Recap

« Curse of dimension
— Data tends to fall into the “rind” of space
d—> o, P({x €"rind"}) - 1
— Variance gets larger (uniform cube):
E[x'x] = %
— Data falls further apart from each other (uniform cube):

E[d(u,v)?] = zg

— Statistics becomes unreliable, difficult to build
histograms, etc. = use simple models



Recap

e Multivariate Gaussian

1 1 Txw—1
Pl ) = s exp (5 06— )75 )

— By translation and rotation, it turns into multiplication
of normal distributions
X X
N

— MLE of mean: ji =

2i(i—0) =T
N

— MLE of covariance: & =



Be cautious..

Data may not be in one blob, need to separate data into groups

Clustering




CS 498 Probability & Statistics
Clustering methods

Zicheng Liao



What is clustering?

“Grouping”

— A fundamental part in signal processing
“Unsupervised classification”

Assign the same label to data points

that are close to each other

Why?



We live Iin a universe full of clusters
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Two (types of) Clustering methods

» Agglomerative/Divisive clustering

e K-means



Agglomerative/Divisive clustering

Agglomerative

_ Divisive clustering
clustering

4
Hierarchical
1 |
o : : cluster tree
1 |

T a1

1 2345 6

I
\/

(Bottom up) (Top down)



Algorithm

Make each point a separate cluster
Until the clustering is satisfactory
Merge the two clusters with the
smallest inter-cluster distance
end

Algorithm 12.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points
Until the clustering is satisfactory
Split the cluster that yields the two
components with the largest inter-cluster distance
end

Algorithm 12.2: Divisive Clustering, or Clustering by Splitting.




Agglomerative clustering: an example

* “merge clusters bottom up to form a hierarchical cluster tree”

Animation from Georg Berber
www.mit.edu/~georg/papers/lecture6.ppt



Dendrogram

cu
o
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>> X =rand(6, 2); %create 6 points on a plane
>> 7 = linkage(X); %Z encodes a tree of hierarchical clusters

>> dendrogram(Z); %visualize Z as a dendrograph



Distance measure

8 Popular choices: Euclidean, hamming, correlation, cosine, ...

A metric

—d(x,y) =0

- dx,y)=0iffx=y

— d(x,y) =d(y,x)

— d(x,y) <d(x,z) +d(z,y) (triangle inequality)

Critical to clustering performance
No single answer, depends on the data and the goal
Data whitening when we know little about the data



Inter-cluster distance

* Treat each data point as a single cluster

* Only need to define inter-cluster distance

— Distance between one set of points and another set of
points

« 3 popular inter-cluster distances
— Single-link
— Complete-link
— Averaged-link



Single-link

* Minimum of all pairwise distances between
points from two clusters

* Tend to produce long, loose clusters

o O




Complete-link

« Maximum of all pairwise distances between
points from two clusters

* Tend to produce tight clusters

()

7

O
@Q




Averaged-link

* Average of all pairwise distances between
points from two clusters

o O
1
Q O D(C4y,Cy) = N z d(pi:pj)

‘ Pi€EC1,02€EC,




How many clusters are there?

* Intrinsically hard to know
 The dendrogram gives insights to it
« Choose a threshold to split the dendrogram into clusters

Distance

th hold
threshold| [ |

]

1 2345 6




An example

do agglomerative.m




Divisive clustering

* “recursively split a cluster into smaller clusters”
* It's hard to choose where to split: combinatorial problem
« Can be easier when data has a special structure (pixel grid)




K-means

e Partition data into clusters such that:

— Clusters are tight (distance to cluster center is small)

— Every data point is closer to its own cluster center than to all
other cluster centers (Voronoi diagram)

Green level

50 100 150 200 250
Red level

[figures excerpted from Wikipedia]



Formulation

Cluster center

¢ Find K clusters that minimize:
_\/

o= Y Y (- ) (x - )

Lel|Cl] \x;€C;

A\

* Two parameters: {label, cluster center}
* NP-hard for global optimal solution
» |terative procedure (local minimum)



K-means algorithm

d. Choose cluster number K

2. Initialize cluster center u, ... uy

a. Randomly select K data points as cluster centers
b. Randomly assign data to clusters, compute the cluster center

3. lterate:

a. Assign each point to the closest cluster center
b. Update cluster centers (take the mean of data in each cluster)

4. Stop when the assignment doesn’t change



lllustration
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Randomly initialize 3 Assign each point to the

cluster centers (circles) closest cluster center Update cluster center  Re-iterate step2

[figures excerpted from Wikipedia]



Example

do Kmeans.m

(show step-by-step updates and effects of cluster number)



Discussion

¢ How to choose cluster number K?
— No exact answer, guess from data (with visualization)
— Define a cluster quality measure Q (K) then optimize K

© o o &5



Discussion

« Converge to local minimum => counterintuitive clustering
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[figures excerpted from Wikipedia]



Discussion

« Favors spherical clusters;
« Poor results for long/loose/stretched clusters
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Input data(color indicates true labels) K-means results



Discussion

* Cost is guaranteed to decrease in every step

— Assign a point to the closest cluster center minimizes the
cost for current cluster center configuration

— Choose the mean of each cluster as new cluster center

minimizes the squared distance for current clustering
configuration

* Finish in polynomial time



Summary

« Clustering as grouping “similar” data together
« A world full of clusters/patterns

* Two algorithms

— Agglomerative/divisive clustering: hierarchical clustering tree
— K-means: vector quantization



CS 498 Probability & Statistics
Regression

)
Treatment effeck(y
o
®

“It's a non-linear pattern with
ovtliers.....but for some reason
I'm very happy with the data.”

Zicheng Liao



Example-|

* Predict stock price

| stock price




Example-l|

* Fillin mlssmg plxels In an |mage iInpainting




Example-ll|

* Discover relationship in data

Number A B C
1. 25.8 16.3 28.8
2. 20.5 11.6 22.0
3. 14.3 11.8 29.7
4. 23.2 325 289
5. 20.6 32.0 32.8
6. 31.1 18.0 32.5
7. 209 24.1 254
8. 209 26.5 31.7
9. 30.4 25.8 28.5

Amount of hormones by devices

from 3 production lots

Number A B C
1. 99 376 119
2. 152 385 188
3. 293 402 115
4. 155 29 88
5. 196 76 58
6. 53 296 49
7. 184 151 150
8. 171 177 107
9. 52 209 125

Time in service for devices
from 3 production lots



Example-ll|

* Discovery relationship in data

Amount of hormone against time in service for Efron data, with regression line
40
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Linear regression

¢ |nput:
{1, y1), (X2, 72), o (0, yu) 3

y: house price
x:{size,age of house, #bedroom, #bathroom, yard}

 Linear model with Gaussian noise

y=x'p+¢& xT = (xq,%5, ... Xy, 1)

— x: explanatory variable

— y: dependent variable

— [3: parameter of linear model

— &: zero mean Gaussian random variable




Parameter estimation

« MLE of linear model with Gaussian noise

maximize: P({(xi, yi)}M |,B) — Likelihood function
M
=| |90i—x"8;0,0)
i=1
_ 1 exp{— Yiz1(yi —xiT.B)Z}
const P 20
M
= minimize: z(yi — x;T B)?
i=1

[Least squares, Carl F. Gauss, 1809]



Parameter estimation

 Closed form solution

Cost function

/& x," Y1
d(B) = Z(yi —x; B) = —Xp)"(y - XB) X = (x_g_T> y= (’.’:’:)
i=1

xpy! Ym
oP(p) - 7
TR Xg - X"y
> X'Xp—-X'y=0 Normal equation

2> pL=X'X)"XxTy

(expensive to compute the matrix inverse for high dimension)



Gradient descent

. http://openclassroom.stanford.edu/MainFolder/VideoPage.php?
course=MachineLearning&video=02.5-LinearRegressionl-
GradientDescentForLinearRegression&speed=100 (Andrew Ng)

0P (p)
op

=X"XB-X"y

Init: 3 = (0,0, ... 0)

Repeat:

0P ()
op

D = gV _ ¢

Until converge.

(Guarantees to reach global minimum in finite steps)



Example

do regression.m




Residual from regressed amount of hormone

Interpreting a regression

y = —0.0574t + 34.2

Regression residual against time in service for Efron data
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residual

Interpreting a regression

Residual error against predicted body weight for the bodyfat dataset

30 1 I 1] 1 |
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e Zero mean residual
2ol * Zero correlation i
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Interpreting the residual

Useful Facts: 13.1 Regression

We write y = X3+ e, where e is the residual. Assume X has a column
of ones, and 3 is chosen to minimize e’e. Then we have

1. efX = 0, i.e. that e is orthogonal to any column of X. This
is because, if e is not orthogonal to some column of e, we can
increase or decrease the g term corresponding to that column to
make the error smaller. Another way to see this is to notice that
beta is chosen to minimize e’'e, which is (y — X' 3)% (y — X'3). Now
because this is a minimum, the gradient with respect to [ is zero,
so (y — XB)T(=X)=—-eTX =0.

2. ef'1 = 0 (recall that X has a column of all ones, and apply the
previous result).

3. 17(y — X3) = 0 (same as previous result).

4. e’ X = 0 (first result means that this is true).




Interpreting the residual

¢ e has zero mean

» e is orthogonal to every column of X
— e is also de-correlated from every column of X

. 1 . .
cov(e, XW) = i (e — O)T(X(l) — mean(X(‘)))

1 . .
= MeTX(l) — mean(e) x mean(X®)

=0 -0

* e is orthogonal to the regression vector Xf
— e is also de-correlated from the regression vector Xf3

(follow the same line of derivation)



How good is a fit?

Information ~ variance

Total variance is decoupled into regression variance
and error variance

var|y]| = var|XB] + var|e]

(Because e and X3 have zero covariance)

How good is a fit: How much variance is explained
by regression: Xf



How good is a fit?

 R-squared measure

— The percentage of variance explained by
regression

B var|[X[B]

R 2
var|y]

— Used in hypothesis test for model selection



Regularized linear regression

e Cost S (yi —xTB)2 = (y — XB)T(y — XB)
Z (yi =% B+ A\3TB = (y— XB)  (y — XB) H 3"/

d /\_

Penalize large
« Closed-form solution values in §

B=X"X+D"XTy

« Gradient descent Init: 8 = (0,0, ... 0)

Repeat:

= ptl- ) —a

Until converge.

0P (f)
op




Why regularization”?

 Handle small eigenvalues

— Avoid dividing by small values by adding the
regularizer

B=XTX)"1XTy

4

B=X"X+AD)"'XTy



Why regularization”?
 Avoid over-fitting:

— Over fitting
— Small parameters =» simpler model = less prone

to over-fitting
Smaller parameters
make a simpler
(better) model

Over fit: hard to
generalize to new data




L1 regularization (Lasso)

S (i —xFB)? + AT = (y — X8)7(y — XB)

4

Z(y.,- —xI'B)2 + X |Bhi=(y — &B) T (y — 2B) HX |81

7

— Some features may be irrelevant but still have a
small non-zero coefficientin

— L1 regularization pushes small values of  to zero
— “Sparse representation”



How does it work?
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— When g is small, the L1 penalty is much larger than squared

penalty.

— Causes trouble in optimization (gradient non-continuity)

0.1



Summary

¢ Linear regression
— Linear model + Gaussian noise
— Parameter estimation by MLE =» Least squares
— Solving least square by the normal equation
— Or by gradient descent for high dimension

* How to interpret a regression model
— R? measure

« Regularized linear regression
— Squared norm
— L1 norm: Lasso



