Recap

Curse of dimension

- Data tends to fall into the "rind" of space $d \to \infty$, $P(\{x \in "rind"\}) \to 1$

– Variance gets larger (uniform cube):

$$E[x^t x] = \frac{d}{3}$$

Data falls further apart from each other (uniform cube):

$$E[d(u,v)^2] = 2\frac{d}{3}$$

 Statistics becomes unreliable, difficult to build histograms, etc. → use simple models

Recap

Multivariate Gaussian

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

- By translation and rotation, it turns into multiplication of normal distributions
- MLE of mean: $\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$
- MLE of covariance: $\hat{\Sigma} = \frac{\Sigma_i(x_i \hat{\mu})(x_i \hat{\mu})^T}{N}$

Be cautious...

Data may not be in one blob, need to separate data into groups

Clustering

CS 498 Probability & Statistics Clustering methods

Zicheng Liao

What is clustering?

- "Grouping"
 - A fundamental part in signal processing
- "Unsupervised classification"
- Assign the same label to data points that are <u>close</u> to each other

Why?

We live in a universe full of clusters

Two (types of) clustering methods

Agglomerative/Divisive clustering

K-means

Agglomerative/Divisive clustering

Algorithm

Make each point a separate cluster
Until the clustering is satisfactory
Merge the two clusters with the
smallest inter-cluster distance
end

Algorithm 12.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points

Until the clustering is satisfactory

Split the cluster that yields the two

components with the largest inter-cluster distance
end

Algorithm 12.2: Divisive Clustering, or Clustering by Splitting.

Agglomerative clustering: an example

"merge clusters bottom up to form a hierarchical cluster tree"

Animation from Georg Berber www.mit.edu/~georg/papers/lecture6.ppt

Dendrogram

>> X = rand(6, 2); %create 6 points on a plane

>> Z = linkage(X); %Z encodes a tree of hierarchical clusters

>> dendrogram(Z); %visualize Z as a dendrograph

Distance measure

- Popular choices: Euclidean, hamming, correlation, cosine,...
- A metric

```
- d(x,y) \ge 0
- d(x,y) = 0 \text{ iff } x = y
- d(x,y) = d(y,x)
- d(x,y) \le d(x,z) + d(z,y) \text{ (triangle inequality)}
```

- Critical to clustering performance
- No single answer, depends on the data and the goal
- Data whitening when we know little about the data

Inter-cluster distance

- Treat each data point as a single cluster
- Only need to define inter-cluster distance
 - Distance between one set of points and another set of points
- 3 popular inter-cluster distances
 - Single-link
 - Complete-link
 - Averaged-link

Single-link

- Minimum of all pairwise distances between points from two clusters
- Tend to produce long, loose clusters

Complete-link

- Maximum of all pairwise distances between points from two clusters
- Tend to produce tight clusters

Averaged-link

 Average of all pairwise distances between points from two clusters

How many clusters are there?

- Intrinsically hard to know
- The dendrogram gives insights to it
- Choose a threshold to split the dendrogram into clusters

An example

do agglomerative.m

Divisive clustering

- "recursively split a cluster into smaller clusters"
- It's hard to choose where to split: combinatorial problem
- Can be easier when data has a special structure (pixel grid)

K-means

- Partition data into clusters such that:
 - Clusters are tight (distance to cluster center is small)
 - Every data point is closer to its own cluster center than to all other cluster centers (Voronoi diagram)

[figures excerpted from Wikipedia]

Formulation

Find K clusters that minimize:

$$\Phi(C, x) = \sum_{i \in ||C||} \left\{ \sum_{x_j \in C_i} (x_j - \mu_i) \right\}^T (x_j - \mu_i) \right\}$$

- Two parameters: {label, cluster center}
- NP-hard for global optimal solution
- Iterative procedure (local minimum)

K-means algorithm

- 1. Choose cluster number K
- 2. Initialize cluster center μ_1 , ... μ_k
 - a. Randomly select K data points as cluster centers
 - b. Randomly assign data to clusters, compute the cluster center

3. Iterate:

- Assign each point to the closest cluster center
- b. Update cluster centers (take the mean of data in each cluster)
- 4. Stop when the assignment doesn't change

Illustration

Randomly initialize 3 cluster centers (circles)

Assign each point to the closest cluster center

Update cluster center

Re-iterate step2

[figures excerpted from Wikipedia]

Example

do Kmeans.m

(show step-by-step updates and effects of cluster number)

- How to choose cluster number *K*?
 - No exact answer, guess from data (with visualization)
 - Define a **cluster quality** measure Q(K) then optimize K

Converge to local minimum => counterintuitive clustering

[figures excerpted from Wikipedia]

- Favors spherical clusters;
- Poor results for long/loose/stretched clusters

Input data(color indicates true labels)

K-means results

- Cost is guaranteed to decrease in every step
 - Assign a point to the closest cluster center minimizes the cost for current cluster center configuration
 - Choose the mean of each cluster as new cluster center minimizes the squared distance for current *clustering* configuration
- Finish in polynomial time

Summary

- Clustering as grouping "similar" data together
- A world full of clusters/patterns
- Two algorithms
 - Agglomerative/divisive clustering: hierarchical clustering tree
 - K-means: vector quantization

CS 498 Probability & Statistics Regression

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Zicheng Liao

Example-I

Predict stock price

Example-II

Fill in missing pixels in an image: inpainting

Example-III

Discover relationship in data

Number	\mathbf{A}	\mathbf{B}	\mathbf{C}	Number	A
1.	25.8	16.3	28.8	1.	99
2.	20.5	11.6	22.0	2.	152
3.	14.3	11.8	29.7	3.	293
4.	23.2	32.5	28.9	4.	155
5.	20.6	32.0	32.8	5.	196
6.	31.1	18.0	32.5	6.	53
7.	20.9	24.1	25.4	7.	184
8.	20.9	26.5	31.7	8.	171
9.	30.4	25.8	28.5	9.	52

Amount of hormones by devices from 3 production lots

Time in service for devices from 3 production lots

В

Example-III

Discovery relationship in data

Linear regression

Input:

$$\{(x_1, y_1), (x_2, y_2), ... (x_M, y_M)\}$$

y: house price

x: {size, age of house, #bedroom, #bathroom, yard}

Linear model with Gaussian noise

$$y = x^T \beta + \xi$$
 $x^T = (x_1, x_2, ... x_N, 1)$

- x: explanatory variable
- y: dependent variable
- $-\beta$: parameter of linear model
- ξ: zero mean <u>Gaussian random variable</u>

Parameter estimation

MLE of linear model with Gaussian noise

$$maximize: P(\{(\boldsymbol{x}_i, y_i)\}^M | \beta)$$
 Likelihood function
$$= \prod_{i=1}^{M} g(y_i - \boldsymbol{x}_i^T \beta; 0, \sigma)$$

$$= \frac{1}{const} \exp\{-\frac{\sum_{i=1}^{M} (y_i - \boldsymbol{x}_i^T \beta)^2}{2\sigma}\}$$

$$\rightarrow$$
 minimize:
$$\sum_{i=1}^{M} (y_i - x_i^T \beta)^2$$

[Least squares, Carl F. Gauss, 1809]

Parameter estimation

Closed form solution

Cost function
$$\Phi(\beta) = \sum_{i=1}^{M} (y_i - \boldsymbol{x}_i^T \beta)^2 = (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta) \qquad \boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \dots \\ \boldsymbol{x}_M^T \end{pmatrix} \boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \\ \dots \\ \boldsymbol{y}_M \end{pmatrix}$$

$$\frac{\partial \Phi(\beta)}{\partial \beta} = \mathbf{X}^T \mathbf{X} \beta - \mathbf{X}^T \mathbf{y}$$

$$\rightarrow$$
 $X^T X \beta - X^T y = 0$ Normal equation

(expensive to compute the matrix inverse for high dimension)

Gradient descent

http://openclassroom.stanford.edu/MainFolder/VideoPage.php? course=MachineLearning&video=02.5-LinearRegressionI-GradientDescentForLinearRegression&speed=100 (Andrew Ng)

$$\frac{\partial \Phi(\beta)}{\partial \beta} = \mathbf{X}^T \mathbf{X} \beta - \mathbf{X}^T \mathbf{y}$$

Init:
$$\beta^{(0)} = (0,0,...0)$$

Init:
$$eta^{(0)}=(0,0,\dots 0)$$
 Repeat:
$$\beta^{(t+1)}=\beta^{(t)}-\alpha \frac{\partial \Phi(\beta)}{\partial \beta}$$
 Until converge.

(Guarantees to reach global minimum in finite steps)

Example

do regression.m

Interpreting a regression

$$y = -0.0574t + 34.2$$

Interpreting a regression

Interpreting the residual

Useful Facts: 13.1 Regression

We write $\mathbf{y} = \mathcal{X}\beta + \mathbf{e}$, where \mathbf{e} is the residual. Assume \mathcal{X} has a column of ones, and β is chosen to minimize $\mathbf{e}^T \mathbf{e}$. Then we have

- 1. $\mathbf{e}^T \mathcal{X} = \mathbf{0}$, i.e. that \mathbf{e} is orthogonal to any column of \mathcal{X} . This is because, if \mathbf{e} is not orthogonal to some column of \mathbf{e} , we can increase or decrease the β term corresponding to that column to make the error smaller. Another way to see this is to notice that beta is chosen to minimize $\mathbf{e}^T \mathbf{e}$, which is $(\mathbf{y} \mathcal{X}\beta)^T (\mathbf{y} \mathcal{X}\beta)$. Now because this is a minimum, the gradient with respect to β is zero, so $(\mathbf{y} \mathcal{X}\beta)^T (-\mathcal{X}) = -\mathbf{e}^T \mathcal{X} = 0$.
- **2.** $\mathbf{e}^T \mathbf{1} = 0$ (recall that \mathcal{X} has a column of all ones, and apply the previous result).
- 3. $\mathbf{1}^T(\mathbf{y} \mathcal{X}\beta) = 0$ (same as previous result).
- **4.** $\mathbf{e}^T \mathcal{X} \beta = 0$ (first result means that this is true).

Interpreting the residual

- e has zero mean
- e is orthogonal to every column of X
 - e is also <u>de-correlated</u> from every column of X

$$cov(e, \mathbf{X}^{(i)}) = \frac{1}{M}(e - 0)^T (\mathbf{X}^{(i)} - mean(\mathbf{X}^{(i)}))$$
$$= \frac{1}{M}e^T \mathbf{X}^{(i)} - mean(e) * mean(\mathbf{X}^{(i)})$$
$$= 0 - 0$$

- e is orthogonal to the regression vector $X\beta$
 - e is also <u>de-correlated</u> from the regression vector $X\beta$ (follow the same line of derivation)

How good is a fit?

- Information ~ variance
- Total variance is decoupled into regression variance and error variance

$$var[y] = var[X\beta] + var[e]$$

(Because e and $X\beta$ have zero covariance)

 How good is a fit: How much variance is explained by regression: Xβ

How good is a fit?

- R-squared measure
 - The percentage of variance explained by regression

$$R^2 = \frac{var[\mathbf{X}\beta]}{var[\mathbf{y}]}$$

Used in hypothesis test for model selection

Regularized linear regression

Cost

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta)$$

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \beta^{T} \beta = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \beta^{T} \beta$$

Closed-form solution

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

Penalize large

values in β

Gradient descent

Init:
$$\beta = (0,0,...0)$$

Init:
$$\beta=(0,0,...0)$$
 Repeat:
$$\beta^{t+1}=\beta^t(1-\frac{\alpha}{M}\lambda)-\alpha\frac{\partial\Phi(\beta)}{\partial\beta}$$
 Until converge.

Why regularization?

- Handle small eigenvalues
 - Avoid dividing by small values by adding the regularizer

$$\beta = (X^T X)^{-1} X^T y$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

Why regularization?

- Avoid over-fitting:
 - Over fitting
 - Small parameters → simpler model → less prone to over-fitting

L1 regularization (Lasso)

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \beta^{T} \beta = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \beta^{T} \beta$$

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \|\beta\|_{1} = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \|\beta\|_{1}$$

- Some features may be irrelevant but still have a small non-zero coefficient in β
- L1 regularization pushes small values of β to zero
- "Sparse representation"

How does it work?

- When β is small, the L1 penalty is much larger than squared penalty.
- Causes trouble in optimization (gradient non-continuity)

Summary

- Linear regression
 - Linear model + Gaussian noise
 - Parameter estimation by MLE → Least squares
 - Solving least square by the normal equation
 - Or by gradient descent for high dimension
- How to interpret a regression model
 - $-R^2$ measure
- Regularized linear regression
 - Squared norm
 - L1 norm: Lasso