## Recap

#### Curse of dimension

- Data tends to fall into the "rind" of space  $d \to \infty$ ,  $P(\{x \in "rind"\}) \to 1$ 

– Variance gets larger (uniform cube):

$$E[x^t x] = \frac{d}{3}$$

Data falls further apart from each other (uniform cube):

$$E[d(u,v)^2] = 2\frac{d}{3}$$

 Statistics becomes unreliable, difficult to build histograms, etc. → use simple models

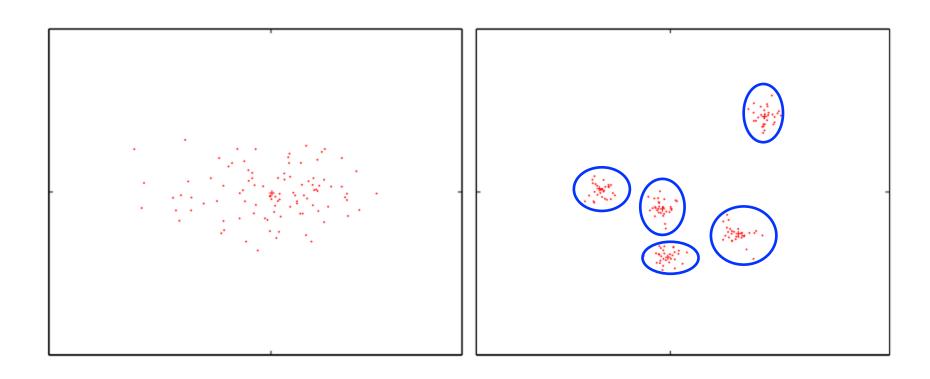
## Recap

Multivariate Gaussian

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

- By translation and rotation, it turns into multiplication of normal distributions
- MLE of mean:  $\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$
- MLE of covariance:  $\hat{\Sigma} = \frac{\Sigma_i(x_i \hat{\mu})(x_i \hat{\mu})^T}{N}$

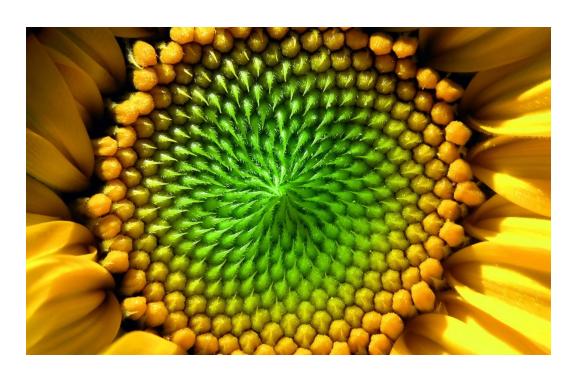
### Be cautious...



Data may not be in one blob, need to separate data into groups

#### Clustering

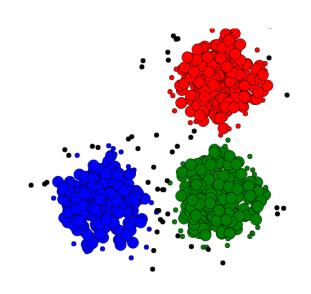
# CS 498 Probability & Statistics Clustering methods



Zicheng Liao

## What is clustering?

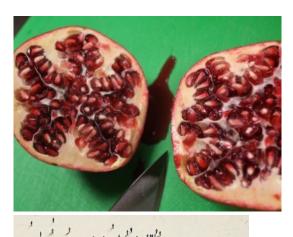
- "Grouping"
  - A fundamental part in signal processing
- "Unsupervised classification"
- Assign the same label to data points that are <u>close</u> to each other



Why?

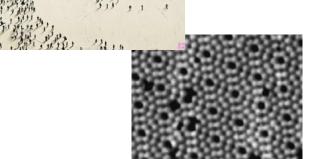
## We live in a universe full of clusters











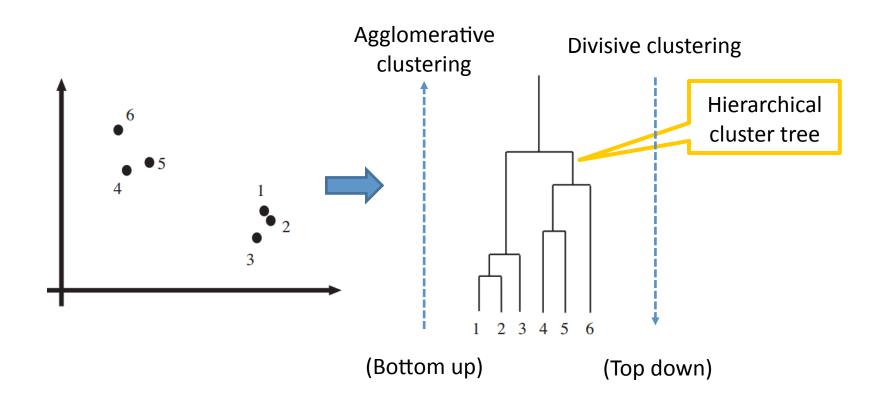


## Two (types of) clustering methods

Agglomerative/Divisive clustering

K-means

## Agglomerative/Divisive clustering



## **Algorithm**

Make each point a separate cluster
Until the clustering is satisfactory
Merge the two clusters with the
smallest inter-cluster distance
end

Algorithm 12.1: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points

Until the clustering is satisfactory

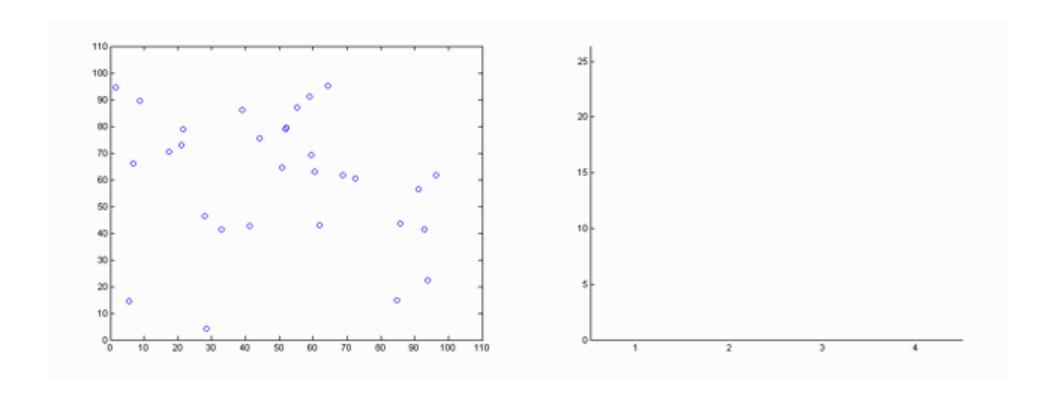
Split the cluster that yields the two

components with the largest inter-cluster distance
end

Algorithm 12.2: Divisive Clustering, or Clustering by Splitting.

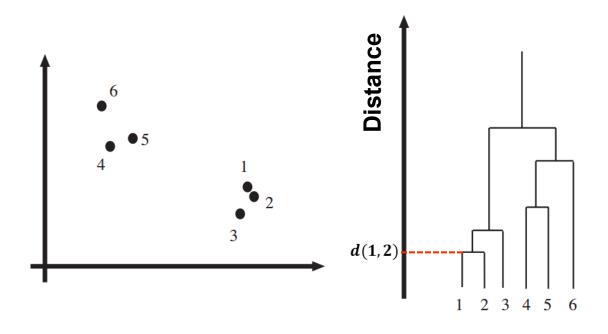
### Agglomerative clustering: an example

"merge clusters bottom up to form a hierarchical cluster tree"



Animation from Georg Berber www.mit.edu/~georg/papers/lecture6.ppt

## Dendrogram



>> X = rand(6, 2); %create 6 points on a plane

>> Z = linkage(X); %Z encodes a tree of hierarchical clusters

>> dendrogram(Z); %visualize Z as a dendrograph

#### Distance measure

- Popular choices: Euclidean, hamming, correlation, cosine,...
- A metric

```
- d(x,y) \ge 0
- d(x,y) = 0 \text{ iff } x = y
- d(x,y) = d(y,x)
- d(x,y) \le d(x,z) + d(z,y) \text{ (triangle inequality)}
```

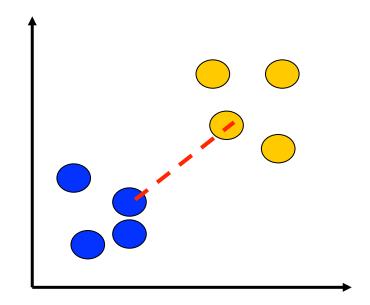
- Critical to clustering performance
- No single answer, depends on the data and the goal
- Data whitening when we know little about the data

#### Inter-cluster distance

- Treat each data point as a single cluster
- Only need to define inter-cluster distance
  - Distance between one set of points and another set of points
- 3 popular inter-cluster distances
  - Single-link
  - Complete-link
  - Averaged-link

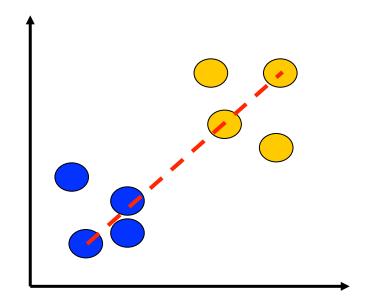
## Single-link

- Minimum of all pairwise distances between points from two clusters
- Tend to produce long, loose clusters



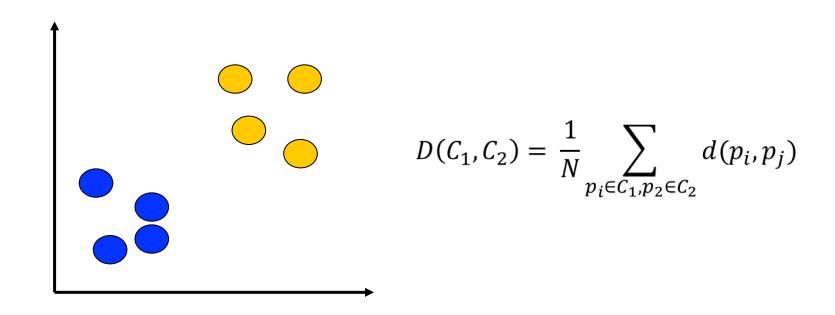
## Complete-link

- Maximum of all pairwise distances between points from two clusters
- Tend to produce tight clusters



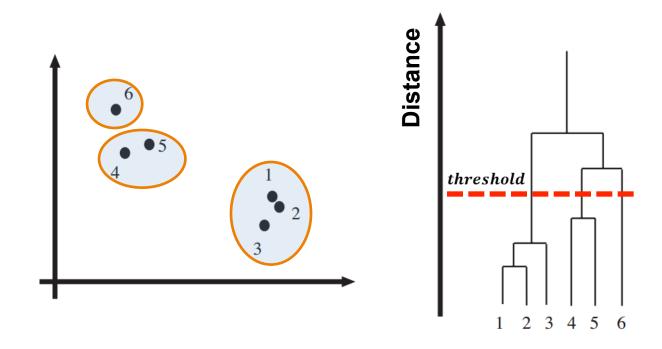
## Averaged-link

 Average of all pairwise distances between points from two clusters



## How many clusters are there?

- Intrinsically hard to know
- The dendrogram gives insights to it
- Choose a threshold to split the dendrogram into clusters

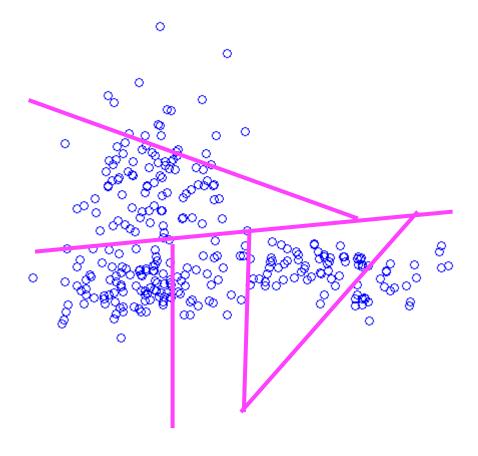


# An example

do agglomerative.m

## Divisive clustering

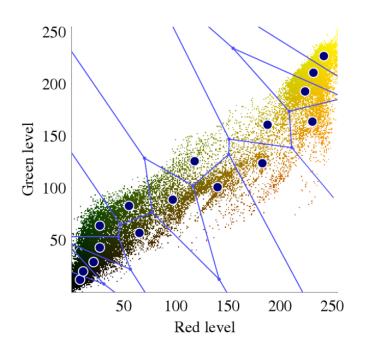
- "recursively split a cluster into smaller clusters"
- It's hard to choose where to split: combinatorial problem
- Can be easier when data has a special structure (pixel grid)



#### K-means

- Partition data into clusters such that:
  - Clusters are tight (distance to cluster center is small)
  - Every data point is closer to its own cluster center than to all other cluster centers (Voronoi diagram)





[figures excerpted from Wikipedia]

#### **Formulation**

Find K clusters that minimize:

$$\Phi(C, x) = \sum_{i \in ||C||} \left\{ \sum_{x_j \in C_i} (x_j - \mu_i) \right\}^T (x_j - \mu_i) \right\}$$

- Two parameters: {label, cluster center}
- NP-hard for global optimal solution
- Iterative procedure (local minimum)

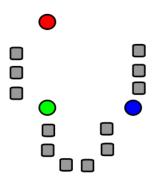
## K-means algorithm

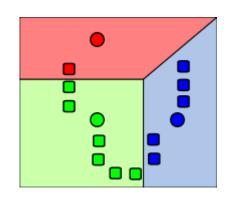
- 1. Choose cluster number K
- 2. Initialize cluster center  $\mu_1$ , ...  $\mu_k$ 
  - a. Randomly select K data points as cluster centers
  - b. Randomly assign data to clusters, compute the cluster center

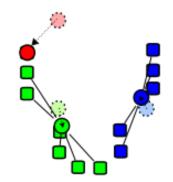
#### 3. Iterate:

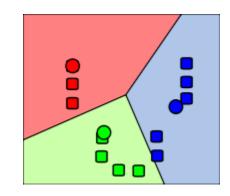
- Assign each point to the closest cluster center
- b. Update cluster centers (take the mean of data in each cluster)
- 4. Stop when the assignment doesn't change

## Illustration









Randomly initialize 3 cluster centers (circles)

Assign each point to the closest cluster center

Update cluster center

Re-iterate step2

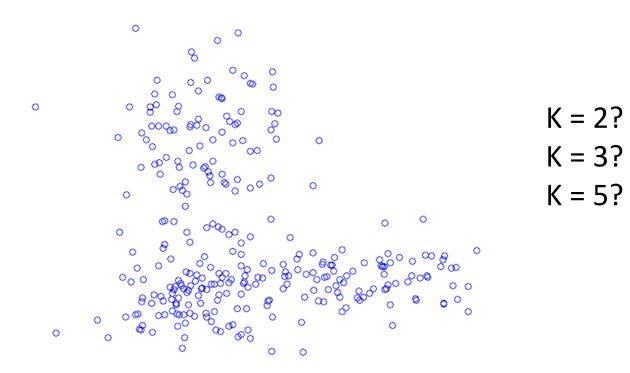
[figures excerpted from Wikipedia]

# Example

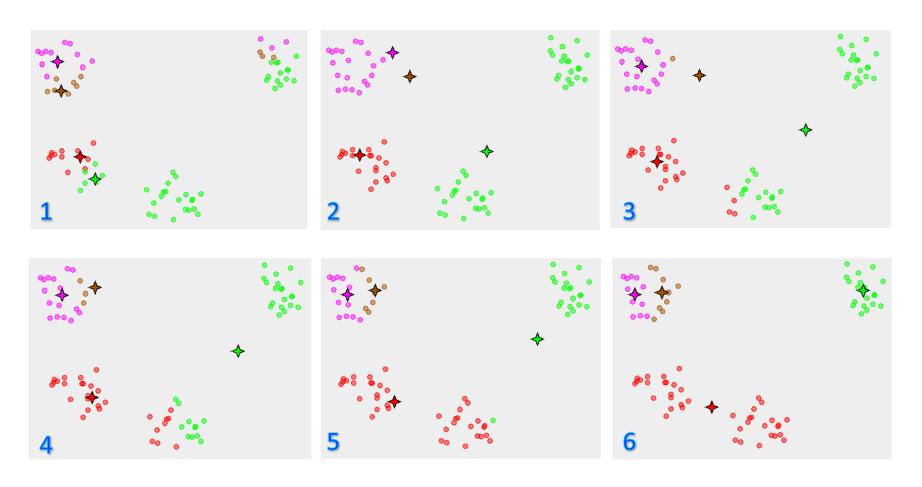
#### do Kmeans.m

(show step-by-step updates and effects of cluster number)

- How to choose cluster number *K*?
  - No exact answer, guess from data (with visualization)
  - Define a **cluster quality** measure Q(K) then optimize K

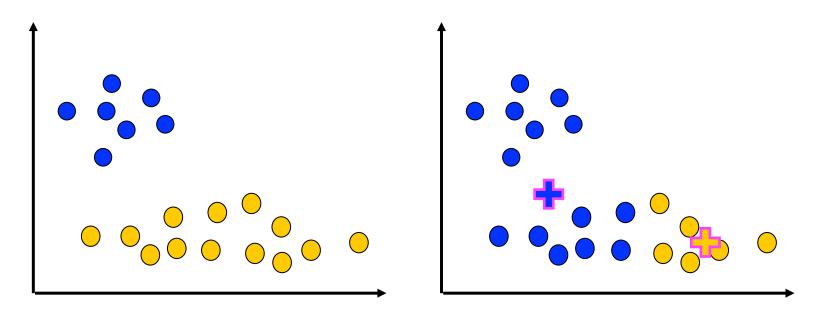


Converge to local minimum => counterintuitive clustering



[figures excerpted from Wikipedia]

- Favors spherical clusters;
- Poor results for long/loose/stretched clusters



Input data(color indicates true labels)

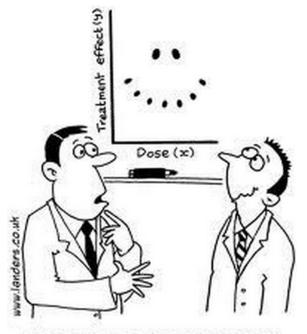
K-means results

- Cost is guaranteed to decrease in every step
  - Assign a point to the closest cluster center minimizes the cost for current cluster center configuration
  - Choose the mean of each cluster as new cluster center minimizes the squared distance for current *clustering* configuration
- Finish in polynomial time

# Summary

- Clustering as grouping "similar" data together
- A world full of clusters/patterns
- Two algorithms
  - Agglomerative/divisive clustering: hierarchical clustering tree
  - K-means: vector quantization

# CS 498 Probability & Statistics Regression

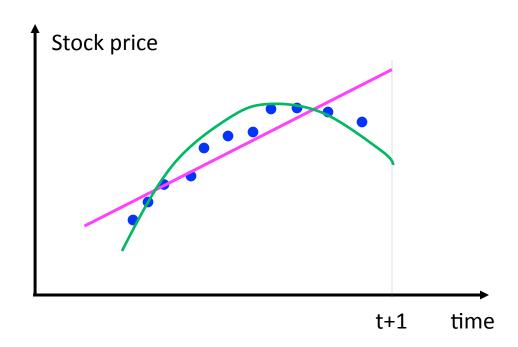


"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Zicheng Liao

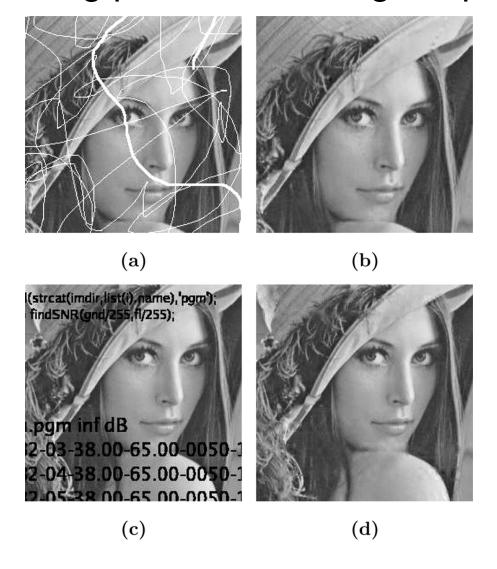
# Example-I

Predict stock price



## Example-II

Fill in missing pixels in an image: inpainting



## Example-III

#### Discover relationship in data

| Number | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | Number | A   |
|--------|--------------|--------------|--------------|--------|-----|
| 1.     | 25.8         | 16.3         | 28.8         | 1.     | 99  |
| 2.     | 20.5         | 11.6         | 22.0         | 2.     | 152 |
| 3.     | 14.3         | 11.8         | 29.7         | 3.     | 293 |
| 4.     | 23.2         | 32.5         | 28.9         | 4.     | 155 |
| 5.     | 20.6         | 32.0         | 32.8         | 5.     | 196 |
| 6.     | 31.1         | 18.0         | 32.5         | 6.     | 53  |
| 7.     | 20.9         | 24.1         | 25.4         | 7.     | 184 |
| 8.     | 20.9         | 26.5         | 31.7         | 8.     | 171 |
| 9.     | 30.4         | 25.8         | 28.5         | 9.     | 52  |

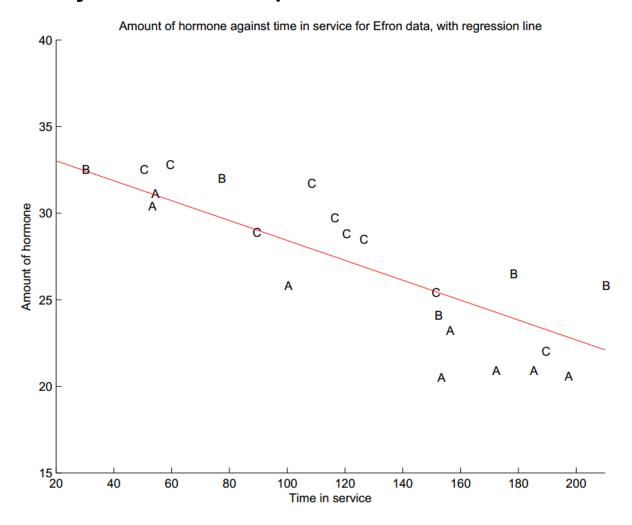
Amount of hormones by devices from 3 production lots

Time in service for devices from 3 production lots

В

## Example-III

Discovery relationship in data



#### Linear regression

Input:

$$\{(x_1, y_1), (x_2, y_2), ... (x_M, y_M)\}$$

y: house price

x: {size, age of house, #bedroom, #bathroom, yard}

Linear model with Gaussian noise

$$y = x^T \beta + \xi$$
  $x^T = (x_1, x_2, ... x_N, 1)$ 

- x: explanatory variable
- y: dependent variable
- $-\beta$ : parameter of linear model
- ξ: zero mean <u>Gaussian random variable</u>

#### Parameter estimation

MLE of linear model with Gaussian noise

$$maximize: P(\{(\boldsymbol{x}_i, y_i)\}^M | \beta)$$
 Likelihood function 
$$= \prod_{i=1}^{M} g(y_i - \boldsymbol{x}_i^T \beta; 0, \sigma)$$
 
$$= \frac{1}{const} \exp\{-\frac{\sum_{i=1}^{M} (y_i - \boldsymbol{x}_i^T \beta)^2}{2\sigma}\}$$

$$\rightarrow$$
 minimize: 
$$\sum_{i=1}^{M} (y_i - x_i^T \beta)^2$$

[Least squares, Carl F. Gauss, 1809]

#### Parameter estimation

Closed form solution

Cost function
$$\Phi(\beta) = \sum_{i=1}^{M} (y_i - \boldsymbol{x}_i^T \beta)^2 = (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta) \qquad \boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_1^T \\ \boldsymbol{x}_2^T \\ \dots \\ \boldsymbol{x}_M^T \end{pmatrix} \boldsymbol{y} = \begin{pmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \\ \dots \\ \boldsymbol{y}_M \end{pmatrix}$$

$$\frac{\partial \Phi(\beta)}{\partial \beta} = \mathbf{X}^T \mathbf{X} \beta - \mathbf{X}^T \mathbf{y}$$

$$\rightarrow$$
  $X^T X \beta - X^T y = 0$  Normal equation

(expensive to compute the matrix inverse for high dimension)

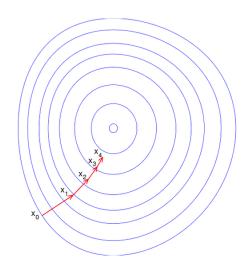
#### Gradient descent

http://openclassroom.stanford.edu/MainFolder/VideoPage.php? course=MachineLearning&video=02.5-LinearRegressionI-GradientDescentForLinearRegression&speed=100 (Andrew Ng)

$$\frac{\partial \Phi(\beta)}{\partial \beta} = \mathbf{X}^T \mathbf{X} \beta - \mathbf{X}^T \mathbf{y}$$

Init: 
$$\beta^{(0)} = (0,0,...0)$$

Init: 
$$eta^{(0)}=(0,0,\dots 0)$$
 Repeat: 
$$\beta^{(t+1)}=\beta^{(t)}-\alpha \frac{\partial \Phi(\beta)}{\partial \beta}$$
 Until converge.



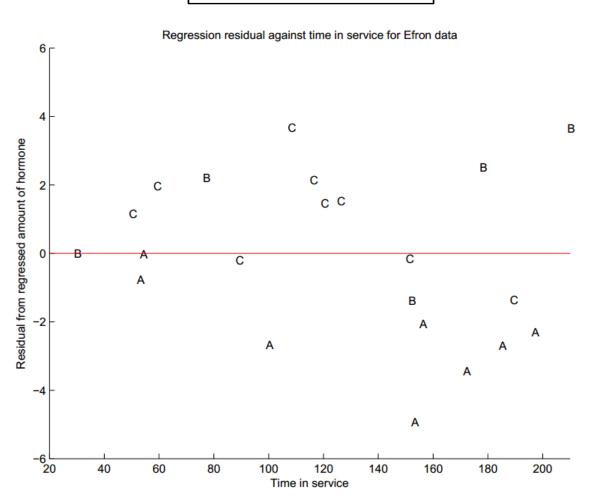
(Guarantees to reach global minimum in finite steps)

# Example

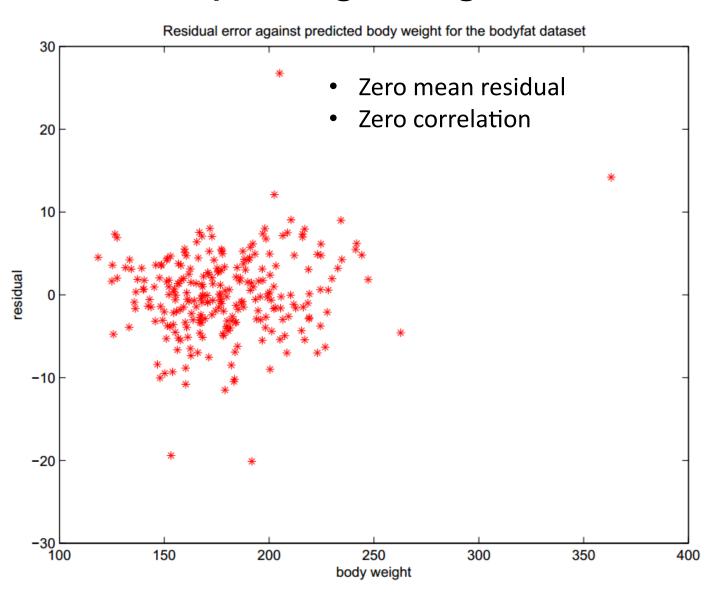
do regression.m

# Interpreting a regression

$$y = -0.0574t + 34.2$$



## Interpreting a regression



#### Interpreting the residual

#### Useful Facts: 13.1 Regression

We write  $\mathbf{y} = \mathcal{X}\beta + \mathbf{e}$ , where  $\mathbf{e}$  is the residual. Assume  $\mathcal{X}$  has a column of ones, and  $\beta$  is chosen to minimize  $\mathbf{e}^T \mathbf{e}$ . Then we have

- 1.  $\mathbf{e}^T \mathcal{X} = \mathbf{0}$ , i.e. that  $\mathbf{e}$  is orthogonal to any column of  $\mathcal{X}$ . This is because, if  $\mathbf{e}$  is not orthogonal to some column of  $\mathbf{e}$ , we can increase or decrease the  $\beta$  term corresponding to that column to make the error smaller. Another way to see this is to notice that beta is chosen to minimize  $\mathbf{e}^T \mathbf{e}$ , which is  $(\mathbf{y} \mathcal{X}\beta)^T (\mathbf{y} \mathcal{X}\beta)$ . Now because this is a minimum, the gradient with respect to  $\beta$  is zero, so  $(\mathbf{y} \mathcal{X}\beta)^T (-\mathcal{X}) = -\mathbf{e}^T \mathcal{X} = 0$ .
- **2.**  $\mathbf{e}^T \mathbf{1} = 0$  (recall that  $\mathcal{X}$  has a column of all ones, and apply the previous result).
- 3.  $\mathbf{1}^T(\mathbf{y} \mathcal{X}\beta) = 0$  (same as previous result).
- **4.**  $\mathbf{e}^T \mathcal{X} \beta = 0$  (first result means that this is true).

#### Interpreting the residual

- e has zero mean
- e is orthogonal to every column of X
  - e is also <u>de-correlated</u> from every column of X

$$cov(e, \mathbf{X}^{(i)}) = \frac{1}{M}(e - 0)^T (\mathbf{X}^{(i)} - mean(\mathbf{X}^{(i)}))$$
$$= \frac{1}{M}e^T \mathbf{X}^{(i)} - mean(e) * mean(\mathbf{X}^{(i)})$$
$$= 0 - 0$$

- e is orthogonal to the regression vector  $X\beta$ 
  - e is also <u>de-correlated</u> from the regression vector  $X\beta$  (follow the same line of derivation)

#### How good is a fit?

- Information ~ variance
- Total variance is decoupled into regression variance and error variance

$$var[y] = var[X\beta] + var[e]$$

(Because e and  $X\beta$  have zero covariance)

 How good is a fit: How much variance is explained by regression: Xβ

#### How good is a fit?

- R-squared measure
  - The percentage of variance explained by regression

$$R^2 = \frac{var[\mathbf{X}\beta]}{var[\mathbf{y}]}$$

Used in hypothesis test for model selection

#### Regularized linear regression

Cost

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta)$$

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \beta^{T} \beta = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \beta^{T} \beta$$

Closed-form solution

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

Penalize large

values in  $\beta$ 

Gradient descent

Init: 
$$\beta = (0,0,...0)$$

Init: 
$$\beta=(0,0,...0)$$
 Repeat: 
$$\beta^{t+1}=\beta^t(1-\frac{\alpha}{M}\lambda)-\alpha\frac{\partial\Phi(\beta)}{\partial\beta}$$
 Until converge.

#### Why regularization?

- Handle small eigenvalues
  - Avoid dividing by small values by adding the regularizer

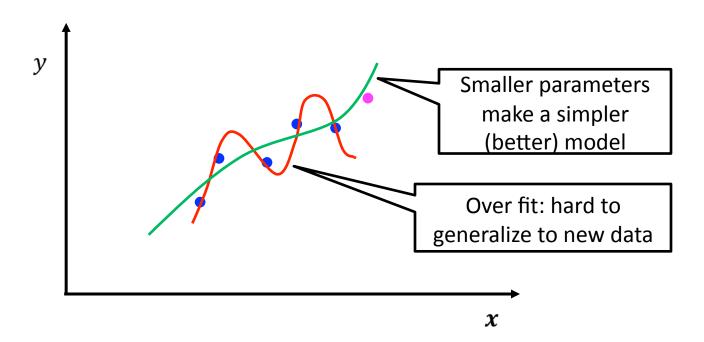
$$\beta = (X^T X)^{-1} X^T y$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

#### Why regularization?

- Avoid over-fitting:
  - Over fitting
  - Small parameters → simpler model → less prone to over-fitting



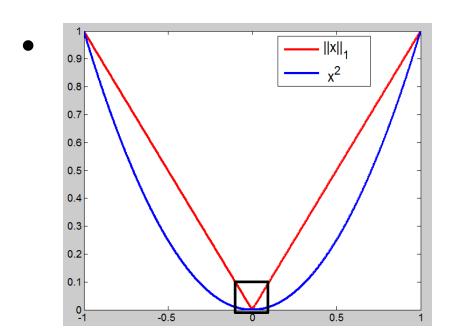
### L1 regularization (Lasso)

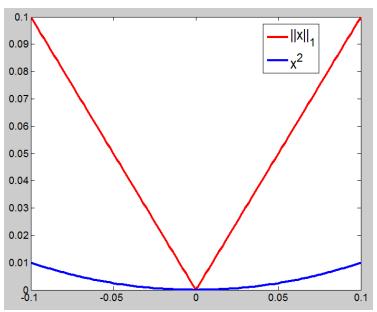
$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \beta^{T} \beta = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \beta^{T} \beta$$

$$\sum_{i} (y_{i} - \mathbf{x}_{i}^{T} \beta)^{2} + \lambda \|\beta\|_{1} = (\mathbf{y} - \mathcal{X}\beta)^{T} (\mathbf{y} - \mathcal{X}\beta) + \lambda \|\beta\|_{1}$$

- Some features may be irrelevant but still have a small non-zero coefficient in β
- L1 regularization pushes small values of  $\beta$  to zero
- "Sparse representation"

#### How does it work?





- When  $\beta$  is small, the L1 penalty is much larger than squared penalty.
- Causes trouble in optimization (gradient non-continuity)

#### Summary

- Linear regression
  - Linear model + Gaussian noise
  - Parameter estimation by MLE → Least squares
  - Solving least square by the normal equation
  - Or by gradient descent for high dimension
- How to interpret a regression model
  - $-R^2$  measure
- Regularized linear regression
  - Squared norm
  - L1 norm: Lasso