1) (from Rabinowitz) Five fair dice are rolled. Find the probability that:
a) all five numbers are different
\#(of cases where event occurs)/\#(of cases)
\#(of cases where event occurs)=6x5x4x3x2
(6 choices for first die, 5 for second, etc)
$\#($ of cases $)=6^{\wedge} 5$
so 20/6^3=20/216
b) at least two dice show the same number
\#(of cases where event occurs)/\#(of cases)=
1-\#(of cases where event does not occur)/\#(of cases)= $1-\mathrm{P}($ all five nos different $)=196 / 216$
c) at least one die shows a 6

1-P(no die shows a six) and $P($ no die shows a six)=5^5/6^5
2) Each firing of a missile at a target has a . 21 probability of striking the target. The outcome of each firing is independent of the outcome of any others.
a) What is the probability of destroying the target with three shots?
$P(1$ shot hits $)+P(2$ shots hit $)+P(3$ shots hit $)=0.79 \wedge 20.21+0.790 .21 \wedge 2+0.21 \wedge 3$
b) I keep firing until I destroy the target. What is the expected number of shots I have to fire?
this is geometric, with $p=0.21$ so $E=1 / p=1 / 0.21$ which is very slightly less than 5
3) (from Durret) Roll two dice. Let $A=$ "the sum is even" and $B=$ "the sum is divisible by 3 " (i.e. $B=\{3,6,9,12\}$). Are A and B independent? explain
$P(A$ intersect $B)=2 / 36 ; P(A)=1 / 2 ; P(B)=4 / 12$; so $P(A$ intersect $B)$ is not $P(A) P(B)$ so not independent.
4)Roll two dice. Let $A=$ "The first die is odd" and $B=$ "the second die is odd" and $C=$ "the sum is odd". Show these events are pairwise independent, but not independent
obvious that A, B are pairwise independent; obvious that B, C are pairwise independent. $P(A$ intersect B intersect $C)=0$, which is not $P(A) P(B) P(C)$
5) (from Durret) You want to invent a game where the player bets $\$ 1$, and rolls two dice. If the sum is 7 , the player wins $\$ k$, and otherwise loses their bet.
a) What value of $\$ \mathrm{k}$ makes the game fair?
did this in class
b) If $\mathrm{k}=1$, what is the expected value of the game to the player?
did this in class

