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Inference Using Models

Assume we have a dataset {x}, and a probability model we believe applies to
that dataset. For example, we might have a set of N coin flips which we believe to
be independent and identically distributed. Of these, k flips came up H . We know
that a binomial distribution with p(H) = p is a good model — but what value of p
should we use? Your intuition is likely to suggest using k/N , but we’d like a more
robust procedure than guessing.

Inference is the process of drawing conclusions from data. We need an
inference procedure to obtain the unknown parameter from the data. For some
problems, you might just need to know the parameter value that is “best”. Such
an estimate is known as a point estimate. We deal with such problems in this
chapter. Notice that this number may not be the right answer; it’s just the best
estimate of the right answer.

As we shall see, there is more than one possible procedure to apply. Which
one we use depends to some extent on the problem. In some cases, we have no
particular reason to prefer one value of a parameter to another; in other cases,
we might have good reasons to feel some parameter values are more likely than
others. For example, if the coin had been borrowed from an acquaintance with an
impressive reputation for dishonesty, then you might be willing to believe that p
could have almost any value. But if you took a coin at random out of your pocket
and flipped that, then you might need a lot of evidence to convince you that p was
different from 0.5.

1.1 ESTIMATING MODEL PARAMETERS WITH MAXIMUM LIKELIHOOD

Assume we have a dataset D = {x}, and a probability model we believe applies to
that dataset. Generally, application logic suggests the type of model (i.e. normal
probability density; Poisson probability; geometric probability; and so on). But
usually, we do not know the parameters of the model — for example, the mean and
standard deviation of a normal distribution; the intensity of a poisson distribution;
and so on. Our model will be better or worse depending on how well we choose
the parameters. We need a strategy to estimate the parameters of a model from a
sample dataset. Notice how each of the following examples fits this pattern.

2
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Example: 1.1 Inferring p from repeated flips — binomial

We could flip the coin N times, and count the number of heads k. We
know that an appropriate probability model for a set of independent
coin flips is the binomial model P (k;N, p). But we do not know p,
which is the parameter — we need a strategy to extract a value of p
from the data.

Example: 1.2 Inferring p from repeated flips — geometric

We could flip the coin repeatedly until we see a head. We know that,
in this case, the number of flips has the geometric distribution with
parameter p. In this case, the data is a sequence of T ’s with a final H
from the coin flips. There are N flips (or terms) and the last flip is a
head. We know that an appropriate probability model is the geometric
distribution Pg(N ; p). But we do not know p, which is the parameter
— we need a strategy to extract a value of p from the data.

Example: 1.3 Inferring the intensity of spam — poisson

It is reasonable to assume that the number of spam emails one gets in
an hour has a Poisson distribution. But what is the intensity parameter
λ? We could count the number of spam emails that arrive in each of a
set of distinct hours, giving a dataset of counts D. We need a strategy
to wrestle an estimate of λ from this dataset.

Example: 1.4 Inferring the mean and standard deviation of normal data

Imagine we know for some reason that our data is well described by
a normal distribution. We could ask what is the mean and standard
deviation of the normal distribution that best represents the data?

We can write that model as P (D|θ), where θ are parameters of the probability
mode. The model is conditioned on θ, because if we knew θ we could evaluate the
model. The expression P (D|θ) is known as the likelihood of the data, and is often
written L(θ) (or L(θ;D) if you want to remember that data is involved). Notice
that this is unlike our models to date. In chapter 13, we assumed that we knew θ,
and could then use the model to assign a probability to a data item. Here we know
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the value of D. The likelihood is a function of θ.

1.1.1 The Maximum Likelihood Principle

We need a “reasonable” procedure to choose a value of θ to report. One — and
we stress this is not the only one — is the maximum likelihood principle. This
says: Choose θ such that L(θ) = P (D|θ) is maximised, as a function of θ.

For the examples we work with, the data will be independent and iden-

tically distributed or IID. This means that each data item is an idependently
obtained sample from the same probability distribution (see section ??). In turn,
this means that the likelihood is a product of terms, one for each data item, which
we can write as

L(θ) = P (D|θ) =
∏

i∈dataset

P (di|θ).

It is traditional to write θ for any set of parameters that are unknown. There
are two, distinct, important concepts we must work with. One is the unknown
parameter(s), which we will write θ. The other is the estimate of the value of that

parameter, which we will write θ̂. This estimate is the best we can do — it may
not be the “true” value of the parameter.



Section 1.1 Estimating Model Parameters with Maximum Likelihood 5

Worked example 1.1 Inferring p(H) for a coin from flips using a

binomial model

In N independent coin flips, you observe k heads. Use the maximum
likelihood principle to infer p(H).

Solution: The coin has θ = p(H), which is the unknown parameter.
We know that an appropriate probability model is the binomial model
P (k;N, θ). We have that

L(θ) = P (D|θ) = Pb(k;N, θ) =

(

N
k

)

θk(1− θ)(N−k)

which is a function of θ — the unknown probability that a coin comes up
heads; k and N are known. We must find the value of θ that maximizes
this expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0.

We have

∂L(θ)
∂θ

=

(

N
k

)

(

kθk−1(1− θ)(N−k) − θk(N − k)(1 − θ)(n−k−1)
)

and this is zero when

kθk−1(1− θ)(N−k) = θk(N − k)(1− θ)(N−k−1)

so the maximum occurs when

k(1− θ) = θ(N − k).

This means the maximum likelihood estimate is

θ̂ =
k

N

which is what we guessed would happen, but now we know why that guess
“makes sense”.
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Worked example 1.2 Inferring p(H) from coin flips using a geometric

model

You flip a coin N times, stopping when you see a head. Use the maxi-
mum likelihood principle to infer p(H) for the coin.

Solution: The coin has θ = p(H), which is the unknown parameter.
We know that an appropriate probability model is the geometric model
Pg(N ; θ). We have that

L(θ) = P (D|θ) = Pg(N ; θ) = (1 − θ)(N−1)θ

which is a function of θ — the unknown probability that a coin comes
up heads; n is known. We must find the value of θ that maximizes this
expression. Now the maximum occurs when

∂L(θ)
∂θ

= 0 = ((1− θ)(N−1) − (N − 1)(1− θ)(n−2)θ)

So the maximum likelihood estimate is

θ̂ =
1

N
.

We didn’t guess this.
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Worked example 1.3 Inferring die probabilities from multiple rolls

and a multinomial distribution

You throw a die N times, and see n1 ones, . . . and n6 sixes. Write
p1, . . . , p6 for the probabilities that the die comes up one, . . ., six. Use
the maximum likelihood principle to estimate p1, . . . , p6.

Solution: The data are n, n1, . . . , n6. The parameters are θ =
(p1, . . . , p6). P (D|θ) comes from the multinomial distribution. In par-
ticular,

L(θ) = P (D|θ) = n!

n1! . . . n6!
pn1

1 pn2

2 . . . pn6

6

which is a function of θ = (p1, . . . , p6). Now we want to maximize this
function by choice of θ. Notice that we could do this by simply making all pi
very large — but this omits a fact, which is that p1+p2+p3+p4+p5+p6 = 1.
So we substitute using p6 = 1 − p1 − p2 − p3 − p4 − p5 (there are other,
neater, ways of dealing with this issue, but they take more background
knowledge). At the maximum, we must have that for all i,

∂L(θ)
∂pi

= 0

which means that, for pi, we must have

nip
(ni−1)
i (1−p1−p2−p3−p4−p5)

n6−pni

i n6(1−p1−p2−p3−p4−p5)
(n6−1) = 0

so that, for each pi, we have

ni(1− p1 − p2 − p3 − p4 − p5)− n6pi = 0

or
pi

1− p1 − p2 − p3 − p4 − p5
=

ni

n6
.

You can check that this equation is solved by

θ̂ =
1

(n1 + n2 + n3 + n4 + n5 + n6)
(n1, n2, n3, n4, n5, n6)

The logarithm is a monotonic function (i.e. if x > 0, y > 0, x > y, then
log(x) > log(y)). This means that the values of θ that maximise the log-likelihood
are the same as the values that maximise the likelihood. This observation is very
useful, because it allows us to transform a product into a sum. The derivative of a
product involves numerous terms; the derivative of a sum is easy to take. We have

logP (D|θ) = log
∏

i∈dataset

P (di|θ) =
∑

i∈dataset

logP (di|θ)
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and in some cases, logP (di|θ) takes a convenient, easy form. The log-likelihood
of a dataset under a model is a function of the unknown parameters, and you will
often see it written as

logL(θ) =
∑

i∈dataset

logP (di|θ).

Worked example 1.4 Poisson distributions

You observe N intervals, each of the same, fixed length (in time, or
space). You know that, in these intervals, events occur with a Poisson
distribution (for example, you might be observing Prussian officers be-
ing kicked by horses, or telemarketer calls...). You know also that the
intensity of the Poisson distribution is the same for each observation.
The number of events you observe in the i’th interval is ni. What is
the intensity, λ?

Solution: The likelihood is

L(θ) =
∏

i∈intervals

P ({ni events} |θ) =
∏

i∈intervals

θnie−θ

ni!
.

It will be easier to work with logs. The log-likelihood is

logL(θ) =
∑

i

(ni log θ − θ − logni!)

so that we must solve

∂ logL(θ)
∂θ

=
∑

i

(
ni

θ
− 1) = 0

which yields a maximum likelihood estimate of

θ̂ =

∑

i ni

N
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Worked example 1.5 Is swearing Poisson?

A famously sweary politician gives a talk. You listen to the talk, and for
each of 30 intervals 1 minute long, you record the number of swearwords.
You record this as a histogram (i.e. you count the number of intervals
with zero swear words, with one, etc.). For the first 10 intervals, you
see

no. of swear words no. of intervals

0 4
1 2
2 2
3 1
4 0

and for the following 20 intervals, you see
no. of swear words no. of intervals

0 9
1 6
2 3
3 2
4 1

Assume that the politician’s use of swearwords is Poisson. What is the
intensity using the first 10 intervals? the second 20 intervals? all the
intervals? why are they different?

Solution: Use the expression from worked example 4 to find

λ̂10 =
total number of swearwords

number of intervals

=
7

10

λ̂20 =
total number of swearwords

number of intervals

=
22

20

λ̂30 =
total number of swearwords

number of intervals

=
29

30
.

These are different because the maximum likelihood estimate is an estimate

— we can’t expect to recover the exact value from a dataset. Notice,
however, that the estimates are quite close.
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Worked example 1.6 Normal distributions

Assume we have x1, . . . , xN which are data that can be modelled with a
normal distribution. Use the maximum likelihood principle to estimate
the mean of that normal distribution.

Solution: The likelihood of a set of data values under the normal distri-
bution with unknown mean θ and standard deviation σ is

L(θ) = P (x1, . . . xN |θ, σ)
= P (x1|θ, σ)P (x2|θ, σ) . . . P (xN |θ, σ)

=

N
∏

i=1

1√
2πσ

exp

(

− (xi − θ)2

2σ2

)

and this expression is a moderate nuisance to work with. The log of the
likelihood is

logL(θ) =
(

N
∑

i=1

− (xi − θ)2

2σ2

)

+ term not depending on θ.

We can find the maximum by differentiating wrt θ and setting to zero,
which yields

∂ logL(θ)
∂θ

=

N
∑

i=1

2(xi − θ)

2σ2

= 0

=
1

σ2

(

N
∑

i=1

xi −Nθ

)

so the maximum likelihood estimate is

θ̂ =

∑N

i=1 xi

N

which probably isn’t all that surprising. Notice we did not have to pay
attention to σ in this derivation — we did not assume it was known, it just
doesn’t do anything.
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Worked example 1.7 Normal distributions -II

Assume we have x1, . . . , xN which are data that can be modelled with a
normal distribution. Use the maximum likelihood principle to estimate
the standard deviation of that normal distribution.

Solution: Now we have to write out the log of the likelihood in more
detail. Write µ for the mean of the normal distribution and θ for the
unknown standard deviation of the normal distribution. We get

logL(θ) =
(

N
∑

i=1

− (xi − µ)2

2θ2

)

−N log θ +Term not depending on θ

We can find the maximum by differentiating wrt σ and setting to zero,
which yields

∂ logL(θ)
∂θ

=
−2

θ3

N
∑

i=1

−(xi − θ)

2
− N

θ
= 0

so the maximum likelihood estimate is

θ̂ =

√

∑N
i=1(xi − µ)2

N

which probably isn’t all that surprising, either.

The maximum likelihood principle has a variety of neat properties we cannot
expound. One worth knowing about is consistency; for our purposes, this means
that the maximum likelihood estimate of parameters can be made arbitrarily close
to the right answer by having a sufficiently large dataset.

Another is that, in some cases, you can make online estimates. Assume, rather
than seeing N elements of a dataset in one go, you get to see each one once, and you
cannot store them. Assume that this dataset is modelled as normal data. Write µ̂k

for the maximum likelihood estimate of the mean based on data items 1 . . . k (and
σ̂k for the maximum likelihood estimate of the standard deviation, etc.). Notice
that

µ̂k+1 =
(kµ̂k) + xk+1

(k + 1)

and that

σ̂k+1 =

√

(kσ̂2
k) + (xk+1 − µ̂k+1)2

(k + 1)

This means that you can incorporate new data into your estimate as it arrives
without keeping all the data. This process of updating a representation of a dataset
as new data arrives is known as filtering.
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1.1.2 Cautions about Maximum Likelihood

Our examples suggest some difficulties could occur in inference. The first is that
it might be hard to find the maximum of the likelihood exactly. There are strong
numerical methods for maximizing functions, and these are very helpful, but even
today there are likelihood functions where it is very hard to find the maximum.

The second is that small amounts of data can present nasty problems. There
is a body of mathematics, well outside the scope of this book, that implies that
for lots of data that is well described by our model, maximum likelihood will give
an answer very close to the “right” answer. This doesn’t apply to small datasets.
For example, in the binomial case, if we have only one flip we will estimate p as
either 1 or 0. We should find this report unconvincing. In the geometric case,
with a fair coin, there is a probability 0.5 that we will perform the estimate and
then report that the coin has p = 1. This should also worry you. As another
example, if we throw a die only a few times, we could reasonably expect that, for
some i, ni = 0. This doesn’t necessarily mean that pi = 0, though that’s what the
maximum likelihood inference procedure will tell us.

This creates a very important technical problem — how can I estimate the
probability of events that haven’t occurred? This might seem like a slightly silly
question to you, but it isn’t. Solving this problem has really significant practical
consequences. For example, a really important part of natural language processing
involves estimating the probability of groups of three words. These groups are
usually known as “trigrams”. People typically know an awful lot of words (tens
to hundreds of thousands, depending on what you mean by a word). This means
that there are a tremendous number of trigrams, and you can expect that any real
dataset lacks almost all of them, because it isn’t big enough. Some are missing
because they don’t occur in real life, but others are not there simply because they
are unusual (eg “Atom Heart Mother” actually occurs in real life, but you may not
have seen it all that often). Modern speech recognition systems need to know how
probable every trigram is. Worse, if a trigram is modelled as having zero probability
and actually occurs, the system will make a mistake, so it is important to model
all such events as having a very small, but not zero, probability.

In summary, the maximum likelihood estimate is useful, and is consistent with
intuition, but small datasets present some worries because there is a real prospect
that the best estimate is wrong in a way that presents problems.

1.2 INCORPORATING PRIORS WITH BAYESIAN INFERENCE

Sometimes when we wish to estimate parameters of a model we have prior infor-
mation. For example, we may have good reason to believe that some parameter
is close to some value. We would like to take this information into account when
we estimate the model. One way to do so is to place a prior probability distri-

bution p(θ) on the parameters θ. Then, rather than working with the likelihood
p(D|θ), we could apply Bayes’ rule, and form the posterior p(θ|D). This posterior
represents the probability that θ takes various values, given the data D. Extracting
information from the posterior is usually called Bayesian inference. A natural
estimate of θ is the value that maximizes the posterior. This estimate is sometimes
known as a maximum a priori estimate or MAP estimate.
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1.2.1 Constructing the Posterior

Bayes’ rule tells us that

p(θ|D) =
P (D|θ)P (θ)

P (D)

but (as we shall see) it can be hard to work out P (D). For some problems, we
might not need to know it.

Worked example 1.8 Flipping a coin

We have a coin with probability θ of coming up heads when flipped.
We start knowing nothing about θ. We then flip the coin 10 times,
and see 7 heads (and 3 tails). Plot a function proportional to
p(θ| {7 heads and 3 tails}). What happens if there are 3 heads and
7 tails?

Solution: We know nothing about p, except that 0 ≤ θ ≤ 1. It
is reasonable then that the prior on p is uniform. We have that
p({7 heads and 3 tails} |θ) is binomial. Ignore the normalizing constant,
and form the joint distribution, which is

p({7 heads and 3 tails} |θ)× p(θ)

but p(θ) is uniform, so doesn’t depend on θ. So the posterior is proportional
to:

(

10
7

)

θ7(1− θ)3

which is graphed in figure 1.1. Simply looking at the figure will give some
insight into where the probability is in p(θ| {7 heads and 3 tails}). The
figure also shows

(

10
7

)

θ3(1− θ)7

which is proportional to the posterior for 3 heads and 7 tails. Notice how,
in each case, the evidence does not rule out the possibility that θ = 0.5,
but tends to discourage the conclusion. Maximum likelihood would give
θ = 0.7 or θ = 0.3, respectively.

In Example 8, it is interesting to follow how the posterior on p changes as
evidence come in, which is easy to do because the posterior is proportional to a
binomial distribution. Figure 1.2 shows a set of these posteriors for different sets
of evidence.

For other problems, we will need to marginalize out θ, by computing

P (D) =

∫

θ

P (D|θ)P (θ)dθ.

It is usually impossible to do this in closed form, so we would have to use a numerical
integral. In some cases, P (θ) and P (D|θ) are conjugate, meaning that P (θ|D) will
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FIGURE 1.1: The curves show a function proportional to the posterior on θ, for the

two cases of example 8. Notice that this information is rather richer than the single

value we would get from maximum likelihood inference.

take a familiar form and P (D) follows easily.

Worked example 1.9 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped.
We model the prior on θ with a Beta distribution, with parameters
α > 0, β > 0. We then flip the coin N times, and see h heads. What is
P (θ|N, h, α, β)?

Solution: We have that P (N, h|θ) is binomial, and that P (θ|N, h, α, β) ∝
P (N, h|θ)P (θ|α, β). This means that

P (θ|N, h, α, β) ∝
(

N
h

)

θh(1− θ)(N−h) Γ(α+ β)

Γ(α)Γ(β)
θ(α−1)(1 − θ)(β−1).

and we can write

P (θ|N, h, α, β) ∝ θ(α+h−1)(1− θ)(β+N−h−1).

Notice this has the form of a Beta distribution, so it is easy to recover the
constant of proportionality. We have

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α + h)Γ(β +N − h)
θ(α+h−1)(1− θ)(β+N−h−1).
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FIGURE 1.2: The probability that an unknown coin will come up heads when flipped

is p(H). For these figures, I simulated coin flips from a coin with p = 0.75. I then

plotted the posterior for various data. Notice how, as we see more flips, we get

more confident about p.

Worked example 1.10 More sweary politicians

Example 5 gives some data from a sweary politician. Assume we have
only the first 10 intervals of observations, and we wish to estimate the
intensity using a Poisson model. Write θ for this parameter. Use a
Gamma distribution as a prior, and write out the posterior.

Solution: We have that

p(θ|α, β) = βα

Γ(α)
θ(α−1)e−βθ,

and

p(D|θ) = θ7e−θ

24
.

This means that
p(θ|D) ∝ θ(α−1+7)e−(β+1)θ.

Notice this has the form of another Gamma distribution, so we can write

p(θ|D) =
(β + 1)(α+7)

Γ(α+ 7)
θ(α−1+7)e−(β+1)θ
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1.2.2 The Posterior for Normal Data

There is a very useful construction for the posterior for data where the likelihood
is normal. We start with a simple example. Assume we drop a measuring device
down a borehole. It is designed to stop falling and catch onto the side of the hole
after it has fallen µ0 meters. On board is a device to measure its depth. This device
reports a known constant times the correct depth plus a zero mean normal random
variable, which we call “noise”. The device reports depth every second.

The first question to ask is what depth do we believe the device is at before

we receive any measurement? We designed the device to stop at µ0 meters, so we
are not completely ignorant about where it is. However, it may not have worked
absolutely correctly. We choose to model the depth at which it stops as µ0 meters
plus a zero mean normal random variable. The second term could be caused by error
in the braking system, etc. We could estimate the standard deviation of the second
term (which we write σ0) either by dropping devices down holes, then measuring
with tape measures, or by analysis of likely errors in our braking system. The depth
of the object is the unknown parameter of the model; we write this depth θ. Now
the model says that θ is a normal random variable with mean µ0 and standard
deviation σ0.

Notice that this model probably isn’t exactly right — for example, there must
be some probability in the model that the object falls beyond the bottom of the
hole, which it can’t do — but it captures some important properties of our system.
The device should stop at or close to µ0 meters most of the time, and it’s unlikely
to be too far away.

Now assume we receive a single measurement — what do we now know about
the device’s depth? The first thing to notice is that there is something to do here.
Ignoring the prior and taking the measurement might not be wise. For example,
imagine that the noise in the wireless system is large, so that the measurement is
often corrupted — our original guess about the device’s location might be better
than the measurement. Write x1 for the measurement. Notice that the scale of
the measurement may not be the same as the scale of the depth, so the mean of
the measurement is c1θ, where c1 is a change of scale (for example, from inches to
meters). We have that p(x1|θ) is normal with mean c1θ and standard deviation
σn1. We would like to know p(θ|x1).

We have that

log p(θ, x1) = log p(x1|θ) + log p(θ)

= − (x1 − c1θ)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ or x.

We have two estimates of the position, θ, and we wish to come up with a represen-
tation of what we know about θ. One is x1, which is a measurement — we know
its value. The expected value of x1 is c1θ, so we could infer θ from x1. But we
have another estimate of the position, which is µ0. The posterior, p(θ|x1), is a
probability distribution on the variable θ; it depends on the known values x1, µ0,



Section 1.2 Incorporating Priors with Bayesian Inference 17

σ0 and σn1. We need to determine its form. We can do so by some rearrangement
of the expression for log p(θ, x1).

Notice first that this expression is of degree 2 in θ (i.e. it has terms θ2, θ
and things that don’t depend on θ). This means that p(θ|x1) must be a normal
distribution, because we can rearrange its log into the form of the log of a normal
distribution. This yields a fact of crucial importance.

Useful Fact: 1.1 Normal distributions are conjugate

A normal prior and a normal likelihood yield a normal posterior.

Write µ1 for the mean of this distribution, and σn1 for its standard deviation.
The log of the distribution must be

− (θ − µ1)
2

2σ2
1

+ terms not depending on θ.

The terms not depending on θ are not interesting, because if we know σ1 those
terms must add up to

log

(

1√
2πσ1

)

so that the probability density function sums to one. Our goal is to rearrange terms
into the form above. Notice that

− (θ − µ1)
2

2σ2
p

= −θ2
(

1

2σ2
1

)

+ 2θ
µ1

2σ2
p

+ term not depending on θ

We have

log p(θ|x1) = − (c1θ − x1)
2

2σ2
n1

− (θ − µ0)
2

2σ2
0

+ terms not depending on θ

= −θ2





1

2
(

σ2

n1
σ2

0

σ2

n1
+c2

1
σ2

0

)



+ 2θ

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

+ terms not depending on θ

which means that

σ2
1 =

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

and

µ1 = 2

(

c1
x1

2σ2
n1

+
µ0

2σ2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=

(

c1x1σ
2
0 + µ0σ

2
n1

σ2
n1σ

2
0

)

σ2
n1σ

2
0

σ2
n1 + c21σ

2
0

=
c1x1σ

2
0 + µ0σ

2
n1

σ2
n1 + c21σ

2
0

.
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These equations is that they “make sense”. Imagine that σ0 is very small,
and σn1 is very big; then our new expected value of θ — which is µ1 — is about
µ0. Equivalently, because our prior was very accurate, and the measurement was
unreliable, our expected value is about the prior value. Similarly, if the measure-
ment is reliable (i.e. σn1 is small) and the prior has high variance (i.e. σ0 is large),
then our expected value of θ is about x1/c1 — i.e. the measurement, rescaled. I
have put these equations, in a more general form, in a box below.

Useful Fact: 1.2 Normal posteriors

Assume we wish to estimate a parameter θ. The prior distribution for θ
is normal, with known mean µπ and known standard deviation σπ . We
receive a single data item x. The likelihood of this data item is normal
with mean cθ and standard deviation σm, where c and σm are known.
Then the posterior, p(θ|x, c, σm, µπ, σπ), is normal, with mean

cxσ2
π + µπσ

2
m

σ2
m + c2σ2

π

and standard deviation
√

σ2
mσ2

π

σ2
m + c2σ2

π

.

Assume a second measurement, x2 arrives. We know that p(x2|θ, c2, σn2) is
normal with mean c2θ and standard deviation σn2. In the example, we have a new
measurement of depth — perhaps in a new, known, scale — with new noise (which
might have larger, or smaller, standard deviation than the old noise) added. Then
we can use p(θ|x1, c1, σn1) as a prior to get a posterior p(θ|x1, x2, c1, c2, σn1, σn2).
Each is normal, by useful fact 1. Not only that, but we can easily obtain the
expressions for the mean µ2 and the standard deviation σ2 recursively as functions
of µ1 and σ1.

Applying useful fact 2, we have

µ2 =
c2x2σ

2
1 + µ1σ

2
n2

σ2
n2 + c22σ

2
1

and

σ2
2 =

σ2
n2σ

2
1

σ2
n2 + c22σ

2
1

.

But what works for 2 and 1 will work for k+1 and k. We know the posterior after
k measurements will be normal, with mean µk and standard deviation σk. The
k+1’th measurement xk+1 arrives, and we have p(xk+1|θ, ck+1, σn(k+1)) is normal.
Then the posterior is normal, and we can write the mean µk+1 and the standard
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deviation σk+1 recursively as functions of µk and σk. This yields

µk+1 =
ck+1xk+1σ

2
k + µkσ

2
n(k+1)

σ2
n(k+1) + c2k+1σ

2
k

and

σ2
k+1 =

σ2
n(k+1)σ

2
k

σ2
n(k+1) + c2k+1σ

2
k

.

Again, notice the very useful fact that, if everything is normal, we can update our
posterior representation when new data arrives using a very simple recursive form.

1.2.3 MAP Inference

Look at example 13, where we estimated the probability a coin would come up heads
with maximum likelihood. We could not change our estimate just by knowing the
coin was fair, but we could come up with a number for θ = p(H) (rather than,
say, a posterior distribution). A natural way to produce a point estimate for θ that

incorporates prior information is to choose θ̂ such that

θ̂ =
argmax

θ
P (θ|D) =

argmax
θ

P (θ,D)

P (D)

This is the MAP estimate. If we wish to perform MAP inference, P (D) doesn’t
matter (it changes the value, but not the location, of the maximum). This means
we can work with P (D, θ), often called the joint distribution.

Worked example 1.11 Flipping a coin - II

We have a coin with probability θ of coming up heads when flipped. We
model the prior on θ with a Beta distribution, with parameters α > 0,
β > 0. We then flip the coin N times, and see h heads. What is the
MAP estimate of θ?

Solution: We have that

P (θ|N, h, α, β) =
Γ(α+ β +N)

Γ(α + h)Γ(β +N − h)
θ(α+h−1)(1− θ)(β+N−h−1).

You can get the MAP estimate by differentiating and setting to 0, yielding

θ̂ =
α− 1 + h

α+ β − 2 +N
.

This has rather a nice interpretation. You can see α and β as extra counts of
heads (resp. tails) that are added to the observed counts. So, for example,
if you were fairly sure that the coin should be fair, you might make α and
β large and equal. When α = 1 and β = 1, we have a uniform prior as in
the previous examples.
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Worked example 1.12 More sweary politicians

We observe our swearing politician for N intervals, seeing ni swear
words in the i’th interval. We model the swearing with a Poisson model.
We wish to estimate the intensity, which we write θ. We use a Gamma
distribution for the prior on θ. What is the MAP estimate of θ?

Solution: Write T =
∑N

i=1. We have that

p(θ|D) =
(β + 1)(α+T )

Γ(α+ T )
θ(α−1+T )e−(β+1)θ

and the MAP estimate is

θ̂ =
(α− 1 + T )

(β + 1)

(which you can get by differentiating with respect to θ, then setting to
zero). Notice that if β is close to zero, you can interpret α as extra counts;

if β is large, then it strongly discourages large values of θ̂, even if the counts
are large.

Worked example 1.13 Normal data

Assume you see N datapoints xi which are modelled by a normal dis-
tribution with unknown mean θ and with known standard deviation σ.
You model the prior on θ using a normal distribution with mean µ0 and
standard deviation σ0. What is the MAP estimate of the mean?

Solution: Recall that the maximum value of a normal distribution occurs
at its mean. Now problem is covered by useful fact 2, but in this case we
have ci = 1 for each data point, and σi = σ. We can write

µN =
xNσ2

N−1 + µN−1σ
2

σ2 + σ2
N−1

and

σ2
N =

σ2σ2
N−1

σ2 + σ2
N−1

.

and evaluate the recursion down to µ0, σ0.

1.2.4 Cautions about Bayesian Inference

Just like maximum likelihood inference, bayesian inference is not a recipe that can
be applied without thought. It turns out that, when there is a lot of data, the
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prior has little inference on the outcome of the inference, and the MAP solution
looks a lot like the maximum likelihood solution. So the difference between the two
approaches is most interesting when there is little data, where the prior matters.
The difficulty is that it might be hard to know what to use as a good prior. In
the examples, I emphasized mathematical convenience, choosing priors that lead
to clean posteriors. There is no reason to believe that nature uses conjugate priors
(even though conjugacy is a neat property). How should one choose a prior for a
real problem?

This isn’t an easy point. If there is little data, then the choice could really
affect the inference. Sometimes we’re lucky, and the logic of the problem dictates
a choice of prior. Mostly, we have to choose and live with the consequences of the
choice. Often, doing so is succesful in applications.

The fact we can’t necessarily justify a choice of prior seems to be one of life’s
inconveniences, but it represents a significant philosophical problem. It’s been at
the core of a long series of protracted, often quite intense, arguments about the
philosophical basis of statistics. I haven’t followed these arguments closely enough
to summarize them; they seem to have largely died down without any particular
consensus being reached.


