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C H A P T E R 1

Basic ideas in probability

We need some machinery to deal with uncertainty, to account for new infor-
mation, and to weigh uncertainties against one another. The appropriate machinery
is probability, which allows us to reduce uncertain situations to idealized models
that are often quite easy to work with.

1.1 EXPERIMENTS, EVENTS, AND PROBABILITY

If we flip a fair coin many times, we expect it to come up heads about as often as it
comes up tails. If we toss a fair die many times, we expect each number to come up
about the same number of times. We are performing an experiment each time we
flip the coin, and each time we toss the die. We can formalize this experiment by
describing the set of outcomes that we expect from the experiment. In the case
of the coin, the set of outcomes is:

{H,T } .

In the case of the die, the set of outcomes is:

{1, 2, 3, 4, 5, 6} .

Notice that we are making a modelling choice by specifying the outcomes of
the experiment, and this is typically an idealization. For example, we are assuming
that the coin can only come up heads or tails (but doesn’t stand on its edge; or
fall between the floorboards; or land behind the bookcase; or whatever). It is often
relatively straightforward to make these choices, but you should recognize them as
an essential component of the model. Small changes in the details of a model can
make quite big changes in the space of outcomes. We write the set of all outcomes
Ω; this is sometimes known as the sample space.

Worked example 1.1 Find the lady
We have three playing cards. One is a queen; one is a king, and one is a knave. All
are shown face down, and one is chosen at random and turned up. What is the set
of outcomes?

Solution: Write Q for queen, K for king, N for knave; the outcomes are {Q,K,N}

Worked example 1.2 Find the lady, twice
We play Find the Lady twice, replacing the card we have chosen. What is the set
of outcomes?

Solution: We now have {QQ,QK,QN,KQ,KK,KN,NQ,NK,NN}
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Worked example 1.3 Children
A couple decides to have children until either (a) they have both a boy and a girl
or (b) they have three children. What is the set of outcomes?

Solution: Write B for boy, G for girl, and write them in birth order; we have
{BG,GB,BBG,BBB,GGB,GGG}.

Worked example 1.4 Monty Hall (sigh!)
There are three boxes. There is a goat, a second goat, and a car. These are placed
into the boxes at random. The goats are indistinguishable. What are the outcomes?

Solution: Write G for goat, C for car. Then we have {CGG,GCG,GGC}.

Worked example 1.5 Monty Hall, different goats (sigh!)
There are three boxes. There is a goat, a second goat, and a car. These are placed
into the boxes at random. One goat is male, the other female, and the distinction
is important. What are the outcomes?

Solution: Write M for male goat, F for female goat, C for car. Then we have
{CFM,CMF,FCM,MCF,FMC,MFC}. Notice how the number of outcomes
has increased, because we now care about the distinction between goats.

1.1.1 The Probability of an Outcome

We represent our model of how often a particular outcome will occur in a repeated
experiment with a probability, a non-negative number. It is quite difficult to give
a good, rigorous definition of what probability means. For the moment, we use a
simple definition. Assume an outcome has probability P . Assume we repeat the
experiment a very large number of times N , and each repetition is independent
(more on this later; for the moment, assume that the coins/dice/whatever don’t
communicate with one another from experiment to experiment). Then, for about
N × P of those experiments the outcome will occur (and as the number of exper-
iments gets bigger, the fraction where the outcome occurs will get closer to P ).
That is, the relative frequency of the outcome is P .

Notice that this means that the probabilities of outcomes must add up to one,
because each of our experiments has an outcome. We will formalize this below.

For example, if we have a coin where the probability of getting heads is
P (H) = 1

3 , and so the probability of getting tails is P (T ) = 2
3 , we expect this

coin will come up heads in 1
3 of experiments. This is not a guarantee that if you

flip this coin three times, you will get one head. Instead, it means that, if you flip
this coin three million times, you will very likely see very close to a million heads.

As another example, in the case of the die, we could have

P (1) =
1

18
P (2) =

2

18
P (3) =

1

18
P (4) =

3

18
P (5) =

10

18
P (6) =

1

18
.

In this case, we’d expect to see five about 10,000 times in 18,000 throws.
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Some problems can be handled by building a set of outcomes and reasoning
about the probability of each outcome. This gets clumsy when there are large
numbers of events, and is easiest when everything has the same probability, but it
can be quite useful.

For example, assume we have a fair coin. We interpret this to mean that
P (H) = P (T ) = 1

2 , so that heads come up as often as tails in repeated experiments.
Now we flip this coin twice - what is the probability we see two heads?

The set of outcomes is

{HH,HT, TH, TT, } ,

and each outcome must occur equally often. So the probability is 1
4 .

Now consider a fair die. The space of outcomes is

{1, 2, 3, 4, 5, 6} .

The die is fair means that each event has the same probability. Now we toss two
fair dice — with what probability do we get two threes?

The space of outcomes has 36 entries. We can write it as































11, 12, 13, 14, 15, 16,
21, 22, 23, 24, 25, 26,
31, 32, 33, 34, 35, 36,
41, 42, 43, 44, 45, 46,
51, 52, 53, 54, 55, 56,
61, 62, 63, 64, 65, 66































.

and each of these outcomes has the same probability. So the probability of two
threes is 1

36 . The probability of getting a 2 and a 3 is 1
18 — because there are two

outcomes that yield this (23 and 32), and each has probability 1
36 .

Worked example 1.6 Find the Lady
Assume that the card that is chosen is chosen fairly — that is, each card is chosen
with the same probability. What is the probability of turning up a Queen?

Solution: There are three outcomes, and each is chosen with the same probability,
so the probability is 1/3.

Worked example 1.7 Find the Lady, twice
Assume that the card that is chosen is chosen fairly — that is, each card is chosen
with the same probability. What is the probability of turning up a Queen and then
a Queen again?

Solution: Each outcome has the same probability, so 1/9.



Section 1.1 Experiments, Events, and Probability 5

Worked example 1.8 Children
A couple decides to have two children. Genders are assigned to children at random,
fairly, and at birth (our models have to abstract a little!). What is the probability
of having a boy and then a girl?

Solution: The outcomes are {BB,BG,GB,GG}, and each has the same proba-
bility; so the probability we want is 1/4. Notice that the order matters here; if we
wanted to know the probability of having one of each gender, the answer would be
different.

Worked example 1.9 Monty Hall, indistinguishable goats, again
Each outcome has the same probability. We choose to open the first box. With
what probability will we find a goat (any goat)?

Solution: 2/3

Worked example 1.10 Monty Hall, yet again
Each outcome has the same probability. We choose to open the first box. With
what probability will we find the car?

Solution: 1/3

Worked example 1.11 Monty Hall, with distinct goats, again
Each outcome has the same probability. We choose to open the first box. With
what probability will we find a female goat?

Solution: 1/3. The point of this example is that the sample space matters. If you
care about the gender of the goat, then it’s important to keep track of it; if you
don’t, it’s probably a good idea to omit it from the sample space.

Outcomes represent all potential individual results of an experiment that we
can or want to distinguish. This is quite important. For example, when we flip a
coin, we could be interested if it lands on a spot that a fly landed on 10 minutes
ago — this result isn’t represented by our “heads” or “tails” model, and we would
have to come up with an space of outcomes that does represent it. So outcomes
represent the results we (a) care about and (b) can identify.

1.1.2 Events

Assume we run an experiment and get an outcome. We know what the outcome is
(that’s the whole point of a sample space). This means that we can tell whether
the outcome we get belongs to some particular known set of outcomes. We just
look in the set and see if our outcome is there. This means that sets of outcomes
must also have a probability.

An event is a set of outcomes. In principle, there could be no outcome,
although this is not interesting. This means that the empty set, which we write
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∅, is an event. The set of all outcomes, which we wrote Ω, must also be an event
(although again it is not particularly interesting). Notation: We will write Ω−U
as Uc; read “the complement of U”.

There are some important logical properties of events.

• If U and V are events — sets of outcomes — then so is U ∩ V . You should
interpret this as the event that we have an outcome that is in U and also in
V .

• If U and V are events, then U ∪ V is also an event. You should interpret this
as the event that we have an outcome that is either in U or in V (or in both).

• If U is an event, then Uc = Ω− U is also an event. You should think of this
as the event we get an outcome that is not in U .

This means that the set of all possible events Σ has a very important structure.

• ∅ is in Σ.

• Ω is in Σ.

• If U ∈ Σ and V ∈ Σ then U ∪ V ∈ Σ.

• If U ∈ Σ and V ∈ Σ then U ∩ V ∈ Σ.

• If U ∈ Σ then Uc ∈ Σ.

This means that the space of events can be quite big. For a single flip of a
coin, it looks like

{∅, {H} , {T } , {H,T }}

For a single throw of the die, the set of events is






















































































































































∅, {1, 2, 3, 4, 5, 6} ,
{1} , {2} , {3} , {4} , {5} , {6} ,

{1, 2} , {1, 3} , {1, 4} , {1, 5} , {1, 6} ,
{2, 3} , {2, 4} , {2, 5} , {2, 6} ,

{3, 4} , {3, 5} , {3, 6} ,
{4, 5} , {4, 6} ,

{5, 6} ,
{1, 2, 3} , {1, 2, 4} , {1, 2, 5} , {1, 2, 6} ,

{1, 3, 4} , {1, 3, 5} , {1, 3, 6} ,
{1, 4, 5} , {1, 4, 6} ,

{1, 5, 6} ,
{2, 3, 4} , {2, 3, 5} , {2, 3, 6} ,
{2, 4, 5} , {2, 4, 6} , {2, 5, 6} ,

{3, 4, 5} , {3, 4, 6} ,
{3, 5, 6} ,
{4, 5, 6} ,

{1, 2, 3, 4} , {1, 2, 3, 5} , {1, 2, 3, 6} ,
{1, 3, 4, 5} , {1, 3, 4, 6} ,
{2, 3, 4, 5} , {2, 3, 4, 6} ,

{3, 4, 5, 6} ,
{2, 3, 4, 5, 6} , {1, 3, 4, 5, 6} , {1, 2, 4, 5, 6} , {1, 2, 3, 5, 6} , {1, 2, 3, 4, 6} , {1, 2, 3, 4, 5} ,
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(which gives some explanation as to why we don’t usually write out the whole
thing).

1.1.3 The Probability of Events

So far, we have described the probability of each outcome with a non-negative num-
ber. This number represents the relative frequency of the outcome. Straightforward
reasoning allows us to extend this function to events. The probability of an event
is a non-negative number; alternatively, we define a function taking events to the
non-negative numbers. We require

• The probability of every event is non-negative, which we write P (A) ≥
0 for all A in the collection of events.

• There are no missing outcomes, which we write P (Ω) = 1.

• The probability of disjoint outcomes is additive, which requires more
notation. Assume that we have a collection of outcomes Ai, indexed by i. We
require that these have the property Ai∩Aj = ∅ when i 6= j. This means that
there is no outcome that appears in more than one Ai. In turn, if we interpret
probability as relative frequency, we must have that P (∪iAi) =

∑

i P (Ai).

Any function P taking events to numbers that has these properties is a probability.
These very simple properties imply a series of other very important properties.

Useful facts: The probability of events

• P (Ac) = 1− P (A)

• P (∅) = 0

• P (A− B) = P (A)− P (A ∩ B)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

• P (∪n
1Ai) =

∑

i P (Ai) −
∑

i<j P (Ai ∩ Aj) +
∑

i<j<k P (Ai ∩ Aj ∩ Ak) +

. . . (−1)(n+1)P (A1 ∩A2 ∩ . . . ∩An)
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Proofs: The probability of events

P (Ac) = 1 − P (A) because Ac and A are disjoint, so that P (Ac ∪ A) =
P (Ac) + P (A) = P (Ω) = 1.

P (∅) = 0 because P (∅) = P (Ωc) = P (Ω− Ω) = 1− P (Ω) = 1− 1 = 0.

P (A − B) = P (A) − P (A ∩ B) because A − B is disjoint from P (A ∩ B), and
(A− B) ∪ (A ∩ B) = A. This means that P (A− B) + P (A∩ B) = P (A).

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) because P (A ∪ B) = P (A ∪ (B ∩ Ac)) =
P (A) + P ((B ∩ Ac)). Now B = (B ∩ A) ∪ (B ∩ Ac). Furthermore, (B ∩ A) is
disjoint from (B ∩ Ac), so we have P (B) = P ((B ∩ A)) + P ((B ∩ Ac)). This means
that P (A) + P ((B ∩Ac)) = P (A) + P (B)− P ((B ∩A)).

P (∪n
1Ai) =

∑

i P (Ai) −
∑

i<j P (Ai ∩ Aj) +
∑

i<j<k P (Ai ∩ Aj ∩ Ak) +

. . . (−1)(n+1)P (A1 ∩ A2 ∩ . . . ∩ An) can be proven by repeated application of
the previous result. As an example, we show how to work the case where
there are three sets (you can get the rest by induction). P (A1 ∪ A2 ∪ A3) =
P (A1 ∪ (A2 ∪ A3)) = P (A1) + P (A2 ∪ A3) − P (A1 ∩ (A2 ∪ A3)) = P (A1) +
(P (A2) + P (A3)− P (A2 ∩A3))− P ((A1 ∩A2) ∪ (A1 ∩A3)) = P (A1) + (P (A2) +
P (A3)−P (A2∩A3))−P (A1∩A2)−P (A1∩A3)− (−P ((A1∩A2)∩ (A1∩A3))) =
P (A1)+(P (A2)+P (A3)−P (A2∩A3))−P (A1∩A2)−P (A1∩A3)+P (A1∩A2∩A3)

Looking at the useful facts should suggest a helpful analogy between the
probability of an event and the “size” of the event. I find this a good way to
remember equations. For example, P (A−B) = P (A)−P (A∩B) is easily captured
— the “size” of the part of A that isn’t B is obtained by taking the “size” of
A and subtracting the size of the part that is also in B. Similarly, P (A ∪ B) =
P (A)+P (B)−P (A∩B) says — you can get the “size” of A∪B by adding the two
“sizes”, then subtracting the size of the intersection because otherwise you would
count these terms twice. Some people find Venn diagrams a useful way to keep
track of this argument, and Figure 1.1 is for them.

Worked example 1.12 Odd numbers with fair dice
We throw a fair (each number has the same probability) die twice, then add the
two numbers. What is the probability of getting an odd number?

Solution: There are 36 outcomes, listed above. Each has the same probability
(1/36). 18 of them give an odd number, and the other 18 give an even number.
They are disjoint, so the probability is 18/36 = 1/2
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A

B

A    B

FIGURE 1.1: If you think of the probability of an event as measuring its size, many
of the rules are quite straightforward to remember. Venn diagrams can sometimes
help. For example, you can see that P (A−B) = P (A)−P (A∩B) by noticing that
P (A−B) is the “size” of the part of A that isn’t B. This is obtained by taking the
“size” of A and subtracting the size of the part that is also in B, i.e. the “size”
of A ∩ B. Similarly, you can see that P (A ∪ B) = P (A) + P (B) − P (A ∩ B) by
noticing that you can get the “size” of A ∪ B by adding the “sizes” of A and B,
then subtracting the size of the intersection to avoid double counting.

Worked example 1.13 Numbers divisible by five with fair dice
We throw a fair (each number has the same probability) die twice, then add the
two numbers. What is the probability of getting a number divisible by five?

Solution: There are 36 outcomes, listed above. Each has the same probability
(1/36). For this event, the spots must add to either 5 or to 10. There are 4 ways to
get 5. There are 3 ways to get 10. These outcomes are disjoint. So the probability
is 7/36.
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Worked example 1.14 Children
This example is a version of of example 1.12, p44, Stirzaker, “Elementary Proba-
bility”.
A couple decides to have children. They discuss the following three strategies:

• have three children;

• have children until the first girl, or until there are three, then stop;

• have children until there is one of each gender, or until there are three, then
stop.

Assume that each gender is equally likely at each birth. Let Gi be the event that
there are i girls, and C be the event there are more girls than boys. Compute
P (B1) and P (C) in each case.

Solution: Case 1: There are eight outcomes. Each has the same probability.
Three of them have a single boy, so P (B1) = 3/8. P (C) = P (Cc) (because Cc is
the event there are more boys than than girls, AND the number of children is odd),
so that P (C) = 1/2; you can also get this by counting outcomes.
Case 2: In this case, the outcomes are {G,BG,BBG}, but if we think about
them like this, we have no simple way to compute their probability. Instead,
we could use the sample space from the previous answer, but assume that some
of the later births are fictitious. So the outcome G corresponds to the event
{GBB,GBG,GGB,GGG} (and so has probability 1/2); the outcome BG cor-
responds to the event {BGB,BGG} (and so has probability 1/4); the outcome
BBG corresponds to the event BBG (and so has probability 1/8). This means
that P (B1) = 1/4 and P (C) = 1/2.
Case 3: The outcomes are {GB,BG,GGB,GGG,BBG,BBB}. Again, if we think
about them like this, we have no simple way to compute their probability; so we
use the sample space from the previous example with device of the fictitious births
again. Then GB corresponds to the event {GBB,GBG}; BG corresponds to the
event {BGB,BGG}; GGB corresponds to the event {GGB}; GGG corresponds to
the event {GGG}; BBG corresponds to the event {BBG}; and BBB corresponds
to the event {BBB}. Like this, we get P (B1) = 5/8 and P (C) = 1/4.

Many probability problems are basically advanced counting exercises. One
form of these problems occurs where all outcomes have the same probability. You
have to determine the probability of an event that consists of some set of outcomes,
and you can do that by computing

Number of outcomes in the event

Total number of outcomes

For example, what is the probability that three people are born on three days
of the week in succession (for example, Monday-Tuesday-Wednesday; or Saturday-
Sunday-Monday; and so on). We assume that the first person has no effect on the
second, and that births are equally common on each day of the week. In this case,
the space of outcomes consists of triples of days; the event we are interested in is a
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triple of three days in succession; and each outcome has the same probability. So
the event is the set of triples of three days in succession (which has seven elements,
one for each starting day). The space of outcomes has 73 elements in it, so the
probability is

Number of outcomes in the event

Total number of outcomes
=

7

73
=

1

49
.

As a (very slightly) more interesting example, what is the probability that two
people are born on the same day of the week? We can solve this problem by
computing

Number of outcomes in the event

Total number of outcomes
=

7

7× 7
=

1

7
.

An important feature of this class of problem is that your intuition can be quite
misleading. This is because, although each outcome can have very small probability,
the number of events can be big. For example, what is the probability that, in
a room of 30 people, there is a pair of people who have the same birthday? We
simplify, and assume that each year has 365 days, and that none of them are special
(i.e. each day has the same probability of being chosen as a birthday).

The easy way to attack this question is to notice that our probability, P ({shared birthday}),
is

1− P ({all birthdays different}).

This second probability is rather easy to estimate. Each outcome in the sample
space is a list of 30 days (one birthday per person). Each outcome has the same
probability. So

P ({all birthdays different}) =
Number of outcomes in the event

Total number of outcomes
.

The total number of outcomes is easily seen to be 36530, which is the total number
of possible lists of 30 days. The number of outcomes in the event is the number of
lists of 30 days, all different. To count these, we notice that there are 365 choices
for the first day; 364 for the second; and so on. So we have

P ({shared birthday}) = 1−
365× 364× . . . 336

36530
= 1− 0.2937 = 0.7063

which means there’s really a pretty good chance that two people in a room of 30
share a birthday. There is a wide variety of problems like this; if you’re so inclined,
you can make a small but quite reliable profit off people’s inability to estimate
probabilities for this kind of problem correctly.

If we change the birthday example slightly, the problem changes drastically.
If you stand up and bet that two people in the room have the same birthday, you
have a probability of winning of about 0.71; but if you bet that there is someone else
in the room who has the same birthday that you do, your probability of winning is
29/365, a very much smaller number.

These combinatorial arguments can get pretty elaborate. For example, you
throw 3 fair 20-sided dice. What is the probability that the sum of the faces is 14?
Fairly clearly, the answer is

The number of triples that add to 14

203



Section 1.1 Experiments, Events, and Probability 12

but one needs to determine the number of triples that add to 14.

1.1.4 The Gambler’s Ruin

Assume you bet $1 a tossed coin will come up heads. If you win, you get $1 and your
original stake back. If you lose, you lose your stake. But this coin has the property
that P (H) = p < 1/2. We will study what happens when you bet repeatedly.

Assume you have $s when you start. You will keep betting until either (a)
you have $0 (you can’t borrow money) or (b) the amount of money you have
accumulated is $j (where j > s or there is nothing to do). The coin tosses are
independent. We will compute ps, the probability that you leave the table with
nothing, when you start with $s.

Assume that you win the first bet. Then you have $s+1, so your probability
of leaving the table with nothing now becomes ps+1. If you lose the first bet, then
you have $s− 1, so your probability of leaving the table with nothing now becomes
ps−1. The coin tosses are independent, so we can write

ps = pps+1 + (1− p)ps−1.

Now we also know that p0 = 1 and pj = 0. We need to obtain an expression for ps.
We can rearrange to get

ps+1 − ps =
(1− p)

p
(ps − ps−1)

(check this expression by expanding it out and comparing). Now this means that

ps+1 − ps =

(

(1− p)

p

)2

(ps−1 − ps−2)

so that

ps+1 − ps =

(

(1− p)

p

)s

(p1 − p0)

=

(

(1− p)

p

)s

(p1 − 1) .

Now we need a simple result about series. Assume I have a series uk, k ≥ 0, with
the property that

uk − uk−1 = crk−1.

Then I can expand this expression to get

uk − u0 = (uk − uk−1) + (uk−1 − uk−2) + . . .+ (u1 − u0)

= c
(

rk−1 + rk−2 + . . .+ 1
)

= c

(

rk − 1

r − 1

)

.

If we plug our series into this result, we get

ps+1 − 1 = (p1 − 1)







(

1−p

p

)s+1

− 1
(

1−p

p

)

− 1
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so reindexing gives us

ps − 1 = (p1 − 1)





(

1−p
p

)s

− 1
(

1−p

p

)

− 1





Now we also know that pj = 0, so we have

pj = 0

= 1 + (p1 − 1)







(

1−p

p

)j

− 1
(

1−p

p

)

− 1







meaning that

(p1 − 1) =
−1

(

( 1−p

p )
j
−1

( 1−p

p )−1

) .

Inserting this and rearranging gives

ps =

(

1−p

p

)j

−
(

1−p

p

)s

(

1−p
p

)j

− 1

.

This expression is quite informative. Notice that, if p < 1/2, then (1 − p)/p > 1.
This means that as j → ∞, we have ps → 1.

1.2 CONDITIONAL PROBABILITY

If you throw a fair die twice and add the numbers, then the probability of getting
a number less than six is 10

36 . Now imagine you know that the first die came up
three. In this case, the probability that the sum will be less than six is 1

3 , which is
slightly larger. If the first die came up four, then the probability the sum will be
less than six is 1

6 , which is rather less than 10
36 . If the first die came up one, then

the probability that the sum is less than six becomes 2
3 , which is much larger.

Each of these probabilities is an example of a conditional probability. We
assume we have a space of outcomes and a collection of events. The conditional
probability of B, conditioned on A, is the probability that B occurs given that A
has definitely occurred. We write this as

P (B|A)

One way to get an expression for P (B|A) is to notice that, because A is known
to have occurred, our space of outcomes or sample space is now reduced to A. We
know that our outcome lies in A; P (B|A) is the probability that it also lies in B∩A.

The outcome lies in A, and so it must lie in either P (B ∩A) or in P (Bc ∩A).
This means that

P (B|A) + P (Bc|A) = 1.
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Now recall the idea of probabilities as relative frequencies. If P (C ∩ A) =
kP (B ∩ A), this means that we will see outcomes in C ∩ A about k times as often
as we will see outcomes in B ∩ A. But this must apply even if we know that the
outcome is in A. So we must have

P (B|A) ∝ P (B ∩ A).

Now we need to determine the constant of proportionality; write c for this constant,
meaning

P (B|A) = cP (B ∩ A).

We have that

cP (B ∩A) + cP (Bc ∩ A) = cP (A) = P (B|A) + P (Bc|A) = 1,

so that

P (B|A) =
P (B ∩ A)

P (A)
.

Another, very useful, way to write this expression is

P (B|A)P (A) = P (B ∩ A).

Now, since B ∩ A = A∩ B, we must have that

P (B|A) =
P (A|B)P (B)

P (A)

Worked example 1.15 Two dice
We throw two fair dice.

• What is the probability that the sum of spots is greater than 6?

• Now we know that the first die comes up five. What is the conditional prob-
ability that the sum of spots on both dice is greater than six, conditioned on
the event that the first die comes up five?

Solution:

• There are 36 outcomes, but quite a lot of ways to get a number greater than
six. Recall P (Ac) = 1 − P (A). Write the event that sum is greater than
six as S. There are 15 ways to get a number less than or equal to six, so
P (Sc) = 15/36, which means P (S) = 21/36.

• Write the event that the first die comes up 5 as F . There are five outcomes
where the first die comes up 5 and the number is greater than 6, so P (F∩S) =
5/36. P (S|F) = P (F ∩ S)/P (F) = (5/36)/(1/6) = 5/6.

Notice that A∩B and A∩Bc are disjoint sets, and that A = (A∩B)∪(A∩Bc).
So we have
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P (A) = P (A ∩ B) + P (A ∩ Bc)

= P (A|B)P (B) + P (A|Bc)P (Bc),

a tremendously important and useful fact. Another version of this fact is also very
useful. Assume we have a set of disjoint sets Bi. These sets must have the property
that (a) Bi ∩ Bj = ∅ for i 6= j and (b) they cover A, meaning that A∩ (∪iBi) = A.
Then we have

P (A) =
∑

i

P (A ∩ Bi)

=
∑

i

P (A|Bi)P (Bi)

Worked example 1.16 Car factories
There are two car factories, A and B. Each year, factory A produces 1000 cars, of
which 10 are lemons. Factory B produces 2 cars, each of which is a lemon. All cars
go to a single lot, where they are thoroughly mixed up. I buy a car.

• What is the probability it is a lemon?

• What is the probability it came from factory B?

• The car is now revealed to be a lemon. What is the probability it came from
factory B, conditioned on the fact it is a lemon?

Solution:

• Write the event the car is a lemon as L. There are 1002 cars, of which 12 are
lemons. The probability that I select any given car is the same, so we have
12/1002.

• Same argument yields 2/1002.

• Write B for the event the car comes from factory B. I need P (B|L). This is
P (L|B)P (B)/P (L) = (1× 2/1002)/(12/1002) = 1/6.
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Worked example 1.17 Royal flushes in poker - 1
This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five cards
face down. A royal flush is a hand of AKQJ10 all in one suit. What is the probability
that you are dealt a royal flush?

Solution: This is

number of hands that are royal flushes, ignoring card order

total number of different five card hands, ignoring card order
.

There are four hands that are royal flushes (one for each suit). Now the total
number of five card hands is

(

52
5

)

= 2598960

so we have
4

2598960
=

1

649740
.

Worked example 1.18 Royal flushes in poker - 2
This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five cards
face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth card that
you are dealt lands face up. It is the nine of spades. What now is the probability
that your have been dealt a royal flush? (i.e. what is the conditional probability of
getting a royal flush, conditioned on the event that one card is the nine of spades)

Solution: No hand containing a nine of spades is a royal flush, so this is easily
zero.
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Worked example 1.19 Royal flushes in poker - 3
This exercise is after Stirzaker, p. 51.
You are playing a straightforward version of poker, where you are dealt five cards
face down. A royal flush is a hand of AKQJ10 all in one suit. The fifth card that
you are dealt lands face up. It is the Ace of spades. What now is the probability
that your have been dealt a royal flush? (i.e. what is the conditional probability of
getting a royal flush, conditioned on the event that one card is the Ace of spades)

Solution: There are two ways to do this. The easiest is to notice this is the
probability that the other four cards are KQJ10 of spades, which is

(

51
4

)

−1

=
1

249900
.

Harder is to consider the events

A = event that you receive a royal flush and last card is the ace of spades

and
B = event that the last card you receive is the ace of spades,

and the expression

P (A|B) =
P (A∩ B)

P (B)
.

Now P (A) = 1
52 . P (A∩ B) is given by

number of five card royal flushes where card five is Ace of spades

total number of different five card hands
.

where we DO NOT ignore card order. This is

4× 3× 2× 1

52× 51× 50× 49× 48

yielding

P (A|B) =
1

249900
.

Notice the interesting part: the conditional probability is rather larger than the
probability. If you see this ace, the conditional probability is 13

5 times the prob-
ability that you will get a flush if you don’t. Seeing this card has really made a
difference.
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Worked example 1.20 False positives
After Stirzaker, p55.
You have a blood test for a rare disease that occurs by chance in 1 person in 100,
000. If you have the disease, the test will report that you do with probability 0.95
(and that you do not with probability 0.05). If you do not have the disease, the
test will report a false positive with probability 1e-3. If the test says you do have
the disease, what is the probability it is correct?

Solution: Write S for the event you are sick and R for the event the test reports
you are sick. We need P (S|R).

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
0.95× 1e− 5

0.95× 1e− 5 + 1e− 3× (1 − 1e− 5)

= 0.0094

which should strike you as being a bit alarming. The disease is so rare that the test
is almost useless.
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Worked example 1.21 False positives -2
After Stirzaker, p55.
You want to make a blood test for a rare disease that occurs by chance in 1 person
in 100, 000. If you have the disease, the test will report that you do with probability
p (and that you do not with probability (1−p)). If you do not have the disease, the
test will report a false positive with probability q. You want to choose the value of
p so that if the test says you have the disease, there is at least a 50% probability
that you do.

Solution: Write S for the event you are sick and R for the event the test reports
you are sick. We need P (S|R).

P (S|R) =
P (R|S)P (S)

P (R)

=
P (R|S)P (S)

P (R|S)P (S) + P (R|Sc)P (Sc)

=
p× 1e− 5

p× 1e− 5 + q × (1 − 1e− 5)

≥ 0.5

which means that p ≥ 99999q which should strike you as being very alarming
indeed, because p ≤ 1 and q ≥ 0. One plausible pair of values is q = 1e − 5,
p = 1− 1e− 5. The test has to be spectacularly accurate to be of any use.

1.2.1 Independence

As we have seen, the conditional probability of an event A conditioned on another
event can be very different from the probability of that event. This is because know-
ing that one event has occurred may significantly reduce the available outcomes of
an experiment, as in example 16, and in this example.

But this does not always happen. Two events are independent if

P (A ∩ B) = P (A)P (B)

If two events A and B are independent, then

P (A|B) = P (A)

and
P (B|A) = P (B)

If A and B are independent, knowing that one of the two has occurred tells us
nothing useful about whether the other will occur. For example, if we are told
event A with P (A) > 0 has occurred, the sample space is reduced from Ω to A.
The probability that B will now occur is

P (B|A) =
P (A ∩ B)

P (A)
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which is P (B) if the two are independent. Again, this means that knowing that A
occurred tells you nothing about B — the probability that B will occur is the same
whether you know that A occurred or not.

Some events are pretty obviously independent. On other occasions, one needs
to think about whether they are independent or not. Sometimes, it is reasonable
to choose to model events as being independent, even though they might not be
exactly independent. In several examples below, we will work with the event that a
person, selected fairly and randomly from a set of people in a room, has a birthday
on a particular day of the year. We assume that, for different people, the events are
independent. This seems like a fair assumption, but one might want to be cautious
if you know that the people in the room are drawn from a population where multiple
births are common.

Example: Drawing two cards, without replacement

We draw two playing cards from a deck of cards. Let A be the event “the first card
is a queen” and let B be the event that “the second card is a queen”. Then

P (A) =
4

52

and

P (B) =
4

52

but

P (A ∩ B) =
4.3

52.51
.

This means that P (B|A) = 3/51; if the first card is known to be a queen, then the
second card is slightly less likely to be a queen than it would otherwise. The events
A and B are not independent.

Example: Drawing two cards, with replacement

We draw one playing card from a deck of cards; we write down the identity of that
card, replace it in the deck, shuffle the deck, then draw another card. Let A be the
event “the first card is a queen” and let B be the event that “the second card is a
queen”. Then

P (A) =
4

52

and

P (B) =
4

52
.

We also have

P (A ∩ B) =
4.4

52.52
.

This means that P (B|A) = 4/52; if the first card is known to be a queen, then we
know nothing about the second card. The events A and B are independent.

You should compare examples 1.2.1 and 1.2.1. Simply replacing a card after
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it has been drawn has made the events independent. This should make sense to
you: if you draw a card from a deck and look at it, you know very slightly more
about what the next card should be. For example, it won’t be the same as the card
you have. The deck is very slightly smaller than it was, too, and there are fewer
cards of the suit and rank of the card you have. However, if you replace the card
you drew, then shuffle the deck, seeing the first card tells you nothing about the
second card.

Worked example 1.22 Two fair coin flips
We flip a fair coin twice. The outcomes are {HH,HT, TH, TT }. Each has the
same probability. Show that the event H1 — where the first flip comes up heads
— is independent from the event H2 — where the second flip comes up heads.

Solution: H1 = {HT,HH} and H2 = {TH,HH}. Now P (H1) = 1/2. Also,
P (H2) = 1/2. Now P (H1 ∩H2) = 1/4, so that P (H2|H1) = P (H2).

Worked example 1.23 Independent cards
We draw one card from a standard deck of 52 cards. The event A is “the card is a
red suit” and the event B is “the card is a 10”. Are they independent?

Solution: These are independent because P (A) = 1/2, P (B) = 1/13 and P (A ∩
B) = 2/52 = 1/26 = P (A)P (B)

Worked example 1.24 Independent cards
We take a standard deck of cards, and remove the ten of hearts. We now draw two
cards from this deck. The event A is “the card is a red suit” and the event B is
“the card is a 10”. Are they independent?

Solution: These are not independent because P (A) = 25/51, P (B) = 3/51 and
P (A ∩ B) = 1/51 6= P (A)P (B) = 75/(512)

Events A1 . . .An are pairwise independent if each pair is independent (i.e.
A1 and A2 are independent, etc.). They are independent if for any collection of
distinct indices i1 . . . ik we have

P (Ai1 ∩ . . . ∩ Aik) = P (Ai1 ) . . . P (Aik )

Notice that independence is a much stronger assumption than pairwise indepen-
dence.
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Worked example 1.25 Cards and pairwise independence
We draw three cards from a properly shuffled standard deck, with replacement and
reshuffling (i.e., draw a card, make a note, return to deck, shuffle, draw the next,
make a note, shuffle, draw the third). Let A be the event that “card 1 and card
2 have the same suit”; let B be the event that “card 2 and card 3 have the same
suit”; let C be the event that “card 1 and card 3 have the same suit”. Show these
events are pairwise independent, but not independent.

Solution: By counting, you can check that P (A) = 1/4; P (B) = 1/4; and
P (A ∩ B) = 1/16, so that these two are independent. This argument works for
other pairs, too. But P (C ∩A∩B) = 1/16 which is not 1/43, so the events are not
independent; this is because the third event is logically implied by the first two.

We usually do not have the information required to prove that events are
independent. Instead, we use intuition (for example, two flips of the same coin are
likely to be independent unless there is something very funny going on) or simply
choose to apply models in which some variables are independent.

Independent events can lead very quickly to very small probabilities. This can
mislead intuition quite badly. For example, imagine I search a DNA database with
a sample. I can show that there is a probability of a chance match of 1e− 4. There
are 20, 000 people in the database. Chance matches are independent. What is the
probability I get at least one match, purely by chance? This is 1−P (no matches).
But P (no matches) is much smaller than you think. It is (1− 1e− 4)20,000, so the
probability is about 86% that you get at least one match by chance. Notice that
if the database gets bigger, the probability grows; so at 40, 000 the probability of
one match by chance is 98%.

People quite often reason poorly about independent events. The most com-
mon problem is known as the gambler’s fallacy. This occurs when you reason
that the probability of an independent event has been changed by previous out-
comes. For example, imagine I toss a coin that is known to be fair 20 times and get
20 heads. The probability that the next toss will result in a head has not changed
at all — it is still 0.5 — but many people will believe that it has changed. This
idea is also sometimes referred to as antichance.

It might in fact be sensible to behave as if you’re committing some version of
the gambler’s fallacy in real life, because you hardly ever know for sure that your
model is right. So in the coin tossing example, if the coin wasn’t known to be fair,
it might be reasonable to assume that it has been weighted in some way, and so
to believe that the more heads you see, the more likely you will see a head in the
next toss. At time of writing, Wikipedia has some fascinating stories about the
gambler’s fallacy; apparently, in 1913, a roulette wheel in Monte Carlo produced
black 26 times in a row, and gamblers lost an immense amount of money betting
on red. Here the gambler’s reasoning seems to have been that the universe should
ensure that probabilities produce the right frequencies in the end, and so will adjust
the outcome of the next spin of the wheel to balance the sums. This is an instance
of the gambler’s fallacy. However, the page also contains the story of one Joseph
Jagger, who hired people to keep records of the roulette wheels, and notice that one
wheel favored some numbers (presumably because of some problem with balance).
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He won a lot of money, until the casino started more careful maintenance on the
wheels. This isn’t the gambler’s fallacy; instead, he noticed that the numbers
implied that the wheel was not a fair randomizer. He made money because the
casino’s odds on the bet assumed that it was fair.

1.2.2 The Monty Hall Problem, and other Perils of Conditional Probability

Careless thinking about probability, particularly conditional probability, can cause
wonderful confusion. The Monty Hall problem is a good example. The problem
works like this: There are three doors. Behind one is a car. Behind each of the
others is a goat. The car and goats are placed randomly and fairly, so that the
probability that there is a car behind each door is the same. You will get the
object that lies behind the door you choose at the end of the game. For reasons of
your own, you would prefer the car to the goat.

The game goes as follows. You select a door. The host then opens a door and
shows you a goat. You must now choose to either keep your door, or switch to the
other door. What should you do?

You cannot tell what to do, by the following argument. Label the door you
chose at the start of the game 1; label the other doors 2 and 3. Write Ci for the
event that the car lies behind door i. Write Gm for the event that a goat is revealed
behind door m, where m is the number of the door where the goat was revealed
(which could be 1, 2, or 3). You need to know P (C1|Gm). But

P (C1|Gm) =
P (Gm|C1)P (C1)

P (Gm|C1)P (C1) + P (Gm|C2)P (C2) + P (Gm|C3)P (C3)

and you do not know P (Gm|C1), P (Gm|C2), P (Gm|C3), because you don’t know
the rule by which the host chooses which door to open to reveal a goat. Different
rules lead to quite different analyses.

There are several possible rules for the host to show a goat:

• Rule 1: choose a door uniformly at random.

• Rule 2: choose from the doors with goats behind them that are not door 1
uniformly and at random.

• Rule 3: if the car is at 1, then choose 2; if at 2, choose 3; if at 3, choose 1.

• Rule 4: choose from the doors with goats behind them uniformly and at
random.

We should keep track of the rules in the conditioning, so we write P (Gm|C1, r1) for
the conditional probability that a goat was revealed behind door m when the car
is behind door 1, using rule 1 (and so on).

Under rule 1, we can write

P (C1|Gm, r1) =
P (Gm|C1, r1)P (C1)

P (Gm|C1, r1)P (C1) + P (Gm|C2, r1)P (C2) + P (Gm|C3, r1)P (C3)
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When m is 2 or 3 we get

P (C1|Gm, r1) =
P (Gm|C1, r1)P (C1)

P (Gm|C1, r1)P (C1) + P (Gm|C2, r1)P (C2) + P (Gm|C3, r1)P (C3)

=
(1/3)(1/3)

0(1/3) + (1/3)(1/3) + (1/3)(1/3)

= (1/2)

but when m is 1, P (C1|Gm, r1) = 0 because there can’t be both a goat and a car
behind door 1. Notice that this means the host showing us a goat hasn’t revealed
anything about where the car is (it could be behind 1 or behind the other closed
door).

Under rule 2, we can write

P (C1|Gm, r2) =
P (Gm|C1, r2)P (C1)

P (Gm|C1, r2)P (C1) + P (Gm|C2, r2)P (C2) + P (Gm|C3, r2)P (C3)

When m is 2 we get

P (C1|G2, r2) =
P (G2|C1, r2)P (C1)

P (G2|C1, r2)P (C1) + P (G2|C2, r2)P (C2) + P (G2|C3, r2)P (C3)

=
(1/2)(1/3)

(1/2)(1/3) + 0(1/3) + 1(1/3)

= (1/3).

We also get

P (C3|G2, r2) =
P (G2|C3, r2)P (C1)

P (G2|C1, r2)P (C1) + P (G2|C2, r2)P (C2) + P (G2|C3, r2)P (C3)

=
1(1/3)

(1/2)(1/3) + 0(1/3) + 1(1/3)

= (2/3).

Notice what is happening: if the car is behind door 3, then the only choice of goat
for the host is the goat behind 2. This means that P (G2|C3, r2) = 1 and so the
conditional probability that the car is behind door 3 is now 2/3.

It is quite easy to make mistakes in conditional probability (the Monty Hall
problem has been the subject of extensive, lively, and often quite inaccurate cor-
respondence in various national periodicals). Several such mistakes have names,
because they’re so common. One is the prosecutor’s fallacy. This often occurs
in the following form: A prosecutor has evidence E against a suspect. Write I for
the event that the suspect is innocent. The evidence has the property that P (E|I)
is extremely small; the prosecutor concludes that the suspect is guilty.

The problem here is that the conditional probability of interest is P (I|E)
(rather than P (E|I)). The fact that P (E|I) is small doesn’t mean that P (I|E) is
small, because

P (I|E) =
P (E|I)P (I)

P (E)
=

P (E|I)P (I)

P (E|I)P (I) + P (E|Ic)(1 − P (I))
.
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Notice how, if P (I) is large or if P (E|Ic) is much smaller than P (E|I), then P (I|E)
could be close to one. The question to look at is not how unlikely the evidence is
if the subject is innocent; instead, the question is how likely the subject is to be
guilty compared to some other source of the evidence. These are two very different
questions.

In the previous section, we saw how the probability of getting a chance match
in a large DNA database could be quite big, even though the probability of a single
match is small. One version of the prosecutors fallacy is to argue that, because
the probability of a single match is small, the person who matched the DNA must
have committed the crime. The fallacy is to ignore the fact that the probability of
a chance match to a large database is quite high.

1.3 SIMULATION AND PROBABILITY

Many problems in probability can be worked out in closed form if one knows enough
combinatorial mathematics, or can come up with the right trick. Textbooks are
full of these, and we’ve seen some. Explicit formulas for probabilities are often
extremely useful. But it isn’t always easy or possible to find a formula for the
probability of an event in a model. An alternative strategy is to build a simulation,
run it many times, and count the fraction of outcomes where that occurs. This is
a simulation experiment.

This strategy rests on our view of probability as relative frequency. We expect
that (say) if a coin has probability p of coming up heads, then when we flip it N
times, we should see about pN heads. We can use this argument the other way
round: if we flip a coin N times and see H heads, then it is reasonable to expect
that the coin has probability p = H/N of coming up heads. It is clear that this
argument is dangerous for small N (eg try N = 1). But (as we shall see later)
for large N it is very sound. There are some difficulties: It is important that we
build independent simulations, and in some circumstances that can be difficult.
Furthermore, our estimate of the probability is not exact. A simulation experiment
should involve a large number of runs. Different simulation experiments will give
different answers (though hopefully the difference will not be huge). But we can
get an estimate of how good our estimate of the probability is — we run several
simulation experiments, and look at the results as a data set. The mean is our
best estimate of the probability, and the standard deviation gives some idea of how
significant the change from experiment to experiment is. As we shall see later, this
standard deviation gives us some idea of how good the estimate is.

I will build several examples around a highly simplified version of a real card
game. This game is Magic: The Gathering, and is protected by a variety of trade-
marks, etc. My version — MTGDAF — isn’t very interesting as a game, but is
good for computing probabilities. The game is played with decks of 60 cards. There
are two types of card: Lands, and Spells. Lands can be placed on the play table and
stay there permanently; Spells are played and then disappear. A Land on the table
can be “tapped” or “untapped”. Players take turns (though we won’t deal with any
problem that involves the second player, so this is largely irrelevant). Each player
draws a hand of seven cards from a shuffled deck. In each turn, a player first untaps
any Lands on the table, then draws a card, then plays a land onto the table (if the
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player has one in hand to play), then finally can play one or more spells. Each spell
has a fixed cost (of 1, . . . , 10), and this cost is played by “tapping” a land (which
is not untapped until the start of the next turn). This means that the player can
cast only cheap spells in the early turns of the game, and expensive spells in the
later turns.

Worked example 1.26 MTGDAF — The number of lands
Assume a deck of 60 cards has 24 Lands. It is properly shuffled, and you draw seven
cards. You could draw 0, . . . , 7 Lands. Estimate the probability for each, using a
simulation. Furthermore, estimate the error in your estimates.

Solution: The matlab function randperm produces a random permutation of given
length. This means you can use it to simulate a shuffle of a deck, as in listing 1.1. I
then drew 10, 000 random hands of seven cards, and counted how many times I got
each number. Finally, to get an estimate of the error, I repeated this experiment 10
times and computed the standard deviation of each estimate of probability. This
produced

0.0218 0.1215 0.2706 0.3082 0.1956 0.0686 0.0125 0.0012

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0015 0.0037 0.0039 0.0058 0.0027 0.0032 0.0005 0.0004

for the standard deviations of these estimates.

Worked example 1.27 MTGDAF — The number of lands
What happens to the probability of getting different numbers of lands if you put
only 15 Lands in a deck of 60? It is properly shuffled, and you draw seven cards. You
could draw 0, . . . , 7 Lands. Estimate the probability for each, using a simulation.
Furthermore, estimate the error in your estimates.

Solution: You can change one line in the listing to get

0.1159 0.3215 0.3308 0.1749 0.0489 0.0075 0.0006 0.0000

for the probabilities (for 0 to 7, increasing number of lands to the right) and

0.0034 0.0050 0.0054 0.0047 0.0019 0.0006 0.0003 0.0000

for the standard deviations of these estimates.
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Listing 1.1: Matlab code used to simulate the number of lands

s imcards=[ ones (24 , 1 ) ; zeros (36 , 1 ) ]
% 1 i f land , 0 o therw i s e
ninsim=10000;
nsims=10;
counts=zeros ( nsims , 8 ) ;
for i =1:10

for j =1:10000
s h u f f l e=randperm ( 6 0 ) ;
hand=simcards ( s h u f f l e ( 1 : 7 ) ) ;
%us e f u l matlab t r i c k here
nlands=sum( hand ) ;
%ie number o f lands
counts ( i , 1+nlands )= . . .

counts ( i , 1+nlands )+1;
% number o f lands cou ld be zero

end

end

probs=counts /ninsim ;
mean( probs )
std ( probs )
%%

Worked example 1.28 MTGDAF — Playing spells
Assume you have a deck of 24 Lands, 10 Spells of cost 1, 10 Spells of cost 2, 10 Spells
of cost 3, 2 Spells of cost 4, 2 Spells of cost 5, and 2 Spells of cost 6. Assume you
always only play the cheapest spell in your hand (i.e. you never play two spells).
What is the probability you will be able to play at least one spell on each of the
first four turns?

Solution: This simulation requires just a little more care. You draw the hand,
then simulate the first four turns. In each turn, you can only play a spell whose
cost you can pay, and only if you have it. I used the matlab of listing 1.2 and
listing 1.3; I found the probability to be 0.64 with standard deviation 0.01. Of
course, my code might be wrong....
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Worked example 1.29 MTGDAF — Playing spells
Now we use a different distribution of cards. Assume you have a deck of 20 Lands,
9 Spells of cost 1, 5 Spells of cost 2, 5 Spells of cost 3, 5 Spells of cost 4, 5 Spells
of cost 5, and 11 Spells of cost 6. Assume you always only play the cheapest spell
in your hand (i.e. you never play two spells). What is the probability you will be
able to play at least one spell on each of the first four turns?

Solution: This simulation requires just a little more care. You draw the hand,
then simulate the first four turns. In each turn, you can only play a spell whose
cost you can pay, and only if you have it. I found the probability to be 0.33 with
standard deviation 0.05. Of course, my code might be wrong....

One engaging feature of the real game that is revealed by these very simple
simulations is the tension between a players goals. The player would like to have
few lands — so as to have lots of spells — but doing so means that there’s a bigger
chance of not being able to play a spell. Similarly, a player would like to have
lots of powerful (=expensive), but doing so means there’s a bigger chance of not
being able to play a spell. Players of the real game spend baffling amounts of time
arguing with one another about the appropriate choices for a good set of cards.

Experiments reveal one nice feature about simulations which is usually true
(though sometimes quite hard to prove, and occasionally not even true). You can
reasonably expect that the probability you compute from a simulation behaves like
normal data. Run a simulation experiment a large number of times and construct a
data set whose entries are the probability from each experiment. This data should
be normal. Recall that this means that, if you subtract the mean and divide by
the standard deviation, you should get a histogram that looks like the standard
normal curve. This is important, because it means that the right answer should be
very few standard deviations away from the mean you compute. We will explore
this phenomenon, and its consequences, in more detail later. Figure 28 shows some
examples.

PROBLEMS

1.1. Monty Hall, Rule 3: If the host uses rule 3, then what is P (C1|G2, r3)? Do
this by computing conditional probabilities.

1.2. Monty Hall, Rule 4: If the host uses rule 4, and shows you a goat behind
door 2, what is P (C1|G2, r4)? Do this by computing conditional probabilities.
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FIGURE 1.2: Estimates of probabilities produced by simulation typically behave like
normal data. On the left, I show a histogram of probabilities of having a hand of
3 Lands in the simulation of example 26; these are plotted in standard coordinates.
On the right, I show a histogram of probability of playing a spell in each of the
first four turns (example 29), from 1000 simulation experiments; again, these are
plotted in standard coordinates. Compare these to the standard normal histograms
of the previous chapter.
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Listing 1.2: Matlab code used to simulate the four turns

s imcards=[zeros (24 , 1 ) ; ones (10 , 1 ) ; . . .
2∗ ones (10 , 1 ) ; 3 ∗ ones (10 , 1 ) ; . . .
4∗ ones (2 , 1 ) ; 5∗ ones (2 , 1 ) ; 6∗ ones (2 , 1 ) ] ;

nsims=10;
ninsim=1000;
counts=zeros ( nsims , 1 ) ;
for i =1: nsims

for j =1: ninsim
% draw a hand
s h u f f l e=randperm ( 6 0 ) ;
hand=simcards ( s h u f f l e ( 1 : 7 ) ) ;
%reorgan i z e the hand
cleanhand=zeros (7 , 1 ) ;
for k=1:7

cleanhand ( hand (k)+1)=cleanhand ( hand (k)+1)+1;
% ie count o f lands , s p e l l s , by cos t

end

l andsontab l e=0;
[ p l ayedspe l l 1 , landsontab le , cleanhand ] = . . .

playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 1 ) ;

[ p l ayedspe l l 2 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 2 ) ;

[ p l ayedspe l l 3 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 3 ) ;

[ p l ayedspe l l 4 , landsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , . . .
s imcards , 4 ) ;

counts ( i )=counts ( i )+ . . .
p l a y ed sp e l l 1 ∗ p l a y ed sp e l l 2 ∗ . . .
p l a y ed sp e l l 3 ∗ p l a y ed sp e l l 4 ;

end

end
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Listing 1.3: Matlab code used to simulate playing a turn

function [ p l ayedspe l l , l andsontab le , cleanhand ] = . . .
playround ( landsontab le , cleanhand , s h u f f l e , s imcards , . . .
turn )

% draw
ncard=simcards ( s h u f f l e (7+turn ) ) ;
cleanhand ( ncard+1)=cleanhand ( ncard+1)+1;
% play land
i f cleanhand (1)>0

landsontab l e=landsontab l e+1;
cleanhand (1)= cleanhand (1)−1;

end

p l a y ed sp e l l =0;
i f l andsontab le>0

i =1; done=0;
while done==0

i f cleanhand ( i )>0
cleanhand ( i )=cleanhand ( i )−1;
p l a y ed sp e l l =1;
done=1;

else

i=i +1;
i f i>l andsontab l e

done=1;
end

end

end

end


