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First Tools for Looking at Data

The single most important question for a working scientist is: “what’s going
on here?” We need to be able to summarize data in useful ways. We need to
make pictures of datasets that give a sense of what is going on. This is an activity
sometimes known as “Descriptive Statistics”. There are a variety of tools we can
use.

In this chapter, we will work with 1- and 2- dimensional data, because pic-
turing this data is easier. We look at high dimensional data in chapter 1.3.6.

1.1 SUMMARIES OF 1D DATA

1.1.1 The Mean

One simple and effective summary of a set of data is its mean. This is sometimes
known as the average of the data.

Definition: Mean

Assume we have N data items, x1, . . . , xN . Their mean is

mean ({xi}) =
1

N

i=N
∑

i=1

xi.

For example, assume you’re in a bar, in a group of ten people who like to talk
about money. They’re average people, and their net worth is given in table 1.1 (you
can choose who you want to be in this story). The mean of this data is $107, 903.
One useful way to think of the mean of a dataset is as the best guess of the value
of a new data item, given no information at all; if a new person walked into this
bar, and you had to guess that person’s net worth, you should choose $107, 903.

Properties of the mean

The mean has several important properties you should remember:

• Scaling data scales the mean: or mean ({kxi}) = kmean ({xi}).

• Translating data translates the mean: or mean ({xi + c}) = mean ({xi + c}).

• The sum of signed differences from the mean is zero. This means that

∑

i

(xi −mean ({xi})) = 0.

• Choose the number µ such that the sum of squared distances of data points

1
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Individual net worth
a 100, 360
b 109, 770
c 96, 860
d 97, 860
e 108, 930
f 124, 330
g 101, 300
h 112, 710
i 106, 740
j 120, 170

TABLE 1.1: Net worths of people you meet in a bar.

to µ is minimized. That number is the mean. In notation

arg min
µ

∑

i

(xi − µ)2 = mean ({xi})

You can prove the first three by simply writing out the expression; the fourth
you prove by taking the derivative and setting to zero.

1.1.2 The Standard Deviation

Definition: Standard deviation

Assume we have N data items, x1, . . . , xN , where N > 1. Their standard deviation
is:

sd ({xi}) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({xi}))2 =
√

mean ({(xi −mean ({xi}))2}).

The standard deviation is the root mean square of the offsets of data from the
mean. One should think of the standard deviation as a scale. We will often talk of
a data item being “within k standard deviations from the mean” or being “more
than k standard deviations from the mean”. If the data item is xi, the mean is µ,
and the standard deviation is σ, you should interpret these statements as meaning,
respectively

abs (xi − µ)

σ
≤ k

(“xi is within k standard deviations from the mean”) and

abs (xi − µ)

σ
> k

(“xi is more than k standard deviations from the mean”).
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Standard deviation and scale - I Standard deviation has a very impor-
tant property. For any dataset, it is hard for data items to get many standard
deviations away from the mean. Assume we have N data items, xi. Assume the
standard deviation is σ, and the mean is zero (there is no loss of generality here, it
just simplifies notation). Then what is the largest fraction r of the data that lies
more than k standard deviations away from the mean? To achieve this configura-
tion, our data should have N(1 − r) data points with the value 0, and Nr data
points with the value kσ. Because

σ =

√

∑

i x
2
i

N

we have that

σ =

√

Nrk2σ2

N

so that

r =
1

k2
.

So, for example, at most 25% of a dataset is 2 standard deviations away from the
mean and at most 1% of a dataset could be 10 standard deviations away from the
mean, for any kind of data at all. In fact, this bound is wildly pessimistic, because
the configuration of data that achieves this bound is very unusual. Most data has
more random structure, meaning that we expect to see very much less data than
the bound predicts. For example, much data can reasonably be modelled as coming
from a normal distribution (a topic we’ll go into later). For such data, we expect
that about 68% of the data is within one standard deviation of the mean, 95% is
within two standard deviations of the mean, and 99.7% is within three standard
deviations of the mean, and the percentage of data that is within ten standard
deviations of the mean is essentially indistinguishable from 100%. This kind of
behavior is quite common; the crucial point about the standard deviation is that
you won’t see much data that lies many standard deviations from the mean, because
you can’t.

Standard deviation and scale - II Furthermore, whatever the dataset,
there must be at least one data item that is one or more standard deviations away
from the mean. You can see this by looking at the expression for standard deviation.
We have

sd ({xi}) =

√

√

√

√

1

N

i=N
∑

i−1

(xi −mean ({xi}))2.

Now, this means that

N(sd ({xi}))2 =

i=N
∑

i−1

(xi −mean ({xi}))2.

But
i=N
∑

i−1

(xi −mean ({xi}))2 ≤ N max
i

(xi −mean ({xi}))2
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so
(sd ({xi}))2 ≤ max

i
(xi −mean ({xi}))2.

An example might help. Assume that N is even. Now think about choosing a
dataset that has standard deviation one, and where all points are as close to the
mean as possible. We can do this by placing half the data points at mean ({xi})+1
and the other half at mean ({xi}) − 1. Moving any of these points closer to the
mean pushes the standard deviation down; we can only make it bigger by moving
some other point further from the mean.

Properties of standard deviation Notice that both mean and standard
deviation have the same units as the data. Notice also that for k a constant and c

a constant vector. Standard deviation has two properties you should remember:

1. Scaling data scales the standard deviation: or sd ({kxi}) = ksd ({xi})
2. Translating data does not change the standard deviation: or sd ({xi + c}) =

sd ({xi})

.

Potential point of confusion There is an ambiguity that comes up often
here because two (very slightly) different numbers are called the standard deviation
of a dataset. One — the one we use in this chapter — is an estimate of the scale
of the data, as we describe it. The other differs from our expression very slightly;
one computes

√

∑

i(xi −mean ({xi}))2
N − 1

(notice the N − 1 for our N). This number is an unbiased estimate of a parameter
of a probability distribution that might explain the data. Irritatingly, it is also
called the standard deviation; even more irritatingly, we will have to deal with it,
but not yet. I mention it now because you may look up terms I have used, find this
definition, and wonder. Don’t - the N in our expressions is the right thing to use
for what we’re doing.

1.1.3 The Median

One problem with the mean is that it can be affected strongly by extreme values.
Go back to the bar example, of section 1.1.1. Now Warren Buffett (or Bill Gates,
or your favorite billionaire) walks in. What happened to the average net worth?

Assume your billionaire has net worth $ 1, 000, 000, 000. Then the mean net
worth suddenly has become

10× $107, 903+ $1, 000, 000, 000

11
= $91, 007, 184

But this mean isn’t a very helpful summary of the people in the bar. It is probably
more useful to think of the net worth data as ten people and also one billionaire.
The billionaire is known as an outlier.
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One way to get outliers is that a small number of data items are very differ-
ent, due to minor effects you don’t want to model. Another is that the data was
misrecorded, or mistranscribed.

Another possibility is that there is just too much variation in the data to
summarize it well. For example, it is quite complicated to talk sense about the
average net worth of US residents, because the number is strongly affected by
age, household income, ethnic origins, and so on. Furthermore, a small number of
extremely wealthy people could change the average dramatically, as the example
shows. An alternative to using a mean is to use a median.

Definition: Median

The median of a set of data points is obtained by sorting the data points, and
finding the point halfway along the list. If the list is of even length, it’s usual to
average the two numbers on either side of the middle. We write

median ({xi})

for the operator that returns the median.

For example, median ({3, 5, 7}) = 5, median ({3, 4, 5, 6, 7}) = 5, andmedian ({3, 4, 5, 6}) =
4.5. For much, but not all, data, you can expect that roughly half the data is
smaller than the median, and roughly half is larger than the median. Sometimes
this property fails. For example, median([1, 2, 2, 2, 2, 2, 2, 2, 3])=2.

With this definition, the median of our list of net worths is $107, 835. If
we insert the billionaire, the median becomes $108, 930. Notice by how little the
number has changed — it remains an effective summary of the data.

1.1.4 Interquartile Range

Outliers can affect standard deviations severely, too. For our net worth data, the
standard deviation without the billionaire is $9265, but if we put the billionaire
in there, it is $3.014 × 108. When the billionaire is in the dataset, all but one of
the data items lie about a third of a standard deviation away from the mean; the
other one (the billionaire) is many standard deviations away from the mean. In
this case, the standard deviation has done its work of informing us that there are
huge changes in the data, but isn’t really helpful.

The problem is this: describing the net worth data with billionaire as a having
a mean of $9.101×107 with a standard deviation of $3.014×108 really isn’t terribly
helpful. Instead, the data really should be seen as a clump of values that are
near $100, 000 and moderately close to one another, and one massive number (the
billionaire outlier).

One thing we could do is simply remove the billionaire and compute mean
and standard deviation. This isn’t always easy to do, because it’s often less obvious
which points are outliers. An alternative is to follow the strategy we did when we
used the median. Find a summary that describes scale, but is less affected by
outliers than the standard deviation. This is the interquartile range; to define
it, we need to define percentiles and quartiles, which are useful anyway.
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Definition: Percentile

The k’th percentile is the value such that k% of the data is less than or equal to
that value.

Definition: Quartiles

The first quartile of the data is the value such that 25% of the data is less than
or equal to that value; the second quartile of the data is the value such that 50%
of the data is less than or equal to that value (which is usually the median); and
the third quartile of the data is the value such that 75% of the data is less than or
equal to that value.

Definition: Interquartile Range

Write Q1 for the first quartile, and Q3 for the third quartile; the interquartile range
is Q3 −Q1.

Like the standard deviation, the interquartile range gives an estimate of how
widely the data is spread out. But it is quite well-behaved in the presence of
outliers. For our net worth data without the billionaire, the interquartile range is
$12350; with the billionaire, it is $17710.

1.1.5 Calculating summaries

MATLAB is a programming environment widely used in numerical analysis and
computer vision circles, among other. We will use Matlab in examples here, and
give some guidelines. Many universities, including UIUC, have free student licenses
for Matlab, and there are numerous reference books you can look at for details of
syntax, etc.

Matlab’s focuses on representations of vectors and matrices. For example, we
can compute our summaries for our net worth data vector by the matlab code in
listing 1.1.

If you want to know what a Matlab command does, you can use help or doc.
For example, you could type doc prctile. Generally, I will not put listings in the
text unless they make some special point. However, files for code used to make
figures is on the website, and I’ll refer to those files.

1.1.6 Types of Data

A variable is continuous (like, for example, height or weight or body temperature)
when you could reasonably expect to encounter any value in a particular range. The
number of children a family has is an example of a categorical variable — it can
take a small number of values (in the US, perhaps 0, 1, 2, . . ., 12), but no others.

1.1.7 Using Summaries Sensibly

One should be careful how one summarizes data. For example, the statement
that “the average US family has 2.6 children” invites mockery (the example is from
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Listing 1.1: Matlab code used to compute the net worth mean, standard deviation,
and interquartile ranges

% net worths wi thou t b i l l i o n a i r e
networths = [100360 ,109770 ,96860 ,97860 , . . .

1 08930 ,124330 ,101300 ,112710 , . . .
1 06740 ,120170 ] ;

ms=mean( networths ) ; % g i v e s the mean
sds=std ( networths ) ; % g i v e s the s tandard de v i a t i on
% net worths wi th b i l l i o n a i r e
bnetworths =[networths , 1e9 ] ;
bsms=mean( bnetworths ) ;
bsds=std ( bnetworths ) ;
nwpcs=p r c t i l e ( networths , [ 2 5 , 50 , 7 5 ] ) ;
% t h i s g i v e s the s p e c i f i e d
% p e r c e n t i l e s − f i r s t ,
% second , and t h i r d
% q u a r t i l e s
nwiqr=nwpcs(3)−nwpcs ( 1 ) ;
% the i n t e r q u a r t i l e range wi thou t the b i l l i o n a i r e
bnwpcs=p r c t i l e ( bnetworths , [ 2 5 , 50 , 7 5 ] ) ;
bnwiqr=bnwpcs (3)−bnwpcs ( 1 ) ;
% and the i n t e r q u a r t i l e range wi th the b i l l i o n a i r e

Andrew Vickers’ bookWhat is a p-value anyway?), because you can’t have fractions
of a child. The 2.6 is a mean, but the number of children in a family is a categorical
variable. Reporting the mean of a categorical variable is often a bad idea, because
you may never encounter this value (the 2.6 children). For a categorical variable,
giving the median value and perhaps the interquartile range often makes much more
sense than reporting the mean.

For continuous variables, reporting the mean is reasonable because you could
expect to encounter a data item with this value, even if you haven’t seen one in
the particular data set you have. It is sensible to look at both mean and median;
if they’re significantly different, then there is probably something going on that is
worth understanding. You’d want to plot the data using the methods of the next
section before you decided what to report.

You should also be careful about how precisely numbers are reported (equiv-
alently, the number of significant figures). Numerical and statistical software will
produce very large numbers of digits freely, but not all are always useful. Vick-
ers (ibid) gives the compelling example of a paper reporting the mean length of
pregnancy as 32.833 weeks; but that fifth digit suggests we know the mean length
of pregnancy to about 0.001 weeks, or roughly 10 minutes. Neither medical inter-
viewing nor people’s memory for past events is that detailed. Furthermore, when
you interview them about embarrassing topics, people quite often lie. There is no
prospect of knowing this number with this precision.
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People regularly report silly numbers of digits because it is easy to miss the
harm caused by doing so. But the harm is there: you are implying to other people,
and to yourself, that you know something more accurately than you do. At some
point, someone will suffer for it.

1.2 PLOTTING 1D DATA

1.2.1 Histograms

Assume we have a 1D dataset. This will be a vector of numbers, which are in the
same units. For example, each might be a temperature measurement, or a pressure
measurement, or a height measurement, or the number of children in a family. A
simple, but highly informative, representation is a histogram.

Definition: Histogram

A histogram represents a dataset by counts of the number of data items in each of
a set of boxes. Each data item is counted into exactly one box.

Example: Histograms in Matlab

In MATLAB, if you have a vector x with one dimensional data in it, you can type
hist(x) and get a display of a histogram of that data with 10 boxes in the current
figure (hint: if you can’t see the figure, it might be in a window that is overlapped
by the command window). If you do hist(x, 20) you can see a histogram with
20 boxes.

Example: How to build a 1D histogram using even boxes

Write the i’th number xi, the smallest value as xmin and the largest value as
xmax. We divide the range between the smallest and largest values into n intervals
of even width (xmax − xmin)/n. The histogram is then an n-dimensional vector
of counts; each entry represents the count of the number of data items that lie in
that interval. Notice we need to be careful to ensure that each point in the range of
values is claimed by exactly one interval. For example, we could have intervals of
[0− 1 ) and [1− 2 ), or we could have intervals of (0− 1 ] and (1− 2 ]. We could
not have intervals of [0− 1] and [1− 2], because then a data item with the value
1 would appear in two boxes. Similarly, we could not have intervals of (0− 1] and
(1− 2), because then a data item with the value 1 would not appear in any box.



Section 1.2 Plotting 1D Data 9

Listing 1.2: Matlab code used to read in pizza data and display a histogram

% pi z z a s i z e data
cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
% t h i s i s where I keep the f i l e , bu t you may have i t somewhere e l s e
[ num, txt , raw]= x l s r e ad ( ’ c l e a np i z z a s i z e . x l s ’ ) ;
s i z e s=num( : , 5 ) ; % these are diameters
figure ( 1 ) ; hist ( s i z e s , 1 0 ) ; figure (1 )
% shows a histogram of p i z z a diameters

Example: How to build a 1D histogram with uneven intervals

For a histogram with even intervals, it is natural to plot the histogram as a set of
boxes, where the height of each box is the number of data items in that box. But a
histogram with even intervals can have empty boxes (see figure 1.2). In this case, it
can be more informative to have some larger intervals to ensure that each interval
has some data items in it. But how high should we plot the box?
Imagine taking two consecutive intervals in a histogram with even intervals, and
fusing them. The height of the box over the first interval is n1, where n1 is the
number of elements in the first box; the height of the box over the second interval
is n2. The interval width is dx, so the area of the box over the first (resp. second)
interval is n1dx (n2dx). It is natural that the fused box should have height (n1 +
n2)/2 — the average height of the two boxes. Notice that, if it does, the area of
that box is (n1 + n2)dx. For each of the first, second and fused boxes, the area
of the box is proportional to the number of elements in the box. This suggests
the (correct) rule: plot boxes such that the area is proportional to the number of
elements.

Histograms give some useful insight into data. The Matlab code in listing 1.2
will plot histograms of the diameter of pizzas, measured in Australia (you can find
a version of this dataset, along with a neat backstory, at http://www.amstat.org/
publications/jse/jse_data_archive.htm).

The resulting histogram appears in figure 1.1. We would not expect every
pizza produced by a restaurant to have exactly the same diameter, but the diameters
are probably pretty close to one another, and pretty close to a mean value. The
standard deviation should be quite small. This would suggest that we’d expect to
see a histogram which looks like a single, rather narrow, bump about a mean. This
is not what we see in figure 1.1 — instead, there are two bumps, which suggests
two populations of pizzas.

1.2.2 Conditional Histograms

In fact, there are two populations of pizzas in figure 1.1, as you know if you looked
up and read the backstory. The data comes from a statistical analysis of pizza
diameters from two companies, EagleBoys and Dominos (both Australian pizza
delivery companies). If you look more closely at the data in the dataset, you will
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FIGURE 1.1: A histogram of pizza diameters from the dataset described in the text.
Notice that there seem to be two populations.

Listing 1.3: Matlab code used to normalize axes for the pizza histograms

figure ( 1 ) ; axis ( [ 2 5 32 0 7 0 ] ) ; figure ( 1 ) ;
figure ( 2 ) ; axis ( [ 2 5 32 0 7 0 ] ) ; figure ( 2 ) ;
figure ( 3 ) ; axis ( [ 2 5 32 0 7 0 ] ) ; figure ( 3 ) ;

notice that each data item is tagged with the company it comes from. We can now
look at the histograms of pizzas from each company separately. These are sometimes
called conditional histograms or class-conditional histograms, because each
histogram is conditioned on something (in this case, the histogram uses only data
that comes from one company). The (rather inelegant) Matlab code in the file
pizzahist2.m produces two histograms, shown in figure 1.2.

Notice that EagleBoys pizzas seem to follow the pattern we expect — the di-
ameters are clustered tightly around a mean, and there is a small standard deviation
— but Dominos pizzas do not seem to be like that. There is more to understand
about this data. You may find figures 1.1 and 1.2 quite difficult to compare, because
they are not on the same axes. They can be put on the same axes with appropriate
Matlab commands (listing 1.4); the result is figure ??.

Another interesting dataset is the prices of fish in 1970 and in 1980, which
I found at http://lib.stat.cmu.edu/DASL/Datafiles/FishPrices.html. One
should think about how one looks at this data. If you think about fish as a cate-
gory, it is reasonable to plot a histogram of the prices. We can then compare the
histograms for the two years. I used the Matlab code in the file fishhists.m. The
first two plots give histograms of the price of fish in 1970 (resp. 1980) plotted in a
5 bin histogram, where Matlab decided on the bin size. But the price of fish went
up, so that the 1980 bins are bigger than the 1970 bins, which makes the figures
hard to compare (figure 1.4). One can supply Matlab with a vector of bin center
points, to get histograms that are a bit easier to compare (Figure 1.5; to learn how
to do this, look at doc hist or at fishhists.m). But if one is interested in which
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FIGURE 1.2: On the left, the class-conditional histogram of Dominos pizza diameters
from the pizza data set; on the right, the class-conditional histogram of EagleBoys
pizza diameters. Notice that EagleBoys pizzas seem to follow the pattern we expect
— the diameters are clustered tightly around a mean, and there is a small standard
deviation — but Dominos pizzas do not seem to be like that. There is more to
understand about this data.

fish got more expensive, and how fast, a different plot is more helpful (Figure 1.6).
I found data giving the body temperature of a set of individuals at http:

//www2.stetson.edu/~jrasp/data.htm. You might reasonably expect body tem-
peratures to cluster around a small set of numbers and figure 1.7 (a histogram of
body temperatures) suggests that they do. I used the matlab code in temphists.m.
The dataset also gives genders (as 1 or 2 - I don’t know which is male and which
female). Figure 1.8 gives the class conditional histograms. It does seem like individ-
uals of one gender run a little cooler than individuals of the other. In chapter 1.3.6,
we will look at methods to test whether two datasets are different in more detail.

1.2.3 Some Properties of Histograms

The tails of a histogram are the relatively uncommon values that are significantly
larger (resp. smaller) than the value at the peak (which is sometimes called the
mode). A histogram is unimodal if there is only one peak; if there are more than
one, it is multimodal, with the special term bimodal sometimes being used for
the case where there are two peaks (Figure 1.9). The histograms we have seen
have been relatively symmetric, where the left and right tails are about as long as
one another. Another way to think about this is that values a lot larger than the
mean are about as common as values a lot smaller than the mean. Not all data is
symmetric. In some datasets, one or another tail is longer (figure 1.10). This effect
is called skew.

Skew appears often in real data. SOCR (the Statistics Online Computa-
tional Resource) publishes a number of datasets. Here we discuss a dataset of
citations to faculty publications. For each of five UCLA faculty members, SOCR
collected the number of citations to each of the papers they had authored (data
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FIGURE 1.3: The pizza data, now all plotted on the same set of axes. Top the
histogram of all data; bottom, the conditional histograms.

at http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_072108_H_

Index_Pubs). Generally, a small number of papers get many citations, and many
papers get few citations. We see this pattern in the histograms of citation numbers
(figure 1.11). These are very different from (say) the pizza pictures. In the citation
histograms, there are many data items that have very few citations, and few that
have many citations. This means that the right tail of the histogram is longer, so
the histogram is skewed to the right.

One way to check for skewness is to look at the histogram; another is to
compare mean and median (though this is not foolproof). For the first citation
histogram, the mean is 24.7 and the median is 7.5; for the second, the mean is 24.4,
and the median is 11. In each case, the mean is a lot bigger than the median. Recall
the definition of the median (form a ranked list of the data points, and find the
point halfway along the list). For much data, the result is larger than about half
of the data set and smaller than about half the dataset. So if the median is quite
small compared to the mean, then there are many small data items and a small
number of data items that are large — the right tail is longer, so the histogram is
skewed to the right.

Left-skewed data also occurs; figure 1.12 shows a histogram of the birth
weights of 44 babies born in Brisbane, in 1997 (from http://www.amstat.org/

publications/jse/jse_data_archive.htm). This data appears to be left-skewed,
as larger birth weights are somewhat more common than small birth weights.

Skewed data is often, but not always, the result of constraints. For example,



Section 1.2 Plotting 1D Data 13

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

FIGURE 1.4: Histogram of the price of fish in 1970 (left) and 1980 (right), each
plotted with a 5 bin histogram, where the bins are automatically determined from
the data; notice how the bins in the 1980 histogram are bigger, which makes the
graphs harder to compare.

good obstetrical practice means that very large birth weights are extremely rare
(birth is typically induced before the baby gets too heavy), but it may be quite
hard to avoid some small birth rates. The result could skew birth weights to
the left (because large babies will get born, just not as heavy as it might be).
Similarly, income data can be skewed to the right by the fact that income is always
positive. Test mark data is often skewed — whether to right or left depends on the
circumstances — by the fact that there is a largest possible mark and a smallest
possible mark.

Other things could be going on with the birth weight data, too. Figure 1.13
shows the conditional histograms for birth weights of female and male babies. The
histogram for male babies does not appear to be skewed, and there were 26 male
babies. The histogram for female babies does look slightly skewed, and there were
18 female babies. It’s difficult to be sure if birth weights are skewed from this
evidence; perhaps on this day there was an unusual number of light female babies.
We need to know more about sampling and probability, and perhaps have more
baby data, to come to any conclusion.

1.2.4 Boxplots

Recall that in the pizza dataset, the EagleBoy’s pizzas showed the pattern we
expected (a narrow group of values around the mean), but the Domino’s pizzas
did not. The pizza’s come in types. EagleBoys produces DeepPan, MidCrust and
ThinCrust pizzas, and Dominos produces DeepPan, ClassicCrust and ThinNCrispy
pizzas. This may have something to do with the observed patterns, but comparing
six histograms by eye is unattractive. We need a different representation of the
data.

A boxplot is a way to plot data that simplifies comparison. Boxplots show
a box for the interquartile range of the data; they show a horizontal line for the
median; and they indicate the behavior of the rest of the data with whiskers and/or
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FIGURE 1.5: Histogram of the price of fish in 1970 (left) and 1980 (right), each
plotted with a histogram where Matlab was given the bin centers. The same set
of centers was used for each; now the plots are easier to compare. They’re not
particularly informative. The main information here is that (a) few kinds of fish
are expensive and (b) fish got more expensive. Notice these histograms are cer-
tainly not like what one expects from the pizza histograms (a small spread of values
symmetrically about a mean); instead, they are left-skewed.

outliers. The box and median always appear, but there are several choices for the
whiskers. Write q1 for the first quartile and q3 for the third quartile. Our boxplots
assume that any data item larger than q3 +1.5(q3 − q1) is an outlier, and any data
item that is smaller than q1−1.5(q3− q1) is an outlier. The boxplots we show draw
whiskers from q1 to the smallest data item that is not an outlier, and from q3 to
the largest data item that is not an outlier. Figure 1.14 shows an example boxplot.

The nice thing about boxplots is that one can compare numerous groups of
data quite easily in one plot. I used Matlab to prepare two boxplots. One breaks
out the pizzas by type (figure 1.15), the other by type and topping (figure 1.16).

The code for preparing the boxplots is

1.2.5 Standard Coordinates

It is useful to look at lots of histograms, because it is often possible to get some
useful insights about data. However, in their current form, histograms are hard to
compare. This is because each is in a different set of units. A histogram for length
data will consist of boxes whose horizontal units are, say, metres; a histogram
for mass data will consist of boxes whose horizontal units are in, say, kilograms.
Furthermore, these histograms typically span different ranges.

We can make histograms comparable by (a) estimating the “location” of the
plot on the horizontal axis and (b) estimating the “scale” of the plot. The location
is given by the mean, and the scale by the standard deviation. We could then
normalize the data by subtracting the location (mean) and dividing by the standard
deviation (scale). The resulting values are unitless, and have zero mean. They are
often known as standard coordinates.
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FIGURE 1.6: An alternative plot of the fish price data. Here we have joined the price
in 1970 to the price in 1980 with a line, for each species. This isn’t perfect (the
layout of the labels is clumsy, and ugly), but it does convey more information than
the histograms did. Fish prices went up. Most fish prices went up at about the same
rate (most lines are parallel), but some fish prices went up much faster than others
(eg SEASCALLOPS).

Definition: Standard coordinates

Assume we have N data items, x1, . . . , xN . We represent these data items in
standard coordinates by computing

x̂i =
(xi −mean ({xi}))

sd ({xi})
.

Standard coordinates have some important properties. Assume we have N
data items. Write xi for the i’th data item, and x̂i for the i’th data item in standard
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FIGURE 1.7: Histogram of body temperatures.
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FIGURE 1.8: Histogram of body temperatures by gender

coordinates (I sometimes refer to these as “normalized data items”). Then we have

mean ({x̂i}) = 0.

Now write µ = mean ({xi}) and σ = sd ({xi}). Recall that mean ({xi + c}) =
mean ({xi}) + c, and that mean ({kxi}) = kmean ({xi}). We have

mean ({x̂i}) = mean

({

(xi − µ)

σ

})

=
1

σ
mean ({(xi − µ)})

=
1

σ
(mean ({xi})− µ)

= 0.

We also have that
sd ({x̂i}) = 1.

Recall that sd ({xi + c}) = sd ({xi}), and that sd ({kxi}) = ksd ({xi}). We have

sd ({x̂i}) = sd

({

(xi − µ)

σ

})

=
1

σ
sd ({(xi − µ)})

=
1

σ
sd ({xi})

=
1

σ
σ

= 1.

An extremely important fact about data is that, for many kinds of data,
histograms of these standard coordinates look the same. This is particularly likely
for data that results from adding random numbers.
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FIGURE 1.9: Many histograms are unimodal, like the example on the top; there is
one peak, or mode. Some are bimodal (two peaks; bottom left) or even multimodal
(two or more peaks; bottom right). One common reason (but not the only reason)
is that there are actually two populations being conflated in the histograms. For
example, measuring adult heights might result in a bimodal histogram, if male and
female heights were slightly different. As another example, measuring the weight
of dogs might result in a multimodal histogram if you did not distinguish between
breeds (eg chihauhau, terrier, german shepherd, pyranees mountain dog, etc.).

1.2.6 Normal Distributions

Many completely different datasets produce a histogram that, in standard coor-
dinates, has a very specific appearance. It is symmetric, unimodal; it looks like a
narrow bump. If there were enough data points and the histogram boxes were small
enough, the curve would look like figure 1.17. This phenomenon is so important
that data of this form has a special name.

Definition: Standard normal data

Data is standard normal data if, when we have a great deal of data, the histogram
is a close approximation to the standard normal curve. This curve is given by

y(x) =
1√
2pi

e(−x2/2)

(which is shown in figure 1.17).
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FIGURE 1.10: On the top, an example of a symmetric histogram, showing its tails
(relatively uncommon values that are significantly larger or smaller than the peak
or mode). Lower left, a sketch of a left-skewed histogram. Here there are few
large values, but some very small values that occur with significant frequency. We
say the left tail is “long”, and that the histogram is left skewed (confusingly, this
means the main bump is to the right). Lower right, a sketch of a right-skewed
histogram. Here there are few small values, but some very large values that occur
with significant frequency. We say the right tail is “long”, and that the histogram
is right skewed (confusingly, this means the main bump is to the left).

Definition: Normal data

Data is normal data if, when we subtract the mean and divide by the standard
deviation (i.e. compute standard coordinates), it becomes standard normal data.

It is not always easy to tell whether data is normal or not, and there are
a variety of tests one can use, which we discuss later. However, there are many
examples of normal data.

Imagine the following procedure. I flip a coin k times, and record the fraction
of heads. I then repeat this experiment N times. Each experiment gives me an
estimate of what fraction of coin tosses will come up heads. These fractions are
most likely somewhat different, particularly if k is small (if you’re worried by this
point, think about what happens when k = 1 or k = 2). We’ll build detailed
mathematical models of what happens later on, but we can look at data from these
experiments now (figure 1.18).

Here are two alternative experiments. In the first, I paint one face of a six-
sided die red. I then roll the die k times, and record the fraction of rolls producing
a red face. I do this N times to get N numbers. In the second, I paint two faces of
a six-sided die red, roll it k times, and record the fraction of rolls resulting in a red
face. Again, I do this N times to get N numbers. Figure 1.19 shows the histograms
for these experiments. Notice that the histograms do not look the same (the means
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FIGURE 1.11: Histogram of citations for two faculty members. Notice these his-
tograms are strongly right-skewed.
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FIGURE 1.12: Histogram of birth weights for 44 babies borne in Brisbane in 1997.
This histogram looks slightly left-skewed.

are different) but the normalized histograms are very similar.
Figure 1.20 compares normalized histograms for two coin flip experiments and

the two die experiments. Notice that they are all very similar. This form is shared
by many (but not all) kinds of data; Figure 1.21 shows a variety of different data
sets in standard coordinates, each of which looks normal. We will discuss methods
to tell whether data is normal later.

Properties of normal data For the moment, assume we know that a
dataset is normal. Then we expect it to have the following properties:

• If we normalize it, its histogram will be close to the standard normal curve.
This means, among other things, that the data is not significantly skewed.

• About 68% of the data lie within one standard deviation of the mean. We
will prove this later.
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FIGURE 1.13: Conditional histograms of birth weights for 44 babies born in Brisbane
in 1997, by gender. The histogram for male babies does not look skewed, but the
histogram for female babies might be. Perhaps on this day there was an unusual
number of light babies, or perhaps birth weight is skewed.

• About 95% of the data lie within two standard deviations of the mean. We
will prove this later.

• About 99% of the data lie within three standard deviations of the mean. We
will prove this later.

In turn, these properties imply that data that contains outliers (points many stan-
dard deviations away from the mean) is not normal. This is usually a very safe
assumption. It is quite common to model a dataset by excluding a small number
of outliers, then modelling the remaining data as normal.

1.3 SOME TOOLS FOR 2D DATA

1.3.1 Scatter plots

2D data introduces some new problems. It is not enough to plot a histogram of
each coordinate separately, because one coordinate might depend quite strongly on
another. One useful representation is a scatter plot. We plot a small shape at the
location of each data item xi = (xi, yi) (Figure 1.22). If there are categorical labels
in the data, one can use these to choose a shape. For example, in Figure 1.23, we
plot a ‘1’ for data items that have the gender label ‘1’, and a ‘2’ for items that have
the gender label ‘2’. In Figure 1.24, I plot the first seven characters of the state’s
name.

1.3.2 Correlation

Scatter plots are a useful way to get some sense of what is happening in a dataset.
However, the picture in the plot depends on the scale on which one plots the data.
For example, plotting lengths in meters gives a very different scatter from plotting
lengths in millimeters. Ensuring that all the data appears in the plot can help a



Section 1.3 Some tools for 2D Data 21

26

27

28

29

30

31

Dominos EagleBoys

Box

q

q

1

3

In
terq

u
artile ran

g
eMedian

Whisker

Outlier

FIGURE 1.14: A boxplot of pizza data, by manufacturer. The box runs from the first
to the third quartile. The horizontal line gives the median. In this boxplot, data
items that are larger than q3 + 1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1), are
outliers. The whiskers run from q1 to the smallest data item that is not an outlier
(which is why the lower whisker on the EagleBoys plot is so short) and from q3 to
the largest data item that is not an outlier. These plots are informative. EagleBoys
pizzas have quite similar diameters (apart from three outliers). Dominos pizzas have
a larger range of diameters, but the median is smaller than the median EagleBoys
pizza, and is not in the middle of the range of values. The median is close to
q1. There are no outliers. This means that a quarter of the Dominos pizzas have
diameters in the range of the lower whisker; another quarter in the range between
q1 and the median; another quarter in the range between the median and q3; and
the final quarter in the range of the top whisker. Half the diameters are in the range
25.5-27 and the other half is in the range 27-29. There are several curiosities here:
why is the range for Dominos so large (25.5-29)? EagleBoys has a smaller range,
but has several substantial outliers; why? One would expect pizza manufacturers
to try and control diameter fairly closely, because pizzas that are too small present
risks (annoying customers; publicity; hostile advertising) and pizzas that are too
large should affect profits.

bit here (because it sets the scale), but this doesn’t guarantee a good plot. For
example, in Figure 1.22, two outliers set the scale of the plot. Even once these have
been removed, we cannot necessarily tell relations between the coordinates.

A natural solution to this problem is to normalize the x and y coordinates of
the two-dimensional data to standard coordinates (remember, you compute these
by subtracting the mean and dividing by the standard deviation). This shows us
the dataset on a standard scale. In Figure 1.25, there are two datasets. In one,
there is a relationship between the variables, because the scatter plot in standard
coordinates forms a narrow oval. In the other, there is little visible relationship.

Each of these datasets consists of 2D data, and for each of these datasets,
we already have some summary information. Because the data is normalized, the
mean of the x coordinate is zero and the mean of the y coordinate is zero, too. Fur-
thermore, the standard deviation of the x coordinate is one, and so is the standard
deviation of the y coordinate.

Recall from section 1.1.2 that the standard deviation is the square root of the
average squared offset from the mean. Assume we have a dataset of N data points.



Section 1.3 Some tools for 2D Data 22

26

27

28

29

30

31

D−ThinNCrispy D−DeepPan D−ClassicCrust E−MidCrust E−DeepPan E−ThinCrust

FIGURE 1.15: Boxplots for the pizza data, broken out by type (thin crust, etc.).
This gives some more insight into the data. Dominos thin crust appear to have a
narrow range of diameters (with several outliers), where the median pizza is rather
larger than either the deep pan or the classic crust pizza. EagleBoys pizzas all have
a range of diameters that is (a) rather similar across the types and (b) rather a
lot like the Dominos thin crust. There are outliers, but few for each type. One
possible explanation is that all EagleBoys pizzas start the same size and shrink the
same amount in baking, whereas all Dominos pizzas start a standard diameter, but
different Dominos crusts shrink differently in baking. Another possible explanation
is that Dominos makes different size crusts for different types, but that the cooks
sometimes get confused.

We write the i’th datapoint (xi, yi). We now normalize this data, and write the
i’th data point in standard coordinates (x̂i, ŷi). The standard deviation of the x
coordinate of the normalized data can be written as

sd ({x}) =
∑

i x̂
2
i

N
.

But this is the mean of x̂2 (the square of the x coordinate of the normalized
data). We know it to be one (because we normalized the data). In fact, we
know mean ({x̂i}) (which is 0), mean ({ŷi}) (which is 0), mean

({

x̂2
i

})

(which is 1),

mean
({

ŷ2i
})

(which is 1), and so it is reasonable to wonder about mean ({x̂iŷi}).
This number is, in fact, a very interesting summary of the data indeed. Imag-

ine we have a data set where there is no relationship between x̂ and ŷ. Then we
expect that mean ({x̂iŷi}) is small or close to zero. One way to see this is to think
of a vertical “strip” of the scatter plot (Figure 1.26). If we add up x̂j ŷj for j an
index choosing only the data points in this strip, the value should look like

(center of strip)(mean ({ŷj}))

but if there is no relationship between x̂ and ŷ, the ŷ values should be about the
same wherever we put the strip. In turn, this means that mean ({ŷj}) is about the
same as mean ({ŷi}), which is zero. In turn, mean ({x̂iŷi}) is a sum over strips each
of which sums to about zero, so it should be close to zero.
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FIGURE 1.16: The pizzas are now broken up by topping as well as crust type (look at
the source for the meaning of the names). To the left of the vertical line is Dominos;
to the right is EagleBoys. It looks as though the issue is not the type of topping,
but the crust.

Now imagine if ŷ tends to be large when x̂ is large, and small when x̂ is small.
Then the ŷ’s in a strip will change when we move the strip. Furthermore, the terms
in the sum will tend to be positive (because when x̂ is positive, so is ŷ, and when
x̂ is negative, so is ŷ). In this case, mean ({x̂iŷi}) will be positive.

Now imagine if ŷ tends to be large when x̂ is small, and small when x̂ is large.
Then the ŷ’s in a strip will change when we move the strip. Furthermore, the terms
in the sum will tend to be negative (if x̂ is positive, then ŷ tends to be negative,
and when x̂ is negative, ŷ tends to be positive). In this case, mean ({x̂iŷi}) will be
negative.

Finally, it is easy to show that −1 ≤ mean ({x̂iŷi}) ≤ 1.
This measurement, mean ({x̂iŷi}) is sufficiently important to have a name; it

is known as the correlation coefficient or correlation.

Definition: Correlation coefficient

Assume we have N data items, (x1, y1), . . . , (xN , yN ), where N > 1. Write µx =
mean ({xi}), µy = mean ({yi}), σx = sd ({xi}), σy = sd ({yi}). We compute the
correlation coefficient by first normalizing the x and y coordinates to obtain x̂i =
(xi−µx)

σx
, ŷi =

(yi−µy)
σy

. The correlation coefficient is the mean value of x̂ŷ, and can

be computed as:

corr ({(xi, yi)}) =
∑

i x̂iŷi
N

Notice that the correlation coefficient is symmetric (it doesn’t depend on the
order of its arguments), so

corr ({(xi, yi)}) = corr ({(yi, xi)})
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FIGURE 1.17: Data is standard normal data when its histogram takes a stylized,
bell-shaped form, plotted above. One usually requires a lot of data and very small
histogram boxes for this form to be reproduced closely. Nonetheless, the histogram
for normal data is unimodal (has a single bump) and is symmetric; the tails fall
off fairly fast, and there are few data items that are many standard deviations from
the mean.

1.3.3 What Correlation Means

Assume we have a dataset of N points (xi, yi). As usual, we will write x̂i for xi

in normalized coordinates, and so on. Now assume that we know the correlation
coefficient is r. What does this mean?

One (very useful) interpretation is in terms of prediction. Assume we have a
data point (x0, ?) where we know the x-coordinate, but not the y-coordinate. We
can use the correlation coefficient to predict the y-coordinate. First, we transform
to standard coordinates. Now we must obtain the best ŷ0 value to predict, using
the x̂0 value we have.

Recall the argument of Figure 1.26. When the mean of ŷ does not depend
on x̂ (because we get the same pattern of ŷ’s in any x̂ strip), we have that r = 0.
But in this case, we should predict ŷ0 using only information about ŷ — x̂c does
not tell us anything. This means the best prediction is ŷ0 = mean ({ŷi}) = 0. The
error of this prediction should be the standard deviation of ŷ (which is 1).

Now think about ui = ŷi−rx̂i. This has an important interpretation. Assume
we predict that at x̂i, ŷi takes the value rx̂i. The error we make is ui. We know that
mean ({ui}) = mean ({ŷi}) − rmean ({x̂i}) = 0 (because everything is in standard
coordinates).

We have

mean ({x̂iui}) = mean ({x̂iŷi})− rmean ({x̂ix̂i})
= r − r

= 0.
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FIGURE 1.18: In our coin experiment, we flip a coin k times and record the fraction
of heads (which has values 0/k, 1/k, . . . , (k−1)/k, 1). Each experiment provides one
number. We repeat the experiment N times, then plot histograms of the resulting
set of numbers. Top left: k = 40, N = 10000; top right, k = 160, N = 10000.
These histograms have been plotted with the same set of boxes. Notice that the
spread of data in the case k = 40 is considerably greater than in the case k = 160.
We normalize these datasets by subtracting the location (mean) and dividing by the
scale (standard deviation). Each resulting dataset now has mean zero and standard
deviation one. We show the histograms for normalized data in for k = 40, N =
10000 on the bottom left and for k = 160, N = 10000 on the bottom right.

In turn, all this means that

corr ({x̂i, ui}) =
1

std (ui)
mean ({x̂iui}) = 0,

i.e. that the correlation between x̂ and u is zero. This means that we cannot
predict u in any way from x̂ — there is no relationship. In turn, this implies our
best prediction for x̂i is to say that ŷi takes the value rx̂i — any error that we
make by doing so has no relationship to x̂.

You can use a version of this argument to establish that if we have the y-
coordinate for a data point, but not the x-coordinate, the best prediction for x̂i

(which is in standard coordinates) is rŷi. It is important to notice that the coefficient
of ŷi is NOT 1/r; you should work this example. This argument gives us a prediction
procedure, outlined below.
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FIGURE 1.19: In the first die experiment, we take a six-sided die, paint one face red,
and roll it k times. We record the fraction of rolls where the red face lands up.
We repeat this N times to get N values. Top left: the histogram of numbers for
k = 100, N = 10000. In the second die experiment, we take a six-sided die, paint
two faces red, and roll it k times. We record the fraction of rolls where a red face
lands up. We repeat this N times to get N values. Top right: the histogram of
numbers for k = 100, N = 10000. Once normalised, these histograms again look
like one another. Bottom left: shows the normalized histogram for the one face
experiment and bottom right shows the normalized histogram for the two face
experiment.
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FIGURE 1.20: The top row are the normalized histograms from figure 1.18, and
the center row are the normalized histograms from figure 1.19. Notice that these
histograms are very difficult to tell apart, even though they describe the results of a
variety of experiments.
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FIGURE 1.21: Many quite different data sets have histograms that are similar to
the normal curve. Each of these histograms has been normalized by subtract-
ing the mean, then dividing by the standard deviation. On the top left, a his-
togram of measurements of the density of earth relative to water (from http:

// lib. stat.cmu. edu/ DASL/Datafiles/distributiondat.html ); on the top

right, a histogram of the volumes of 30 oysters (from http:// www. amstat.org/

publications/jse/ jse_data_ archive.htm ; look for 30oysters.dat.txt); on the
bottom left, a histogram of human heights (from http: // www2. stetson.edu/

~ jrasp/data.htm ; look for bodyfat.xls, with two outliers removed); and on the
bottom right, a histogram of human weights (from http: // www2. stetson.edu/

~ jrasp/data.htm ; look for bodyfat.xls, with two outliers removed).
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FIGURE 1.22: On the left, a scatter plot of height against weight, from the dataset
at http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. It is difficult to
draw conclusions from this plot, because there are two outliers which dominate the
picture. To show the outliers, the rest of the data has had to be bunched up. Center,
a scatter plot of height against weight, with the outliers removed. This suggests, but
doesn’t conclusively establish, that taller people are heavier and vice versa.
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FIGURE 1.23: On the right, a scatter plot of body temperature against
heart rate, from the dataset at http: // www2. stetson.edu/ ~ jrasp/data.htm ;
normtemp.xls. I have separated the two genders by plotting a different symbol for
each (though I don’t know which gender is indicated by which letter); if you view
this in color, the differences in color makes for a greater separation of the scat-
ter. This picture suggests, but doesn’t conclusively establish, that any dependence
between temperature and heart rate isn’t affected by gender.
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FIGURE 1.24: On the left, a scatter plot of deaths from cancer as a fraction of
total population against deaths from heart as a fraction of total population, from the
deaths dataset at http: // www2. stetson.edu/~ jrasp/data. htm ; deathdata.xls.
I have used the first 7 characters of the state’s name as a token here. On the
right, a scatter plot of deaths from cancer as a fraction of all deaths against deaths
from heart as a fraction of all deaths, from the deaths dataset at http: // www2.
stetson.edu/ ~ jrasp/data.htm ; deathdata.xls.
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FIGURE 1.25: Each of these is a normalized scatter plot. The x and y coordinates
of each data point have been normalized by subtracting the mean, then dividing
by the standard deviation. On the left, a scatter plot of height and weight from
the dataset of http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls (with
two outliers removed), where each variable has been normalized. Notice how higher
individuals tend to have larger weights, because the scatter plot forms an oval lean-
ing to the right. On the right, a scatter plot of body temperature data against
heart rate, from the dataset of http: // www2. stetson.edu/ ~ jrasp/data.htm ;
normtemp.xls. Again, each variable has been normalized. Notice there is little evi-
dence of a relationship between body temperature and heart rate.
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FIGURE 1.26: On the left, a sketch of a scatter plot of data in standard coordinates
where there is no relationship between x̂ and ŷ. In this case, we expect that, for
a small strip of x̂, any value of ŷ could appear in this strip — all the strips have
about the same mean, though the variance changes. This means that knowing x̂
for some data point does not help us guess ŷ. In the text, we show this means the
correlation coefficient is about zero. If ŷ tends to be large for large x̂ and small
for small x̂, then we see the sketch in the center. This will result in a positive
correlation coefficient. Finally, if ŷ tends to be small for large x̂ and large for small
x̂, then we see the sketch on the right. This will result in a negative correlation
coefficient.
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Definition: Predicting a value using correlation

Assume we have a dataset of N points (xi, yi). Assume we have an x value x0 for
which we want to give the best prediction of a y value, based on this data. The
following procedure will produce a prediction:

• Transform the data set into standard coordinates, to get

x̂i =
1

std (xi)
(xi −mean ({xi}))

ŷi =
1

std (yi)
(yi −mean ({yi}))

x̂0 =
1

std (xi)
(x0 −mean ({xi})).

• Compute the correlation

r = corr ({xi, yi}) = mean ({x̂i, ŷi}).

• Predict ŷ0 = rx̂0.

• Transform this prediction into the original coordinate system, to get

y0 = std (yi)ŷ0 +mean ({yi})

Now assume we have a y value y0, for which we want to give the best prediction of
an x value, based on this data. The following procedure will produce a prediction:

• Transform the data set into standard coordinates.

• Compute the correlation.

• Predict x̂0 = rŷ0.

• Transform this prediction into the original coordinate system, to get

x0 = std (xi)x̂0 +mean ({xi})

We also know the average root mean square error that this prediction proce-
dure will make. The square of this error must be

mean
({

u2
i

})

= mean
({

y2i
})

− 2rmean ({xiyi}) + r2mean
({

x2
i

})

= 1− 2r2 + r2

= 1− r2

so the root mean square error will be
√
1− r2. This is yet another intepretation

of correlation; if x and y have correlation close to one, then predictions could have
very small root mean square. If they have correlation close to zero, then the root
mean square error in a prediction might be as large as the root mean square error
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in ŷ — which means the prediction is nearly a pure guess.
The prediction argument means that we can spot correlations for data in

other kinds of plots. For example, if we were to observe a child’s height from birth
to their 10’th year (you can often find these observations in ballpen strokes, on
kitchen walls), we could plot height as a function of year. If we also had their
weight (less easily found), we could plot weight as a function of year, too. The
prediction argument above say that, if you can predict the weight from the height
(or vice versa) then they’re correlated. One way to spot this is to look and see if
one curve goes up when the other does (or goes down when the other goes up).

1.3.4 Confusion caused by correlation

There is one very rich source of potential (often hilarious) mistakes in correlation.
When two variables are correlated, they change together. If the correlation is
positive, that means that, in typical data, if one is large then the other is large, and
if one is small the other is small. It DOES NOT mean that changing one variable
causes the other to change (sometimes known as causation). It means ONLY that
they appear to change together.

Variables could change together for a variety of reasons. One is that they just
happen to do so (i.e. you got lucky in your observations — we will quantify that
later). Another is that there is some causal relationship — for example, pressing the
accelerator tends to make the car go faster, and you’d expect to see some correlation
between accelerator depression and car acceleration. Yet another is that there is
some other background variable, linked causally to each of the observed variables.

This is best illustrated with examples. In children (as Freedman, Pisani and
Purves note in their excellent Statistics), shoe size is correlated with reading skills.
This DOES NOT mean that making your feet grow will make you read faster, or
that you can make your feet shrink by forgetting how to read. Young children tend
to have small feet, and tend to have weaker reading skills (because they’ve had
less practice). Older children tend to have larger feet, and tend to have stronger
reading skills (because they’ve had more practice).

Another nice example comes from Vickers (ibid). The graph, shown in Fig-
ure 1.28, shows a plot of (a) a dataset of the stork population in Europe over a
period of years and (b) a dataset of the birth rate over those years. This isn’t a
scatter plot; instead, the data has been plotted on a graph. You can see by eye
that these two datasets are quite strongly correlated . Even more disturbing, the
stork population dropped somewhat before the birth rate dropped.

Is this evidence that storks brought babies in Europe during those years?
No (the usual arrangement applied). For a more sensible explanation, look at the
dates. The war disturbed both stork and human breeding arrangements. Storks
were disturbed immediately by bombs, etc., and the human birth rate dropped
because men died at the front.

1.3.5 Correlation outside Standard Coordinates

It’s not always convenient or a good idea to produce scatter plots in standard
coordinates (among other things, doing so hides the units of the data, which can
be a nuisance). Fortunately, scaling or translating data does not change the value
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of the correlation coefficient (though it can change the sign).
One way to see this is that the correlation coefficient is defined in standard

coordinates, and scaling or translating data doesn’t change those. Another way to
see this is to scale and translate data, then write out the equations; notice that
taking standard coordinates removes the effects of the scale and translation. In
each case, notice that if the scale is negative, the sign of the correlation coefficient
changes.

1.3.6 Covariance

Correlation and standard deviation can each be seen as an instance of a more
general operation on data. Assume that we have two one dimensional data sets xi

and yi. Then we can define the covariance of xi and yi.

Definition: Covariance

Assume we have two sets of N data items, xi and yi for i = 1, . . . , N , where N > 1.
Write µx = mean ({xi}) and µy = mean ({yi}) We compute the covariance by

cov ({xi} , {yi}) =
∑

i(x̂i − µx)(ŷi − µy)

N

Covariance is like correlation. It’s only really meaningful when the order of
the data is meaningful. If you reorder yi but not xi, then the covariance you
compute will change. The most common case where covariance is meaningful is
when xi and yi are components of vectors in a dataset. So, for example, xi could
be the x-component and yi could be the y component of data points on the plane.
As another example, xi could be the 27’th and yi the 91’st component of a 100
dimensional dataset. We will see more about covariance in this form later.

When the order of the data is meaningful, covariance measures the tendency
of xi and yi to be larger than (resp. smaller than) the mean at the same time. If
xi tends to be larger (resp. smaller) than its mean for data points where yi is also
larger (resp. smaller) than its mean, then the covariance should be positive. If xi

tends to be larger (resp. smaller) than its mean for data points where yi is smaller
(resp. larger) than its mean, then the covariance should be negative.

Covariance is familiar, in other forms. First, notice that

std (xi) =
√

cov ({xi} , {xi})

and second, notice that

corr ({(xi, yi)}) =
cov ({xi} , {yi})

√

cov ({xi} , {xi})
√

cov ({yi} , {yi})
.

This is occasionally a useful way to think about correlation. It says that the cor-
relation measures the tendency of xi and yi to be larger (resp. smaller) than their
means for the same data points, compared to how much they change on their own.
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Listing 1.4: Matlab code used to produce boxplots for the pizza data

cd ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / ’ ) ;
[ num, txt , raw]= x l s r e ad ( ’ c l e a np i z z a s i z e . x l s ’ ) ;
ndat=s ize (num, 1 ) ;
figure ( 1 ) ; boxplot (num( : , 5 ) , txt ( : , 2 ) ) ; figure (1 )
print −depsc2 pmakerboxes . eps
t2=txt ( : , 1 ) ;
for i =1:ndat

foo=txt ( i , 2 ) ;
bar=foo {1} ;
c1=bar ( 1 ) ;
foo=txt ( i , 3 ) ;
bar=foo {1} ;
c2=bar ( 1 ) ;
foo=txt ( i , 4 ) ;
bar=foo {1} ;
c3=bar ( 1 ) ;
c4=bar (end ) ;
t2 ( i )={ s t r c a t ( c1 , c2 , c3 , c4 ) } ;

end

t3=txt ( : , 1 ) ;
for i =1:ndat

foo=txt ( i , 2 ) ;
bar=foo {1} ;
c1=bar ( 1 ) ;
t3 ( i )= s t r c a t ( c1 , ’− ’ , tx t ( i , 3 ) ) ;

end

figure ( 1 ) ; boxplot (num( : , 5 ) , t3 ) ; figure ( 1 ) ;
print −depsc2 ptypeboxes . eps
figure ( 2 ) ; boxplot (num( : , 5 ) , t2 , ’ grouporder ’ , { ’DCBs ’ , ’DCHn ’ , . . .

’DCSe ’ , ’DDBs ’ , ’DDHn’ , ’DDSe ’ , ’DTBs ’ , ’DTHn ’ , ’DTSe ’ , . . .
’EDBs ’ , ’EDHn ’ , ’EDSo ’ , ’EMBs ’ , ’EMHn’ , ’EMSo ’ , ’ETBs ’ , . . .
’ETHn ’ , ’ETSo ’ } ) ; figure ( 2 ) ;

print −depsc2 pde ta i l boxe s . eps
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FIGURE 1.27: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, and the plots are in standard coordi-
nates. On the top left, a scatter plot of age against height. In this dataset, these
variables are hardly correlated, but younger people tend to be slightly taller. The
correlation coefficient is -0.25. On the top right, a scatter plot of adiposity (not
defined in the metadata, though presumably some measure of the amount of fatty
tissue) against weight. These variables are fairly naturally correlated, and the cor-
relation coefficient is 0.86. On the bottom left, a scatter plot of average tissue
density against adiposity. Muscle is much denser than fat, so these variables are
negatively correlated — we expect high density to appear with low adiposity, and
vice versa. The correlation coefficient is -0.86. Finally on the bottom right, a
scatter plot of density against body weight. The correlation coefficient is -0.98.
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FIGURE 1.28: This figure, from Vickers (ibid, p184) shows a plot of the stork pop-
ulation as a function of time, and the human birth rate as a function of time, for
some years in Germany. The correlation is fairly clear; but this does not mean that
reducing the number of storks means there are fewer able to bring babies. Instead,
this is the impact of the first world war — a hidden or latent variable.
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FIGURE 1.29: Scatter plots for various pairs of variables for the age-height-weight
dataset from http:// www2.stetson.edu/ ~ jrasp/data.htm ; bodyfat.xls. In
each case, two outliers have been removed, but the plots are not in standard co-
ordinates. On the top left, a scatter plot of age against height. In this dataset,
these variables are hardly correlated, but younger people tend to be slightly taller.
The correlation coefficient is -0.25. On the top right, a scatter plot of adiposity
(not defined in the metadata, though presumably some measure of the amount of
fatty tissue) against weight. These variables are fairly naturally correlated, and the
correlation coefficient is 0.86. On the bottom left, a scatter plot of average tissue
density against adiposity. Muscle is much denser than fat, so these variables are
negatively correlated — we expect high density to appear with low adiposity, and
vice versa. The correlation coefficient is -0.86. Finally on the bottom right, a
scatter plot of density against body weight. The correlation coefficient is -0.98.


