now helpful
to have some notation for the particular sample we have. I will write

∑

i∈sample
for a sum over the sample items, and we will use

mean ({x}) =
∑

i∈sample xi

k

for the mean of the sample — that is, the mean of the data we actually see; this is
consistent with our old notation, but there’s a little reindexing to keep track of the
fact we don’t see all of the population. Similarly, I will write

std (x) =

√

∑

i∈sample(xi −mean ({xi}))2
k

for the sample standard deviation. Again, this is the standard deviation of the data
we actually see; and again, this is consistent with our old notation, again with a
little reindexing to keep track of the fact we don’t see all of the population. We

Section 9.3 Samples, Urns and Populations 226

could estimate
popsd ({x}) ≈ std (x)

and as long as we have enough examples, this estimate is good. If the number of
samples k is small, it is better to use

popsd ({x}) ≈

√

∑

i∈sample(xi −mean ({x}))2
k − 1

.

In fact, much more is known about the distribution of X(k).

9.3.3 The Probability Distribution of the Sample Mean

The sample mean is a random variable. We know an expression for its mean, and
we can estimate its variance. In fact, we can determine its probability distribution,
though I won’t do this rigorously. In section 7.4.3, I mentioned that adding a
number of independent random variables almost always got you a normal random
variable, a fact sometimes known as the central limit theorem. I didn’t prove it,
and I’m not going to now. But when we form X(k), we’re adding random variables.
This means that X(k) is a normal random variable, for sufficiently big k (for some
reason, k > 30 is usually seen as right).

This is important, because it has the following consequence. Draw a large
number of different samples of k elements from the population. Each is a dataset of
k items. Compute mean ({x}) for each, and regard the resulting numbers e1, . . . , er
as data items. Convert the ei to standard coordinates si, where

si =
(ei −mean ({ei}))

std (ei)

(i.e. by subtracting the mean of the ei, and dividing by their standard deviation).
Now construct a construct a histogram of the s. If r is sufficiently large, the
histogram will be close to the standard normal curve.

9.3.4 When The Urn Model Works

In our model, there was a population of Np data items xi, and we saw k of them,
chosen at random. In particular, each choice was fair (in the sense that each data
item had the same probability of being chosen) and independent. These assump-
tions are very important for our analysis to apply. If our data does not have these
properties, bad things can happen.

For example, assume we wish to estimate the percentage of the population
that has beards. This is a mean (the data items take the value 1 for a person with
a beard, and 0 without a beard). If we select people according to our model, then
ask them whether they have a beard, then our estimate of the percentage of beards
should behave as above.

The first thing that should strike you is that it isn’t at all easy to select people
according to this model. For example, we might select phone numbers at random,
then call and ask the first person to answer the phone whether they have a beard;
but many children won’t answer the phone because they are too small. The next

Section 9.3 Samples, Urns and Populations 227

important problem is that errors in selecting people can lead to massive errors in
your estimate. For example, imagine you decide to survey all of the people at a
kindergarten on a particular day; or all of the people in a women’s clothing store;
or everyone attending a beard growing competition (they do exist). In each case,
you will get an answer that is a very poor estimate of the right answer, and the
standard error might look very small. Of course, it is easy to tell that these cases
are a bad choice.

It may not be easy to tell what a good choice is. You should notice the sim-
ilarity between estimating the percentage of the population that wears a beard,
and estimating the percentage that will vote for a particular candidate. There is
a famous example of a survey that mispredicted the result of the Dewey-Truman
presidential election in 1948; poll-takers phoned random phone numbers, and asked
for an opinion. But at that time, telephones tended to be owned by a small per-
centage of rather comfortable households, who tended to prefer one candidate, and
so the polls mispredicted the result rather badly.

Sometimes, we don’t really have a choice of samples. For example, we might
be presented with a small dataset of (say) human body temperatures. If we can be
satisfied that the people were selected rather randomly, we might be able to use this
dataset to predict expected body temperature. But if we knew that the subjects
had their temperatures measured because they presented themselves at the doctor
with a suspected fever, then we most likely cannot use it to predict expected body
temperature.

One important and valuable case where this model works is in simulation. If
you can guarantee that your simulations are independent (which isn’t always easy),
this model applies to estimates obtained from a simulation. Notice that it is usually
straightforward to build a simulation so that the i’th simulation reports an xi where
popmean ({x}) gives you the thing you want to measure. For example, imagine you
wish to measure the probability of winning a game; then the simulation should
report one when the game is won, and zero when it is lost. As another example,
imagine you wish to measure the expected number of turns before a game is won;
then your simulation should report the number of turns elapsed before the game
was won.

C H A P T E R 10

Intervals and Testing

Although a point estimate is the best estimate available, it could still be
wrong. This doesn’t always matter. But in some applications, it can be important
to know what range a parameter could take, and still be consistent with the data.
We have seen this possibility before, in example 8, where I graphed the posterior
— you could look at that graph and see that p could be in a fairly large range of
values.

Being able to estimate an interval of values is important, particularly when
there are safety or legal considerations to worry about. Imagine you have a machine
that fills cereal boxes. Each box gets a quantity of cereal that is random, but has
low variance. If the weight of cereal in any box is below the amount printed on
the label, you might be in trouble. When you choose the amount to print, a point
estimate of the mean weight of cereal might not be particularly helpful. If that
estimate is a little low, you could have problems. Instead, what you’d like to know
is an interval that the mean lies in with very high probability, so you can print a
number that is smaller than the smallest in the interval.

Such intervals are usually known as confidence intervals. There are a
variety of techniques for estimating them, depending on the particular problem.
In section 10.1, I describe straightforward methods to construct confidence inter-
vals. Confidence intervals for sample means are easily constructed using our un-
derstanding of standard error. Similarly, the posterior yields confidence intervals
in a straightforward way when we use Bayesian inference. In other cases we might
not have a good estimate of standard error; but we can use simulation to construct
one (section 10.2). That section also shows how to exploit simulation methods to
estimate confidence intervals for maximum likelihood parameter estimates.

Now imagine we hypothesize that (say) a population has a given mean. We
can then ask how large a confidence interval we have to draw around the sample
mean to include the hypothesis. If that interval is very large, then we would have
to have drawn a very unusual sample to see the sample mean that we see. This
means that our data does not support the hypothesis. This is an extremely fruitful
line of reasoning, because it allows us to evaluate evidence in support of a model.
Section 10.3 describes methods to do so. In fact, we can evaluate evidence in
support of a model, too, and section 10.4 shows how to do this.

10.1 STRAIGHTFORWARD CONSTRUCTIONS OF CONFIDENCE INTERVALS

A statistic is a function of a dataset. One example of a statistic is the mean
of a sample. Yet another is the MAP estimate of a parameter (which you get
by computing some numbers from the dataset alone). We observe the value of
a statistic, which we can compute from our dataset. But the dataset is random,
because it is either a sample from a population or an IID sample from a distribution
mode. This means that we should think of the statistic as the observed value of a

228

Section 10.1 Straightforward Constructions of Confidence Intervals 229

random variable — if we had a different sample from the same population (resp.
IID sample from the same distribution) we would compute a different value. In
these two cases, we know the observed value of the statistic and a model for the
probability distribution of the statistic, as a random variable. This means we can
construct confidence intervals relatively easily.

10.1.1 Confidence Intervals for Population Means

Assume we have a population, and we wish to know a confidence interval for its
mean. We draw a sample {x} of k items, and compute the sample mean. This
is the value of a random variable — random, because it depends on the randomly
drawn sample — whose probability distribution we know. This knowledge is very
powerful, because it tells us how close to the true mean our estimate is likely to be.
The reasoning looks like this. Our estimate of the unknown number popmean ({x})
is the mean of the sample we have, which we write mean ({x}). We know that the
error — which is

mean ({x})− popmean ({x})
— is a normal random variable, with mean 0 and standard deviation popsd({x})√

k
. We

estimate this standard deviation as std(x)√
k

. We can scale the error by the standard

deviation to get

M̂ =
mean ({x})− popmean ({x})

(

popsd({x})√
k

) ≈ mean ({x})− popmean ({x})
(

std(x)√
k

)

which is a standard normal random variable. But we know rather a lot about the
behaviour of standard normal random variables. In particular, we have that:

• About 68% of the time, the value of a standard normal random variable is
within one standard deviation of the mean.

• About 95% of the time, the value of a standard normal random variable is
within two standard deviations of the mean.

• About 99% of the time, the value of a standard normal random variable is
within three standard deviations of the mean.

In turn, this means that

• About 68% of the time, abs (mean ({x})− popmean ({x})) ≤ popsd({x})
k .

• About 95% of the time, abs (mean ({x})− popmean ({x})) ≤ 2 popsd({x})
k .

• About 99% of the time, abs (mean ({x})− popmean ({x})) ≤ 3 popsd({x})
k .

This means that we can construct a confidence interval for our estimate. For
about 68% of samples, the sample mean will lie in the interval between mean ({x})−
std(x)

k and mean ({x}) + std(x)
k , and so on. Notice that we have just accepted that

the approximation std (x) ≈ popsd ({x}) is harmless, which it is. We can plot the
confidence interval by drawing error bars — draw a bar one (or two, or three)

Section 10.1 Straightforward Constructions of Confidence Intervals 230

0 20 40 60 80 100 120
60

65

70

75
Sample means for human heights

Number of items in sample

V
al

ue
 in

 in
ch

es

FIGURE 10.1: I took the heights dataset. I then formed sampled elements with re-
placement to form random subsets of sizes (2, 4, 9, 16, . . . , 100). For each of 100
subsets of each size, I computed the sample mean — these are shown as x’s on
the plot. I then computed the population mean, and the standard error as mea-
sured by the population standard deviation. The x to the side of each column is the
population mean, and the vertical bars are one standard error above and below the
population mean. Notice how (a) the sample means vary less as the sample gets
bigger and (b) the sample means largely lie within the error bars.

standard deviations up and down from the estimate. We interpret this interval as
representing the effect of sampling uncertainty on our estimate. If the urn model
really did apply, then the confidence intervals have the property that the true mean
lies inside the interval for about 68% of possible samples (for one standard error
error bars; or 95% for two; etc.).

It is quite straightforward, and informative, to verify these ideas with a
simulation. I used the heights column from the bodyfat dataset (from http:

//www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls). I removed the sin-
gle height outlier. I simulated the population using the whole dataset (251 items),
then drew numerous samples of various sizes, with replacement. I computed the
mean of each of these sets of samples. Figure 10.1 shows a scatter plot of sample
means for different samples, using a set of sizes (2, 4, 9, 16, . . . , 100). I have also
plotted the population mean, and the true 1-standard error bars (i.e. using the
population standard deviation) for each of these sample sizes. Notice how most
sample means lie within the 1-standard error bars, as they should.

Figure 10.2 shows a sample mean and the computed standard error bars for a
set of different sized samples. I have also shown the population mean. Notice how
the population mean is usually within the computed standard error bars. Notice
also how the computed standard error bars (i.e. using the sample standard devia-
tion) are a bit small for small samples, but compare well with the true values for
large samples. The problem here is that, for small samples, the sample standard
deviation can be a fairly poor estimate of the population standard deviation. In
the figure, I show a scatter plot of standard error estimated using sample standard
deviation against standard error evaluated using population standard deviation.

Section 10.1 Straightforward Constructions of Confidence Intervals 231

0 20 40 60 80 100 120
60

65

70

75
Population means: estimates vs true

Number of items in sample

V
al

ue
 in

 in
ch

es

0 1 2 3
0

1

2

3
Standard error: std(heights) vs popstd(heights)

Standard error using popstd

S
ta

nd
ar

d
er

ro
r

us
in

g
st

d

FIGURE 10.2: On the right, I chose one sample at random of each size; the sample
mean is shown as a *. There are error bars (one standard error above and below)
around the sample mean. These error bars are computed from the sample standard
deviation. The population mean is the x. Notice how the population mean is within
the error bars most, but not all, of the time (about 68% of the time, as they should
be). The sample mean is rather a good estimate of the population mean, and the
standard error is quite a reliable estimate of how well the sample mean represents
the population mean when the sample is large enough. When the sample is small,
the estimate is poor, as you can see on the right. This is a scatter plot of the true
standard error (using the population standard deviation) against the estimate (using
the sample standard deviation). When the sample is small, the standard error is
big, and the estimate is poor.

When the standard error is small (because the sample is large), the two are quite
close; when it is large (because the sample is small), they can be quite different.
This suggests, correctly, that accurate inference from small samples can be tricky.
The right thing to do is get more data — it is optimistic to hope for a good estimate
of average human height from two people, after all.

Now we might reasonably ask another question. We should like to know a
confidence interval such that the true mean lies within it for p of the samples. This
is equivalent to asking what is the u such that

∫ u

−u

1√
2π

exp (−x2/2)dx = p

(i.e. what is the range of values about zero such that p% of standard normal random
variables lies in this range). Such numbers can be extracted from the inverse of the
error function (which is known as the inverse error function). An alternative is
to look in statistical tables, which usually give u values for a useful set of p’s.

Section 10.1 Straightforward Constructions of Confidence Intervals 232

Worked example 10.1 Speed of light

Give a 95% confidence interval for the time of a light transit across
a fixed distance, based on the dataset at http://lib.stat.cmu.edu/
DASL/Datafiles/SpeedofLight.html.

Solution: The first thing to notice about this dataset is it seems to contain
two negative times; but this is illusory. Look closely by tracking down
on the web the paper referred to in the story (Stigler, S.M., “Do robust
estimators work with real data?” Annals of Statistics, 5 (1977), pp. 1055-
1078.). You will find that Newcomb measured the the passage of time for
light to cross a fixed distance. He then subtracted a constant, and reported
the result. Write t for the true measurement of time, in microseconds, and
n for the number in the dataset. We have is

t = 24.8 + n× 1e− 3.

Newcomb omitted the smallest value in the dataset, which is very different
from all others. Omitting the smallest value gives a mean of 24.82729, a
standard deviation of 0.0062, and a standard error of 0.00078. So with 95%
confidence the value lies between 24.82573 and 24.82885. Keeping the
smallest value gives a mean of 24.8262, a standard deviation of 0.0107 and
a standard error of 0.0013. So with 95% confidence the value lies between
24.8236 and 24.8288.

Notice the temptation to drop an outlier in example 1- it really makes the
measurement look better. These days, the speed of light is known precisely. It’s
used to define the metre, so we would take the position that Newcomb was mea-
suring the distance of the transit.

10.1.2 Bayesian Confidence Intervals

We can use the posterior to evaluate the probability that the true value of a pa-
rameter lies within an interval. Assume we want to know for a < b, the probability
that the parameter θ lies in that interval. In many cases, we can compute

∫ b

a

p(θ|D)dθ,

which supplies the relevant probability.

Section 10.1 Straightforward Constructions of Confidence Intervals 233

Worked example 10.2 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped.
We start knowing nothing about θ except that, being a probability,
0 ≤ θ ≤ 1. We use a uniform prior on θ. We then flip the coin 10 times,
and see 7 heads (and 3 tails). What is P ({θ ∈ [0.5, 0.8]} |D)?

Solution: We could answer this question by computing

∫ 0.8

0.5

p(θ|D)dθ.

Recall that a Beta distribution with α = β = 1 is uniform, and look at
example 11. The posterior is

P (θ|10, 7, 1, 1) = Γ(12)

Γ(8)Γ(4)
θ7(1 − θ)3.

I evaluated this integral numerically, and got 0.73.

In example 2, I determined that P ({θ ∈ [0.5, 0.8]} |D) was 0.73 Instead, I
might wish to specify 0 ≤ u < 0.5, and then find an interval [a, b] such that
P ({θ ∈ [a, b]} |D) = 1− 2u. Notice that this interval is not unique. Notice that

P ({θ ∈ [a, b]} |D) = 1− P ({θ ≤ a} |D)− P ({θ ≥ b} |D)

We will choose a such that

P ({θ ≤ a}) =
∫ a

−∞
P (θ|D)dθ = u

and b such that

P ({θ ≥ b} |D) =

∫ ∞

b

P (θ|D)dθ = u.

Actually obtaining values for a and b might be quite difficult. One strategy is to
search a range of values.

Worked example 10.3 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped.
We start knowing nothing about θ except that, being a probability,
0 ≤ θ ≤ 1. We use a uniform prior on θ. We then flip the coin 10
times, and see 7 heads (and 3 tails). Construct an interval [a, b] such
that P ({θ ≤ a}|D) ≈ 0.05 and P ({θ ≥ b}|D) ≈ 0.05.

Solution: I wrote a brief program to compute the relevant integrals numer-
ically, then searched using interval halving. I found P ({θ ≤ 0.435}|D) ≈
0.05 and P ({θ ≥ 0.865}|D) ≈ 0.05; this means the interval is [0.435, 0.865].

Section 10.2 Using Simulation to Construct Intervals 234

10.2 USING SIMULATION TO CONSTRUCT INTERVALS

The analysis of some problems is difficult. But the idea of a confidence interval is
naturally associated with repeated experiments. We can use simulations to estimate
confidence intervals when analysis is difficult. Generally, we see the dataset as one of
many possible dataset we could have seen. We must then assess what our estimate
would be like for the other possible datasets. But what are those possible datasets
to be?

When the data is explained by a parametric probability model, we can use
that model to produce other possible datasets. If we compute a maximum likelihood
estimate θ̂ of the parameters of the model, we can draw IID samples from the model.
We then look at the estimate from that new dataset; the spread of the estimates
yields our confidence interval.

When we have no applicable probability model of the dataset, we can resample
the dataset to simulate the effects of sampling error. This strategy allows us to build
confidence intervals for properties like medians.

10.2.1 Constructing Confidence Intervals for Parametric Models

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. We can estimate model parameters, we can maximize the likelihood
function L(θ).

A (1 − 2α) confidence interval for a parameter is an interval [cα, c(1−α)]. We
construct the interval such that, if we were to perform a very large number of
repetitions of our original experiment then estimate a parameter value for each, cα
would be the α quantile and c(1−α) would be the (1−α) quantile of those parameter
values. We interpret this to mean that, with confidence (1− 2α), the correct value
of our parameter lies in this interval. This definition isn’t really watertight. How
do we perform a very large number of repetitions? If we don’t, how can we tell
how good the confidence interval is? Nonetheless, we can construct intervals that
illustrate how sensitive our original inference is to the data that we have.

There are a variety of methods to construct confidence intervals. We will focus
on simulation. The algorithm should feel so natural to you that you may already
have guessed what to do. First, we compute the maximum likelihood estimate
of the parameters, θ̂. We assume this estimate is right, but need to see how our
estimates of θ̂ would vary with different collections of data from our model with
that parameter value. So we compute a collection of simulated datasets, Di, each
the same size as the original dataset. We obtain these by simulating P (d|θ̂). Next,
we compute a maximum likelihood estimate for each of these simulated datasets,
θ̂i. Finally, we compute the relevant percentiles of these datasets. The result is our
interval.

Section 10.2 Using Simulation to Construct Intervals 235

Procedure: 10.1 Estimating Confidence Intervals for Maximum Likeli-
hood Estimates using Simulation

Assume we have a dataset D = {x} of N items. We have a parametric
model of this data p(x|θ), and write the likelihood L(θ;D) = P (D|θ).
We construct (1− 2α) confidence intervals using the following steps.

1. Compute the maximum likelihood estimate of the parameter, θ̂ =
argmax

θ
L(θ;D).

2. Construct R simulated datasets Di, each consisting of N IID sam-
ples drawn from p(x|θ̂).

3. For each such dataset, compute θ̂i =
argmax

θ
L(θ;D).

4. Obtain cα(θ̂i), the α’th quantile of the collection θ̂i and c(1−α)(θ̂i),

the 1− α’th quantile of the collection θ̂i.

The confidence interval is [cα, c(1−α)].

Figure 10.3 shows an example. In this case, I worked with simulated data from
a normal distribution. In each case, the normal distribution had mean 0, but there
are four different standard deviations (1, 4, 7, and 10). I simulated 10 different
datasets from each of these distributions, containing 10, 40, 90, . . . , 810, 1000 data
items. For each, I computed the maximum likelihood estimate of the mean. This
isn’t zero, even though the data was drawn from a zero-mean distribution, because
the dataset is finite. I then estimated the confidence intervals for each using 10, 000
simulated datasets of the same size. I show 95% confidence intervals for the cases
σ = 1, σ = 4, σ = 10 in the figure, plotted against dataset size. Notice that these
aren’t symmetric about zero, because the maximum likelihood estimate isn’t zero.
They shrink as the dataset grows, but slowly. They are bigger when the standard
deviation is bigger. It should seem reasonable that you can’t expect an accurate
estimate of the mean of a normal distribution with large standard deviation using
only a few data points. One can demonstrate using statistical theory that would
take us rather out of our way that the size of these intervals should behave like

σ√
N

and Figure 10.3 suggests that they do. I plotted 1/size2; you can see this grows
linearly as N grows, and falls very fast as σ grows.

Section 10.2 Using Simulation to Construct Intervals 236

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

Number of data points

M
ea

n
va

lu
e

90% confidence intervals for normal data, sd=1

0 200 400 600 800 1000
−4

−2

0

2

4

Number of data points

M
ea

n
va

lu
e

90% confidence intervals for normal data, sd=4

0 200 400 600 800 1000

−5

0

5

Number of data points

M
ea

n
va

lu
e

90% confidence intervals for normal data, sd=10

0 200 400 600 800 1000
0

20

40

60

80

100

Number of data points

1/
si

ze
2

Size of confidence intervals against dataset

sd=1
sd=4
sd=7
sd=10

FIGURE 10.3: Confidence intervals computed for simulated normal data; details in
the text.

Worked example 10.4 Confidence Intervals by Simulation - II

Construct a 90% confidence interval for the intensity estimate for the
data of example 5 for the cases of 10 observations, 20 observations, and
all 30 observations.

Solution: Recall from that example the maximum likelihood estimates of
the intensity are 7/10, 22/20, and 29/30 in the three cases. I used the Mat-
lab function poissrnd to get 10000 replicates of a dataset of 10 (resp. 20,
30) items from a Poisson distribution with the relevant intensities. I then
used prctile to get the 5% and 95% percentiles, yielding the intervals

[0.3, 1.2] for 10 observations
[0.75, 1.5] for 20 observations

[0.6667, 1.2667] for 30 observations
Notice how having more observations makes the confidence interval
smaller.

Section 10.2 Using Simulation to Construct Intervals 237

160 180 200 220
0

100

200

300

Median weight, 20 per sample

Median weight

N
um

be
r

of
 s

am
pl

es

160 180 200 220
0

100

200

300

Median weight, 100 per sample

Median weight

N
um

be
r

of
 s

am
pl

es

FIGURE 10.4: I took the weights dataset used all 253 measurements to represent a
population. Rather than compute the median of the whole population, I chose to
compute the median of a randomly chosen sample. The figures show a histogram
of 1000 different values of the median, computed for 1000 different samples (of size
20 on the left, and of size 100 on the right). Notice that (a) there is a moderate
amount of variation in the median of the sample; (b) these histograms look normal,
and appear to have about the same median; (c) increasing the size of the sample
has reduced the spread of the histogram.

10.2.2 Estimating Standard Error

We were able to produce convenient and useful estimates of standard error for
sample means. But what happens if we want to, say, reason about the median
of a population? It turns out that estimating standard error becomes difficult
mathematically. This is an important problem, because if we had standard error
estimates, we could use our methods for building confidence intervals and for testing
hypotheses. It turns out that quite simple simulation methods give very good
estimates.

For Figure 10.4, I assumed that all 253 weight measurements represented
the entire population, then simulated what would happen for different random
samples (with replacement) of different sizes. Figure 10.4 suggests that the sample
median behaves quite like the sample mean as the random sample changes. Different
samples have different medians, but the distribution of values looks fairly normal.
When there are more elements in the sample, the standard deviation of median
values is smaller. But we have no method to compute this standard deviation. The
method I used here doesn’t apply in practice, because we don’t usually have the
whole population.

There is a method, known as the bootstrap, which gives a very good estimate
of the standard error of any statistic. Assume we wish to estimate the standard
error of a statistic S({x}), which is a function of our dataset {x} of N data items.
We compute r bootstrap replicates of this sample. Each replicate is obtained
by sampling the dataset uniformly, and with replacement. One helpful way to
think of this is that we are modelling our dataset as a sample of a probability
distribution. This distribution, sometimes known as the empirical distribution,

Section 10.2 Using Simulation to Construct Intervals 238

has probability 1/N at each of the data items we see, and zero elsewhere. Now
to obtain replicates, we simply draw new sets of IID samples from this probability
distribution.

Notice that the bootstrap replicates are not a random permutation of the
dataset; instead, we select one data item fairly and at random from the whole
dataset N times. This means we expect a particular bootstrap replicate will have
multiple copies of some data items, and no copies of others.

We write {x}i for the i’th bootstrap replicate of the dataset. We now compute

S =

∑

i S({x}i)
r

and the standard error estimate for S is given by:

stderr ({S}) =

√

∑

i

[

S({x}i)− S
]

r − 1

Procedure: 10.2 The bootstrap

Estimate the standard error for a statistic S evaluated on a dataset of
N items {x}.

1. Compute r bootstrap replicates of the dataset. Write the i’th
replicate {x}i Obtain each by:

(a) Building a uniform probability distribution on the numbers
1 . . .N .

(b) Drawing N independent samples from this distribution.
Write s(i) for the i’th such sample.

(c) Building a new dataset
{

xs(1), . . . , xs(N)

}

.

2. For each replicate, compute
∑

i S({x}i).
3. Compute

S =

∑

i S({x}i)
r

4. The standard error estimate for S is given by:

stderr ({S}) =

√

∑

i

[

S({x}i)− S
]

r − 1

Section 10.2 Using Simulation to Construct Intervals 239

0 500 1000 1500
0

2

4

6

8

10
Histogram of CEO Salaries, $thousands

200 300 400 500 600
0

500

1000

1500

2000

2500

3000
Medians of 10000 Bootstrap replicates

FIGURE 10.5: On the left, a histogram of salaries for CEO’s of small compa-
nies in 1993, from the dataset of http: // lib. stat.cmu. edu/ DASL/Datafiles/
ceodat.html . On the right, a histogram of the medians of 10, 000 bootstrap repli-
cates of this data. This simulates the effect of sampling variation on the median;
see worked example 5.

Worked example 10.5 The bootstrap standard error of the median

You can find a dataset giving the salaries of CEO’s at small firms in 1993
at http://lib.stat.cmu.edu/DASL/Datafiles/ceodat.html. Con-
struct a 90% confidence interval for the median salary.

Solution: Salaries are in thousands of dollars, and one salary isn’t given
(we omit this value in what follows). Figure ?? shows a histogram of the
salaries; notice there are some values that look like outliers. This justifies
using a median. The median of the dataset is 350 (i.e. $ 350, 000 — this is
1993 data!). I constructed 10, 000 bootstrap replicates. Figure 10.5 shows
a histogram of the medians of the replicates. I used the matlab prctile

function to extract the 5% and 95% percentiles of these medians, yielding
the interval between 298 and 390. This means that we can expect that, for
90% of samples of CEO salaries for small companies, the median salar will
be in the given range.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 240

Worked example 10.6 Are Brinks collectors different from city col-
lectors? - I

Using the dataset of http://lib.stat.cmu.edu/DASL/Datafiles/

brinkdat.html, test whether Brinks coin collectors are different from
city coin collectors (read the story, at that URL).

Solution: There are two types of parking meter in this story (which you
should have read!). One is close to the city hall, and is always collected
by city employees. The other is far, and for some months was collected
by Brinks employees and for some months collected by city employees. I
ignored the figures for month 10, because there was a missing digit in the
number (don’t know how or why). For the meters that are far, coins were
collected for 22 months by city employees and for 24 months by Brinks
employees.
For the far meters, I constructed 10, 000 bootstrap replicates of each case.
Figure 10.6 compares the two sets of replicates, showing the histogram of
means for city collections vs Brinks collections. Notice how the means
of the two histograms are quite separated, compared to their variance.
This suggests, quite strongly, that the Brinks collections are different (the
difference between the means is about 1.6 standard deviations). I used the
nearby meter figures to check whether there was something special about
the months on which Brinks employees collected coins. Again, I constructed
10, 000 bootstrap replicates of each case (nearby coins in a Brinks month
vs. nearby coins in a city month). This is plotted in figure 10.6. There’s
nothing special about the months, from the figure.

10.3 USING THE STANDARD ERROR TO EVALUATE HYPOTHESES

Assume we have a hypothesis to work with. For example, we believe that women
and men have the same body temperature. We should like to assess the extent
to which the evidence we have contradicts the hypothesis. At first glance, this
may seem strange to you — surely one wants to assess the extent to which the
evidence supports the hypothesis — but in fact it’s natural. You can’t prove that
a scientific hypothesis is true; you can only fail to show that it’s false. Just one
piece of evidence can destroy a scientific hypothesis, but no amount of evidence can
remove all doubt.

In our example, we measure the temperatures of a sample of women and of
a sample of men. We cannot expect that the sample means are the same, because
these are affected by the choice of sample. However, we have a good model of these
sample means as random variables; in particular, we know the standard error. We
can use this to assess the extent to which the difference in temperatures can be
explained solely by the choice of sample. If it is easy to explain the difference
in temperatures by choice of sample, then the evidence does not contradict the
hypothesis; alternatively, if the difference in temperatures is hard to explain by

Section 10.3 Using the Standard Error to Evaluate Hypotheses 241

1.4 1.5 1.6 1.7 1.8 1.9
x 10

6

0

1000

2000

3000
Coins from far meters, mean of bootstrap replicates

city
brinks

6000 6500 7000 7500
0

500

1000

1500

2000

2500
Coins from near meters, mean of bootstrap replicates

city month
brinks month

FIGURE 10.6: On the left, two histograms comparing the means of bootstrap repli-
cates of the coins collected by Brinks employees and those collected by city employ-
ees. Notice how the two histograms are quite separated, compared to their width.
This is fairly strong evidence that the two cases are different. The difference is not
explained by the months in which the coins are collected. On the right, two his-
tograms comparing the means of bootstrap replicates of coins collected from nearby
meters. These coins were collected by city employees, but I have separated Brinks
months from city months. There is no evidence the months are different.

choice of sample, the evidence contradicts the hypothesis.
There is an important, quite general, line of reasoning here. It is a bad idea

to try and explain data using a hypothesis that makes the data you observed a rare
event.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 242

Example: 10.1 Patriot missiles

I got this example from “Dueling idiots”, a nice book by P.J. Nahin,
Princeton University Press. Apparently in 1992, the Boston Globe of
Jan 24 reported on this controversy. The pentagon claimed that the
patriot missile successfully engaged SCUD missiles in 80% of encoun-
ters. An MIT physicist, Theodore Postol, pointed out there was a
problem. He viewed tapes of 14 patriot/SCUD encounters, with one
hit and 13 misses. We can reasonably assume each encounter is in-
dependent. We can extract the probability of getting one hit and 13
misses if P (hit) = 0.8 from the binomial model, to get a number around
1e-8. Now you could look at this information and make several argu-
ments: (a) the pentagon is right and the probability really is 0.8, but
Postol looked at a really unlucky set of videotapes; (b) the probabil-
ity is not 0.8, because you would need to fire 14 patriots at 14 SCUD
missiles about 1e8 times to see this set of videotapes once; (c) for some
reason, the videotapes are not independent — perhaps only unsuccess-
ful encounters get filmed. If Postol viewed tapes at random (i.e. he
didn’t select only unsuccessful tapes, etc.), then argument (a) is easily
dismissed, because the pentagon would have had to be unreasonably
unlucky — it’s a bad idea to try to explain data with a hypothesis that
makes the data very unlikely.

Example: 10.2 MTG and Shuffling

You build a deck of 24 lands and 36 spells. You shuffle this deck,
and draw a hand of seven cards. You get no lands. You repeat the
experiment, and still get no lands. On a third try, you still get no
lands. By example 17, this event (three shuffles and draws with no
lands in each hand) has probability about 8e-6. You could draw several
conclusions: (a) you got unlucky; (b) you miscounted lands somehow;
(c) you’re shuffling the cards badly (i.e. the cards stick together, or you
are bad at shuffling). Conclusion (a) is unattractive, because you would
need to have been very unlucky (you’d see this outcome once in roughly
1e5 experiments, where each consists of shuffling and drawing three
hands). It’s a bad idea to try to explain data with a hypothesis that
makes the data very unlikely, so conclusions (b) and (c) have become
more plausible.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 243

10.3.1 Does this Population have this Mean?

Imagine we hypothesize that the average human body temperature is 95o. Write T
for the random variable evaluated by: collecting a random sample of people, mea-
suring their temperatures, and computing the average of these temperatures. The
mean of this random variable is the population mean, and the standard deviation
of this random variable is the standard error, which we write s. Now consider the
random variable

G =
(T − 95o)

s
.

This is a standard normal random variable, if our hypothesis is true.
In practice, we have already chosen a single sample. We can compute the

mean temperature of this sample, which we write t. This represents an observed
value of T . If you’re puzzled by the relationship between the two, use an analogy
with rolling a die. The random variable is what you could get if you rolled a die;
the value is the face that came up when you did roll it. Similarly, T is what you
could get by choosing a sample, and t is the value you did get with the sample you
have. In turn, we obtain a value for G, which is

g =
(t− 95o)

s
.

Now G is a standard normal random variable, if our hypothesis is true. We can
interpret this to mean that for 68% of possible samples, g will take a value between
−1 and 1 (etc.), if our hypothesis is true. Equivalently G will take a value between
g and −g, for a fraction f of all possible samples of the population, where

f =

∫ g

−g

exp

(−u2

2

)

du.

Now assume we see a very large (or very small) value of g. The value of f will be
close to one, which implies that most samples from the population will have a g
value closer to zero if the hypothesis were true. Equivalently, this says that, if the
hypothesis were true, our sample is highly unusual, which implies the data fails to
support the hypothesis.

It is easy to think about p = 1 − f than about f . You should think of p as
representing the fraction of samples that would give a larger absolute value of g, if
the null hypothesis was true. If this fraction is very small, then there is significant
evidence against the null hypothesis. We have that p — the fraction of experiments
that would give us a larger absolute value of g than the one we saw — is given by

p = (1− f) = (1−
∫ g

−g

exp

(−u2

2

)

du) = P ({G > | ĝ |}) ∪ P ({G < −| ĝ |})

and we can compute this number easily, because we know the distribution of G is
normal (or nearly so). The fraction is sometimes referred to as a p-value.

Once we have the p-value, testing is straightforward. A small value of the
fraction means that the outcome we see would be rare if the null hypothesis is
true. The fraction that we compute should be interpreted an assessment of the

Section 10.3 Using the Standard Error to Evaluate Hypotheses 244

significance of the evidence against the null hypothesis. The p-value is smaller
when the evidence against the null hypothesis is stronger; we get to decide how
small a p-value means we should reject the null hypothesis.

It is conventional to reject the null hypothesis when the p-value is less than
0.05. This is sometimes called “a significance level of 5%”. You should interpret
a p-value of 0.05 as meaning that you would see evidence this unusual in about
one experiment in twenty if the null hypothesis was true. Sometimes, the p-value is
even smaller, and this can be interpreted as very strong evidence the null hypothesis
is wrong. A p-value of less than 0.01 allows one to reject the null hypothesis at
“a significance level of 1%”. Similarly, you should interpret a p-value of 0.01 as
meaning that you would see evidence this unusual in about one experiment in a
hundred if the null hypothesis was true. We now have a general recipe for testing
whether a population has a particular mean, which belongs in a box:

Section 10.3 Using the Standard Error to Evaluate Hypotheses 245

Procedure: 10.3 Testing whether a population has a given mean, based
on a sample

The initial hypothesis is that the population has a known mean, which
we write µ. Write {x} for the sample, and k for the sample size.

• Compute the sample mean, which we write mean ({x}).

• Estimate the standard error se using

se =
std (x)√

k
.

• Compute the test statistic using

s =
(µ−mean ({x}))

se
.

• Compute the p-value, using

p = (1 − f) = (1−
∫ s

−s

exp

(−u2

2

)

du)

Equivalently, compute the probability that a standard normal ran-
dom variable X takes a value greater than s or less than −s, using
the expression

P ({X > |s |}) ∪ P ({X < −|s |}).

• The p-value summarizes the extent to which the data contradicts
the hypothesis. A small p-value implies that, if the hypothesis
is true, the sample is very unusual. The smaller the p-value, the
more strongly the evidence contradicts the hypothesis.

It is common to think that a hypothesis can be rejected only if the
p-value is less than 5% (or some number). You should not think this
way; the p-value summarizes the extent to which the data contradicts
the hypothesis, and your particular application logic affects how you
interpret it.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 246

Worked example 10.7 Average Human Body Weight

Assess the null hypothesis that the average human body weight is 175
lb, using the height and weight data set of http://www2.stetson.edu/

~jrasp/data.htm (called bodyfat.xls).

Solution: The dataset contains 252 samples; the average weight is 178.9lb.
We know this average is an estimate of the mean of the original large set
of all people. This estimate is a normal random variable whose mean is
the mean of the population, and whose standard deviation is given by the
standard error.
Our sample is large (which usually means over 30 elements) and so we can
estimate the standard error as

standard deviation of sample√
number in sample

=
29.4

15.9
= 1.9,

where the units are lb. The test statistic is

sample mean− hypothesized population mean

standard error
=

178.9− 175

1.9
= 2.05.

This is the value of a standard normal random variable. We must compute
the fraction of outcomes where the test statistic would be larger than 2.05,
or smaller than -2.05. This is

2 ∗ 1√
2π

∫ ∞

2.05

exp

(−x2

2

)

dx = 0.02

so the p-value is 0.02. We can interpret this as quite strong evidence that
the average human body weight is not, in fact, 175lb. This p-value says
that, if (a) the average human body weight is 175lb and (b) we repeat
the experiment (weigh 252 people and average their weights) 50 times, we
would see a number as big as the one we see about once.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 247

Worked example 10.8 Average BMI

The BMI (body mass index) is a number intended to capture how much
a person’s weight deviates from the usual for their height. Assess the
null hypothesis that the average human BMI is 27, using the height
and weight data set of http://www2.stetson.edu/~jrasp/data.htm;
bodyfat.xls.

Solution: BMI is computed using

BMI =
weight in lb

(height in in)2
× 703.

I did excluded two possible outliers in this dataset (entry 39 has weight 363
and height 72.25; entry 42 has weight 205 and height 29.5). I found a mean
BMI of 25.3, and a standard deviation of 3.35. There are 250 items in the
dataset, so the standard error is 0.21. The test statistic is

sample mean− hypothesized population mean

standard error
=

25.3− 27

2.1
= −8.1

so the p-value is the probability that a standard normal random variable
would take a value larger than -8.1 or smaller than 8.1. There is no par-
ticular reason to care about the difference between this (extremely small,
about 1e-16) number and zero. The evidence is very strongly against the
hypothesis.
If one keeps the outliers, one gets a mean BMI of 25.9, and a standard
deviation of 9.56. There are 252 items in the dataset, so the standard error
is 0.60. Now the p-value is 0.08, suggesting that the evidence is against
the hypothesis, but not overwhelmingly. Notice the significant effect of just
two datapoints. We might need more data to be sure we could reject the
hypothesis.

You should notice an important relationship between our test and the material
of section 10.1. When we constructed a confidence interval, we knew the distribution
that the sample mean would take as we randomly chose different samples from the
population. In turn, this meant we could plot (for example) the range of possible
values the population mean would take for (say) 95% of possible samples. When we
test a hypothesis about the mean, we are asking what kind of confidence interval
we would have to draw around the hypothesized mean to encompass the observed
sample mean.

10.3.2 Do Two Populations have the same Mean?

We have two samples, and we need to know whether they come from the same, or
different, populations. For example, we might observe people using two different
interfaces, measure how quickly they perform a task, then ask are their perfor-

Section 10.3 Using the Standard Error to Evaluate Hypotheses 248

mances different? As another example, we might run an application with no other
applications running, and test how long it takes to run some standard tasks. Be-
cause we don’t know what the operating system, cache, etc. are up to, this number
behaves a bit like a random variable, so it is worthwhile to do several experiments,
yielding one set of samples. We now do this with other applications running as well,
yielding another set of samples — is this set different from the first set? For real-
istic datasets, the answer is always yes, because they’re random samples. A better
question is could the differences be the result of chance, or are these datasets really
samples of two different populations?

We will ask if the population means are different. It turns out we can answer
this rather easily, using some tricks about normal random variables. Assume that
the samples are large enough (30 seems to be the magic number here). Write {x}
for the first dataset, which has size kx, and {y} for the second, which has size ky.
These datasets need not be of the same size Each dataset is a random sample,
drawn with replacement, from a population. We should like to assess the evidence
that these two populations have the same mean. To do so, we need some simple
facts about normal random variables.

Useful Facts: 10.1 Sums and differences of normal random variables

Let X1 be a normal random variable with mean µ1 and standard de-
viation σ1. Let X2 be a normal random variable with mean µ2 and
standard deviation σ2. Let X1 and X2 be independent. Then we have
that:

• for any constant c1 6= 0, c1X1 is a normal random variable with
mean c1µ1 and standard deviation c1σ1;

• for any constant c2, X1 + c2 is a normal random variable with
mean µ1 + c2 and standard deviation σ1;

• X1 + X2 is a normal random variable with mean µ1 + µ2 and
standard deviation

√

σ2
1 + σ2

2 .

I will not prove these facts; we already know the expressions for means
and standard deviations from our results on expectations. The only
open question is to show that the distributions are normal. This is
easy for the first two results. The third requires a bit of integration
that isn’t worth our trouble; you could do reconstruct the proof from
section 1’s notes on sums of random variables and some work with tables
of integrals.

Write X(kx) for the random variable obtained by: drawing a random sample
with replacement of kx elements from the first population, then averaging this
sample. Write Y (ky) for the random variable obtained by: drawing a random
sample with replacement of ky elements from the first population, then averaging
this sample. From section 9.3, we know that each random variable is normal, and

Section 10.3 Using the Standard Error to Evaluate Hypotheses 249

we know the means and standard deviations of these random variables. In turn,
this means that X(kx) − Y (ky) is a normal random variable.

Now write D for X(kx) − Y (ky). If the two populations have the same mean,
then E[D] = 0. Furthermore,

std (D) =

√

std
(

X(kx)
)2

+ std
(

X(ky)
)2
.

We know how to estimate var
[

X(kx)
]

— it is the standard error of the sample, and

we can estimate it as std (x)/
√
kx. So we have can estimate std (D) as

std (D) ≈

√

√

√

√

(

std (x)√
kx

)2

+

(

std (y)
√

ky

)2

.

We can now use the same reasoning we used to test the hypothesis that a population
had a particular, known mean. We have identified a number we can compute from
the two samples. We know how this number would vary under random choices
of sample. If the value we observe is too many standard deviations away from
the mean, the evidence is against our hypothesis. If we wanted to believe the
hypothesis, we would be forced to believe that the sample is extremely strange. I
have summarized this reasoning in box 4.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 250

Procedure: 10.4 Testing whether two populations have a given mean,
based on a sample of each

The initial hypothesis is that the populations have the same, unknown,
mean. Write {x} for the sample of the first population, {y} for the
sample of the second population, and kx, ky for the sample sizes.

• Compute the sample means for each population, mean ({x}) and
mean ({y}).

• Estimate the standard error se for each population, using

sex =
std (x)√

k
, sey =

std (y)√
k

.

• Compute the standard error for the difference between the means,

sed =
√

s2ex + s2ey .

• Compute the test statistic using

s =
(mean ({x})−mean ({y}))

sed
.

• Compute the p-value, using

p = (1 − f) = (1−
∫ s

−s

exp

(−u2

2

)

du)

Equivalently, compute the probability that a standard normal ran-
dom variable X takes a value greater than s or less than −s, using
the expression

P ({X > |s |}) ∪ P ({X < −|s |}).

• The p-value summarizes the extent to which the data contradicts
the hypothesis. A small p-value implies that, if the hypothesis
is true, the sample is very unusual. The smaller the p-value, the
more strongly the evidence contradicts the hypothesis.

It is common to think that a hypothesis can be rejected only if the
p-value is less than 5% (or some number). You should not think this
way; the p-value summarizes the extent to which the data contradicts
the hypothesis, and your particular application logic affects how you
interpret it.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 251

Worked example 10.9 Are US and Japanese cars different

At http://www.itl.nist.gov/div898/handbook/eda/section3/

eda3531.htm you can find a dataset, published by NIST, giving
measurements of miles per gallon for Japanese and US cars. Assess the
evidence these two populations have the same mean MPG.

Solution: There are 249 measurements for Japanese cars, and 79 for US
cars. The mean for Japanese cars is 20.1446, and for US cars is 30.4810.
The standard error for Japanese cars is 0.4065, and for US cars is 0.6872.
The value of the test statistic is

(mean ({x})−mean ({y}))
sed

= 10.33/0.7984 = 12.94

and the p-value is the probability of encountering a standard normal ran-
dom variable of this value or greater. This is so close to zero I had trouble
getting sensible numbers out of MATLAB; the evidence very strongly re-
jects this hypothesis. A version of this example, using the more complex
two-sample t-test, is worked in the NIST/SEMATECH e-Handbook of Sta-
tistical Methods, at http://www.itl.nist.gov/div898/handbook/, as of
2013.

Worked example 10.10 Do women and men have the same body tem-
perature?

Using the dataset of human temperatures at , assess the evidence
against the hypothesis that gender 1 has the same mean temperature
as gender 2

Solution: We compute the mean temperatures and standard errors shown

in the table.

Gender: 1 2
Mean: 98.10 98.39
Std Error: 0.0867 0.0922

The null hypothesis is that

these two are the same, so the test statistic is

difference

std error
=

98.39− 98.10√
0.08672 + 0.09222

= 2.285

and we must ask what is the probability of getting a number with absolute
value this big, or bigger, from a normal distribution (two-sided test). This is
0.0223. The evidence in this data set does not support the null hypothesis.

Section 10.3 Using the Standard Error to Evaluate Hypotheses 252

10.3.3 Variants on the Basic Test

The test of procedure 3 is usually referred to as a two-sided test. This is because
it computes

P ({X > |s |}) ∪ P ({X < −|s |}).
This is the fraction of samples that would produce a value that is larger than |s | or
smaller than −|s |. In some cases, we can expect that only the larger (or smaller)
value is of interest. This yields a one-sided test; the relevant expression is either

P ({X > s})

or
P ({X < s}).

Generally, it is more conservative to use a two-sided test, and one should do so unless
there is a good reason not to. Very often, authors use one-sided tests because they
result in smaller p-values, and small p-values are often a requirement for publication.

Z-Tests and T-Tests
Our procedure works because we were able to identify a random variable

where: (a) the random variable represents the effect of drawing a sample of a popu-
lation at random; (b) we knew the distribution of the random variable conditioned
on the hypothesis; (c) we can evaluate the random variable for our particular sam-
ple. Now use the notation of procedure 3. In that procedure, we computed

P ({X > |s |}) ∪ P ({X < −|s |}).

When we have a large sample, the sample mean is a normal random variable whose
mean is the population mean and whose standard deviation is the standard error.
This means that we know its distribution. In this case, the test is known as a
z-test.

An important difficulty with this procedure is we assumed we know the stan-
dard error. As figure 10.2 suggested, estimating standard error with std (x)/

√
k

works fine for large k, but is less successful for small k. Usually, practical advice
suggests that one should use a Z-test only if the sample has at least 30 elements.

When the sample is small, the sample standard deviation is a poor estimate of
the population standard deviation. The value of the sample mean that we compute
minimizes the sample standard deviation, which means that the estimate tends to
be a little too small. In turn, the standard error is a little too small, and there is
slightly more probability that the sample mean is far from the population mean
than the normal model allows for. This can be corrected for. Instead of using the
standard deviation of the sample to form the standard error, we use

√

∑

i(xi −mean ({xi}))2
k − 1

.

When we test, instead of using the normal distribution to compute probabilities, we
use Student’s t-distribution. This is a family of probability distributions. There
are two parameters; the observed value s, and the number of degrees of freedom.

Section 10.4 χ2 Tests: Is Data Consistent with a Model? 253

The number of degrees of freedom is k − 1 for our purposes. When the number
of degrees of freedom is small, the t-distribution has rather heavier tails than the
normal distribution, so the test takes into account that the standard error may be
larger than we think (because the population standard deviation is larger than we
expected). When the number of degrees of freedom is large, the t-distribution is
very similar to the normal distribution. One can get p-values from tables, or by
the Matlab function ttest.

10.4 χ2 TESTS: IS DATA CONSISTENT WITH A MODEL?

Sometimes we have a model, and we would like to know whether the data is consis-
tent with that model. For example, imagine we have a six-sided die. We throw it
many times, and record which number comes up each time. We would like to know
if the die is fair (i.e. is the data consistent with the model that the die is fair). It
is highly unlikely that each face comes up the same number of times, even if the
die is fair. Instead, there will be some variation in the frequencies observed; with
what probability is that variation, or bigger, the result of chance effects?

As another example, we decide that the number of calls by a telemarketer in
each hour is distributed with a Poisson distribution. We don’t know the intensity.
We could collect call data, and use maximum likelihood to determine the intensity.
Once we have the best estimate of the intensity, we still want to know whether the
model is consistent with the data.

In each case, the model predicts the frequencies of events. For the six-sided
die case, the model tells us how often we expect to see each side. For the call case,
the model predicts how often we would see no calls, one call, two calls, three calls,
etc. in each hour. To tell whether the model fits the data, we need to compare the
frequencies we observed with theoretical frequencies.

The appropriate test is a χ2 (say “khi-squared”) test. Assume we have a set of
disjoint events E1, . . . , Ek which cover the space of outcomes (i.e. any outcome lies
in one of these events). Assume we perform k experiments, and record the number
of times each event occurs. We have a null hypothesis regarding the probability
of events. We can take the probability of each event and multiply by k to get a
frequency under the null hypothesis. Now write fo(Ei) for the observed frequency of
event i; ft(Ei) for the theoretical frequency of the event under the null hypothesis.
We form the statistic

∑

i

(fo(Ei)− ft(Ei)2
ft(Ei)

which compares the observed and actual frequency of events. It turns out that this
statistic has a distribution very close to a known form, called the χ2 distribution, as
long as each count is 5 or more. The distribution has two parameters; the statistic,
and the number of degrees of freedom. The number of degrees of freedom to use
for a straightforward test is k− 1; if one has to estimate a total of p parameters for
the null hypothesis, this number is k − p− 1.

After this, things follow the usual recipe. We compute the statistic; we then
look at tables, or use the matlab function chi2cdf, to find the probability that the
statistic takes this value or greater under the null hypothesis. If this is small, then
we reject the null hypothesis.

Section 10.4 χ2 Tests: Is Data Consistent with a Model? 254

Worked example 10.11 χ2 test for dice

I throw a die 100 times. I record the outcomes, in the table below. Is
this a fair die?
face count

1 46
2 13
3 12
4 11
5 9
6 9

Solution: The expected frequency is 100/6 for each face. The χ2 statistic
has the value 62.7, and there are 5 degrees of freedom. We get the signifi-
cance as 1-chi2cdf(62.7, 5), which is (basically) 3e-12. You would have
to run this experiment 3e11 times to see a table as skewed as this once, by
chance. The die is not fair. Notice the most important bit of this example,
which is how to get the number out of matlab.

Section 10.4 χ2 Tests: Is Data Consistent with a Model? 255

Worked example 10.12 Is swearing Poisson?

A famously sweary politician gives a talk. You listen to the talk,
and for each of 30 intervals 1 minute long, you record the num-
ber of swearwords. You record this as a histogram (i.e. you count
the number of intervals with zero swear words, with one, etc.).
no. of swear words no. of intervals

0 13
1 9
2 8
3 5
4 5

The null hypothesis is that the politician’s swearing is Poisson dis-
tributed, with intensity (λ) one. Can you reject this null hypothesis?

Solution: If the null hypothesis is true, then the probability of getting n

swear words in a fixed length interval would be λne−λ

n! . There are 10 inter-
vals, so the theoretical frequencies are 10 times the following probabilities
number of swear words probability

0 0.368
1 0.368
2 0.184
3 0.061
4 0.015

so the χ2 statistic takes the value 243.1 and there are 4 degrees of freedom.
The significance 1-chi2cdf(243.1, 4) is indistinguishable from zero by
matlab, so you can firmly reject the null hypothesis. Of course, the intensity
may be wrong; but we don’t know how to deal with that, and will have to
discuss that question in the next chapter.

Section 10.4 χ2 Tests: Is Data Consistent with a Model? 256

Worked example 10.13 Is gender 2 temperature normal?

Recall we used body temperature data for two genders in earlier exam-
ples. The gender 2 data looked as though it might not be normal. Use
a χ2 test to tell whether it is normal with mean 98.4o and standard
deviation 0.743 or not.

Solution: The null hypothesis is that the data is normal with mean 98.4o

and standard deviation 0.743. We break up the range into five buckets (less
than 97.65 = 98.4− 0.74; between 97.65 and 98 = 98.4− 0.743/2; between
98 and 98.76 = 98.4+ 0.743/2; and greater than 99.14). With a little work
with error functions, we get that the theoretical frequency in each bucket
under the null hypothesis is (10.3126; 9.7423; 24.8901; 9.7423; 10.3126). The
actual frequencies are (7; 13; 26; 12; 7). The χ2 statistic is about 4e3, and
the significance level is essentially zero. This data isn’t normal with the
parameters given (though it might be normal with a different mean and
a different standard deviation). Looking at the frequencies suggests the
problem; there are far too few temperatures far away from the mean for
this to be normal, and far too many in the center bucket.

C H A P T E R 11

Extracting Important Relationships
in High Dimensions

Chapter 4 described methods to explore the relationship between two elements
in a dataset. We could extract a pair of elements and construct various plots.
For vector data, we could also compute the correlation between different pairs of
elements. But if each data item is d-dimensional, there could be a lot of pairs to
deal with.

We will think of our dataset as a collection of d dimensional vectors. It turns
out that there are easy generalizations of our summaries. However, is hard to
plot d-dimensional vectors. We need to find some way to make them fit on a 2-
dimensional plot. Some simple methods can offer insights, but to really get what
is going on we need methods that can at all pairs of relationships in a dataset in
one go.

These methods visualize the dataset as a “blob” in a d-dimensional space.
Many such blobs are flattened in some directions, because components of the data
are strongly correlated. Finding the directions in which the blobs are flat yields
methods to compute lower dimensional representations of the dataset.

11.1 SUMMARIES AND SIMPLE PLOTS

In this chapter, we assume that our data items are vectors. This means that we can
add and subtract values and multiply values by a scalar without any distress. This
is an important assumption, but it doesn’t necessarily mean that data is continuous
(for example, you can meaningfully add the number of children in one family to the
number of children in another family). It does rule out a lot of discrete data. For
example, you can’t add “sports” to “grades” and expect a sensible answer.

Notation: Our data items are vectors, and we write a vector as x. The
data items are d-dimensional, and there are N of them. The entire data set is {x}.
When we need to refer to the i’th data item, we write xi. We write {xi} for a new
dataset made up of N items, where the i’th item is xi. If we need to refer to the

j’th component of a vector xi, we will write x
(j)
i (notice this isn’t in bold, because

it is a component not a vector, and the j is in parentheses because it isn’t a power).
Vectors are always column vectors.

11.1.1 The Mean

For one-dimensional data, we wrote

mean ({x}) =
∑

i xi

N
.

257

Section 11.1 Summaries and Simple Plots 258

This expression is meaningful for vectors, too, because we can add vectors and
divide by scalars. We write

mean ({x}) =
∑

i xi

N

and call this the mean of the data. Notice that each component of mean ({x}) is the
mean of that component of the data. There is not an easy analogue of the median,
however (how do you order high dimensional data?) and this is a nuisance. Notice
that, just as for the one-dimensional mean, we have

mean ({x−mean ({x})}) = 0

(i.e. if you subtract the mean from a data set, the resulting data set has zero mean).

11.1.2 Parallel Plots

Parallel plots can sometimes reveal information, particularly when the dimension
of the dataset is low. To construct a parallel plot, you compute a normalized
representation of each component of each data item. The component is normalized
by translating and scaling so that the minimum value over the dataset is zero, and
the maximum value over the dataset is one. Now write the i’th normalised data
item as (n1, n2, . . . , nd). For this data item, you plot a broken line joining (1, n1)
to (2, n2) to (3, n3, etc. These plots are superimposed on one another. In the case
of the bodyfat dataset, this yields the plot of figure 11.1.

Some structures in the parallel plot are revealing. Outliers often stick out (in
figure 11.1, it’s pretty clear that there’s a data point with a very low height value,
and also one with a very large weight value). Outliers affect the scaling, and so
make other structures difficult to spot. I have removed them for figure 11.2. In this
figure, you can see that two negatively correlated components next to one another
produce a butterfly like shape (bodyfat and density). In this plot, you can also see
that there are still several data points that are very different from others (two data
items have ankle values that are very different from the others, for example).

11.1.3 Using Covariance to encode Variance and Correlation

Variance, standard deviation and correlation can each be seen as an instance of a
more general operation on data. Assume that we have two one dimensional data
sets {x} and {y}. Then we can define the covariance of {x} and {y}.

Definition: 11.1 Covariance

Assume we have two sets of N data items, {x} and {y}. We compute
the covariance by

cov ({x} , {y}) =
∑

i(xi −mean ({x}))(yi −mean ({y}))
N

Section 11.1 Summaries and Simple Plots 259

BODYFATDENSITY AGE WEIGHTHEIGHTADIPOSITYNECK CHESTABDOMEN HIP THIGH KNEE ANKLE BICEPSFOREARMWRIST
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.1: A parallel plot of the bodyfat dataset, including all data points. I have
named the components on the horizontal axis. It is easy to see that large values
of bodyfat correspond to small values of density, and vice versa. Notice that one
datapoint has height very different from all others; similarly, one datapoint has
weight very different from all others.

Covariance measures the tendency of corresponding elements of {x} and of {y}
to be larger than (resp. smaller than) the mean. Just like mean, standard devia-
tion and variance, covariance can refer either to a property of a dataset (as in the
definition here) or a particular expectation (as in chapter 6). The correspondence
is defined by the order of elements in the data set, so that x1 corresponds to y1,
x2 corresponds to y2, and so on. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is also larger (resp. smaller) than its mean, then
the covariance should be positive. If {x} tends to be larger (resp. smaller) than its
mean for data points where {y} is smaller (resp. larger) than its mean, then the
covariance should be negative.

From this description, it should be clear we have seen examples of covariance
already. Notice that

std (x)2 = var ({x}) = cov ({x} , {x})

which you can prove by substituting the expressions. Recall that variance measures

Section 11.1 Summaries and Simple Plots 260

BODYFATDENSITY AGE WEIGHTHEIGHTADIPOSITYNECK CHESTABDOMEN HIP THIGH KNEE ANKLE BICEPSFOREARMWRIST
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 11.2: A plot with those data items removed, so that those components are
renormalized. Two datapoints have rather distinct ankle measurements. Generally,
you can see that large knees go with large ankles and large biceps (the v structure).

the tendency of a dataset to be different from the mean, so the covariance of a
dataset with itself is a measure of its tendency not to be constant.

More important, notice that

corr ({(x, y)}) = cov ({x} , {y})
√

cov ({x} , {x})
√

cov ({y} , {y})
.

This is occasionally a useful way to think about correlation. It says that the corre-
lation measures the tendency of {x} and {y} to be larger (resp. smaller) than their
means for the same data points, compared to how much they change on their own.

Working with covariance (rather than correlation) allows us to unify some
ideas. In particular, for data items which are d dimensional vectors, it is straight-
forward to compute a single matrix that captures all covariances between all pairs
of components — this is the covariance matrix.

Section 11.1 Summaries and Simple Plots 261

Definition: 11.2 Covariance Matrix

The covariance matrix is:

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

Notice that it is quite usual to write a covariance matrix as Σ, and we
will follow this convention.

Properties of the Covariance Matrix Covariance matrices are often
written as Σ, whatever the dataset (you get to figure out precisely which dataset is
intended, from context). Generally, when we want to refer to the j, k’th entry of
a matrix A, we will write Ajk, so Σjk is the covariance between the j’th and k’th
components of the data.

• The j, k’th entry of the covariance matrix is the covariance of the j’th and
the k’th components of x, which we write cov

({

x(j)
}

,
{

x(k)
})

.

• The j, j’th entry of the covariance matrix is the variance of the j’th compo-
nent of x.

• The covariance matrix is symmetric.

• The covariance matrix is always positive semi-definite; it is positive definite,
unless there is some vector a such that aT (xi −mean ({xi}) = 0 for all i.

Proposition:

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

Proof: Recall

Covmat ({x}) =
∑

i(xi −mean ({x}))(xi −mean ({x}))T
N

and the j, k’th entry in this matrix will be

∑

i(x
(j)
i −mean

({

x(j)
})

)(x
(k)
i −mean

({

x(k)
})

)T

N

which is cov
({

x(j)
}

,
{

x(k)
})

.

Section 11.1 Summaries and Simple Plots 262

Proposition:

Covmat ({xi})jj = Σjj = var
({

x(j)
})

Proof:

Covmat ({x})jj = cov
({

x(j)
}

,
{

x(j)
})

= var
({

x(j)
})

Proposition:
Covmat ({x}) = Covmat ({x})T

Proof: We have

Covmat ({x})jk = cov
({

x(j)
}

,
{

x(k)
})

= cov
({

x(k)
}

,
{

x(j)
})

= Covmat ({x})kj

Section 11.2 Blob Analysis of High-Dimensional Data 263

Proposition: Write Σ = Covmat ({x}). If there is no vector a such that
aT (xi−mean ({x})) = 0 for all i, then for any vector u, such that ||u || > 0,

uTΣu > 0.

If there is such a vector a, then

uTΣu ≥ 0.

Proof: We have

uTΣu =
1

N

∑

i

[

uT (xi −mean ({x}))
] [

(xi −mean ({x}))Tu
]

=
1

N

∑

i

[

uT (xi −mean ({x}))
]2

.

Now this is a sum of squares. If there is some a such that aT (xi −
mean ({x})) = 0 for every i, then the covariance matrix must be positive
semidefinite (because the sum of squares could be zero in this case).
Otherwise, it is positive definite, because the sum of squares will always
be positive.

11.2 BLOB ANALYSIS OF HIGH-DIMENSIONAL DATA

When we plotted histograms, we saw that mean and variance were a very helpful
description of data that had a unimodal histogram. If the histogram had more than
one mode, one needed to be somewhat careful to interpret the mean and variance;
in the pizza example, we plotted diameters for different manufacturers to try and
see the data as a collection of unimodal histograms.

Generally, mean and covariance are a good description of data that lies in a
“blob” (Figure 11.3). You might not believe that this is a technical term, but it’s
quite widely used. This is because mean and covariance supply a natural coordinate
system in which to interpret the blob. Mean and covariance are less useful as
descriptions of data that forms multiple blobs (Figure 11.3). In chapter 1, we
discuss methods to model data that forms multiple blobs, or other shapes that we
will interpret as a set of blobs. But many datasets really are single blobs, and we
concentrate on such data here. The way to understand a blob is to think about the
coordinate transformations that place a blob into a particularly convenient form.

11.2.1 Understanding Blobs with Scatterplot Matrices

Plotting high dimensional data is tricky. One strategy that is very useful when
there aren’t too many dimensions is to use a scatterplot matrix. To build one,

Section 11.2 Blob Analysis of High-Dimensional Data 264

FIGURE 11.3: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have
plotted the mean of these data points with a ’+’. On the right, a data set that is
best thought of as a collection of five blobs. I have plotted the mean of each with
a ’+’. We could compute the mean and covariance of this data, but it would be
less revealing than the mean and covariance of a single blob. In chapter 1, I will
describe automatic methods to describe this dataset as a series of blobs.

you lay out scatterplots for each pair of variables in a matrix. On the diagonal,
you name the variable that is the vertical axis for each plot in the row, and the
horizontal axis in the column. This sounds more complicated than it is; look at the
example of figure 11.4, which shows a scatterplot matrix for four of the variables in
the height weight dataset of http://www2.stetson.edu/~jrasp/data.htm; look
for bodyfat.xls at that URL). This is originally a 16-dimensional dataset, but a 16
by 16 scatterplot matrix is squashed and hard to interpret.

What is nice about this kind of plot is that it’s quite easy to spot correlations
between pairs of variables, though you do need to take into account the coordinates
have not been normalized. For figure 11.4, you can see that weight and adiposity
appear to show quite strong correlations, but weight and age are pretty weakly
correlated. Height and age seem to have a low correlation. It is also easy to
visualize unusual data points. Usually one has an interactive process to do so —
you can move a “brush” over the plot to change the color of data points under the
brush. To show what might happen, figure 11.5 shows a scatter plot matrix with
some points shown as circles. Notice how they lie inside the “blob” of data in some
views, and outside in others. This is an effect of projection.

11.2.2 Transforming High Dimensional Data

Assume we apply an affine transformation to our data set {x}, to obtain a new
dataset {u}, where ui = Axi + b. Here A is any matrix (it doesn’t have to be
square, or symmetric, or anything else; it just has to have second dimension d). It

Section 11.2 Blob Analysis of High-Dimensional Data 265

0 50
0

50

100

0 50 100
0

50

100

0 200 400
0

50

100

Age

0 50
100

200

300

400

0 50 100
100

200

300

400

Weight

0 50 100
100

200

300

400

0 50
20

40

60

80

Height

0 200 400
20

40

60

80

0 50 100
20

40

60

80

Adiposity

0 50 100
0

20

40

60

0 200 400
0

20

40

60

0 50 100
0

20

40

60

FIGURE 11.4: This is a scatterplot matrix for four of the variables in the height
weight dataset of http:// www2.stetson.edu/ ~ jrasp/data.htm . Each plot is
a scatterplot of a pair of variables. The name of the variable for the horizontal axis
is obtained by running your eye down the column; for the vertical axis, along the
row. Although this plot is redundant (half of the plots are just flipped versions of
the other half), that redundancy makes it easier to follow points by eye. You can
look at a column, move down to a row, move across to a column, etc. Notice how
you can spot correlations between variables and outliers (the arrows).

is easy to compute the mean and covariance of {u}. We have

mean ({u}) = mean ({Ax+ b})
= Amean ({x}) + b,

so you get the new mean by multiplying the original mean by A and adding b.

Section 11.2 Blob Analysis of High-Dimensional Data 266

0 50
0

50

100

0 50 100
0

50

100

0 200 400
0

50

100

Age

0 50
100

200

300

400

0 50 100
100

200

300

400

Weight

0 50 100
100

200

300

400

0 50
20

40

60

80

Height

0 200 400
20

40

60

80

0 50 100
20

40

60

80

Adiposity

0 50 100
0

20

40

60

0 200 400
0

20

40

60

0 50 100
0

20

40

60

FIGURE 11.5: You should compare this figure with figure 11.4. I have marked two
data points with circles in this figure; notice that in some panels these are far from
the rest of the data, in others close by. A “brush” in an interactive application can
be used to mark data like this to allow a user to explore a dataset.

The new covariance matrix is easy to compute as well. We have:

Covmat ({u}) = Covmat ({Ax+ b})

=

∑

i(ui −mean ({u}))(ui −mean ({u}))T
N

=

∑

i(Axi + b−Amean ({x})− b)(Axi + b−Amean ({x})− b)T

N

=
A∑i(xi −mean ({x}))(xi −mean ({x}))TAT

N

= ACovmat ({x})AT .

11.2.3 Transforming Blobs

The trick to interpreting high dimensional data is to use the mean and covariance
to understand the blob. Figure 11.6 shows a two-dimensional data set. Notice that
there is obviously some correlation between the x and y coordinates (it’s a diagonal
blob), and that neither x nor y has zero mean. We can easily compute the mean

Section 11.2 Blob Analysis of High-Dimensional Data 267

Translate center to origin

FIGURE 11.6: On the left, a “blob” in two dimensions. This is a set of data points
that lie somewhat clustered around a single center, given by the mean. I have plotted
the mean of these data points with a hollow square (it’s easier to see when there is
a lot of data). To translate the blob to the origin, we just subtract the mean from
each datapoint, yielding the blob on the right.

and subtract it from the data points, and this translates the blob so that the origin
is at the center (Figure 11.6). In coordinates, this means we compute the new
dataset {u} from the old dataset {x} by the rule ui = xi −mean ({x}). This new
dataset has been translated so that the mean is zero.

Once this blob is translated (Figure 11.7, left), we can rotate it as well. It
is natural to try to rotate the blob so that there is no correlation between distinct
pairs of dimensions. We can do so by diagonalizing the covariance matrix. In
particular, let U be the matrix formed by stacking the eigenvectors of Covmat ({x})
into a matrix (i.e. U = [v1, . . . ,vd], where vj are eigenvectors of the covariance
matrix). We now form the dataset {n}, using the rule

ni = UTui = UT (xi −mean ({x})).

The mean of this new dataset is clearly 0. The covariance of this dataset is

Covmat ({n}) = Covmat
({

UTx
})

= UTCovmat ({x})U
= Λ,

where Λ is a diagonal matrix of eigenvalues of Covmat ({x}). Remember that, in
describing diagonalization, we adopted the convention that the eigenvectors of the
matrix being diagonalized were ordered so that the eigenvalues are sorted in de-
scending order along the diagonal of Λ. We now have two very useful facts about
{n}: (a) every pair of distinct components has covariance zero, and so has correla-
tion zero; (b) the first component has the highest variance, the second component

Section 11.2 Blob Analysis of High-Dimensional Data 268

Rotate to diagonalize

covariance

FIGURE 11.7: On the left, the translated blob of figure 11.6. This blob lies somewhat
diagonally, because the vertical and horizontal components are correlated. On the
right, that blob of data rotated so that there is no correlation between these compo-
nents. We can now describe the blob by the vertical and horizontal variances alone,
as long as we do so in the new coordinate system. In this coordinate system, the
vertical variance is significantly larger than the horizontal variance — the blob is
short and wide.

has the second highest variance, and so on. We can rotate and translate any blob
into a coordinate system that has these properties. In this coordinate system, we
can describe the blob simply by giving the variances of each component — the
covariances are zero.

Translating a blob of data doesn’t change the scatterplot matrix in any inter-
esting way (the axes change, but the picture doesn’t). Rotating a blob produces
really interesting results, however. Figure 11.9 shows the dataset of figure 11.4,
translated to the origin and rotated to diagonalize it. Now we do not have names
for each component of the data (they’re linear combinations of the original compo-
nents), but each pair is now not correlated. This blob has some interesting shape
features. Figure 11.9 shows the gross shape of the blob best. Each panel of this
figure has the same scale in each direction. You can see the blob extends about 80
units in direction 1, but only about 15 units in direction 2, and much less in the
other two directions. You should think of this blob as being rather cigar-shaped;
it’s long in one direction, but there isn’t much in the others. The cigar metaphor
isn’t perfect because there aren’t any 4 dimensional cigars, but it’s helpful. You
can think of each panel of this figure as showing views down each of the four axes
of the cigar.

Now look at figure ??. This shows the same rotation of the same blob of
data, but now the scales on the axis have changed to get the best look at the
detailed shape of the blob. First, you can see that blob is a little curved (look at
the projection onto direction 2 and direction 4). There might be some effect here

Section 11.2 Blob Analysis of High-Dimensional Data 269

Scale this direction

FIGURE 11.8: On the left, the translated and rotated blob of figure 11.7. This blob is
stretched — one direction has more variance than another. Because all covariances
are zero, it is easy to scale the blob so that all variances are one (the blob on the
right). You can think of this as a standard blob. All blobs can be reduced to a
standard blob, by relatively straightforward linear algebra.

worth studying. Second, you can see that some points seem to lie away from the
main blob. I have plotted each data point with a dot, and the interesting points
with a number. These points are clearly special in some way.

We could now scale the data in this new coordinate system so that all the
variances are either one (if there is any variation in that direction) or zero (directions
where the data doesn’t vary — these occur only if some directions are functions of
others). Figure 11.8 shows the final scaling. The result is a standard blob. Our
approach applies to any dimension — I gave 2D figures because they’re much easier
to understand. There is a crucial point here: we can reduce any blob of data, in any
dimension, to a standard blob of that dimension. All blobs are the same, except
for some stretching, some rotation, and some translation. This is why blobs are so
well-liked.

11.2.4 Whitening Data

It is sometimes useful to actually reduce a dataset to a standard blob. Doing so is
known as whitening the data (for reasons I find obscure). This can be a sensible
thing to do when we don’t have a clear sense of the relative scales of the components
of each data vector. For example, if we have a dataset where one component ranges
from 1e5 to 2e5, and the other component ranges from -1e-5 to 1e-5, we are likely
to face numerical problems in many computations (adding small numbers to big
numbers is often unwise). Often, this kind of thing follows from a poor choice of
units, rather than any kind of useful property of the data. In such a case, it could
be quite helpful to whiten the data. Another reason to whiten the data might
be that we know relatively little about the meaning of each component. In this

Section 11.2 Blob Analysis of High-Dimensional Data 270

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 4

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 3

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 2

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 1

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

FIGURE 11.9: A panel plot of the bodyfat dataset of figure 11.4, now rotated so
that the covariance between all pairs of distinct dimensions is zero. Now we do
not know names for the directions — they’re linear combinations of the original
variables. Each scatterplot is on the same set of axes, so you can see that the
dataset extends more in some directions than in others.

case, the original choice of coordinate system was somewhat arbitrary anyhow, and
transforming data to a uniform blob could be helpful.

Section 11.2 Blob Analysis of High-Dimensional Data 271

−100 0 100
−5

0

5

1

2
3

4 5

−50 0 50
−5

0

5

1

2
3

45

−20 0 20
−5

0

5

1

2
3

45 Direction 4

−100 0 100
−20

−10

0

10

1

2

3
4

5

−50 0 50
−20

−10

0

10

1

2

3
4

5 Direction 3

−5 0 5
−20

−10

0

10

1

2

3
4

5

−100 0 100
−50

0

50

1
23

4

5 Direction 2

−20 0 20
−50

0

50

1
2 3

4

5

−5 0 5
−50

0

50

1
23

4

5

Direction 1

−50 0 50
−100

0

100

1
2

3 4

5

−20 0 20
−100

0

100

1
2

34

5

−5 0 5
−100

0

100

1
2

3 4

5

FIGURE 11.10: A panel plot of the bodyfat dataset of figure 11.4, now rotated so that
the covariance between all pairs of distinct dimensions is zero. Now we do not know
names for the directions — they’re linear combinations of the original variables. I
have scaled the axes so you can see details; notice that the blob is a little curved,
and there are several data points that seem to lie some way away from the blob,
which I have numbered.

Useful Facts: 11.1 Whitening a dataset

For a dataset {x}, compute:

• U , the matrix of eigenvectors of Covmat ({x});

• and mean ({x}).

Now compute {n} using the rule

ni = UT (xi −mean ({x})).

Then mean ({n}) = 0 and Covmat ({n}) is diagonal.
Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) (so
that Covmat ({x})U = UΛ). Assume that each of the diagonal entries
of Λ is greater than zero (otherwise there is a redundant dimension in
the data). Write λi for the i’th diagonal entry of Λ, and write Λ−(1/2)

for the diagonal matrix whose i’th diagonal entry is 1/
√
λi. Compute

{z} using the rule

zi = Λ(−1/2)U(xi −mean ({x})).

We have that mean ({z}) = 0 and Covmat ({z}) = I. The dataset {z}
is often known as whitened data.

Section 11.3 Principal Components Analysis 272

Translation

“Blob” coordinates

FIGURE 11.11: A 2D blob, with its natural blob coordinate system. The origin of this
coordinate system is at the mean of the data. The coordinate axes are (a) at right
angles to one another and (b) are directions that have no covariance.

It isn’t always a good idea to whiten data. In some circumstances, each
separate component is meaningful, and in a meaningful set of units. For example,
one of the components might be a length using a natural scale and the other might
be a time on a natural scale. When this happens, we might be reluctant to transform
the data, either because we don’t want to add lengths to times or because we want
to preserve the scales.

11.3 PRINCIPAL COMPONENTS ANALYSIS

Mostly, when one deals with high dimensional data, it isn’t clear which individual
components are important. As we have seen with the height weight dataset (for
example, in the case of density and weight) some components can be quite strongly
correlated. Equivalently, as in Figure 1, the blob is not aligned with the coordinate
axes.

11.3.1 The Blob Coordinate System and Smoothing

We can use the fact that we could rotate, translate and scale the blob to define
a coordinate system within the blob. The origin of that coordinate system is the
mean of the data, and the coordinate axes are given by the eigenvectors of the
covariance matrix. These are orthonormal, so they form a set of unit basis vectors
at right angles to one another (i.e. a coordinate system). You should think of these
as blob coordinates; Figure 11.11 illustrates a set of blob coordinates.

The blob coordinate system is important because, once we know the blob
coordinate system, we can identify important scales of variation in the data. For
example, if you look at Figure 11.11, you can see that this blob is extended much
further along one direction than along the other. We can use this information to
identify the most significant forms of variation in very high dimensional data. In
some directions in the blob coordinate system, the blob will be spread out — ie

Section 11.3 Principal Components Analysis 273

−10

−5

0

5

10

−505

−12

−10

−8

−6

−4

−2

0

−10

−5

0

5

10

−505

−12

−10

−8

−6

−4

−2

0

FIGURE 11.12: On the left, a blob of 3D data that has very low variance in two
directions in the blob coordinates. As a result, all the data points are very close to
a 1D blob. Experience shows that this is a common phenomenon. Although there
might be many components in the data items, all data points are very close to a
much lower dimensional object in the high dimensional space. When this is the
case, we could obtain a lower dimensional representation of the data by working in
blob coordinates, or we could smooth the data (as on the right), by projecting each
data point onto the lower dimensional space.

have large variance — but in others, it might not be.
Equivalently, imagine we choose to represent each data item in blob coordi-

nates. Then the mean over the dataset will be zero. Each pair of distinct coordi-
nates will be uncorrelated. Some coordinates — corresponding to directions where
the blob is spread out — will have a large range of values. Other coordinates —
directions in which the blob is small — will have a small range of values. We could
choose to replace these coordinates with zeros, with little significant loss in accu-
racy. The advantage of doing so is that we would have lower dimensional data to
deal with.

However, it isn’t particularly natural to work in blob coordinates. Each com-
ponent of a data item may have a distinct meaning and scale (i.e. feet, pounds,
and so on), but this is not preserved in any easy way in blob coordinates. Instead,
we should like to (a) compute a lower dimensional representation in blob coordi-
nates then (b) transform that representation into the original coordinate system of
the data item. Doing so is a form of smoothing — suppressing small, irrelevant
variations by exploiting multiple data items.

For example, look at Figure 11.12. Imagine we transform the blob on the left
to blob coordinates. The covariance matrix in these coordinates is a 3× 3 diagonal
matrix. One of the values on the diagonal is large, because the blob is extended on
one direction; but the other two are small. This means that, in blob coordinates, the

Section 11.3 Principal Components Analysis 274

data varies significantly in one direction, but very little in the other two directions.
Now imagine we project the data points onto the high-variation direction;

equivalently, we set the other two directions to zero for each data point. Each
of the new data points is very close to the corresponding old data point, because
by setting the small directions to zero we haven’t moved the point very much.
In blob coordinates, the covariance matrix of this new dataset has changed very
little. It is again a 3 × 3 diagonal matrix, but now two of the diagonal values are
zero, because there isn’t any variance in those directions. The third value is large,
because the blob is extended in that direction. We take the new dataset, and rotate
and translate it into the original coordinate system. Each point must lie close to the
corresponding point in the original dataset. However, the new dataset lies along a
straight line (because it lay on a straight line in the blob coordinates). This process
gets us the blob on the right in Figure 11.12. This blob is a smoothed version of
the original blob.

Smoothing works because when two data items are strongly correlated, the
value of one is a good guide to the value of the other. This principle works for
more than two data items. Section 1 describes an example where the data items
have dimension 101, but all values are extremely tightly correlated. In a case like
this, there may be very few dimensions in blob coordinates that have any significant
variation (3-6 for this case, depending on some details of what one believes is a small
number, and so on). The components are so strongly correlated in this case that
the 101-dimensional blob really looks like a slightly thickened 3 (or slightly more)
dimensional blob that has been inserted into a 101-dimensional space (Figure 11.12).
If we project the 101-dimensional data onto that structure in the original, 101-
dimensional space, we may get much better estimates of the components of each
data item than the original measuring device can supply. This occurs because each
component is now estimated using correlations between all the measurements.

11.3.2 The Low-Dimensional Representation of a Blob

We wish to construct an r dimensional representation of a blob, where we have
chosen r in advance. First, we compute {v} by translating the blob so its mean is
at the origin, so that vi = xi − mean ({x}). Now write V = [v1,v2, . . . ,vN]. The
covariance matrix of {v} is then

Covmat ({v}) = 1

N
VVT = Covmat ({x}).

Now write Λ for the diagonal matrix of eigenvalues of Covmat ({x}) and U for the
matrix of eigenvectors, so that Covmat ({x})U = UΛ. We assume that the elements
of Λ are sorted in decreasing order along the diagonal. The covariance matrix for
the dataset transformed into blob coordinates will be Λ. Notice that

Λ = UTCovmat ({x})U
= UTVVTU
= (UTV)(UTV)T .

This means we can interpret (UTV) as a new dataset {b}. This is our data, rotated
into blob coordinates.

Section 11.3 Principal Components Analysis 275

Now write Πr for the d× d matrix

[

Ir 0
0 0

]

which projects a d dimensional vector onto its first r components, and replaces the
others with zeros. Then we have that

Λr = ΠrΛΠ
T
r

is the covariance matrix for the reduced dimensional data in blob coordinates.
Notice that Λr keeps the r largest eigenvalues on the diagonal of Λ, and replaces
all others with zero.

We have

Λr = ΠrΛΠ
T
r

= ΠrUTCovmat ({x})UΠT
r

= (ΠrUTV)(VTUΠT
r)

= PPT

where P = (ΠrUTV). This represents our data, rotated into blob coordinates,
and then projected down to r dimensions, with remaining terms replaced by zeros.
Write {br} for this new dataset.

Occasionally, we need to refer to this representation, and we give it a special
name. Write

pcaproj (xi, r, {x}) = ΠrUT (xi −mean ({x}))
where the notation seeks to explicitly keep track of the fact that the low dimensional
representation of a particular data item depends on the whole dataset (because you
have to be able to compute the mean, and the eigenvectors of the covariance).
Notice that pcaproj (xi, r, {x}) is a representation of the dataset with important
properties:

• The representation is r-dimensional (i.e. the last d− r components are zero).

• Each pair of distinct components of {pcaproj (xi, r, {x})} has zero covariance.

• The first component of {pcaproj (xi, r, {x})} has largest variance; the second
component has second largest variance; and so on.

11.3.3 Smoothing Data with a Low-Dimensional Representation

We would now like to construct a low dimensional representation of the blob, in
the original coordinates. We do so by rotating the low-dimensional representation
back to the original coordinate system, then adding back the mean to translate the
origin back to where it started. We can write this as

pcasmooth (xi, r, {x}) = UΠT
r

(

ΠrUT (xi −mean ({x}))
)

+mean ({x})
= UΠT

r pcaproj (xi, r, {x}) +mean ({x})

Section 11.3 Principal Components Analysis 276

Project to get this 1D representation

Original blob

Translate to

origin by

subtracting the

mean

Rotate to line

up with axes

FIGURE 11.13: Computing a low dimensional representation for principal compo-
nents analysis.

we have a new representation of the i’th data item in the original space (Figure 1).
Now consider the dataset obtained by smoothing each of our data items. We write
this dataset as {pcasmooth (xi, r, {x})}.

You should think of {pcasmooth (xi, r, {x})} as a smoothed version of the
original data. One way to think of this process is that we have chosen a low-
dimensional basis that represents the main variance in the data rather well. It is
quite usual to think of a data item as being given by a the mean plus a weighted
sum of these basis elements. In this view, the first weight has larger variance than
the second, and so on. By construction, this dataset lies in an r dimensional affine
subspace of the original space. We constructed this r-dimensional space to preserve
the largest variance directions of the data. Each column of this matrix is known as
a principal component. In particular, we have constructed this dataset so that

Section 11.3 Principal Components Analysis 277

1D Representation

Rotated to line up

with “blob” coordinates

Add back mean

to get smoothed

data

FIGURE 11.14: Smoothing data with principal components analysis.

• mean ({pcasmooth (xi, r, {x})}) = mean ({x});

• Covmat ({pcasmooth (xi, r, {x})}) has rank r;

• Covmat ({pcasmooth (xi, r, {x})}) is the best approximation of Covmat ({x})
with rank r.

Figure 11.14 gives a visualization of the smoothing process. By comparing
figures 11.9 and 11.15, you can see that a real dataset can lose several dimensions
without much significant going wrong. As we shall see in the examples, some
datasets can lose many dimensions without anything bad happening.

Section 11.3 Principal Components Analysis 278

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 4

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 3

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 2

−100 0 100
−100

0

100

−100 0 100
−100

0

100

Direction 1

−100 0 100
−100

0

100

−100 0 100
−100

0

100

−100 0 100
−100

0

100

FIGURE 11.15: A panel plot of the bodyfat dataset of figure 11.4, with the dimension
reduced to two using principal components analysis. Compare this figure to figure
11.9, which is on the same set of axes. You can see that the blob has been squashed
in direction 3 and direction 4. But not much has really happened, because there
wasn’t very much variation in those directions in the first place.

Procedure: 11.1 Principal Components Analysis

Assume we have a general data set xi, consisting of N d-dimensional
vectors. Now write Σ = Covmat ({x}) for the covariance matrix.
Form U , Λ, such that ΣU = UΛ (these are the eigenvectors and eigen-
values of Σ). Ensure that the entries of Λ are sorted in decreasing order.
Choose r, the number of dimensions you wish to represent. Typically,
we do this by plotting the eigenvalues and looking for a “knee” (Fig-
ure ??). It is quite usual to do this by hand.
Constructing a low-dimensional representation: Form Ur, a
matrix consisting of the first r columns of U . Now compute
{pcaproj (xi, r, {x})} = {(ΠrUT (xi − mean ({x})))}. This is a set of
data vectors which are r dimensional, and where each component is
independent of each other component (i.e. the covariances of distinct
components are zero).
Smoothing the data: Form {pcasmooth (xi, r, {x})} =
{(Urpcaproj (xi, r, {x}) + mean ({x}))}. These are d dimensional
vectors that lie in a r-dimensional subspace of d-dimensional space.
The “missing dimensions” have the lowest variance, and are indepen-
dent.

Section 11.3 Principal Components Analysis 279

300 400 500 600 700 800
0.05

0.1

0.15

0.2

0.25

0.3
Mean spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

0 50 100 150
0

1

2

3

4
Sorted eigenvalues, 1995 spectra

Number of eigenvalue

V
al

ue

200 400 600 800
−0.2

−0.15

−0.1

−0.05

0
First PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.2

−0.1

0

0.1

0.2
Second PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue

300 400 500 600 700 800
−0.3

−0.2

−0.1

0

0.1
Third PC of spectral reflectance

Wavelength (nm)

R
ef

le
ct

an
ce

 v
al

ue
FIGURE 11.16: On the top left, the mean spectral reflectance of a dataset of 1995
spectral reflectances, collected by Kobus Barnard (at http:// www.cs. sfu.ca/

~ colour/data/). On the top right, eigenvalues of the covariance matrix of spec-
tral reflectance data, from a dataset of 1995 spectral reflectances, collected by Kobus
Barnard (at http:// www. cs. sfu. ca/ ~ colour/data/). Notice how the first few
eigenvalues are large, but most are very small; this suggests that a good represen-
tation using few principal components is available. The bottom row shows the
first three principal components. A linear combination of these, with appropriate
weights, added to the mean of figure ??, gives a good representation of the dataset.

11.3.4 The Error of the Low-Dimensional Representation

We took a dataset, {x}, and constructed a d-dimensional dataset {b} in blob coor-
dinates. We did so by translating, then rotating, the data, so no information was
lost; we could reconstruct our original dataset by rotating, then translating {b}.
But in blob coordinates we projected each data item down to the first r components
to get an r-dimensional dataset {br}. We then reconstructed a smoothed dataset
by rotating, then translating, {br}. Information has been lost here, but how much?

The answer is easy to get if you recall that rotations and translations do not
change lengths. This means that

||xi − pcasmooth (xi, r, {x}) ||2 = ||bi − br,i ||2.

This expression is easy to evaluate, because bi and br,i agree in their first r com-

Section 11.3 Principal Components Analysis 280

400 500 600 700
0

0.2

0.4

0.6

0.8
Approx with 0, 3, 5, 7 PCs

400 500 600 700
−0.2

−0.1

0

0.1

0.2

0.3

0.4
Error with 0, 3, 5, 7 PCs

FIGURE 11.17: On the left, a spectral reflectance curve (dashed) and approximations
using the mean, the mean and 3 principal components, the mean and 5 principal
components, and the mean and 7 principal components. Notice the mean is a rela-
tively poor approximation, but as the number of principal components goes up, the
error falls rather quickly. On the right is the error for these approximations. Fig-
ure plotted from a dataset of 1995 spectral reflectances, collected by Kobus Barnard
(at http: // www. cs. sfu. ca/ ~ colour/data/).

ponents. The remaining d− r components of br,i are zero. So we can write

||xi − pcasmooth (xi, r, {x}) ||2 =

d
∑

u=r+1

(b
(u)
i)2.

Now a natural measure of error is the average over the dataset of this term. We
have that

1

N

d
∑

u=r+1

(b
(u)
i)2 =

d
∑

u=r+1

var
({

b(u)
})

which is easy to evaluate, because we know these variances — they are the values
of the d−r eigenvalues that we decided to ignore. So the mean error can be written
as

1T (Λ− Λr)1.

Now we could choose r by identifying how much error we can tolerate. More usual
is to plot the eigenvalues of the covariance matrix, and look for a “knee”, like that
in Figure 1. You can see that the sum of remaining eigenvalues is small.

11.3.5 Example: Representing Spectral Reflectances

Diffuse surfaces reflect light uniformly in all directions. Examples of diffuse surfaces
include matte paint, many styles of cloth, many rough materials (bark, cement,
stone, etc.). One way to tell a diffuse surface is that it does not look brighter
(or darker) when you look at it along different directions. Diffuse surfaces can

Section 11.3 Principal Components Analysis 281

0 1000 2000 3000 4000
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

0 5 10 15 20
0

5

10

15

20
Eigenvalues, total of 213 images

Number of eigenvalue

V
al

ue

FIGURE 11.18: On the left,the eigenvalues of the covariance of the Japanese facial
expression dataset; there are 4096, so it’s hard to see the curve (which is packed
to the left). On the right, a zoomed version of the curve, showing how quickly the
values of the eigenvalues get small.

be colored, because the surface reflects different fractions of the light falling on it
at different wavelengths. This effect can be represented by measuring the spectral
reflectance of a surface, which is the fraction of light the surface reflects as a function
of wavelength. This is usually measured in the visual range of wavelengths (about
380nm to about 770 nm). Typical measurements are every few nm, depending on
the measurement device. I obtained data for 1995 different surfaces from http:

//www.cs.sfu.ca/~colour/data/ (there are a variety of great datasets here, from
Kobus Barnard).

Each spectrum has 101 measurements, which are spaced 4nm apart. This
represents surface properties to far greater precision than is really useful. Physical
properties of surfaces suggest that the reflectance can’t change too fast from wave-
length to wavelength. It turns out that very few principal components are sufficient
to describe almost any spectral reflectance function. Figure 11.16 shows the mean
spectral reflectance of this dataset, and Figure 11.16 shows the eigenvalues of the
covariance matrix.

This is tremendously useful in practice. One should think of a spectral re-
flectance as a function, usually written ρ(λ). What the principal components anal-
ysis tells us is that we can represent this function rather accurately on a (really
small) finite dimensional basis. This basis is shown in figure 11.16. This means
that there is a mean function r(λ) and k functions φm(λ) such that, for any ρ(λ),

ρ(λ) = r(λ) +

k
∑

i=1

ciφi(λ) + e(λ)

where e(λ) is the error of the representation, which we know is small (because it
consists of all the other principal components, which have tiny variance). In the
case of spectral reflectances, using a value of k around 3-5 works fine for most ap-
plications (Figure 11.17). This is useful, because when we want to predict what

Section 11.3 Principal Components Analysis 282

Mean image from Japanese Facial Expression dataset

First sixteen principal components of the Japanese Facial Expression dat

a

FIGURE 11.19: The mean and first 16 principal components of the Japanese facial
expression dataset.

a particular object will look like under a particular light, we don’t need to use a
detailed spectral reflectance model; instead, it’s enough to know the ci for that
object. This comes in useful in a variety of rendering applications in computer
graphics. It is also the key step in an important computer vision problem, called
color constancy. In this problem, we see a picture of a world of colored ob-
jects under unknown colored lights, and must determine what color the objects
are. Modern color constancy systems are quite accurate, even though the problem
sounds underconstrained. This is because they are able to exploit the fact that
relatively few ci are enough to accurately describe a surface reflectance.

11.3.6 Example: Representing Faces with Principal Components

An image is usually represented as an array of values. We will consider intensity
images, so there is a single intensity value in each cell. You can turn the image
into a vector by rearranging it, for example stacking the columns onto one another

Section 11.3 Principal Components Analysis 283

Sample Face Image

mean 1 5 10 20 50 100

FIGURE 11.20: Approximating a face image by the mean and some principal compo-
nents; notice how good the approximation becomes with relatively few components.

(use reshape in Matlab). This means you can take the principal components of a
set of images. Doing so was something of a fashionable pastime in computer vision
for a while, though there are some reasons that this is not a great representation of
pictures. However, the representation yields pictures that can give great intuition
into a dataset.

Figure ?? shows the mean of a set of face images encoding facial expressions of
Japanese women (available at http://www.kasrl.org/jaffe.html; there are tons
of face datasets at http://www.face-rec.org/databases/). I reduced the images
to 64x64, which gives a 4096 dimensional vector. The eigenvalues of the covariance
of this dataset are shown in figure 11.18; there are 4096 of them, so it’s hard to see
a trend, but the zoomed figure suggests that the first couple of hundred contain
most of the variance. Once we have constructed the principal components, they
can be rearranged into images; these images are shown in figure 11.19. Principal
components give quite good approximations to real images (figure 11.20).

The principal components sketch out the main kinds of variation in facial
expression. Notice how the mean face in Figure 11.19 looks like a relaxed face, but
with fuzzy boundaries. This is because the faces can’t be precisely aligned, because
each face has a slightly different shape. The way to interpret the components is to
remember one adjusts the mean towards a data point by adding (or subtracting)
some scale times the component. So the first few principal components have to
do with the shape of the haircut; by the fourth, we are dealing with taller/shorter
faces; then several components have to do with the height of the eyebrows, the
shape of the chin, and the position of the mouth; and so on. These are all images of
women who are not wearing spectacles. In face pictures taken from a wider set of
models, moustaches, beards and spectacles all typically appear in the first couple
of dozen principal components.

Section 11.4 Multi-Dimensional Scaling 284

11.4 MULTI-DIMENSIONAL SCALING

One way to get insight into a dataset is to plot it. But choosing what to plot for
a high dimensional dataset could be difficult. Assume we must plot the dataset
in two dimensions (by far the most common choice). We wish to build a scatter
plot in two dimensions — but where should we plot each data point? One natural
requirement is that the points be laid out in two dimensions in a way that reflects
how they sit in many dimensions. In particular, we would like points that are far
apart in the high dimensional space to be far apart in the plot, and points that are
close in the high dimensional space to be close in the plot.

11.4.1 Principal Coordinate Analysis

We will plot the high dimensional point xi at vi, which is a two-dimensional vector.
Now the squared distance between points i and j in the high dimensional space is

D
(2)
ij (x) = (xi − xj)

T (xi − xj)

(where the superscript is to remind you that this is a squared distance). We could
build an N × N matrix of squared distances, which we write D(2)(x). The i, j’th

entry in this matrix is D
(2)
ij (x), and the x argument means that the distances are

between points in the high-dimensional space. Now we could choose the vi to make

∑

ij

(

D
(2)
i j(x)−D

(2)
ij (v)

)2

as small as possible. Doing so should mean that points that are far apart in the
high dimensional space are far apart in the plot, and that points that are close in
the high dimensional space are close in the plot.

In its current form, the expression is difficult to deal with, but we can refine
it. Because translation does not change the distances between points, it cannot
change either of the D(2) matrices. So it is enough to solve the case when the mean
of the points xi is zero. We can assume that 1

N

∑

i xi = 0. Now write 1 for the
n-dimensional vector containing all ones, and I for the identity matrix. Notice that

D
(2)
ij = (xi − xj)

T (xi − xj) = xi · xi − 2xi · xj + xj · xj .

Now write

A =

[

I − 1

N
11T

]

.

Using this expression, you can show that the matrix M, defined below,

M(x) = −1

2
AD(2)(x)AT

has i, jth entry xi · xj (exercises). I now argue that, to make D(2)(v) is close to
D(2)(x), it is enough to make M(v) close to M(x). Proving this will take us out
of our way unnecessarily, so I omit a proof.

Section 11.4 Multi-Dimensional Scaling 285

We can choose a set of vi that makes D(2)(v) close to D(2)(x) quite easily,
using the method of the previous section. Take the dataset of N d-dimensional
column vectors xi, and form a matrix X by stacking the vectors, so

X = [x1,x2, . . . ,xN] .

In this notation, we have
M(x) = X TX .

This matrix is symmetric, and it is positive semidefinite. It can’t be positive defi-
nite, because the data is zero mean, so M(x)1 = 0. The M(v) we seek must (a)
be as close as possible to M(x) and (b) have rank 2. It must have rank 2 because
there must be some V which is 2 × N so that M(v) = VTV . The columns of this
V are our vi.

We can use the method of section 15.1.1 to construct M(v) and V . As usual,
we write U for the matrix of eigenvectors of M(x), Λ for the diagonal matrix of
eigenvalues sorted in descending order, Λ2 for the 2 × 2 upper left hand block of

Λ, and Λ
(1/2)
2 for the matrix of positive square roots of the eigenvalues. Then our

methods yield

M(v) = U2Λ
(1/2)
2 Λ

(1/2)
2 UT

2

and
V = Λ

(1/2)
2 UT

2

and we can plot these vi (example in section 1). This method for constructing a
plot is known as principal coordinate analysis.

This plot might not be perfect, because reducing the dimension of the data
points should cause some distortions. In many cases, the distortions are tolerable.
In other cases, we might need to use a more sophisticated scoring system that
penalizes some kinds of distortion more strongly than others. There are many ways
to do this; the general problem is known as multidimensional scaling.

Procedure: 11.2 Principal Coordinate Analysis

Assume we have a matrix D(2) consisting of the squared differences
between each pair of N points. We do not need to know the points. We
wish to compute a set of points in r dimensions, such that the distances
between these points are as similar as possible to the distances in D(2).
Form A =

[

I − 1
N 11T

]

. Form W = 1
2AD(2)AT . Form U , Λ, such that

WU = UΛ (these are the eigenvectors and eigenvalues of W). Ensure
that the entries of Λ are sorted in decreasing order. Choose r, the
number of dimensions you wish to represent. Form Λr, the top left

r × r block of Λ. Form Λ
(1/2)
r , whose entries are the positive square

roots of Λr. Form Ur, the matrix consisting of the first r columns of U .
Then V = Λ

(1/2)
2 UT

2 = [v1, . . . ,vN] is the set of points to plot.

Section 11.4 Multi-Dimensional Scaling 286

−800 −600 −400 −200 0 200 400
−1000

−800

−600

−400

−200

0

200

400

Cape Town

Kimberley

Mahikeng

Nelspruit

Polokwane

Pietermaritzburg

Johannesburg

Bloemfontein

Bhisho

FIGURE 11.21: On the left, a public domain map of South Africa,
obtained from http:// commons.wikimedia.org/ wiki/File: Map_of_ South_

Africa.svg , and edited to remove surrounding countries. On the right, the lo-
cations of the cities inferred by multidimensional scaling, rotated, translated and
scaled to allow a comparison to the map by eye. The map doesn’t have all the
provincial capitals on it, but it’s easy to see that MDS has placed the ones that are
there in the right places (use a piece of ruled tracing paper to check).

−0.4

−0.2

0

0.2

0.4
−0.3−0.2−0.100.10.2

−0.2

−0.1

0

0.1

0.2

−0.4 −0.2 0 0.2 0.4

−0.3−0.2−0.100.10.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

FIGURE 11.22: Two views of the spectral data of section 11.3.5, plotted as a scatter
plot by applying principal coordinate analysis to obtain a 3D set of points. Notice
that the data spreads out in 3D, but seems to lie on some structure; it certainly isn’t
a single blob. This suggests that further investigation would be fruitful.

11.4.2 Example: Mapping with Multidimensional Scaling

Multidimensional scaling gets positions (the V of section 11.4.1) from distances
(the D(2)(x) of section 11.4.1). This means we can use the method to build maps
from distances alone. I collected distance information from the web (I used http:

//www.distancefromto.net, but a google search on “city distances” yields a wide
range of possible sources), then apply multidimensional scaling. Table ?? shows
distances between the South African provincial capitals, in kilometers, rounded to
the nearest kilometer. I then used principal coordinate analysis to find positions

Section 11.4 Multi-Dimensional Scaling 287

for each capital, and rotated, translated and scaled the resulting plot to check it
against a real map (Figure 11.21).

One natural use of principal coordinate analysis is to see if one can spot
any structure in a dataset. Does the dataset form a blob, or is it clumpy? This
isn’t a perfect test, but it’s a good way to look and see if anything interesting is
happening. In figure 11.22, I show a 3D plot of the spectral data, reduced to three
dimensions using principal coordinate analysis. The plot is quite interesting. You
should notice that the data points are spread out in 3D, but actually seem to lie on
a complicated curved surface — they very clearly don’t form a uniform blob. To
me, the structure looks somewhat like a butterfly. I don’t know why this occurs, but
it certainly suggests that something worth investigating is going on. Perhaps the
choice of samples that were measured is funny; perhaps the measuring instrument
doesn’t make certain kinds of measurement; or perhaps there are physical processes
that prevent the data from spreading out over the space.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

Brazil

Congo

Cuba

Egypt
France

India

Israel

JapanChina USSR

USAYugoslavia

FIGURE 11.23: A map of country similarity, prepared from the data of figure ??. The
map is often interpreted as showing a variation in development or wealth (poorest
at bottom left to richest at top right); and freedom (most repressed at top left and
freeest at bottom right). I haven’t plotted these axes, because the interpretation
wouldn’t be consistent with current intuition (the similarity data is forty years old,
and quite a lot has happened in that time).

Our algorithm has one really interesting property. In some cases, we do not
actually know the datapoints as vectors. Instead, we just know distances between
the datapoints. This happens often in the social sciences, but there are important
cases in computer science as well. As a rather contrived example, one could survey
people about breakfast foods (say, eggs, bacon, cereal, oatmeal, pancakes, toast,
muffins, kippers and sausages for a total of 9 items). We ask each person to rate the
similarity of each pair of distinct items on some scale. We advise people that similar
items are ones where, if they were offered both, they would have no particular
preference; but, for dissimilar items, they would have a strong preference for one
over the other. The scale might be “very similar”, “quite similar”, “similar”, “quite
dissimilar”, and “very dissimilar” (scales like this are often called Likert scales).
We collect these similarities from many people for each pair of distinct items, and

Section 11.5 Example: Understanding Height and Weight 288

−600
−400

−200

−100−50050
−40

−20

0

20

40

−500
−400

−300
−200

−100

0

100
−50

0

50

FIGURE 11.24: Two views of a multidimensional scaling to three dimensions of the
height-weight dataset. Notice how the data seems to lie in a flat structure in 3D,
with one outlying data point. This means that the distances between data points can
be (largely) explained by a 2D representation.

then average the similarity over all respondents. We compute distances from the
similarities in a way that makes very similar items close and very dissimilar items
distant. Now we have a table of distances between items, and can compute a V
and produce a scatter plot. This plot is quite revealing, because items that most
people think are easily substituted appear close together, and items that are hard
to substitute are far apart. The neat trick here is that we did not start with a X ,
but with just a set of distances; but we were able to associate a vector with “eggs”,
and produce a meaningful plot.

Table ?? shows data from one such example. Students were interviewed (in
1971! things may have changed since then) about their perceptions of the similarity
of countries. The averaged perceived similarity is shown in table ??. Large numbers
reflect high similarity, so we can’t use these numbers directly. It is reasonable to
turn these numbers into distances by (a) using 0 as the distance between a country
and itself and (b) using e−sij as the distance between countries i and j (where sij is
the similarity between them). Once we have distances, we can apply the procedure
of section 11.4.1 to get points, then plot a scatter plot (Figure 11.23).

11.5 EXAMPLE: UNDERSTANDING HEIGHT AND WEIGHT

Recall the height-weight data set of section ?? (from http://www2.stetson.edu/

~jrasp/data.htm; look for bodyfat.xls at that URL). This is, in fact, a 16-dimensional
dataset. The entries are (in this order): bodyfat; density; age; weight; height; adi-
posity; neck; chest; abdomen; hip; thigh; knee; ankle; biceps; forearm; wrist. We
know already that many of these entries are correlated, but it’s hard to grasp a 16
dimensional dataset in one go. The first step is to investigate with a multidimen-
sional scaling.

Figure ?? shows a multidimensional scaling of this dataset down to three
dimensions. The dataset seems to lie on a (fairly) flat structure in 3D, meaning
that inter-point distances are relatively well explained by a 2D representation. Two
points seem to be special, and lie far away from the flat structure. The structure

Section 11.5 Example: Understanding Height and Weight 289

−500 −400 −300 −200
−100

−50

0

50
Height−Weight 2D MDS

FIGURE 11.25: A multidimensional scaling to two dimensions of the height-weight
dataset. One data point is clearly special, and another looks pretty special. The
data seems to form a blob, with one axis quite a lot more important than another.

isn’t perfectly flat, so there will be small errors in a 2D representation; but it’s clear
that a lot of dimensions are redundant. Figure 11.25 shows a 2D representation of
these points. They form a blob that is stretched along one axis, and there is no sign
of multiple blobs. There’s still at least one special point, which we shall ignore but
might be worth investigating further. The distortions involved in squashing this
dataset down to 2D seem to have made the second special point less obvious than
it was in figure ??.

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

bodyfat

density

age

weight

height

adiposity
neck

chest
abdomen

hip

thigh

knee

ankle
bicepsforearm

wrist

Height−Weight mean

FIGURE 11.26: The mean of the bodyfat.xls dataset. Each component is likely in a
different unit (though I don’t know the units), making it difficult to plot the data
without being misleading. I’ve adopted one solution here, by plotting each component
as a vertical bar, and labelling the bar. You shouldn’t try to compare the values to
one another. Instead, think of this plot as a compact version of a table.

The next step is to try a principal component analysis. Figure 11.26 shows
the mean of the dataset. The components of the dataset have different units, and

Section 11.5 Example: Understanding Height and Weight 290

shouldn’t really be compared. But it is difficult to interpret a table of 16 numbers, so
I have plotted the mean by showing a vertical bar for each component. Figure 11.27
shows the eigenvalues of the covariance for this dataset. Notice how one dimension is
very important, and after the third principal component, the contributions become
small. Of course, I could have said “fourth”, or “fifth”, or whatever — the precise
choice depends on how small a number you think is “small”.

2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200
Height−weight covariance eigenvalues

0 2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bodyfat

density

age

weight

height
adiposity

neck

chest
abdomen

hip
thigh

knee
ankle

biceps
forearmwrist

Height−Weight first principal component

FIGURE 11.27: On the left, the eigenvalues of the covariance matrix for the bodyfat
data set. Notice how fast the eigenvalues fall off; this means that most principal
components have very small variance, so that data can be represented well with a
small number of principal components. On the right, the first principal component
for this dataset, plotted using the same convention as for figure 11.26.

Figure 11.27 also shows the first principal component. The eigenvalues justify
thinking of each data item as (roughly) the mean plus some weight times this
principal component. From this plot you can see that data items with a larger
value of weight will also have larger values of most other measurements, except age
and density. You can also see how much larger; if the weight goes up by 8.5 units,
then the abdomen will go up by 3 units, and so on. This explains the main variation
in the dataset.

In the rotated coordinate system, the components are not correlated, and they
have different variances (which are the eigenvalues of the covariance matrix). You
can get some sense of the data by adding these variances; in this case, we get 1404.
This means that, in the translated and rotated coordinate system, the average data
point is about 37 =

√
1404 units away from the center (the origin). Translations

and rotations do not change distances, so the average data point is about 37 units
from the center in the original dataset, too. If we represent a datapoint by using
the mean and the first three principal components, there will be some error. We
can estimate the average error from the component variances. In this case, the sum
of the first three eigenvalues is 1357, so the mean square error in representing a
datapoint by the first three principal components is

√

(1404− 1357), or 6.8. The
relative error is 6.8/37 = 0.18. Another way to represent this information, which is
more widely used, is to say that the first three principal components explain all but

Section 11.5 Example: Understanding Height and Weight 291

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

bodyfat

density

age

weight
height

adiposityneck

chest

abdomen

hip
thigh

kneeanklebicepsforearm

wrist

Height−Weight second principal component

0 2 4 6 8 10 12 14 16 18
−0.4

−0.2

0

0.2

0.4

0.6

bodyfat

density

ageweightheight

adiposity

neck

chest

abdomen

hipthigh

kneeanklebicepsforearmwrist

Height−Weight third principal component

FIGURE 11.28: On the left, the second principal component, and on the right the
third principal component of the height-weight dataset.

(1404− 1357)/1404 = 0.034, or 3.4% of the variance; notice that this is the square
of the relative error, which will be a much smaller number.

All this means that explaining a data point as the mean and the first three
principal components produces relatively small errors. Figure 11.28 shows the sec-
ond and third principal component of the data. These two principal components
suggest some further conclusions. As age gets larger, height and weight get slightly
smaller, but the weight is redistributed; abdomen gets larger, whereas thigh gets
smaller. A smaller effect (the third principal component) links bodyfat and ab-
domen. As bodyfat goes up, so does abdomen.

C H A P T E R 12

Models of High Dimensional Data

High-dimensional data comes with problems. Data points tend not to be
where you think; they can scattered quite far apart, and can be quite far from
the mean. Except in special cases, the only really reliable probability model is the
Gaussian (or Gaussian blob, or blob).

There is an important rule of thumb for coping with high dimensional data:
Use simple models. A blob is another good, simple model. Modelling data as a
blob involves computing its mean and its covariance. Sometimes, as we shall see,
the covariance can be hard to compute. Even so, a blob model is really useful. It is
natural to try and extend this model to cover datasets that don’t obviously consist
of a single blob.

One very good, very simple, model for high dimensional data is to assume
that it consists of multiple blobs. To build models like this, we must determine
(a) what the blob parameters are and (b) which datapoints belong to which blob.
Generally, we will collect together data points that are close and form blobs out of
them. This process is known as clustering.

Clustering is a somewhat puzzling activity. It is extremely useful to cluster
data, and it seems to be quite important to do it reasonably well. But it surprisingly
hard to give crisp criteria for a good (resp. bad) clustering of a dataset. Usually,
clustering is part of building a model, and the main way to know that the clustering
algorithm is bad is that the model is bad.

12.1 THE CURSE OF DIMENSION

High dimensional models display uninituitive behavior (or, rather, it can take years
to make your intuition see the true behavior of high-dimensional models as natural).
In these models, most data lies in places you don’t expect. We will do several simple
calculations with an easy high-dimensional distribution to build some intuition.

Assume our data lies within a cube, with edge length two, centered on the
origin. This means that each component of xi lies in the range [−1, 1]. One simple
model for such data is to assume that each dimension has uniform probability
density in this range. In turn, this means that P (x) = 1

2d
. The mean of this model

is at the origin, which we write as 0.
The first surprising fact about high dimensional data is that most of the data

can lie quite far away from the mean. For example, we can divide our dataset into
two pieces. A(ǫ) consists of all data items where every component of the data has
a value in the range [−(1− ǫ), (1 − ǫ)]. B(ǫ) consists of all the rest of the data. If
you think of the data set as forming a cubical orange, then B(ǫ) is the rind (which
has thickness ǫ) and A(ǫ) is the fruit.

Your intuition will tell you that there is more fruit than rind. This is true,
for three dimensional oranges, but not true in high dimensions. The fact that the
orange is cubical just simplifies the calculations, but has nothing to do with the

292

Section 12.1 The Curse of Dimension 293

real problem.
We can compute P ({x ∈ A(ǫ)}) and P ({x ∈ A(ǫ)}). These probabilities tell

us the probability a data item lies in the fruit (resp. rind). P ({x ∈ A(ǫ)}) is easy
to compute as

P ({x ∈ A(ǫ)}) = (2(1− ǫ)))
d

(

1

2d

)

= (1− ǫ)d

and
P ({x ∈ B(ǫ)}) = 1− P ({x ∈ A(ǫ)}) = 1− (1− ǫ)d.

But notice that, as d → ∞,

P ({x ∈ A(ǫ)}) → 0.

This means that, for large d, we expect most of the data to be in B(ǫ). Equivalently,
for large d, we expect that at least one component of each data item is close to
either 1 or −1.

This suggests (correctly) that much data is quite far from the origin. It is
easy to compute the average of the squared distance of data from the origin. We
want

E
[

xTx
]

=

∫

box

(

∑

i

x2
i

)

P (x)dx

but we can rearrange, so that

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫

box
x2
iP (x)dx.

Now each component of x is independent, so that P (x) = P (x1)P (x2) . . . P (xd).
Now we substitute, to get

E
[

xTx
]

=
∑

i

E
[

x2
i

]

=
∑

i

∫ 1

−1

x2
iP (xi)dxi =

∑

i

1

2

∫ 1

−1

x2
i dxi =

d

3
,

so as d gets bigger, most data points will be further and further from the origin.
Worse, as d gets bigger, data points tend to get further and further from one
another. We can see this by computing the average of the squared distance of data
points from one another. Write u for one data point and v; we can compute

E
[

d(u,v)2
]

=

∫

box

∫

box

∑

i

(ui − vi)
2dudv = E

[

uTu
]

+ E
[

vTv
]

− E
[

uTv
]

but since u and v are independent, we have E
[

uTv
]

= E[u]
T
E[v] = 0. This yields

E
[

d(u,v)2
]

= 2
d

3

meaning that, for large d, we expect our data points to be quite far apart.

Section 12.2 The Multivariate Normal Distribution 294

It is difficult to build histogram representations for high dimensional data.
The strategy of dividing the domain into boxes, then counting data into them, fails
miserably because there are too many boxes. In the case of our cube, imagine we
wish to divide each dimension in half (i.e. between [−1, 0] and between [0, 1]). Then
we must have 2d boxes. This presents two problems. First, we will have difficulty
representing this number of boxes. Second, unless we are exceptionally lucky, most
boxes must be empty because we will not have 2d data items.

12.2 THE MULTIVARIATE NORMAL DISTRIBUTION

All the nasty facts about high dimensional data, above, suggest that we need to use
quite simple probability models. By far the most important model is the multivari-
ate normal distribution, which is quite often known as the multivariate gaussian
distribution. There are two sets of parameters in this model, the mean µ and the
covariance Σ. For a d-dimensional model, the mean is a d-dimensional column
vector and the covariance is a d× d dimensional matrix. The covariance is a sym-
metric matrix. For our definitions to be meaningful, the covariance matrix must be
positive definite.

The form of the distribution p(x|µ,Σ) is

p(x|µ,Σ) = 1
√

(2π)ddet(Σ)
exp

(

−1

2
(x − µ)TΣ−1(x− µ)

)

.

The following facts explain the names of the parameters:

Useful Facts: 12.1 Parameters of a Multivariate Normal Distribution

Assuming a multivariate normal distribution, we have

• E[x] = µ, meaning that the mean of the distribution is µ.

• E
[

(x− µ)(x − µ)T
]

= Σ, meaning that the entries in Σ represent
covariances.

Assume I know have a dataset of items xi, where i runs from 1 to N , and we
wish to model this data with a multivariate normal distribution. The maximum
likelihood estimate of the mean, µ̂, is

µ̂ =

∑

i xi

N

(which is quite easy to show). The maximum likelihood estimate of the covariance,
Σ̂, is

Σ̂ =

∑

i(xi − µ̂)(xi − µ̂)T

N

(which is rather a nuisance to show, because you need to know how to differentiate
a determinant). These facts mean that we already know most of what is interesting
about multivariate normal distributions (or gaussians).

Section 12.3 Agglomerative and Divisive Clustering 295

12.2.1 Affine Transformations and Gaussians

Gaussians behave very well under affine transformations. In fact, we’ve already
worked out all the math. Assume I have a dataset xi. The mean of the maximum
likelihood gaussian model is mean ({xi}), and the covariance is Covmat ({xi}). I
can now transform the data with an affine transformation, to get yi = Axi + b.
The mean of the maximum likelihood gaussian model for the transformed dataset
is mean ({yi}), and we’ve dealt with this; similarly, the covariance is Covmat ({yi}),
and we’ve dealt with this, too.

A very important point follows in an obvious way. I can apply an affine trans-
formation to any multivariate gaussian to obtain one with (a) zero mean and (b)
independent components. In turn, this means that, in the right coordinate sys-
tem, any gaussian is a product of zero mean one-dimensional normal distributions.
This fact is quite useful. For example, it means that simulating multivariate nor-
mal distributions is quite straightforward — you could simulate a standard normal
distribution for each component, then apply an affine transformation.

12.3 AGGLOMERATIVE AND DIVISIVE CLUSTERING

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (Algorithm 12.2). In agglomerative clustering, each data item is
regarded as a cluster, and clusters are recursively merged to yield a good clustering
(Algorithm 12.1).

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 12.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 12.2: Divisive Clustering, or Clustering by Splitting.

There are two major issues in thinking about clustering:

• What is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse nearby clusters; divisive clustering uses it to split in-
sufficiently coherent clusters. Even if a natural distance between data points

Section 12.3 Agglomerative and Divisive Clustering 296

is available (which might not be the case for vision problems), there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems
appropriate for the data set. For example, one might choose the distance
between the closest elements as the inter-cluster distance, which tends to
yield extended clusters (statisticians call this method single-link cluster-
ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second, which tends to yield rounded clusters
(statisticians call this method complete-link clustering). Finally, one could
use an average of distances between elements in the cluster, which also tends
to yield “rounded” clusters (statisticians call this method group average
clustering).

• How many clusters are there? This is an intrinsically difficult task if there
is no model for the process that generated the clusters. The algorithms we
have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram—a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances—
and an appropriate choice of clusters is made from the dendrogram (see the
example in Figure 12.1).

d
is

ta
n
ce

1 2 3 4 5 6

1

2

3

4

5

6

FIGURE 12.1: Left, a data set; right, a dendrogram obtained by agglomerative
clustering using single-link clustering. If one selects a particular value of distance,
then a horizontal line at that distance splits the dendrogram into clusters. This
representation makes it possible to guess how many clusters there are and to get
some insight into how good the clusters are.

The main difficulty in using a divisive model is knowing where to split. This is
sometimes made easier for particular kinds of data. For example, we could segment
an image by clustering pixel values. In this case, you can sometimes find good splits
by constructing a histogram of intensities, or of color values.

Section 12.3 Agglomerative and Divisive Clustering 297

Another important thing to notice about clustering from the example of fig-
ure 12.1 is that there is no right answer. There are a variety of different clusterings
of the same data. For example, depending on what scales in that figure mean, it
might be right to zoom out and regard all of the data as a single cluster, or to zoom
in and regard each data point as a cluster. Each of these representations may be
useful.

12.3.1 Clustering and Distance

In the algorithms above, and in what follows, we assume that the features are scaled
so that distances (measured in the usual way) between data points are a good
representation of their similarity. This is quite an important point. For example,
imagine we are clustering data representing brick walls. The features might contain
several distances: the spacing between the bricks, the length of the wall, the height
of the wall, and so on. If these distances are given in the same set of units, we could
have real trouble. For example, assume that the units are centimeters. Then the
spacing between bricks is of the order of one or two centimeters, but the heights
of the walls will be in the hundreds of centimeters. In turn, this means that the
distance between two datapoints is likely to be completely dominated by the height
and length data. This could be what we want, but it might also not be a good
thing.

There are some ways to manage this issue. One is to know what the features
measure, and know how they should be scaled. Usually, this happens because you
have a deep understanding of your data. If you don’t (which happens!), then it is
often a good idea to try and normalize the scale of the data set. There are two good
strategies. The simplest is to translate the data so that it has zero mean (this is
just for neatness - translation doesn’t change distances), then scale each direction
so that it has unit variance. More sophisticated is to translate the data so that
it has zero mean, then transform it so that each direction is independent and has
unit variance. Doing so is sometimes referred to as decorrelation or whitening
(because you make the data more like white noise).

12.3.2 Example: Agglomerative Clustering

Matlab provides some tools that are useful for agglomerative clustering. These
functions use a scheme where one first builds the whole tree of merges, then analyzes
that tree to decide which clustering to report. linkage will determine which pairs
of clusters should be merged at which step (there are arguments that allow you
to choose what type of inter-cluster distance it should use); dendrogram will plot
you a dendrogram; and cluster will extract the clusters from the linkage, using a
variety of options for choosing the clusters. I used these functions to prepare the
dendrogram of figure 12.2 for the height-weight dataset of section ?? (from http://

www2.stetson.edu/~jrasp/data.htm; look for bodyfat.xls). I deliberately forced
Matlab to plot the whole dendrogram, which accounts for the crowded look of the
figure (you can allow it to merge small leaves, etc.). I used a single-link strategy.
In particular, notice that many data points are about the same distance from one
another, which suggests a single big cluster with a smaller set of nearby clusters.
The clustering of figure 12.3 supports this view. I plotted the data points on the first

Section 12.4 The K-Means Algorithm 298

 60 64 57232 62225 7 13 21 46 93130209 51210184 99116124197218 69 89 90 91 92102131215117213115201103132111142110139135170173174160114198195137185105196127141136190122113126112123143 68 70220 73138202 77200118227230229233217 98125223 38 94100101104214133107219228 56108 15179129193186199167 53211 75224 76 67106119 95204 97 49 37189203188 4 11158 9145163 8221 72120206208 48191171128176183177 19 1146154 25151 26144 30 32 24 23161231 27 47 52 55 71109121 78 80236 84 85 81 16 63 6147 14 18 20155166168 29 66162234235134 45172 82 33156 2 83237 31148157164 34165181194 50 44240149153 88 54150 17159 28 87246239 3 22251 86207 58 65245 61238242247249252243244 40 59 43212140 10182 35192178180187222 12175 79 74226241248250205 96 5152169 36216 41 42 39
0

20

40

60

80

100

FIGURE 12.2: A dendrogram obtained from the body fat dataset, using single link
clustering. Recall that the data points are on the horizontal axis, and that the
vertical axis is distance; there is a horizontal line linking two clusters that get
merged, established at the height at which they’re merged. I have plotted the entire
dendrogram, despite the fact it’s a bit crowded at the bottom, because it shows that
most data points are relatively close (i.e. there are lots of horizontal branches at
about the same height).

two principal components, using different colors and shapes of marker to indicate
different clusters. There are a total of 30 clusters here, though most are small.

As another example, I obtained the seed dataset from the UC Irvine Machine
Learning Dataset Repository (you can find it at http://archive.ics.uci.edu/

ml/datasets/seeds). Each item consists of seven measurements of a wheat kernel;
there are three types of wheat represented in this dataset. As you can see in
figures 12.4 and 12.5, this data clusters rather well.

12.4 THE K-MEANS ALGORITHM

We could use any clustering method to vector quantize (Chapter ?? describes a
number of different clustering methods in the context of segmentation). However,
by far the most common method used is k-means clustering. Assume we have a
set of data items that we wish to cluster. We now assume that we know how many

Section 12.4 The K-Means Algorithm 299

−30 −20 −10 0 10 20 30 40
−100

−50

0

50

100

150

200

250

FIGURE 12.3: A clustering of the body fat dataset, using agglomerative clustering,
single link distance, and requiring a maximum of 30 clusters. I have plotted each
cluster with a distinct marker (though some markers differ only by color; you might
need to look at the PDF version to see this figure at its best). Notice that one
cluster contains much of the data, and that there are a set of small isolated clusters.
The original data is 16 dimensional, which presents plotting problems; I show a
scatter plot on the first two principal components (though I computed distances for
clustering in the original 16 dimensional space).

clusters there are in the data, which we write k. This is equivalent to fixing the
number of values we wish to quantize to. Each cluster is assumed to have a center;
we write the center of the ith cluster as ci. The jth data item to be clustered
is described by a feature vector xj . In our case, these items are vectors of filter
responses observed at image locations.

Because pattern elements repeat, and so are common, we can assume that
most data items are close to the center of their cluster. This suggests that we
cluster the data by minimizing the the objective function

Φ(clusters, data) =
∑

i∈clusters

∑

j∈ith cluster

(xj − ci)
T (xj − ci)

.

Notice that if we know the center for each cluster, it is easy to determine which

Section 12.4 The K-Means Algorithm 300

173207169155192203188186145159162195205193209206146156174177179160151184187150175191176178194190153158167182163183196181154170157144201210197148164168165171172149199161198141143185152147166180200202189142204208 1 59 35 50 56 25 18 47 5 23 26 3 8 29 22 6 57 39 45 48 49 21 54 14 15 7 33 51 53 4 12 46 34 68 16 41 42 30 55 67 69 27 70 32 20 64 2 58 28 43 66 13 19 9 10 36 37 38 11 44 63 24 60 31 65 52 71 77108137 75 96122101123134140 72 76 73 81 74132118107 92 93105 97104112119106 85 98116100113111124131 86 99 88 87110102128117126127109120103 79 95 82 94 80130133135 84 91129125136114138139 61 62 78115 90 83121 89 17 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIGURE 12.4: A dendrogram obtained from the seed dataset, using single link cluster-
ing. Recall that the data points are on the horizontal axis, and that the vertical axis
is distance; there is a horizontal line linking two clusters that get merged, established
at the height at which they’re merged. I have plotted the entire dendrogram, despite
the fact it’s a bit crowded at the bottom, because you can now see how clearly the
data set clusters into a small set of clusters — there are a small number of vertical
“runs”.

cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:

• Assume the cluster centers are known and, allocate each point to the closest
cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of

Section 12.4 The K-Means Algorithm 301

−4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

FIGURE 12.5: A clustering of the seed dataset, using agglomerative clustering, single
link distance, and requiring a maximum of 30 clusters. I have plotted each cluster
with a distinct marker (though some markers differ only by color; you might need to
look at the PDF version to see this figure at its best). Notice that there are a set of
fairly natural isolated clusters. The original data is 8 dimensional, which presents
plotting problems; I show a scatter plot on the first two principal components (though
I computed distances for clustering in the original 8 dimensional space).

the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized
in Algorithm 12.3). It is possible to search for an appropriate number of clusters
by applying k-means for different values of k and comparing the results; we defer a
discussion of this issue until Section ??.

Section 12.4 The K-Means Algorithm 302

Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 12.3: Clustering by K-Means.

C H A P T E R 13

Regression

Classification tries to predict a class from a data item. Regression tries to
predict a value. There are several reasons to do this. First, we might actually need
to predict a value. For example, we know the zip code of a house, the square footage
of its lot, the number of rooms and the square footage of the house, and we wish to
predict its likely sale price. As another example, we know the cost and condition of
a trading card for sale, and we wish to predict a likely profit in buying it and then
reselling it. As yet another example, we have a picture with some missing pixels –
perhaps there was text covering them, and we want to replace it – and we want to
fill in the missing values. Predicting values is very useful, and so there are many
examples like this.

Second, we might want to spot a trend in data. Doing so could make it
clear what is really happening. Here is an example from Efron (“COMPUTER-
INTENSIVE METHODS IN STATISTICAL REGRESSION”, B. Efron, SIAM Re-
view, 1988). Table 1 shows some data from medical devices, which sit in the body
and release a hormone. Each is supposed to have the same behavior. The data de-
scribes devices from three production lots (A, B, and C). The important question
is: Are the lots the same?

The scatter plot of figure 13.1 suggests what might be going on here; the
longer a device has been in service, the less hormone it has. Now the question of
whether the lots are different boils down to whether this relationship is different for
each lot. To answer this question, we need to determine the relationship between
time in service and hormone in more detail. This is what regression is for.

13.1 LEAST SQUARES AND LINEAR MODELS

Assume we have a dataset consisting of a set of N pairs (xi, yi). We think of
yi as the value of some function evaluated at xi, with some random component
added. This means there might be two data items where the xi are the same, and
the yi are different. We refer to the xi as explanatory variables and the yi is
a dependent variable. We want to build a model of the dependence between
y and x. This model will be used to predict values of y for new values of x, or
to understand the relationships between the x. The model needs to have some
probabilistic component; we do not expect that y is a function of x, and there is
likely some error in evaluating y anyhow.

A good, simple model is to assume that

y = xTβ + ξ

where ξ is a zero mean normal random variable with unknown variance (we will be
able to estimate this later). Here β is a vector of weights. This model might look
as though it will have trouble predicting cases where the y intercept is not zero (for

303

Section 13.1 Least Squares and Linear Models 304

Number A B C
1. 25.8 16.3 28.8
2. 20.5 11.6 22.0
3. 14.3 11.8 29.7
4. 23.2 32.5 28.9
5. 20.6 32.0 32.8
6. 31.1 18.0 32.5
7. 20.9 24.1 25.4
8. 20.9 26.5 31.7
9. 30.4 25.8 28.5

TABLE 13.1: A table showing the amount of hormone remaining in devices from lot
A, lot B and lot C. The numbering is arbitrary (i.e. there’s no relationship between
device 3 in lot A and device 3 in lot B). At first glance, lot C looks rather different
from lots A and B.

Number A B C
1. 99 376 119
2. 152 385 188
3. 293 402 115
4. 155 29 88
5. 196 76 58
6. 53 296 49
7. 184 151 150
8. 171 177 107
9. 52 209 125

TABLE 13.2: A table showing the time in service for devices from lot A, lot B and
lot C. The numbering is arbitrary (i.e. there’s no relationship between device 3 in
lot A and device 3 in lot B), but corresponds to the numbering of table 13.2. The
time may explain the differing amounts of hormone.

example, y = ax + b where b is not zero). It doesn’t, because we can attach a one
to the end of each x, so that it looks like (x1, x2, . . . , xn, 1)

T .
We must first determine β. We must have that β minimizes

∑

i

(yi − xT
i β)

2

which we can write more conveniently using vectors and matrices. Write y for the
vector

y1
y2
. . .
yn

Section 13.1 Least Squares and Linear Models 305

20 40 60 80 100 120 140 160 180 200
15

20

25

30

35

40

A

C

A

C

C

A

B

C

A

B
C

A

C

A

B

C

A

B

C

A

B

C

Time in service

A
m

ou
nt

 o
f h

or
m

on
e

Amount of hormone against time in service for Efron data, with regression line

FIGURE 13.1: A scatter plot of hormone against time for devices from tables 13.1
and 13.2. Notice that there is a pretty clear relationship between time and amount
of hormone (the longer the device has been in service the less hormone there is).
The issue now is to understand that relationship so that we can tell whether lots
A, B and C are the same or different. The best fit line to all the data is shown as
well, fitted using the methods of section 13.1.

and X for the matrix

xT
1

xT
2

. . .xT
n

 .

Then we want to minimize

(y −Xβ)T (y −Xβ)

which means that we must have

X TXβ −X Ty = 0.

For reasonable choices of features, we could expect that X TX — which should
strike you as being a lot like a covariance matrix — has full rank. If it does, this
equation is easy to solve. If it does not, there is more to do, which we will do below
once we have done some examples.

Section 13.1 Least Squares and Linear Models 306

13.1.1 Interpreting a Regression

For the data of tables 13.1 and 13.2, y is the hormone remaining in the device and
x = (time, 1). This gives us a model of the hormone in the device as

y = β1time + β2

which should look like the line in figure ??. We get β = (−0.0574, 34.2). Now we
can ask whether some lots of device behave differently than others. One way to
address this is to consider the residual,

yi − xT
i β

which is the difference between the observed value and what the model predicts.
Look at figure 13.4, which shows this residual plotted against the time. Notice that,
for batch A, the model always over predicts, whereas batches B and C seem about
the same; this suggests that there is something different about A — any effects
caused by the hormone being taken up from the device have been accounted for by
our model, and the residual shows the effects that are left.

You can regress anything against anything. For example, we will take the
bodyfat dataset. The dependent variable is weight, and the explanatory variables
are everything else (except the number of the example). Figure ?? shows the
residual for this regression, plotted against example number. Figure ?? shows a
regression of boston house prices against a variety of explanatory variables (the data
set is quite well known; you can find it at the UCI repository, http://archive.
ics.uci.edu/ml/datasets/Housing).

13.1.2 How Good is a Fit?

However, it is quite important to know whether the regression is helpful. For ex-
ample, it seems highly unlikely that regressing the first digit of a telephone number
against some numerological score of your name will work that well (or at all). There
are some simple facts we can use to make this easier. Assume we ensure that X
always has a column of ones (or twos, or threes, etc.) in it, so that the regression
can have a non-zero x-intercept. We now fit a model

y = Xβ + e

(where e is the vector of residual values) by choosing β such that eTe is minimized.
The facts give some useful technical results.

Section 13.1 Least Squares and Linear Models 307

20 40 60 80 100 120 140 160 180 200
−6

−4

−2

0

2

4

6

A

C

A

C

C

A

B
C

A

B
C

A

C

A

B

C

A

B

C

A

B

C

Time in service

R
es

id
ua

l f
ro

m
 r

eg
re

ss
ed

 a
m

ou
nt

 o
f h

or
m

on
e

Regression residual against time in service for Efron data

FIGURE 13.2: This is a scatter plot of residual — the distance between each data
point and the best fit line — against time for the devices from tables 13.1 and 13.2.
Now you should notice a clear difference; some devices from lots B and C have
positive and some negative residuals, but all lot A devices have negative residuals.
This means that, when we account for loss of hormone over time, lot A devices still
have less hormone in them. This is pretty good evidence that there is a problem
with this lot.

Useful Facts: 13.1 Regression

We write y = Xβ+ e, where e is the residual. Assume X has a column
of ones, and β is chosen to minimize eTe. Then we have

1. eTX = 0, i.e. that e is orthogonal to any column of X . This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the β term corresponding to that column to
make the error smaller. Another way to see this is to notice that
beta is chosen to minimize eTe, which is (y−Xβ)T (y−Xβ). Now
because this is a minimum, the gradient with respect to β is zero,
so (y −Xβ)T (−X) = −eTX = 0.

2. eT1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 1T (y −Xβ) = 0 (same as previous result).

4. eTXβ = 0 (first result means that this is true).

Section 13.1 Least Squares and Linear Models 308

100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30
re

si
du

al

body weight

Residual error against predicted body weight for the bodyfat dataset

FIGURE 13.3: This is a scatter plot of residual — the distance between each data
point and the best fit line — against weight for the bodyfat dataset. You should
notice that there is no particular pattern to the residuals — a good sign; if the
residual had a pattern, then there is some structure in the data that the regression
is not explaining. However, the residuals are moderately large. The mean weight in
this dataset is 178.9, and the standard deviation of the weight is 29.4. The mean of
the residual is zero — it has to be — and the standard deviation is 5. This means
that the regression is explaining a lot, but not all, of the variance in the weight.
This might be due to genuinely random errors, or it may be because there is some
explanatory variable missing.

Now y is a one dimensional dataset arranged into a vector, so mean ({yi})
is meaningful, as is var[yi]. Similarly, Xβ is a one dimensional dataset arranged
into a vector (its elements are xT

i β), as is e, so we know the meaning of mean and
variance for each. We have a particularly important result:

var[yi] = var
[

xT
i β
]

+ var[ei].

This is quite easy to show, with a little more notation. Write y = (1/N)(1Ty)1 for

Section 13.1 Least Squares and Linear Models 309

5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

25

30

house price in thousands of dollars

re
si

du
al

 o
f l

in
ea

r
re

gr
es

si
on

 a
ga

in
st

 1
3

ex
pl

an
at

or
y

va
ria

bl
es

scatter plot of residual against true value for Boston house price data

FIGURE 13.4: This is a scatter plot of residual — the distance between each data
point and the best fit line — against house price for a data set of Boston house
prices. There are a total of 13 explanatory variables here. You should notice that
there is no particular pattern to the residuals — a good sign; if the residual had a
pattern, then there is some structure in the data that the regression is not explaining.
However, the residuals are moderately large. The mean house price in this dataset
is 22.5 (thousand’s of dollars; this is quite old data) and the standard deviation is
9.2. The mean of the residual is zero — it has to be — and the standard deviation
is 4.7. This means that the regression is explaining only about half of the variance
in the house prices. This might be due to genuinely random errors, or — more
likely — there is some explanatory variable missing.

the vector whose entries are all mean ({yi}); similarly for e and for Xβ. We have

var[yi] = (1/N)(y − y)T (y − y)

Section 13.1 Least Squares and Linear Models 310

and so on for var[ei], etc. Notice from the facts that y = Xβ. Now

var[yi] = (1/N)
([

Xβ −Xβ
]

+ [e− e]
)T ([Xβ −Xβ

]

+ [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ 2 [e− e]T
[

Xβ −Xβ
]

+ [e− e]T [e− e]
)

= (1/N)
(

[

Xβ −Xβ
]T [Xβ −Xβ

]

+ [e− e]
T
[e− e]

)

because e = 0 and eTXβ = 0 and eT1 = 0

= var
[

xT
i β
]

+ var[ei].

This is extremely important, because us allows us to think about a regression as
explaining variance in y. As we are better at explaining y, var[ei] goes down. A
natural measure of the goodness of a regression is what percentage of the variance
of y it explains. This is known as R2 (the r-squared measure). We have

R2 =
var
[

xT
i β
]

var[yi]

which gives some sense of how well the regression explains the training data.
One natural use of a regression is to try and find potential explanatory vari-

ables. It is quite natural to want to look at the entries in β, and wonder what they
suggest about the real world. This is something that should be done with caution.
For example, you might think that a β component with large absolute value is evi-
dence that a variable is important; but it might just be evidence that that variable
is poorly scaled. Similarly, you might want to try and add an explanatory variable
to see if the R2 of the regression improves; but you will find that it always does,
because β is chosen to achieve the smallest possible value of R2.

There is a procedure from hypothesis testing that will tell whether an im-
provement in a regression is significant (and so whether one model is better than
another). Assume that we have two nested models. This means that model 2 sees
the same explanatory variables as model one, and some extra explanatory variables
as well. Write n1 for the number of explanatory variables in model 1, n2 for the
number of explanatory variables in model 2, e1 for the residual under model 1, e2
for the residual under model 2, s1 for eT1 e1, s2 for eT2 e2, and N for the number of
data points. If we compute the statistic

s2−s1
n2−n1

s2
N−n2

then, under the null hypothesis that model 2 is as good at explaining the data as
model 1, this statistic will have an F-distribution with (n2 − n1, N − n2) degrees
of freedom. This means you do what we are used to, after chapter 1; you compute
this number, look up the probability of getting this or a larger number under the
null hypothesis in tables (which is where you use the degrees of freedom), and then
use the significance level to decide whether to prefer model 2 to model 1 or not.

With this trick, it is natural to use regression as a tool to try and determine
what effects are important. We can do this by repeatedly (a) inserting plausible
explanatory variables then (b) checking whether the regression has improved or not.

Section 13.1 Least Squares and Linear Models 311

We could obtain plausible explanatory variables by looking for new measurements
(for example, does the acuity of color perception affect age at death?). We could
take non-linear functions of existing explanatory variables. Natural choices include
powers and logarithms.

Notice also that for some problems we can expect a power law — some-
thing like y = xa1

1 xa2

2 . . . xan
n . In this case, we have log y = a1 log x1 + a2 log x2 +

. . . an log xn, so it makes sense to take logs and then apply a linear regression.

13.1.3 Regularizing Linear Regressions

One occasionally important difficulty is that the explanatory variables might be
significantly correlated. If they are, then it will generally be easy to predict one
explanatory variable from another. This means that X TX may have some very
small eigenvalues (because there is a vector u so that Xu is small; this means that
uTX TXu must be small).

These small eigenvalues lead to bad predictions. If X TX has a small eigen-
value, then there is some vector v such that X TXv is small, or, equivalently, that
the matrix can turn large vectors into small ones; but that means that (X TX)−1

will turn some small vectors into big ones. In turn, this means that small errors in
y — which are likely inevitable — will result in big errors in β. This could cause
trouble in two ways. If we are looking at β to tell which explanatory variables are
important, then large errors in β will be a problem. And if we are trying to predict
new y values, we expect that errors in β turn into errors in prediction.

An important and useful way to suppress these errors is to regularize, using
the same trick we saw in the case of classification. Instead of choosing β to minimize

∑

i

(yi − xT
i β)

2 = (y −Xβ)T (y −Xβ)

we minimize

∑

i

(yi − xT
i β)

2 + λβTβ = (y −Xβ)T (y −Xβ) + λβTβ

where λ > 0 is a constant. We choose λ in the same way we used for classification;
split the training set into a training piece and a validation piece, train for different
values of λ, and test the resulting regressions on the validation piece. We choose
the λ that yields the smallest validation error. Notice we could use multiple splits,
and average over the splits.

This helps, because to solve for β we must solve the equation

(X TX + λI)β = X Ty

(obtained by differentiating with respect to β and setting to zero) and the smallest
eigenvalue of the matrix (X TX + λI) will be at least λ.

L1 Regularization and the Lasso
If we are going to use linear regression to recover a set of explanatory variables,

then we want some terms in β — terms corresponding to explanatory variables that

Section 13.1 Least Squares and Linear Models 312

aren’t relevant — to be zero. This will not happen, unless we are very lucky, with
our current schemes. Usually, numerical accidents and sampling effects mean that
an explanatory variable will be slightly correlated with the dependent variable.
Furthermore, our regularization does not help much, because the regularizer is
squared. There is no particular advantage to driving a small β to zero, because the
cost of it being non-zero is tiny.

There is a very clever method to encourage β to have zeros in it. We regularize
with what is known as an L1 norm. Rather than use βTβ, we use ||β ||1=

∑

j |βj |.
This means we must choose beta to minimize

∑

i

(yi − xT
i β)

2 + λ ||β ||1= (y −Xβ)T (y −Xβ) + λ ||β ||1 .

This strategy is known as the lasso. It encourages β to have zeros, because small
non-zero entries in β are relatively expensive. There are good numerical methods
for obtaining β under this scheme, which are way beyond our scope. In practice,
this method is very effective when x is large, and it is the method to be preferred.
There are also strong mathematical results suggesting that the choice of explanatory
variables one comes up with is quite good.

C H A P T E R 14

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are immensely useful,
and find wide application, because many problems are naturally decision problems.
For example, if you wish to determine whether to place an advert on a web-page or
not, you would use a classifier (i.e. look at the page, and say yes or no according
to some rule). As another example, if you have a program that you found for free
on the web, you would use a classifier to decide whether it was safe to run it (i.e.
look at the program, and say yes or no according to some rule). As yet another
example, you can think of doctors as extremely complex multi-class classifiers.

Classifiers are built by taking a set of labeled examples and using them to come
up with a rule that assigns a label to any new example. In the general problem,
we have a training dataset (xi, yi); each of the feature vectors xi consists of
measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example.

14.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 14.5.2 shows methods
for building multi-class classifiers from two-class classifiers.

14.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

Generally, we write outcomes as (i → j), meaning that an item of type i is
classified as an item of type j. There are four outcomes for the two-class case. Each
outcome has its own cost, which is known as a loss. Hence, we have a loss function
that we write as L(i → j), meaning the loss incurred when an object of type i is

313

Section 14.1 Classification, Error, and Loss 314

classified as having type j. Since losses associated with correct classification should
not affect the design of the classifier, L(i → i) must be zero, but the other losses
could be any positive numbers.

The risk function of a particular classification strategy is the expected loss
when using that strategy, as a function of the kind of item. The total risk is the
total expected loss when using the classifier. The total risk depends on the strategy,
but not on the examples. Write p(−1 → 1|using s) for the probability that class
−1 is labeled class 1 (and so on). Then, if there were two classes, the total risk of
using strategy s would be

R(s) = p(−1 → 1|using s)L(−1 → 1) + p(1 → −1|using s)L(−1 → 1).

The desirable strategy is one that minimizes this total risk.

A Two-class Classifier that Minimizes Total Risk
Assume that the classifier can choose between two classes and we have a

known loss function. There is some boundary in the feature space, which we call
the decision boundary, such that points on one side belong to class one and
points on the other side to class two.

We can resort to a trick to determine where the decision boundary is. If
the decision boundary is optimal, then for points on the decision boundary, either
choice of class has the same expected loss; if this weren’t so, we could obtain a
better classifier by always choosing one class (and so moving the boundary). This
means that, for measurements on the decision boundary, choosing label −1 yields
the same expected loss as choosing label 1.

Now write p(−1|x) for the posterior probability of label −1 given feature
vector x (and so on). Although this might be very hard to know in practice, we
can manipulate the abstraction and gain some insight. A choice of label y = 1 for
a point x at the decision boundary yields an expected loss

p(−1|x)L(−1 → 1) + p(1|x)L(1 → 1) = p(−1|x)L(−1 → 1),

and if we choose the other label, the expected loss is

p(1|x)L(1 → −1),

and these two terms must be equal. This means our decision boundary consists of
the points x, where

p(−1|x)L(−1 → 1) = p(1|x)L(1 → −1).

At points off the boundary, we must choose the class with the lowest expected loss.
Recall that if we choose label 1 for a point x, the expected loss is

p(−1|x)L(−1 → 1),

and so on. This means that we should choose label −1 if

p(−1|x)L(−1 → 1) > p(1|x)L(1 → −1)

Section 14.1 Classification, Error, and Loss 315

and label 1 if the inequality is reversed. Notice it does not matter which label we
choose at the decision boundary.

A Multi-class Classifier that Minimizes Total Risk
Analyzing expected loss gives a strategy for choosing from any number of

classes. We allow the option of refusing to decide which class an object belongs to,
which is useful in some problems. Refusing to decide costs d. Conveniently, if d is
larger than any misclassification loss, we will never refuse to decide. This means
our analysis covers the case when we are forced to decide. The same reasoning
applies as above, but there are more boundaries to consider. The simplest case,
which is widely dominant in vision, is when loss is 0-1 loss; here the correct answer
has zero loss, and any error costs one.

In this case, the best strategy, known as the Bayes classifier, is given in
Algorithm 14.1. The total risk associated with this rule is known as the Bayes
risk; this is the smallest possible risk that we can have using a classifier for this
problem. It is usually rather difficult to know what the Bayes classifier—and hence
the Bayes risk—is because the probabilities involved are not known exactly. In
a few cases, it is possible to write the rule out explicitly. One way to tell the
effectiveness of a technique for building classifiers is to study the behavior of the
risk as the number of examples increases (e.g., one might want the risk to converge
to the Bayes risk in probability if the number of examples is large). The Bayes risk
is seldom zero, as Figure 14.1 illustrates.

For a loss function

L(i → j) =

1 i 6= j
0 i = j
d no decision

the best strategy is

• if p(k|x) > p(i|x) for all i not equal to k, and if this probability is
greater than 1− d, choose type k;

• if there are several classes k1 . . . kj for which p(k1|x) = p(k2|x) =
. . . = p(kj |x) = p > p(i|x) for all i not in k1, . . . kj, and if p > 1−d,
choose uniformly and at random between k1, . . . kj ;

• if for all i we have 1− d ≥ q = p(k|x) ≥ p(i|x), refuse to decide.

Algorithm 14.1: The Bayes Classifier.

14.1.2 Example: Building a Classifier out of Histograms

As we saw in chapter 1, histograms reveal a great deal about data. A histogram is a
representation of a probability distribution, and so we can use histograms to build
classifiers. Recall that in the pizza data of chapter 1 (you can find a version of this
dataset, along with a neat backstory, at http://www.amstat.org/publications/
jse/jse_data_archive.htm), there were pizzas from two manufacturers — Eagle-
Boys and Dominos. For these pizza’s, we had the diameter, and some information

Section 14.1 Classification, Error, and Loss 316

FIGURE 14.1: This figure shows typical elements of a two-class classification problem.
We have plotted p(class|x) as a function of the feature x. Assuming that L(−1 →
1) = L(1 → −1), we have marked the classifier boundaries. In this case, the Bayes
risk is the sum of the amount of the posterior for class one in the class two region
and the amount of the posterior for class two in the class one region (the hatched
area in the figures). For the case on the left, the classes are well separated, which
means that the Bayes risk is small; for the case on the right, the Bayes risk is rather
large.

about the topping. We could then try to predict the manufacturer from the diam-
eter of the pizza.

We have two classes (EagleBoys and Dominos). Write x for the diameter of a
pizza. As we have seen, to classify we need a model of p(E|x). Since there are two
classes, p(D|x) = 1− p(E|x), so the model of p(E|x) is enough. A natural way to
get this model is to use Bayes rule:

p(E|x) = p(x|E)p(E)

p(x)

We can model p(x|E), p(E) and p(x) with histograms. We construct a set of boxes of
appropriate sizes, then count data items into the boxes. The conditional probability
that the diameter of a pizza lies in a box, conditioned on its coming from EagleBoys
is p(x|E); this can be estimated by taking the number of EagleBoys pizzas in that
box, and dividing by the total number of EagleBoys pizzas. Similarly, we can
estimate p(E) by the fraction of all pizzas that come from EagleBoys. Finally, we
could get p(x) by taking the fraction of all pizzas in the relevant histogram box.

However, we don’t really need p(x). Write L(E → D), etc. for the loss of
misclassifying pizzas. Recall that we want to test

p(E|x)L(E → D) > p(D|x)L(D → E)

but this is
p(x|E)p(E)

p(x)
L(E → D) >

p(x|D)p(D)

p(x)
L(D → E).

Section 14.1 Classification, Error, and Loss 317

The first thing to notice about this expression is that only the ratio of the losses
matters; we could write an equivalent test as

p(x|E)

p(x|D)
>

p(D)

p(E)

L(D → E)

L(E → D)
.

If we do not know the losses, we can simply test

p(x|E)

p(x|D)
> θ

against a variety of different thresholds θ, and then choose the one that works best
(for example, in a test on a different dataset).

Listing 14.1 shows a simple histogram-based classifier for the pizza data. To
train this classifier, I split the pizza data into two pools — training data, and test
data (more on this in the next section). I built the histograms on the training data,
then evaluated the classifier on test data for different values of the threshold in
listing 14.2

Different values of the threshold give different false-positive and false-negative
rates. This information can be summarized with a receiver operating charac-
teristic curve, or ROC. This curve is a plot of the detection rate or true
positive rate as a function of the false positive rate for a particular model as
the threshold changes (Figure ??). An ideal model would detect all positive cases
and produce no false positives, for any threshold value; in this case, the curve would
be a single point. A model that has no information about whether an example is
a positive or a negative will produce the line from (0, 0) to (1, 1). If the ROC lies
below this line, then we can produce a better classifier by inverting the decision of
the original classifier, so this line is the worst possible classifier. The detection rate
never goes down as the false positive rate goes up, so the ROC is the graph of a
non-decreasing function. Figure 14.2 shows the ROC for the pizza classifier.

Models of a classification problem can be compared by comparing their ROC’s.
Alternatively, we can build a summary of the ROC. Most commonly used in com-
puter vision is the area under the ROC (theAUC), which is 1 for a perfect classifier,
and 0.5 for a classifier that has no information about the problem. The area under
the ROC has the following interpretation: assume we select one positive example
and one negative example uniformly at random, and display them to the classifier;
the AUC is the probability that the classifier tells correctly which of these two is
positive.

14.1.3 Example: Classifying Using Nearest Neighbors

Example points near an unclassified point should indicate the class of that point.
Nearest neighborsmethods build classifiers using this heuristic. We could classify
a point by using the class of the nearest example whose class is known, or use several
example points and make them vote. It is reasonable to require that some minimum
number of points vote for the class we choose.

A (k, l) nearest neighbor classifier finds the k example points closest to the
point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than l votes (otherwise, the point

Section 14.1 Classification, Error, and Loss 318

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
po

si
tiv

e
ra

te
 o

r
de

te
ct

 r
at

e

False positive rate

FIGURE 14.2: The receiver operating curve for a histogram-based classifier to tell
EagleBoys pizza from Domino’s pizza using the diameter. This curve plots the
detection rate against the false-negative rate for a variety of values of the parameter
θ. A perfect classifier has an ROC that, on these axes, is a horizontal line at 100%
detection. This classifier isn’t very good, as you would expect if you look back at the
histograms for the pizza data.

is classified as unknown). A (k, 0)-nearest neighbor classifier is usually known as a
k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier is usually
known as a nearest neighbor classifier.

Nearest neighbor classifiers are known to be good, in the sense that the risk of
using a nearest neighbor classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbor classifier goes down as 1/

√
k.

In practice, one seldom uses more than three nearest neighbors. Furthermore, if
the Bayes risk is zero, the expected risk of using a k-nearest neighbor classifier is
also zero. Finding the k nearest points for a particular query can be difficult, and
Section 14.5.3 reviews this point.

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a color, and one is
an angle? One possibility is to whiten the features (section 1). This may be hard
if the dimension is so large that the covariance matrix is hard to estimate. It is
almost always a good idea to scale each feature independently so that the variance
of each feature is the same, or at least consistent; this prevents features with very
large scales dominating those with very small scales.

14.1.4 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier

Section 14.1 Classification, Error, and Loss 319

would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test
data. We cannot minimize this error directly, because we don’t know the test set
(if we did, special procedures in training apply). However, classifiers that have
small training error might not have small test error. One example of this problem
is the (silly) classifier that takes any data point and, if it is the same as a point
in the training set, emits the class of that point and otherwise chooses randomly
between the classes. This classifier has been learned from data, and has a zero
error rate on the training dataset; it is likely to be unhelpful on any other dataset,
however.

The phenomenon that causes test error to be worse than training error is
sometimes called overfitting (other names include selection bias, because the
training data has been selected and so isn’t exactly like the test data, and gen-
eralizing badly, because the classifier fails to generalize). It occurs because the
classifier has been trained to perform well on the training dataset. The training
dataset is not the same as the test dataset. First, it is quite likely smaller. Second,
it might be biased through a variety of accidents. This means that small training
error may have to do with quirks of the training dataset that don’t occur in other
sets of examples. It is quite possible that, in this case, the test error will be larger
than the training error. Generally, we expect classifiers to perform somewhat bet-
ter on the training set than on the test set. Overfitting can result in a substantial
difference between performance on the training set and performance on the test set.
One consequence of overfitting is that classifiers should always be evaluated on test
data. Doing this creates other problems, which we discuss in Section 14.1.5.

A procedure called regularization attaches a penalty term to the training
error to get a better estimate of the test error. This penalty term could take a vari-
ety of different forms, depending on the requirements of the application. Section 1
describes regularization in further detail.

14.1.5 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,
because the classifier has been trained to do well on that data, which will mean our
error rate estimate will be an underestimate. An alternative is to separate out some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data
when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because

Section 14.2 Basic Ideas for Numerical Minimization 320

it was trained on too little data?
We can resolve this problem with cross-validation, which involves repeat-

edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely future
performance of a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
classification errors (or risk) on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 14.2: Cross-Validation

The most usual form of this algorithm involves omitting single items from
the dataset and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates
are available. We do not justify this tool mathematically; however, it is worth
noticing that leave-one-out cross-validation, in some sense, looks at the sensitivity
of the classifier to a small change in the training set. If a classifier performs well
under this test, then large subsets of the dataset look similar to one another, which
suggests that a representation of the relevant probabilities derived from the dataset
might be quite good.

For a multi-class classifier, it is often helpful to know which classes were
misclassified. We can compute a class-confusion matrix, a table whose i, jth
entry is the number of times an item of true class i was labeled j by the classifier
(notice that this definition is not symmetric). If there are many classes, this matrix
can be rendered as an image (Figure 14.3), where the intensity values correspond
to counts; typically, larger values are lighter. Such images are quite easy to assess
at a glance. One looks for a light diagonal (because the diagonal elements are the
counts of correct classifications), for any row that seems dark (which means that
there were few elements in that class), and for bright off-diagonal elements (which
are high-frequency misclassifications).

14.2 BASIC IDEAS FOR NUMERICAL MINIMIZATION

Assume we have a function g(a), and we wish to obtain a value of a that achieves
the minimum for that function. Sometimes we can solve this problem in closed
form by constructing the gradient and finding a value of a the makes the gradient
zero. More usually we need a numerical method. Implementing these numerical

Section 14.2 Basic Ideas for Numerical Minimization 321

FIGURE 14.3: An example of a class confusion matrix from a recent image classi-
fication system, due to ?. The vertical bar shows the mapping of color to num-
ber (warmer colors are larger numbers). Note the redness of the diagonal; this is
good, because it means the diagonal values are large. There are spots of large off-
diagonal values, and these are informative, too. For example, this system confuses:
schooners and ketches (understandable); waterlily and lotus (again, understand-
able); and platypus and mayfly (which might suggest some feature engineering would
be a good idea). This figure was originally published as Figure 5 of “SVM-KNN:
Discriminative Nearest Neighbor Classification for Visual Category Recognition,”
by H. Zhang, A. Berg, M. Maire, and J. Malik, Proc. IEEE CVPR, 2006, c© IEEE,
2006.

methods is a specialized business, and it is usual to use general optimization codes.
This section is intended to sketch how such codes work, so you can read manual
pages, etc. more effectively. Personally, I am a happy user of Matlab’s fminunc,
although the many different settings take some getting used to.

14.2.1 Overview

Typical codes take a description of the objective function (typically, the name of
a function), a start point for the search, and a collection of parameters. All codes
take an estimate a(i), update it to a(i+1), then check to see whether the result is
a minimum. This process is started from the start point. The update is usually
obtained by computing a direction p(i) such that for small values of h, g(a(i)+hp(i))
is smaller than g(a(i)). Such a direction is known as a descent direction.

Assume we have a descent direction. We must now choose how far to travel
along that direction. We can see g(a(i)+hp(i)) as a function of h. Write this function
as φ(h). We start at h = 0 (which is the original value a(i), so φ(0) = g(a(i)), and

Section 14.2 Basic Ideas for Numerical Minimization 322

move in the direction of increasing h to find a small value of φ(h) that is less than
φ(0). The descent direction was chosen so that for small h > 0, φ(h) < φ(0); one
way to tell we are at a minimum is we cannot choose a descent direction. Searching
for a good value of h is known as line search. Typically, this search involves a
sequence of estimated values of h, which we write hi. One algorithm is to start
with (say) h0 = 1; if φ(hi) is not small enough (and there are other tests we may
need to apply — this is a summary!), we compute h(i+1) = (1/2)hi. This stops
when some hi passes a test, or when it is so small that the step is pointless.

14.2.2 Gradient Descent

One method to choose a descent direction is gradient descent, which uses the
negative gradient of the function. Recall our notation that

a =

a1
a2
. . .
ad

and that

∇g =

∂g
∂a1

∂g
∂a2

. . .
∂g
∂ad

.

We can write a Taylor series expansion for the function g(a(i) + hp(i)). We have
that

g(a(i) + hp(i)) = g(a(i)) + h(∇g)Tp(i)) +O(h2)

This means that we can expect that if

p(i) = −∇g(a(i)),

we expect that, at least for small values of h, g(a(i)+hp(i)) will be less than g(a(i)).
This works (as long as g is differentiable, and quite often when it isn’t) because

g must go down for at least small steps in this direction. There are two ways
to evaluate a gradient. You can require that the software estimate a numerical
derivative for you, which usually slows things down somewhat, or you can supply a
gradient value. Usually this gradient value must be computed by the same function
that computes the objective function value.

One tip: in my experience, about 99% of problems with numerical optimiza-
tion codes occur because the user didn’t check that the gradient their function
computed is right. Most codes will compute a numerical gradient for you, then
check that against your gradient; if they’re sufficiently different, the code will com-
plain. You don’t want to do this at runtime, because it slows things up, but it’s an
excellent idea to check.

Section 14.2 Basic Ideas for Numerical Minimization 323

14.2.3 Stochastic Gradient Descent

Assume we wish to minimize some function g(a) = g0(a) + (1/N)
∑N

i=1 gi(a), as a
function of a. Gradient descent would require us to form

−∇g(a) = −
(

∇g0(a) + (1/N)

N
∑

i=1

∇gi(a)

)

and then take a small step in this direction. But if N is large, this is unattractive, as
we might have to sum a lot of terms. This happens a lot in building classifiers, where
you might quite reasonably expect to deal with millions of examples. Touching each
example at each step really is impractical.

Instead, assume that, at each step, we choose a number k in the range 1 . . .N
uniformly and at random, and form

pk = − (∇g0(a) +∇gk(a))

and then take a small step along pk. Our new point becomes

a(i+1) = a(i) + ηp
(i)
k ,

where η is called the steplength (even though it very often isn’t the length of the
step we take!). It is easy to show that

E[pk] = ∇g(a)

(where the expectation is over the random choice of k). This implies that if we take
many small steps along pk, they should average out to a step backwards along the
gradient. This approach is known as stochastic gradient descent (because we’re
not going along the gradient, but along a random vector which is the gradient only
in expectation). It isn’t obvious that stochastic gradient descent is a good idea.
Although each step is easy to take, we may need to take more steps. The question
is then whether we gain in the increased speed of the step what we lose by having
to take more steps. Not much is known theoretically, but in practice the approach
is hugely successful for training classifiers.

Choosing a steplength η takes some work. Line search won’t work, because
we don’t want to evaluate the function g, because doing so involves looking at each
of the gi terms. Instead, one uses a steplength that is large at the start — so that
it can explore large changes in the values of the classifier parameters — and small
steps later — so that it settles down. One useful strategy is to divide training into
epochs. Each epoch is a block of a fixed number of iterations. Each iteration is one
of the steps given above, with fixed steplength. However, the steplength changes
from epoch to epoch. In particular, in the r’th epoch, the steplength is

η(r) =
a

r + b

where a and b are constants chosen by experiment with small subsets of the dataset.
One cannot really test whether stochastic gradient descent has converged to

the right answer. A better approach is to plot the error as a function of epoch on
a validation set. This should vary randomly, but generally go down as the epochs
proceed.

Section 14.2 Basic Ideas for Numerical Minimization 324

14.2.4 Newton’s Method

Another way to choose a descent direction is Newton’s method. We will start
with Newton’s method in one dimension, then describe it in multiple dimensions.
We seek a point a so that dg

da(a) is zero, and we will check the second derivative to
find out whether the point we have is a maximum or minimum. Now assume our
estimate a(i) is close to the right point. We would like to choose p(i) so that

dg

da
(a(i) + p(i)) = 0.

Now we can expand g in a Taylor series to second order. We have that

g(a(i) + p(i)) = g(a(i)) + (
dg

da
(a(i)))p(i) +

1

2

d2g

da2
(a(i))(p(i))2 +O((p(i))3).

so that
dg

da
(a(i) + p(i)) ≈ (

dg

da
(a(i))) +

d2g

da2
(a(i))(p(i)).

Now we want p(i) to have the property that dg
da (a

(i) + p(i)) = 0. We can write

(
dg

da
(a(i))) +

d2g

da2
(a(i))(p(i)) = 0

so that

p(i) = − (dgda(a
(i)))

d2g
da2 (a(i))

.

The same argument works in multiple dimensions, but we need to use vector
calculus now. The point we seek has the property that ∇g(a) = 0. Now assume
that our estimate a(i) is rather close to the right point. We can then write a Taylor
series. Write H(a(i)) for the matrix of second partial derivatives of g, evaluated at
a(i). This is usually called the Hessian. The Taylor series for g(a(i) + p) is then

g(a(i) + p) ≈ g(a(i)) +∇g(a(i))p+
1

2
pTHp

and so we have
∇g(a(i) + p) ≈ ∇g(a(i)) +Hp.

Now we want a(i+1) = a(i) + p to be the right answer. So we want

∇g(a(i)) +Hp = 0

or
Hp = −∇g(a(i)).

In the ideal case, this update places a(i+1) on the solution. This doesn’t happen all
that often (though it can happen in important cases), and we may need to iterate.
When we are close to the right point, Newton’s method can converge extremely
fast.

Section 14.3 Logistic Regression, Minimizing Loss, and Regularization 325

However, Newton’s method can behave rather badly; it is particularly prone
to do so when we start too far from the right position. It is helpful to see why there
can be a problem. If we choose p so that

Hp = −∇g(a(i)),

we can look at how g(a(i) + hp) behaves as a function of h. We have

g(a(i) + hp) ≈ g(a(i)) + h∇g(a(i))p+O(h2)

= g(a(i))− h(∇g(a(i))TH−1∇g(a(i))T) +O(h2)

Now imagine that H is not positive definite; then we could have that

∇g(a(i))TH−1∇g(a(i))T

is negative; in turn, this would mean that for small values of h, g(a(i) + hp) will
be larger than g(a(i)), so we would be going in the wrong direction. However,
if H is positive definite, there are no difficulties. This is worth knowing both
because there is a fix that typical codes apply (they use a matrix that is close to H
and positive definite, which they construct using a variety of clever methods) and
because problems where H is positive definite everywhere must display specially
good behavior.

Typical codes estimate a p using a modified form of Newton’s method, then
apply the line search above. To use Newton’s method, you must either allow the
code to compute a numerical Hessian (which can be rather slow), or provide the
Hessian yourself.

Another tip: in my experience, about 99% of problems with codes that use
Newton’s method occur because the user didn’t check that both the gradient and the
Hessian their function computed is right. Again, most codes will check a numerical
estimate against your value if you want. It’s an excellent idea to check.

14.3 LOGISTIC REGRESSION, MINIMIZING LOSS, AND REGULARIZATION

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We seek a rule that predicts the sign of y for any point x; this rule is our classifier.

14.3.1 Logistic Regression

Logistic regression is a classifier that models the class-conditional densities by
requiring that

log
p(1|x, a)
p(−1|x) = aTx

where a is a vector of parameters. Assume we know a good value of a, and the loss
for false positives and for false negatives has the same value. Write γ = aTx. Our

Section 14.3 Logistic Regression, Minimizing Loss, and Regularization 326

classifier will be:

choose

1 if γ > 0
−1 if γ < 0
randomly if γ = 0.

The decision boundary here will be a hyperplane passing through the origin
of the feature space. Notice that we can turn this into a general hyperplane in
the original feature space by extending each example’s feature vector by attaching
a 1 as the last component of the feature vector x. This trick simplifies notation,
which is why we adopt it here. It is straightforward to estimate a using maximum
likelihood. Note that

p(1|x, a) = expaTx

1 + expaTx

and

p(−1|x, a) = 1

1 + expaTx
.

We adopt a notational trick. The i’th example has a label yi, which is either
1 or −1. This means that (yi + 1)/2 can be thought of as a switch — the term is
zero when yi = −1, and one when yi = 1. We can now write the log-likelihood of
a dataset as

∑

i∈data

log p(yi|xi, a) =
∑

i∈positive examples

log p(1|xi, a) +

∑

i∈negative examples

log p(−1|xi, a)

=
∑

i∈positive examples

{

aTxi − log
(

1 + expaTxi

)}

+

∑

i∈negative examples

{

− log
(

1 + expaTxi

)}

=
∑

i∈examples

{

aTxi
(yi + 1)

2
− log

(

1 + expaTxi

)

}

Now we could estimate the correct set of parameters â by solving for the
maximum of the log-likelihood. In fact, it is convenient to search for the minimum
of the negative log-likelihood (which is at the same point). You can think of this as
an error function, because we seek the smallest value (and because it is, as we shall
see below). We will divide this function by the number of examples. This doesn’t
change the location of the minimum, but will make for clean notation later. We
must choose â to minimize

−

∑

i∈examples

1

N

{

(
1 + yi

2
)aTx− log

(

1 + expaTx
)

}

 .

Section 14.3 Logistic Regression, Minimizing Loss, and Regularization 327

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Hinge Loss

Logistic Loss

FIGURE 14.4: The logistic loss and the hinge loss, plotted for the case yi = 1. In the
case of the logistic loss, the horizontal variable is the γi = a · xi of the text. In the
case of the hinge loss, the horizontal variable is the w · xi + b of the text. Notice
that in each case, giving a strong negative response to this positive example causes a
loss, that grows linearly as the magnitude of the response grows (if it grew faster, we
might fear robustness problems). Notice also that giving an insufficiently positive
response also causes a loss. The hinge loss isn’t differentiable, and the logistic loss
is.

You can think of the objective function

−

∑

i∈examples

1

N

{

(
1 + yi

2
)aTx− log

(

1 + expaTx
)

}

 .

as the average, over the examples, of a loss function evaluated at each example. It
is easier to see this if we rewrite it. Write γi = aTxi. Then the term for the ith
example is

L(yi, γi) = −
{

1

2
(1 + yi)γi − log (1 + exp γi)

}

.

Section 14.3 Logistic Regression, Minimizing Loss, and Regularization 328

Now if yi = −1, we have

L(yi, γi) = −{− log (1 + exp γi)}
= {log (1 + exp (−yiγi))}

and if yi = 1, we have

L(yi, γi) = −{γi − log (1 + exp γi)}
= {log (exp−yiγi + 1)− log exp−yiγi + log exp−yiγi}
= {log (1 + exp (−yiγi))}

This means that we can write the objective function as

1

N

N
∑

i=1

L(yi, γi) =
1

N

N
∑

i=1

log (1 + exp (−yiγi))

The function L(1, γ) is plotted in Figure 14.4. This loss is sometimes known as
the logistic loss. This loss very strongly penalizes a large positive γi if yi is
negative (and vice versa). However, there is no significant advantage to having a
large positive γi if yi is positive. This means that the significant components of
the loss function will be due to examples that the classifier gets wrong, but also
due to examples that have γi near zero (i.e., the example is close to the decision
boundary). Maximizing the likelihood is equivalent to minimizing this risk as a
function of a.

14.3.2 Regularization

Now assume we want to use Newton’s method to minimize the loss for a logistic
regression method. The Hessian will be

H =
∑

i∈examples

exp γi
(1 + exp γi)2

xix
T
i .

The Hessian will always be positive semidefinite. It is a weighted sum of terms
xix

T
i which are positive semidefinite, because

vT (xix
T
i)v = (vTxi)(x

T
i v) = (vTxi)

2 ≥ 0.

The weights are positive, so the Hessian must be positive semidefinite.
Notice that data points where γi has a large absolute value make little con-

tribution to the Hessian—it is affected mainly by points where γi is small, that
is, points near the boundary. For these points, the Hessian looks like a weighted
covariance matrix. If there are enough data points where the γi are small, then we
expect the Hessian to be positive definite, because we expect that the corresponding
data points will span the feature space. But if we have features that are strongly
correlated, the Hessian may one or more small eigenvalues. The easiest way to
see this is to use the analogy with a covariance matrix. If the γi are small, the
weights will be about even and don’t matter that much. So the Hessian is basically

Section 14.4 The Linear Support Vector Machine 329

a covariance. But, because the features are correlated, this covariance matrix will
have some small eigenvalues.

These small eigenvalues present a serious nuisance. We would typically maxi-
mize using Newton’s method, which involves updating an estimate a(i) by comput-
ing a(i+1) = a(i)+δa. Recall we get the step δa by solving H(δa) = −∇f . When H
has small eigenvalues, many different δa will produce acceptable solutions, because
there are vectors u such that Hu ≈ 0. This means that a wide range of different
a(i+1) have essentially the same value of loss. In turn, many choices of a will give
about the same loss on the training data. The training data offers no reason to
choose between these a.

However, a with very large norm may behave badly on future test data, be-
cause they will tend to produce large values of aTx for test data items x. In turn,
these can produce large losses, particularly if the sign is wrong. This suggests that
we should use a value of a that gives small training loss, and also has a small
norm. In turn, this suggests we change the objective function by adding a term
that discourages a with large norm. This term is referred to as a regularizer,
because it tends to discourage solutions that are large (and so have possible high
loss on future test data) but are not strongly supported by the training data. The
objective function becomes

Training Loss + Regularizer

which is

Training Loss +
λ

2
(Norm of a)

which is
1

N

∑

i∈examples

{

log(1 + exp−yia
Txi

}

+
λ

2
aTa

where λ > 0 is a constant chosen for good performance, and I divided by 2 to make
gradients have a cleaner form. Too large a value of λ, and the classifier will behave
poorly on training and test data; too small a value, and the classifier will behave
poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error.

Regularizing training loss using the norm is a general recipe, and can be
applied to most of the classifiers we describe. For some classifiers, the reasons this
approach works are more recondite than those sketched here, but the model here is
informative. Norms other than L2—that is, ||x ||22 = xTx—can be used successfully.
The most commonly used alternative is L1—that is, ||x ||1 =

∑

i abs (xi)—which
leads to much more intricate minimization problems but strongly encourages zeros
in the coefficients of the classifier, which is sometimes desirable.

14.4 THE LINEAR SUPPORT VECTOR MACHINE

Again, assume we have a set of N example points xi that belong to two classes,
which we indicate by 1 and −1. These points come with their class labels, which

Section 14.4 The Linear Support Vector Machine 330

we write as yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We seek a rule that predicts the sign of y for any point x; this rule is our classifier.

14.4.1 Classifying with a Hyperplane

We will use a linear rule, so that for a new data item x, we will predict

sign ((w · x+ b)).

You should think of w and b as representing a hyperplane which separates the
positive data from the negative data. On our training data, we would like to have

yi (w · xi + b) > 0

for every example point. Notice the devious use of the sign of yi — the inequality
means that, when yi is negative (resp. positive), (w · xi + b) is negative (resp.
positive). For the moment, we assume that the data is such that we can satisfy all
these inequalities. The inequalities identify a family of hyperplanes that separate
the positive data from the negative data. Each of these hyperplanes must separate
the convex hull of one set of examples from the convex hull of the other set of
examples. The most conservative choice of hyperplane is the one that is farthest
from both hulls. This is obtained by joining the closest points on the two hulls,
and constructing a hyperplane perpendicular to this line and through its midpoint.
This hyperplane is as far as possible from each set, in the sense that it maximizes
the minimum distance from example points to the hyperplane (Figure 14.5). We
need an expression for this distance.

Now we can choose the scale of w and b because scaling the two together by
a positive number doesn’t affect the validity of the constraints yi(w · xi + b) > 0.
This means that we can choose w and b such that for every data point we have

yi (w · xi + b) ≥ 1

and such that equality is achieved on at least one point on each side of the hyper-
plane. Now assume that xk achieves equality and yk = 1, and xl achieves equality
and yl = −1. This means that xk is on one side of the hyperplane and xl is on the
other. Furthermore, the distance from xl to the hyperplane is minimal (among the
points on the same side as xl), as is the distance from xk to the hyperplane. Notice
that there might be several points with these properties.

This means that w · (x1 − x2) = 2, so that

dist(xk, hyperplane) + dist(xl, hyperplane)

which is

(
w

|w | · xk +
b

|w |)− (
w

|w | · x1 +
b

|w |),

becomes
w

|w | · (x1 − x2) =
2

|w | .

Section 14.4 The Linear Support Vector Machine 331

x

x l

k

FIGURE 14.5: The hyperplane constructed by a support vector classifier for a plane
dataset. The filled circles are data points corresponding to one class, and the empty
circles are data points corresponding to the other. We have drawn in the convex hull
of each dataset. The most conservative choice of hyperplane is one that maximizes
the minimum distance from each hull to the hyperplane. A hyperplane with this
property is obtained by constructing the shortest line segment between the hulls
and then obtaining a hyperplane perpendicular to this line segment and through
its midpoint. Only a subset of the data determines the hyperplane. Of particular
interest are points on each convex hull that are associated with a minimum distance
between the hulls. We use these points to find the hyperplane in the text.

This means that maximizing the distance is the same as minimizing (1/2)w ·w.
In many cases, we cannot satisfy the inequalities. We introduce a set of slack

variables, ξi ≥ 0, which represent the amount by which the constraint is violated.
We can now write our new constraints as

yi (w · x1 + b) ≥ 1− ξi.

Equivalently, we could write

ξi = max(0, 1− yi (w · x1 + b))

We would like to choose a w such that

• wTw is small; and

• (1/N)
∑N

i=1 ξi is small.

We do not know an appropriate weighting of these two terms. Write λ for some
weight, which we will choose with the aid of a validation set. Then we could

Section 14.4 The Linear Support Vector Machine 332

minimize

(1/N)
N
∑

i=1

max(0, 1− yi (w · x1 + b)) +
λ

2
wTw.

14.4.2 The Hinge Loss

The expression

(1/N)
N
∑

i=1

max(0, 1− yi (w · xi + b)) +
λ

2
wTw

fits into the rule of section 1, where we obtained a classifier by minimizing

Training Loss + Regularizer

The loss comparing the label value yi and the prediction y
(p)
i = (w · xi + b)

can be written as
Lh(yi, y

(p)
i) = max(0, 1− yiy

(p)
i).

This loss is known as the hinge loss. It is always non-negative. For the moment,

assume y
(k)
i = 1; then, any prediction by the classifier with value greater than one

will incur no loss, and any smaller prediction will incur a cost that is linear in the
prediction value (Figure 14.4). This means that minimizing the loss will encourage
the classifier to (a) make strong positive (or negative) predictions for positive (or
negative) examples and (b) for examples it gets wrong, make the most positive
(negative) prediction that it can.

14.4.3 Training a Support Vector Machine with Stochastic Gradient Descent

We need to choose w and b to minimize

C(w, b) = (1/N)

N
∑

i=1

max(0, 1− yi (w · xi + b)) +
λ

2
wTw.

There are several methods to do so. Section 1 describes some of the many available
support vector machine training packages on the web; it is often, even usually, a
good idea to use one of these. But it is worth understanding how such things work.

For a support vector machine, stochastic gradient descent is particularly easy.
We have estimates w(n) and b(n) of the classifier parameters, and we want to im-
prove the estimates. We pick the k’th example at random. We must now compute

∇
(

max(0, 1− yk (w · xk + b)) +
λ

2
wTw

)

.

Assume that yk (w · xk + b) > 1. In this case, the classifier predicts a score with
the right sign, and a magnitude that is greater than one. Then the first term is
zero, and the gradient of the second term is easy. Now if yk (w · xk + b) < 1, we can
ignore the max, and the first term is 1− yk (w · xk + b); the gradient is again easy.
But what if yk (w · xk + b) = 1? there are two distinct values we could choose for

Section 14.5 Practical Methods for Building Classifiers 333

the gradient, because the max term isn’t differentiable. It turns out not to matter
which term we choose (Figure ??), so we can write the gradient as

pk =

[

λw
0

]

if yk (w · xk + b) ≥ 1
[

λw − ykx
−yk

]

otherwise

We choose a steplength η, and update our estimates using this gradient. This yields:

w(n+1) = w(n) + η

{

λw if yk (w · xk + b) ≥ 1
λw − ykx otherwise

and

b(n+1) = b(n) + η

{

0 if yk (w · xk + b) ≥ 1
−yk otherwise

.

14.4.4 Example: Training an SVM with Stochastic Gradient Descent

14.5 PRACTICAL METHODS FOR BUILDING CLASSIFIERS

We have described several apparently very different classifiers here. But which
classifier should one use for a particular application? Generally, this should be dealt
with as a practical rather than a conceptual question: that is, one tries several, and
uses the one that works best. With all that said, experience suggests that the first
thing to try for most problems is a linear SVM or logistic regression, which tends
to be much the same thing. Nearest neighbor strategies are always useful, and are
consistently competitive with other approaches when there is lots of training data
and one has some idea of appropriate relative scaling of the features. The main
difficulty with nearest neighbors is actually finding the nearest neighbors of a query.
Approximate methods are now very good, and are reviewed in Section 14.5.3. The
attraction of these methods is that it is relatively easy to build multi-class classifiers,
and to add new classes to a system of classifiers.

14.5.1 Manipulating Training Data to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with large datasets can be difficult, and it can be hard to get enough training
data. Typically, only a relatively small number of example items are really impor-
tant in determining the behavior of a classifier (we see this phenomenon in greater
detail in Section 14.4). The really important examples tend to be rare cases that
are quite hard to discriminate. This is because these cases affect the position of the
decision boundary most significantly. We need a large dataset to ensure that these
cases are present.

There are some useful tricks that help.
We train on a subset of the examples, run the resulting classifier on the rest of

the examples, and then insert the false positives and false negatives into the training
set to retrain the classifier. This is because the false positives and false negatives
are the cases that give the most information about errors in the configuration of the
decision boundaries. We may repeat this several times, and in the final stages, we

Section 14.5 Practical Methods for Building Classifiers 334

may use the classifier to seek false positives. For example, we might collect pictures
from the Web, classify them, and then look at the positives for errors. This strategy
is sometimes called bootstrapping (the name is potentially confusing because
there is an unrelated statistical procedure known as bootstrapping; nonetheless,
we’re stuck with it at this point).

There is an extremely important variant of this approach called hard neg-
ative mining. This applies to situations where we have a moderate supply of
positive examples, but an immense number of negative examples. Such situations
occur commonly when we use classifiers to detect objects (Section ??). The general
procedure is to test every image window to tell whether it contains, say, a face.
There are a lot of image windows, and it is quite easy to obtain a lot of images
that are certain not to contain a face. In this case we can’t use all the negative
examples in training, but we need to search for negative examples that are most
likely to improve the classifier’s performance. We can do so by selecting a set of
negative examples, training with these, and then searching the rest of the negative
examples to find ones that generate false positives—these are hard negatives. We
can iterate the procedure of training and searching for hard negatives; typically, we
expand the pool of negative examples at each iteration.

14.5.2 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need
to be calibrated. The usual method to calibrate these numbers is an algorithm
due to ?, which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each

Section 14.5 Practical Methods for Building Classifiers 335

class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart.

14.5.3 Finding the Nearest Neighbors and Hashing

To build a nearest neighbors classifier, we need to find the members of a set of high
dimensional vectors that are closest to some query vector. It turns out this is a
general, and quite difficult, problem. A linear search through the dataset is fine for
a small set of data items, but we will operate at scales where we need something
more efficient. Surprisingly, exact solutions turn out to be only very slightly more
efficient than a linear search through the dataset. Approximate solutions are much
more efficient. They are approximate in the sense that, with high probability, they
return a point that is almost as close to the query as the closest point. The main
trick to obtaining a good approximate solution is to carve the space into cells, then
look at items that lie in cells near the query vector; there are two methods that are
worth discussing in detail here.

Locality Sensitive Hashing
In locality sensitive hashing, we build a set of hash tables containing the

data items, using different hashing functions for each table. For a query item, we
recover whatever is in each hash table at the location corresponding to the hash
code computed for the query item. We search this set, keeping any data items from
this set that are sufficiently close to the query. There are many choices of hash
function; the most widely used in vision is random projection. Write v for a
vector, representing either a query or a data item. We now obtain a single bit of a
hash code by choosing a random vector r and then computing sign(v·r). Computing
a k-bit hash code involves choosing k such random vectors, then computing one bit
for each. There is a set of k such random vectors associated with each hash table.
Geometrically, choosing an r corresponds to choosing a hyperplane in the data
space, and the hashing bit corresponds to which side of the hyperplane v lies on.
A k-bit hash code identifies a cell in an arrangement of k hyperplanes in which v
lies. k will be small compared to the dimension, and so we are cutting the space
into 2k cells. This means that there will be relatively few data items that lie in the
same cell as a query. Some nearby data items may not lie in the same cell, because
they could be on the other side of a hyperplane, but these items should lie in the
same cell in another hash table.

All these assertions can be made precise, resulting in a guarantee that: (a) a
data item that is almost as close as the nearest neighbor will be found with high
probability; and (b) all data items closer to the query than some threshold will be
found with high probability, whereas data items that are significantly more distant
will be found with low probability. Straightforward geometric intuition suggests
that this approach will work best when the data items have zero mean, which is

Section 14.5 Practical Methods for Building Classifiers 336

+

+

+

+1

2

3

4
+

+

+

+
1

2

3

4

0001

1100

1001

1100

Hash table 1 Hash table 2

Data point

Query

FIGURE 14.6: In locality sensitive hashing using a random projection hash function,
the hash function is equivalent to a hyperplane in the data space. Items that lie
on one side of the hyperplane corresponding to the nth bit have that bit set to one;
otherwise, it is zero. These hyperplanes cut the space of data into a set of cells.
All the data items in a cell get a binary hash code (shown for two points in each
figure; we have marked the order of the bits by labeling the hyperplanes, and the +s
show which side of the hyperplane gets a one). To query, we find all data items
in the same hash table entry as the query (the filled polygons in the figure), and
then find the closest. However, the nearest neighbor might not be in this cell (for
example, the case on the left). To reduce the probability of error from this cause,
we use more than one hash table and search the union of the sets of points lying in
the query cell. In the case illustrated, the nearest neighbor of the query lies in the
query cell for the second hash table, on the right. The hash tables reduce the set of
points we need to search, with high probability of finding a point that is almost as
close as the nearest neighbor.

easy to arrange. Notice that using n k-bit hash tables is not the same as using one
nk-bit hash table. In the first case, the list of points returned from a particular
query is a union of the lists returned from each of the n hash tables. This means
that points that are near the query but just happen to lie outside the query’s cell
for one hash table, have a good chance of being found in another hash table. In the
second case, the list we must handle is much shorter (because there are more cells),
but there is a better chance of missing nearby points. The choice of n and k will
depend on dimension and on the nature of the probabilistic guarantee one wants.
There are a variety of other possible choices of hash function. Details of other
choices, and precise statements of the relevant guarantees, can be found in (?).

KD-Trees for Approximate Nearest Neighbors
Random projection methods build a cell structure that is independent of the

Section 14.5 Practical Methods for Building Classifiers 337

1

2

3

Data point

Query

FIGURE 14.7: A k-d tree is built by recursively splitting cells along dimensions. The
order in which cells are split for this tree is shown by the dashes on the lines. The
nearest neighbor for the query point is found by (a) finding the closest item in the
query point’s cell, then (b) backtracking, and looking at cells that could contain
closer items. Notice that in this example one will need to go right up to the root of
the tree and down the other side to find the nearest neighbor. In high dimensions,
this backtracking becomes intractable, but if an approximate nearest neighbor is
sufficient, the amount of backtracking can be controlled successfully.

distribution of the data. This means trouble if data is heavily concentrated in some
regions, because queries that land in a heavily populated cell of the hash table will
need to search a long list. An alternative method is to use a k-d tree to build the
cell structure. A k-d tree is built by recursively splitting cells. The root will be the
whole space. To generate the children of a cell, select one dimension d, perhaps at
random, and select some threshold value td. Write the dth component of v as vd.
Now all data items in a cell with vd ≤ td are placed in the left child, and all others
in the right. We now apply this splitting procedure recursively to the root, until
the children are sufficiently small. If we choose the threshold value appropriately
(for example, the median of the data in the cell), we can ensure that cells are small
in dense components of the space and large in sparse components.

The nearest neighbor to a query can then be found by walking the tree to
find the cell containing the query point. We then check any data items in that
cell. Write the distance from the query to the closest as dc. We now backtrack,
investigating cells that could contain points closer than dc and updating dc when
we find a better point. We can prune any branch of the tree that represents a
volume that is further from the query than dc. This procedure works well for low
dimensions, but becomes unattractive in high dimensions because we will need to
explore too many cells (the number of neighbors of a cell goes up exponentially

Section 14.6 Notes 338

with dimension).
This difficulty can be avoided if an approximate nearest neighbor is sufficient.

In the best bin first approach, we look at a fixed number Nc of cells, then report
the best point found so far. Promising cells will tend to have some points that are
close to the query, and we define the distance between a cell and the query to be
the shortest distance from the query to any point on the cell’s boundary. Whenever
we investigate the child of a cell, we insert the other child into a priority queue,
ordered by distance to the query. Once we have checked a cell, we retrieve the next
cell from the priority queue. We do this until we have looked at Nc cells. We will
look mainly at cells that are close to the query, and so the point we report is a good
approximate nearest neighbor.

Good performance of a particular method depends somewhat on the dataset.
For most applications, the choice of method can be made offline using the dataset, or
a subset of it. ? describe a software package that can choose an approximate nearest
neighbors method that is fastest for a particular dataset. Generally, they find that
using multiple randomized k-d trees is usually the best; at the time of writing,
software could be found at http://www.cs.ubc.ca/~mariusm/index.php/FLANN/
FLANN.

14.5.4 Software for SVM’s

We obtain a support vector machine by solving one of the constrained optimization
problems given above. These problems have quite special structure, and one would
usually use one of the many packages available on the web for SVMs to solve them.

LIBSVM (which can be found using Google, or at http://www.csie.ntu.

edu.tw/~cjlin/libsvm/) is a dual solver that is now widely used; it searches for
nonzero Lagrange multipliers using a clever procedure known as SMO (sequential
minimal optimization). A good primal solver is PEGASOS; source code can be
found using Google, or at http://www.cs.huji.ac.il/~shais/code/index.html.
SVMLight (Google, or http://svmlight.joachims.org/) is a comprehensive

SVM package with numerous features. It can produce sophisticated estimates of
the error rate, learn to rank as well as to classify, and copes with hundreds of thou-
sands of examples. Andrea Vedaldi, Manik Varma, Varun Gulshan, and Andrew
Zisserman publish code for a multiple kernel learning-based image classifier at http:
//www.robots.ox.ac.uk/~vgg/software/MKL/. Manik Varma publishes code for
general multiple-kernel learning at http://research.microsoft.com/en-us/um/
people/manik/code/GMKL/download.html, and for multiple-kernel learning us-
ing SMO at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html. Peter Gehler and Sebastian Nowozin publish code for
their recent multiple-kernel learning method at http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/index.html.

14.6 NOTES

We warn readers that a search over classifiers is not a particularly effective way to
solve problems; instead, look to improved feature constructions. However, many
application problems have special properties, and so there is an enormous number
of different methods to build classifiers. We have described methods that reliably

Section 14.6 Notes 339

give good results. Classification is now a standard topic, with a variety of important
textbooks. Accounts of most mainstream classifiers can be found in major recent
texts. We recommend ?, ?, ?, and ?. An important theoretical account of when
classification methods can be expected to work or to fail is in ?.

Section 14.6 Notes 340

Listing 14.1: Matlab code used to train a histogram based classifier for the pizza
data

[num, txt , raw]= x l s r e ad (’ ˜/Current/Courses /Probcourse/SomeData/DataSets / c l e a np i z
ndat=s ize (num, 1) ;
pdiams=num(: , 5) ;
l a b e l s=zeros (ndat , 1) ;
for i =1:ndat

i f strcmp (txt (i , 2) , ’Dominos ’)==1
l a b e l s (i)=1;

else
l a b e l s (i)=−1;

end
end
% now we do a t e s t−t r a in s p l i t
nt ra in=f loor (0 . 8 ∗ 2 5 0) ;
permutev=randperm(ndat) ;
%% how many boxes in the histogram
nboxes=20;
hn=(1−1e−9)∗min(pdiams) ;
hx=(1+1e−9)∗max(pdiams) ;
hs=(hx−hn)/ nboxes ;
h i s td=zeros (nboxes , 1) ;
h i s t e=zeros (nboxes , 1) ;
%%
for i =1: n t r a in

pd=pdiams (permutev (i)) ;
l v=l a b e l s (permutev (i)) ;
hptr=f loor ((pd−hn)/ hs+1);
i f lv>0

h i s td (hptr)=h i s td (hptr)+1;
else

h i s t e (hptr)= h i s t e (hptr)+1;
end

end
h i s t e=h i s t e+1e−9;
h i s td=h i s td+1e−9;
pxcd=hi s td /sum(h i s td) ;
pxce=h i s t e /sum(h i s t e) ;

Section 14.6 Notes 341

Listing 14.2: Matlab code used to test a histogram based classifier for the pizza data

%%
% i t ’ s t ra ined . Now t e s t f o r var iou s t h r e s h o l d s
t h r e s ho l d s =[0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2] ;
fp s=zeros (11 , 1) ;
fn s=zeros (11 , 1) ;
tps=zeros (11 , 1) ;
tns=zeros (11 , 1) ;
for th=1:11

thresh=th r e s ho l d s (th) ;
for i=nt ra in +1:ndat

pd=pdiams (permutev (i)) ;
l v=l a b e l s (permutev (i)) ;
hptr=f loor ((pd−hn)/ hs+1);
t e s t v=pxcd (hptr)/ pxce (hptr) ;
i f te s tv>thresh

p r ed l a b e l=1;
else

p r ed l a b e l=−1;
end
i f pr ed labe l>0&&lv>0

tps (th)=tps (th)+1;
e l s e i f pr ed labe l>0&&lv<0

fp s (th)= fps (th)+1;
e l s e i f pr ed labe l<0&&lv>0

fn s (th)= fns (th)+1;
else

tns (th)=tns (th)+1;
end

end
end
tpr=tps /(ndat−nt ra in) ;
fp r=fps /(ndat−nt ra in) ;
figure (1) ; c l f ;
plot (fpr , tpr , ’ r ’) ;
axis ([0 1 0 1])
ylabel (’ True p o s i t i v e r a t e or de te c t r a t e ’) ;
xlabel (’ Fa l se p o s i t i v e r a t e ’) ;
hold on
plot ([0 , 1] , [0 , 1] , ’−−r ’) ;
cd (’ ˜/Current/Courses /Probcourse/ C l a s s i f i c a t i o n / Figures ’) ;
print −depsc2 p i z za ro c . eps

C H A P T E R 15

Math Resources

15.1 USEFUL MATERIAL ABOUT MATRICES

Terminology:

• A matrix M is symmetric if M = MT . A symmetric matrix is necessarily
square.

• We write I for the identity matrix.

• A matrix is diagonal if the only non-zero elements appear on the diagonal.
A diagonal matrix is necessarily symmetric.

• A symmetric matrix is positive semidefinite if, for any x such that xTx > 0
(i.e. this vector has at least one non-zero component), we have xTMx ≥ 0.

• A symmetric matrix is positive definite if, for any x such that xTx > 0, we
have xTMx > 0.

• A matrix R is orthonormal if RTR = I = IT = RRT . Orthonormal
matrices are necessarily square.

Orthonormal matrices: You should think of orthonormal matrices as ro-
tations, because they do not change lengths or angles. For x a vector, R an or-
thonormal matrix, and u = Rx, we have uTu = xTRTRx = xTIx = xTx. This
means that R doesn’t change lengths. For y, z both unit vectors, we have that
the cosine of the angle between them is yTx; but, by the same argument as above,
the inner product of Ry and Rx is the same as yTx. This means that R doesn’t
change angles, either.

Eigenvectors and Eigenvalues: Assume S is a d× d symmetric matrix, v
is a d× 1 vector, and λ is a scalar. If we have

Sv = λv

then v is referred to as an eigenvector of S and λ is the corresponding eigenvalue.
Matrices don’t have to be symmetric to have eigenvectors and eigenvalues, but the
symmetric case is the only one of interest to us.

In the case of a symmetric matrix, the eigenvalues are real numbers, and there
are d distinct eigenvectors that are normal to one another, and can be scaled to
have unit length. They can be stacked into a matrix U = [v1, . . . ,vd]. This matrix
is orthonormal, meaning that UTU = I. This means that there is a diagonal matrix
Λ such that

SU = UΛ.

342

Section 15.1 Useful Material about Matrices 343

In fact, there is a large number of such matrices, because we can reorder the eigen-
vectors in the matrix U , and the equation still holds with a new Λ, obtained by
reordering the diagonal elements of the original Λ. There is no reason to keep track
of this complexity. Instead, we adopt the convention that the elements of U are
always ordered so that the elements of Λ are sorted along the diagonal, with the
largest value coming first.

Diagonalizing a symmetric matrix: This gives us a particularly impor-
tant procedure. We can convert any symmetric matrix S to a diagonal form by
computing

UTSU = Λ.

This procedure is referred to as diagonalizing a matrix. Again, we assume that
the elements of U are always ordered so that the elements of Λ are sorted along
the diagonal, with the largest value coming first. Diagonalization allows us to
show that positive definiteness is equivalent to having all positive eigenvalues, and
positive semidefiniteness is equivalent to having all non-negative eigenvalues.

Factoring a matrix: Assume that S is symmetric and positive semidefinite.
We have that

S = UΛUT

and all the diagonal elements of Λ are non-negative. Now construct a diagonal
matrix whose diagonal entries are the positive square roots of the diagonal elements
of Λ; call this matrix Λ(1/2). We have Λ(1/2)Λ(1/2) = Λ and (Λ(1/2))T = Λ(1/2).
Then we have that

S = (UΛ(1/2))(Λ(1/2)UT) = (UΛ(1/2))(UΛ(1/2))T

so we can factor S into the form XX T by computing the eigenvectors and eigen-
values.

15.1.1 Approximating A Symmetric Matrix

Assume we have a k × k symmetric matrix T , and we wish to construct a matrix
A that approximates it. We require that (a) the rank of A is precisely r < k and
(b) the approximation should minimize the Frobenius norm, that is,

||(T − A) ||F 2
=
∑

ij

(Tij −Aij)
2.

It turns out that there is a straightforward construction that yields A.
The first step is to notice that if U is orthonormal and M is any matrix, then

||UM||F = ||MU ||F = ||M||F .

This is true because U is a rotation (as is UT = U−1), and rotations do not change
the length of vectors. So, for example, if we write M as a table of row vectors M =
[m1,m2, ...mk], then UM = [Um1,Um2, ...Umk]. Now ||M||F 2

=
∑k

j=1 ||mj ||2, so
||UM||F 2

=
∑k

i=1 ||Umk ||2. But rotations do not change lengths, so ||Umk ||2 =

||mk ||2, and so ||UM||F = ||M||F . To see the result for the case of MU , just think
of M as a table of row vectors.

Section 15.1 Useful Material about Matrices 344

Notice that, if U is the orthonormal matrix whose columns are eigenvectors
of T , then we have

||(T − A) ||F 2 = ||UT (T − A)U ||F
2
.

Now write Λr for UTAU , and Λ for the diagonal matrix of eigenvalues of T . Then
we have

||(T − A) ||F 2
= ||Λ− ΛA ||F 2

,

an expression that is easy to solve for ΛA. We know that Λ is diagonal, so the best
ΛA is diagonal, too. The rank of A must be r, so the rank of ΛA must be r as well.
To get the best ΛA, we keep the r largest diagonal values of Λ, and set the rest
to zero; ΛA has rank r because it has only r non-zero entries on the diagonal, and
every other entry is zero.

Now to recover A from ΛA, we know that UTU = UUT = I (remember, I is
the identity). We have ΛA = UTAU , so

A = UΛAUT .

We can clean up this representation in a useful way. Notice that only the first r
columns of U (and the corresponding rows of UT) contribute to A. The remaining
k − r are each multiplied by one of the zeros on the diagonal of ΛA. Remember
that, by convention, Λ was sorted so that the diagonal values are in descending
order (i.e. the largest value is in the top left corner). We now keep only the top
left r × r block of ΛA, which we write Λr. We then write Ur for the k × r matrix
consisting of the first r columns of U . Then

A = UrΛrUT

This is so useful a result, I have displayed it in a box; you should remember it.

Procedure: 15.1 Approximating a symmetric matrix with a low rank
matrix

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ to
zero, and keeping only the top left r× r block. Construct Ur, the k× r
matrix consisting of the first r columns of U . Then

A = UrΛrUT
r

is the best possible rank r approximation to T in the Frobenius norm.

Section 15.1 Useful Material about Matrices 345

Now if A is positive semidefinite (i.e. if at least the r largest eigenvalues of
T are non-negative), then we can factor A as in the previous section. This yields a
procedure to approximate a symmetric matrix by factors. This is so useful a result,
I have displayed it in a box; you should remember it.

Procedure: 15.2 Approximating a symmetric matrix with low dimen-
sional factors

Assume we have a symmetric k× k matrix T . We wish to approximate
T with a matrix A that has rank r < k. We assume that at least the
r largest eigenvalues of T are non-negative. Write U for the matrix
whose columns are eigenvectors of T , and Λ for the diagonal matrix
of eigenvalues of A (so AU = UΛ). Remember that, by convention, Λ
was sorted so that the diagonal values are in descending order (i.e. the
largest value is in the top left corner).
Now construct Λr from Λ by setting the k − r smallest values of Λ

to zero and keeping only the top left r × r block. Construct Λ
(1/2)
r

by replacing each diagonal element of Λ with its positive square root.
Construct Ur, the k × r matrix consisting of the first r columns of U .
Then write V = (UrΛ

(1/2)
r)

A = VVT

is the best possible rank r approximation to T in the Frobenius norm.

