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Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are immensely useful,
and find wide application, because many problems are naturally decision problems.
For example, if you wish to determine whether to place an advert on a web-page or
not, you would use a classifier (i.e. look at the page, and say yes or no according
to some rule). As another example, if you have a program that you found for free
on the web, you would use a classifier to decide whether it was safe to run it (i.e.
look at the program, and say yes or no according to some rule). As yet another
example, you can think of doctors as extremely complex multi-class classifiers.

Classifiers are built by taking a set of labeled examples and using them to come
up with a rule that assigns a label to any new example. In the general problem,
we have a training dataset (xi, yi); each of the feature vectors xi consists of
measurements of the properties of different types of object, and the yi are labels
giving the type of the object that generated the example.

TODO: clean this up
Classifiers are a crucial tool in high-level vision, because many problems can be
abstracted in a form that looks like classification. In this chapter, we describe the
basic ideas and methods of classification, abstracted away from any vision problem
(Chapter ?? applies classifiers to vision problems). Section 1.1 describes basic
notions. In Section 1.2, we describe different ways to build classifiers. Finally,
Section 1.3 gives some important practical tricks.

1.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 1.3.2 shows methods
for building multi-class classifiers from two-class classifiers.

1.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
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Section 1.1 Classification, Error, and Loss 3

expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

Generally, we write outcomes as (i → j), meaning that an item of type i is
classified as an item of type j. There are four outcomes for the two-class case. Each
outcome has its own cost, which is known as a loss. Hence, we have a loss function
that we write as L(i → j), meaning the loss incurred when an object of type i is
classified as having type j. Since losses associated with correct classification should
not affect the design of the classifier, L(i → i) must be zero, but the other losses
could be any positive numbers.

The risk function of a particular classification strategy is the expected loss
when using that strategy, as a function of the kind of item. The total risk is the
total expected loss when using the classifier. The total risk depends on the strategy,
but not on the examples. Write p(−1 → 1|using s) for the probability that class
−1 is labeled class 1 (and so on). Then, if there were two classes, the total risk of
using strategy s would be

R(s) = p(−1 → 1|using s)L(−1 → 1) + p(1 → −1|using s)L(−1 → 1).

The desirable strategy is one that minimizes this total risk.

A Two-class Classifier that Minimizes Total Risk

Assume that the classifier can choose between two classes and we have a
known loss function. There is some boundary in the feature space, which we call
the decision boundary, such that points on one side belong to class one and
points on the other side to class two.

We can resort to a trick to determine where the decision boundary is. If
the decision boundary is optimal, then for points on the decision boundary, either
choice of class has the same expected loss; if this weren’t so, we could obtain a
better classifier by always choosing one class (and so moving the boundary). This
means that, for measurements on the decision boundary, choosing label −1 yields
the same expected loss as choosing label 1.

Now write p(−1|x) for the posterior probability of label −1 given feature
vector x (and so on). Although this might be very hard to know in practice, we
can manipulate the abstraction and gain some insight. A choice of label y = 1 for
a point x at the decision boundary yields an expected loss

p(−1|x)L(−1 → 1) + p(1|x)L(1 → 1) = p(−1|x)L(−1 → 1),

and if we choose the other label, the expected loss is

p(1|x)L(1 → −1),

and these two terms must be equal. This means our decision boundary consists of
the points x, where

p(−1|x)L(−1 → 1) = p(1|x)L(1 → −1).
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At points off the boundary, we must choose the class with the lowest expected loss.
Recall that if we choose label 1 for a point x, the expected loss is

p(−1|x)L(−1 → 1),

and so on. This means that we should choose label −1 if

p(−1|x)L(−1 → 1) > p(1|x)L(1 → −1)

and label 1 if the inequality is reversed. Notice it does not matter which label we
choose at the decision boundary.

A Multi-class Classifier that Minimizes Total Risk

Analyzing expected loss gives a strategy for choosing from any number of
classes. We allow the option of refusing to decide which class an object belongs to,
which is useful in some problems. Refusing to decide costs d. Conveniently, if d is
larger than any misclassification loss, we will never refuse to decide. This means
our analysis covers the case when we are forced to decide. The same reasoning
applies as above, but there are more boundaries to consider. The simplest case,
which is widely dominant in vision, is when loss is 0-1 loss; here the correct answer
has zero loss, and any error costs one.

In this case, the best strategy, known as the Bayes classifier, is given in
Algorithm 1.1. The total risk associated with this rule is known as the Bayes risk;
this is the smallest possible risk that we can have using a classifier for this problem.
It is usually rather difficult to know what the Bayes classifier—and hence the Bayes
risk—is because the probabilities involved are not known exactly. In a few cases,
it is possible to write the rule out explicitly. One way to tell the effectiveness of a
technique for building classifiers is to study the behavior of the risk as the number
of examples increases (e.g., one might want the risk to converge to the Bayes risk
in probability if the number of examples is large). The Bayes risk is seldom zero,
as Figure 1.1 illustrates.

For a loss function

L(i → j) =







1 i 6= j
0 i = j
d no decision

the best strategy is

• if p(k|x) > p(i|x) for all i not equal to k, and if this probability is

greater than 1− d, choose type k;

• if there are several classes k1 . . . kj for which p(k1|x) = p(k2|x) =
. . . = p(kj |x) = p > p(i|x) for all i not in k1, . . . kj, and if p > 1−d,
choose uniformly and at random between k1, . . . kj ;

• if for all i we have 1− d ≥ q = p(k|x) ≥ p(i|x), refuse to decide.

Algorithm 1.1: The Bayes Classifier.
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FIGURE 1.1: This figure shows typical elements of a two-class classification problem.
We have plotted p(class|x) as a function of the feature x. Assuming that L(−1 →
1) = L(1 → −1), we have marked the classifier boundaries. In this case, the Bayes
risk is the sum of the amount of the posterior for class one in the class two region
and the amount of the posterior for class two in the class one region (the hatched
area in the figures). For the case on the left, the classes are well separated, which
means that the Bayes risk is small; for the case on the right, the Bayes risk is rather
large.

1.1.2 Example: Building a Classifier out of Histograms

TODO: write this; pizza and skin

As we saw in chapter ??, histograms reveal a great deal about data. A
histogram is a representation of a probability distribution, and so we can use his-
tograms to build classifiers. Recall that in the pizza data of chapter ?? (you can find
a version of this dataset, along with a neat backstory, at http://www.amstat.org/
publications/jse/jse_data_archive.htm), there were pizzas from two manufac-
turers — EagleBoys and Dominos. For these pizza’s, we had the diameter, and some
information about the topping. We could then try to predict the manufacturer from
the diameter of the pizza.

We have two classes (EagleBoys and Dominos). Write x for the diameter of a
pizza. As we have seen, to classify we need a model of p(E|x). Since there are two
classes, p(D|x) = 1− p(E|x), so the model of p(E|x) is enough. A natural way to
get this model is to use Bayes rule:

p(E|x) = p(x|E)p(E)

p(x)

We can model p(x|E), p(E) and p(x) with histograms. We construct a set of boxes of
appropriate sizes, then count data items into the boxes. The conditional probability
that the diameter of a pizza lies in a box, conditioned on its coming from EagleBoys
is p(x|E); this can be estimated by taking the number of EagleBoys pizzas in that
box, and dividing by the total number of EagleBoys pizzas. Similarly, we can
estimate p(E) by the fraction of all pizzas that come from EagleBoys. Finally, we
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could get p(x) by taking the fraction of all pizzas in the relevant histogram box.
However, we don’t really need p(x). Write L(E → D), etc. for the loss of

misclassifying pizzas. Recall that we want to test

p(E|x)L(E → D) > p(D|x)L(D → E)

but this is
p(x|E)p(E)

p(x)
L(E → D) >

p(x|D)p(D)

p(x)
L(D → E).

The first thing to notice about this expression is that only the ratio of the losses
matters; we could write an equivalent test as

p(x|E)

p(x|D)
>

p(D)

p(E)

L(D → E)

L(E → D)
.

If we do not know the losses, we can simply test the ratio p(x|E)
p(x|D) against a variety

of different thresholds, and then choose the one that works best (for example, in a
test on a different dataset).

Listing ?? shows a simple histogram-based classifier for the pizza data. To
train this classifier, I split the pizza data into two pools — training data, and test
data (more on this in the next section). I built the histograms on the training data,
then evaluated the classifier on test data for different values of the threshold in
listing ??

Different values of the threshold give different false-positive and false-negative
rates. This information can be summarized with a receiver operating charac-

teristic curve, or ROC. This curve is a plot of the detection rate or true

positive rate as a function of the false positive rate for a particular model as
the threshold changes (Figure ??). An ideal model would detect all positive cases
and produce no false positives, for any threshold value; in this case, the curve would
be a single point. A model that has no information about whether an example is
a positive or a negative will produce the line from (0, 0) to (1, 1). If the ROC lies
below this line, then we can produce a better classifier by inverting the decision of
the original classifier, so this line is the worst possible classifier. The detection rate
never goes down as the false positive rate goes up, so the ROC is the graph of a
non-decreasing function. Figure 1.2 shows the ROC for the pizza classifier.

This general strategy can work for data of moderate dimension. A classic
example in computer vision is a skin detector, built by Jones and Rehg (). There
are two main sources of skin color: melanin, which causes darker or lighter skin;
and blood, which tends to tint the skin red. Skin with strong hues looks strange or
unhealthy (even a mild blue or purple tint makes skin look cyanotic or very cold;
mild green tints suggest decomposition). This means that digital images tend to
be adjusted so that skin has a relatively narrow range of hues and of intensities,
even though there is a very wide variation in melanin content of skin. Jones and
Rehg built quite a good skin pixel classifier by constructing a histogram of the r,
g, and b values of all skin (resp. non-skin) pixels, and following the recipe for pizza
classification above. Figure 1.3 shows the ROC for this classifier.

Models of a classification problem can be compared by comparing their ROC’s.
Alternatively, we can build a summary of the ROC. Most commonly used in com-
puter vision is the area under the ROC (theAUC), which is 1 for a perfect classifier,
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FIGURE 1.2: The receiver operating curve for a histogram-based classifier to tell
EagleBoys pizza from Domino’s pizza using the diameter. This curve plots the
detection rate against the false-negative rate for a variety of values of the parameter
θ. A perfect classifier has an ROC that, on these axes, is a horizontal line at 100%
detection. This classifier isn’t very good, as you would expect if you look back at
the histograms for the pizza data.

and 0.5 for a classifier that has no information about the problem. The area under
the ROC has the following interpretation: assume we select one positive example
and one negative example uniformly at random, and display them to the classifier;
the AUC is the probability that the classifier tells correctly which of these two is
positive.

1.1.3 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier
would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test
data. We cannot minimize this error directly, because we don’t know the test set
(if we did, special procedures in training apply ?). However, classifiers that have
small training error might not have small test error. One example of this problem is
the (silly) classifier that takes any data point and, if it is the same as a point in the
training set, emits the class of that point and otherwise chooses randomly between
the classes. This classifier has been learned from data, and has a zero error rate on
the training dataset; it is likely to be unhelpful on any other dataset, however.

The phenomenon that causes test error to be worse than training error is
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FIGURE 1.3: The receiver operating curve for the skin detector of Jones and Rehg.
This plots the detection rate against the false-negative rate for a variety of values
of the parameter θ. A perfect classifier has an ROC that, on these axes, is a
horizontal line at 100% detection. Notice that the ROC varies slightly with the
number of boxes in the histogram. This figure was originally published as Figure 7

of “Statistical color models with application to skin detection,” by M.J. Jones and
J. Rehg, Proc. IEEE CVPR, 1999 c© IEEE, 1999.

sometimes called overfitting (other names include selection bias, because the
training data has been selected and so isn’t exactly like the test data, and gen-

eralizing badly, because the classifier fails to generalize). It occurs because the
classifier has been trained to perform well on the training dataset. The training
dataset is not the same as the test dataset. First, it is quite likely smaller. Second,
it might be biased through a variety of accidents. This means that small training
error may have to do with quirks of the training dataset that don’t occur in other
sets of examples. It is quite possible that, in this case, the test error will be larger
than the training error. Generally, we expect classifiers to perform somewhat bet-
ter on the training set than on the test set. Overfitting can result in a substantial
difference between performance on the training set and performance on the test set.
One consequence of overfitting is that classifiers should always be evaluated on test
data. Doing this creates other problems, which we discuss in Section 1.1.4.

A procedure called regularization attaches a penalty term to the training
error to get a better estimate of the test error. This penalty term could take a vari-
ety of different forms, depending on the requirements of the application. Section ??

describes regularization in further detail.

1.1.4 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,
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because the classifier has been trained to do well on that data, which will mean
our error rate estimate will be an underestimate. An alternative is to split some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data
when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because
it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeat-
edly: splitting data into training and validation sets uniformly and at random,
training a classifier on the training set, evaluating it on the validation set, and
then averaging the error over all splits. This allows an estimate of the likely future
performance of a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
classification errors (or risk) on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 1.2: Cross-Validation

The most usual form of this algorithm involves omitting single items from
the dataset and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates are
available (see, e.g., ?). We do not justify this tool mathematically; however, it
is worth noticing that leave-one-out cross-validation, in some sense, looks at the
sensitivity of the classifier to a small change in the training set. If a classifier
performs well under this test, then large subsets of the dataset look similar to one
another, which suggests that a representation of the relevant probabilities derived
from the dataset might be quite good.

For a multi-class classifier, it is often helpful to know which classes were
misclassified. We can compute a class-confusion matrix, a table whose i, jth
entry is the number of times an item of true class i was labeled j by the classifier
(notice that this definition is not symmetric). If there are many classes, this matrix
can be rendered as an image (Figure 1.4), where the intensity values correspond
to counts; typically, larger values are lighter. Such images are quite easy to assess
at a glance. One looks for a light diagonal (because the diagonal elements are the
counts of correct classifications), for any row that seems dark (which means that
there were few elements in that class), and for bright off-diagonal elements (which
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FIGURE 1.4: An example of a class confusion matrix from a recent image classifi-
cation system, due to ?. The vertical bar shows the mapping of color to number
(warmer colors are larger numbers). Note the redness of the diagonal; this is good,
because it means the diagonal values are large. There are spots of large off-diagonal
values, and these are informative, too. For example, this system confuses: schooners
and ketches (understandable); waterlily and lotus (again, understandable); and
platypus and mayfly (which might suggest some feature engineering would be a
good idea). This figure was originally published as Figure 5 of “SVM-KNN: Dis-

criminative Nearest Neighbor Classification for Visual Category Recognition,” by
H. Zhang, A. Berg, M. Maire, and J. Malik, Proc. IEEE CVPR, 2006, c© IEEE,

2006.

are high-frequency misclassifications).

1.2 MAJOR CLASSIFICATION STRATEGIES

Usually, we do not know p(1|x), or p(1), or p(x|1) exactly, and we must determine
a classifier from an example dataset. There are two rather general strategies:

• Explicit probability models: We can use the example data set to build
a probability model (of either the likelihood or the posterior, depending on
taste and circumstance). There is a wide variety of ways of doing this, some
of which we see in the following sections.

• Determining decision boundaries directly: Quite bad probability mod-
els can produce good classifiers, as Figure 1.5 indicates. This is because the
decision boundaries, rather than the details of the probability model, are
what determine the performance of a classifier (the main role of the prob-
ability model in the Bayes classifier is to identify the decision boundaries).
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This suggests that we could ignore the probability model and attempt to con-
struct good decision boundaries directly. This approach is often extremely
successful; it is particularly attractive when there is no reasonable prospect
of modeling the data source.

x

P(1|x)

P(2|x)

FIGURE 1.5: The figure shows posterior densities for two classes. The optimal
decision boundary is shown as a dashed line. Notice that although a normal density
may provide rather a poor fit to the posteriors, the quality of the classifier it provides
depends only on how well it predicts the position of the boundaries. In this case,
assuming that the posteriors are normal may provide a fairly good classifier because
P (2|x) looks normal, and the mean and covariance of P (1|x) look as if they would
predict the boundary in the right place.

1.2.1 Example: A Nonparametric Classifier Using Nearest Neighbors

It is reasonable to assume that example points near an unclassified point should
indicate the class of that point. Nearest neighborsmethods build classifiers using
this heuristic. We could classify a point by using the class of the nearest example
whose class is known, or use several example points and make them vote. It is
reasonable to require that some minimum number of points vote for the class we
choose.

A (k, l) nearest neighbor classifier finds the k example points closest to the
point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than l votes (otherwise, the point
is classified as unknown). A (k, 0)-nearest neighbor classifier is usually known as a
k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier is usually
known as a nearest neighbor classifier.

Nearest neighbor classifiers are known to be good, in the sense that the risk of
using a nearest neighbor classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbor classifier goes down as 1/

√
k.

In practice, one seldom uses more than three nearest neighbors. Furthermore, if
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the Bayes risk is zero, the expected risk of using a k-nearest neighbor classifier is
also zero (see ? for more detail on all these points). Finding the k nearest points
for a particular query can be difficult, and Section ?? reviews this point.

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a color, and one is an
angle? One possibility is to use a covariance estimate to compute a Mahalanobis-
like distance. It is almost always a good idea to scale each feature independently
so that the variance of each feature is the same, or at least consistent; this prevents
features with very large scales dominating those with very small scales.

1.2.2 Example: Logistic Regression

Logistic regression is a classifier that models the class-conditional densities by
requiring that

log
p(1|x)
p(−1|x) = aTx

where a is a vector of parameters. The decision boundary here will be a hyperplane
passing through the origin of the feature space. Notice that we can turn this
into a general hyperplane in the original feature space by extending each example’s
feature vector by attaching a 1 as the last component. This trick simplifies notation,
which is why we adopt it here. It is straightforward to estimate a using maximum
likelihood. Note that

p(1|x) = expaTx

1 + expaTx

and

p(−1|x) = 1

1 + expaTx
,

so that we can estimate the correct set of parameters â by solving for the minimum
of the negative log-likelihood, i.e.,

â =
argmin

a



−
∑

i∈examples

(
1 + yi

2
)aTx− log

(

1 + expaTx
)



 .

It turns out that this problem is convex, and is easily solved by Newton’s method
(e.g., ?).

In fact, when we use maximum likelihood, we are choosing a classifier bound-
ary that minimizes a loss function, and this is a better way to think about the
problem. For example i, we write γi = aTxi. Our classifier will be:

choose







1 if γi > 0
−1 if γi < 0
randomly if γi = 0.

Now write the loss for the ith example

L(yi, γi) = −
[

1

2
(1 + yi)γi − log (1 + exp γi)

]

= log (1 + exp (−yiγi))
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FIGURE 1.6: The logistic loss and the hinge loss, plotted for the case yi = 1. In
the case of the logistic loss, the horizontal variable is the γi = a · xi of the text.
In the case of the hinge loss, the horizontal variable is the w · xi + b of the text.
Notice that in each case, giving a strong negative response to this positive example
causes a loss, that grows linearly as the magnitude of the response grows (if it grew
faster, we might fear robustness problems). Notice also that giving an insufficiently
positive response also causes a loss. The hinge loss isn’t differentiable, and the
logistic loss is.

(where the step follows from simple manipulations; see the exercises). This is
plotted in Figure 1.6. This loss is sometimes known as the logistic loss. Notice
that this loss very strongly penalizes a large positive γi if yi is negative (and vice
versa). However, there is no significant advantage to having a large positive γi if yi
is positive. This means that the significant components of the loss function will be
due to examples that the classifier gets wrong, but also due to examples that have
γi near zero (i.e., the example is close to the decision boundary). Now the total
risk of applying this classifier to our set of examples is

∑

i∈examples

−
[

1

2
(1 + yi)γi − log (1 + exp γi)

]

,

and it is natural to minimize this risk as a function of a using Newton’s method
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(see ?). The Hessian will be

H =
∑

i∈examples

exp γi
(1 + exp γi)2

xix
T
i .

Notice that data points where γi has a large absolute value make little contribution
to the Hessian—it is affected mainly by points where γi is small, that is, points
near the boundary. For these points, the Hessian looks like a weighted covariance
matrix. Now if we have features that are strongly correlated, we can expect that
the Hessian is poorly conditioned, because the covariance matrix will have some
small eigenvalues. These will be caused by the high covariance of the features.
We would typically maximize using Newton’s method, which involves updating an
estimate a(n) by computing a(n+1) = a(n)+ δa, where we get the step δa by solving
H(δa) = −∇f . When this linear system is very poorly conditioned, it means that
a wide range of different a(n+1) have essentially the same value of loss. In turn,
many choices of a will give about the same loss on the training data. The training
data offers no reason to choose between these a.

However, a with very large norm may behave badly on future test data, be-
cause they will tend to produce large values of aTx for test data items x. In turn,
these can produce large losses, particularly if the sign is wrong. This suggests that
we should use a value of a that gives small training loss, and also has a small
norm. In turn, this suggests we change the objective function by adding a term
that discourages a with large norm. This term is referred to as a regularizer,
because it tends to discourage solutions that are large (and so have possible high
loss on future test data) but are not strongly supported by the training data. The
objective function becomes

Training Loss + Regularizer

which is
Training Loss + λ (Norm of a)

which is
∑

i∈examples

(

1

2
(1 + yi)γi − log (1 + exp γi)

)

+ λaTa

where λ > 0 is a constant chosen for good performance. Too large a value of λ, and
the classifier will behave poorly on training and test data; too small a value, and
the classifier will behave poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error.

Regularizing training loss using the norm is a general recipe, and can be applied to
most of the classifiers we describe. For some classifiers, the reasons this approach works
are more recondite than those sketched here, but the model here is informative. Norms
other than L2—that is, ||x ||22 = xTx—can be used successfully. The most commonly used
alternative is L1—that is, ||x ||1 =

∑

i abs (xi)—which leads to much more intricate mini-
mization problems but strongly encourages zeros in the coefficients of the classifier, which
is sometimes desirable.
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1.2.3 Example: Class-Conditional Histograms and Naive Bayes

If we have enough labeled data, we could model the class-conditional densities
with histograms. This really is practical only in low dimensions, but is sometimes
useful. We obtain p(x|y = 1) by producing a histogram of the features of the
positive examples, p(x|y = −1) from a histogram of the features of the negative
examples, and p(y = 1) by counting positive versus negative examples. Then,

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = −1)(1− p(y = 1))
,

and we can plot an ROC.
Models like this become impractical in high dimensions because the number of

boxes required goes up as a power of the dimension. We can dodge this phenomenon
by assuming that features are independent conditioned on the class. Although this
appears to be an aggressive oversimplification—it is known by the pejorative name
naive Bayes—it is often very well-behaved, and is competitive for many problems.
In particular, we assume that

p(x|y = 1) = p([x0, x1, . . . , xn]|y = 1) = p(x0|y = 1)p(x1|y = 1) . . . p(xn|y = 1).

Now each of these conditional distributions is low-dimensional, and so easy to model
(either a normal distribution or a histogram are good candidates).

1.2.4 Example: The Linear Support Vector Machine

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN)} .

We seek a rule that predicts the sign of y for any point x; this rule is our classifier.
At this point, we distinguish between two cases: either the data is linearly

separable or it isn’t. The linearly separable case is much easier, and we deal with
it first.

Support Vector Machines for Linearly Separable Datasets In a lin-
early separable dataset, there is some choice of w and b (which represent a hyper-
plane) such that

yi (w · xi + b) > 0

for every example point (notice the devious use of the sign of yi). There is one of
these expressions for each data point, and the set of expressions represents a set
of constraints on the choice of w and b. These constraints express the constraint
that all examples with a negative yi should be on one side of the hyperplane and
all with a positive yi should be on the other side.

In fact, because the set of examples is finite, there is a family of separating
hyperplanes. Each of these hyperplanes must separate the convex hull of one set of
examples from the convex hull of the other set of examples. The most conservative
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choice of hyperplane is the one that is farthest from both hulls. This is obtained by
joining the closest points on the two hulls, and constructing a hyperplane perpen-
dicular to this line and through its midpoint. This hyperplane is as far as possible
from each set, in the sense that it maximizes the minimum distance from example
points to the hyperplane (Figure 1.7).

x

x l

k

FIGURE 1.7: The hyperplane constructed by a support vector classifier for a plane
dataset. The filled circles are data points corresponding to one class, and the empty
circles are data points corresponding to the other. We have drawn in the convex hull
of each dataset. The most conservative choice of hyperplane is one that maximizes
the minimum distance from each hull to the hyperplane. A hyperplane with this
property is obtained by constructing the shortest line segment between the hulls
and then obtaining a hyperplane perpendicular to this line segment and through
its midpoint. Only a subset of the data determines the hyperplane. Of particular
interest are points on each convex hull that are associated with a minimum distance
between the hulls. We use these points to find the hyperplane in the text.

Now we can choose the scale of w and b because scaling the two together by
a positive number doesn’t affect the validity of the constraints yi(w · xi + b) > 0.
This means that we can choose w and b such that for every data point we have

yi (w · xi + b) ≥ 1

and such that equality is achieved on at least one point on each side of the hyper-
plane. Now assume that xk achieves equality and yk = 1, and xl achieves equality
and yl = −1. This means that xk is on one side of the hyperplane and xl is on the
other. Furthermore, the distance from xl to the hyperplane is minimal (among the
points on the same side as xl), as is the distance from xk to the hyperplane. Notice
that there might be several points with these properties.
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This means that w · (x1 − x2) = 2, so that

dist(xk, hyperplane) + dist(xl, hyperplane)

which is

(
w

|w | · xk +
b

|w |)− (
w

|w | · x1 +
b

|w | ),

becomes
w

|w | · (x1 − x2) =
2

|w | .

This means that maximizing the distance is the same as minimizing (1/2)w · w.
We now have the constrained minimization problem:

minimize (1/2)w ·w

subject to yi (w · xi + b) ≥ 1,

where there is one constraint for each data point.

Support Vector Machines for Non-separable Data

In many cases, a separating hyperplane does not exist. To allow for this case,
we introduce a set of slack variables, ξi ≥ 0, which represent the amount by which
the constraint is violated. We can now write our new constraints as

yi (w · x1 + b) ≥ 1− ξi,

and we modify the objective function to take account of the extent of the constraint
violations to get the problem

minimize 1
2w ·w + C

∑N

i=1 ξi

subject to yi (w · x1 + b) ≥ 1− ξi
and ξi ≥ 0.

Here C gives the significance of the constraint violations with respect to the distance
between the points and the hyperplane.

The Hinge Loss Support vector machines fit into the recipe, given in Sec-
tion 1.2.2, of minimizing regularized test loss. The hinge loss compares the known

value at an example with the response of the SVM at that example. Write y
(k)
i for

the known value and y
(p)
i for the response; then, the hinge loss for that example is

Lh(y
(k)
i , y

(p)
i ) = max(0, 1− y

(k)
i y

(p)
i ).

This loss is always non-negative (Figure 1.6). For the moment, assume y
(k)
i = 1;

then, any prediction by the classifier with value greater than one will incur no loss,
and any smaller prediction will incur a cost that is linear in the prediction value
(Figure 1.6). This means that minimizing the loss will encourage the classifier to (a)
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make strong positive (or negative) predictions for positive (or negative) examples
and (b) for examples it gets wrong, make the most positive (negative) prediction
that it can.

Support vector machines minimize the regularized hinge loss. We can see this
by rewriting the constraints, to get ξi ≥ 1 − yi (w · x1 + b). Now ξi will take the
smallest value that it can, and ξi ≥ 0, so

ξi = max (0, 1− yi (w · x1 + b)) = Lh(yi,w · xi + b).

In turn, solving the SVM above is equivalent to solving the unconstrained problem

minimize Loss + Regularizer =
N
∑

i=1

Lh(yi,w · xi + b) +
1

2C
w ·w.

Solving this problem requires care because it is not differentiable (the max term in
the hinge loss is the problem). However, rewriting an SVM in this way is helpful,
because it exposes what the SVM does.

1.3 PRACTICAL METHODS FOR BUILDING CLASSIFIERS

We have described several apparently very different classifiers here. But which
classifier should one use for a particular application? Generally, this should be dealt
with as a practical rather than a conceptual question: that is, one tries several, and
uses the one that works best. With all that said, experience suggests that the first
thing to try for most problems is a linear SVM or logistic regression, which tends
to be much the same thing. Nearest neighbor strategies are always useful, and
are consistently competitive with other approaches when there is lots of training
data and one has some idea of appropriate relative scaling of the features. The
main difficulty with nearest neighbors is actually finding the nearest neighbors of a
query. Approximate methods are now very good, and are reviewed in Section ??.
The attraction of these methods is that it is relatively easy to build multi-class
classifiers, and to add new classes to a system of classifiers.

The loss function one uses is supposed to be dictated by the natural logic
of the underlying problem. This is all very well, but in practice we often do not
know what a good loss function is, particularly in multi-class cases. The 0-1 loss is
almost universally used, but this loss can impose severe (and, worse, uninformative)
penalties in multi-class cases. For example, is labeling a cat with the label “dog”
really as bad as labeling it with the label “motorcycle”? The difficulty here is we
do not have a good, ready-made loss function that encodes what we really want to
do for some classification problems. We explore this point further in Section ??.

1.3.1 Manipulating Training Data to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with large datasets can be difficult, and it can be hard to get enough training
data. Typically, only a relatively small number of example items are really impor-
tant in determining the behavior of a classifier (we see this phenomenon in greater
detail in Section 1.2.4). The really important examples tend to be rare cases that
are quite hard to discriminate. This is because these cases affect the position of the
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Original Rescale and Crop Rotate and Crop Flip

FIGURE 1.8: A single positive example can be used to generate numerous positive
examples by slight rescaling and cropping, small rotations and crops, or flipping.
These transformations can be combined, too. For most applications, these positive
examples are informative, because objects usually are not framed and scaled pre-
cisely in images. In effect, these examples inform the classifier that, for example,
the stove could be slightly more or slightly less to the right of the image or even to
the left. Jake Fitzjones c© Dorling Kindersley, used with permission.

decision boundary most significantly. We need a large dataset to ensure that these
cases are present.

There are two useful tricks that help. First, for many or most cases in
computer vision, we can expand the set of training examples with quite simple
tricks. For concreteness, imagine we are training a classifier to recognize pictures of
kitchens. The first step is to collect many pictures of kitchens. But we aren’t guar-
anteed that an image of a kitchen will appear at a fixed size, or at a fixed rotation,
or with a fixed crop. Usually we would resize the images to a fixed size using a
uniform scaling, cropping as necessary. However, we could vary the scaling slightly,
vary the cropping slightly, or vary the rotation of the image slightly (Figure 1.8).
This means that each picture of a kitchen can generate a large number of positive
examples. It is usually less helpful to do this with negative examples, because it
is usually easy to get a large number of negative examples. A second useful trick
can avoid much redundant work. We train on a subset of the examples, run the
resulting classifier on the rest of the examples, and then insert the false positives
and false negatives into the training set to retrain the classifier. This is because
the false positives and false negatives are the cases that give the most information
about errors in the configuration of the decision boundaries. We may repeat this
several times, and in the final stages, we may use the classifier to seek false positives.
For example, we might collect pictures from the Web, classify them, and then look
at the positives for errors. This strategy is sometimes called bootstrapping (the
name is potentially confusing because there is an unrelated statistical procedure
known as bootstrapping; nonetheless, we’re stuck with it at this point).

There is an extremely important variant of this approach called hard neg-

ative mining. This applies to situations where we have a moderate supply of
positive examples, but an immense number of negative examples. Such situations
occur commonly when we use classifiers to detect objects (Section ??). The general
procedure is to test every image window to tell whether it contains, say, a face.
There are a lot of image windows, and it is quite easy to obtain a lot of images
that are certain not to contain a face. In this case we can’t use all the negative
examples in training, but we need to search for negative examples that are most



Section 1.3 Practical Methods for Building Classifiers 20

likely to improve the classifier’s performance. We can do so by selecting a set of
negative examples, training with these, and then searching the rest of the negative
examples to find ones that generate false positives—these are hard negatives. We
can iterate the procedure of training and searching for hard negatives; typically, we
expand the pool of negative examples at each iteration.

1.3.2 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need
to be calibrated. The usual method to calibrate these numbers is an algorithm
due to ?, which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each
class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart. This question is becoming important because the number of object
categories that modern methods can deal with is growing quickly. For example,
one now sees methods that do 10,000-class classification for vision objects (?). The
difference between training 10,000 SVMs and training 14 is very significant, and we
can expect considerable research on this matter.
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1.3.3 Software for SVM’s

We obtain a support vector machine by solving one of the constrained optimization
problems given above. These problems have quite special structure, and one would
usually use one of the many packages available on the web for SVMs to solve them.

LIBSVM (which can be found using Google, or at http://www.csie.ntu.

edu.tw/~cjlin/libsvm/) is a dual solver that is now widely used; it searches for
nonzero Lagrange multipliers using a clever procedure known as SMO (sequential
minimal optimization). A good primal solver is PEGASOS; source code can be
found using Google, or at http://www.cs.huji.ac.il/~shais/code/index.html.
SVMLight (Google, or http://svmlight.joachims.org/) is a comprehensive

SVM package with numerous features. It can produce sophisticated estimates of
the error rate, learn to rank as well as to classify, and copes with hundreds of thou-
sands of examples. Andrea Vedaldi, Manik Varma, Varun Gulshan, and Andrew
Zisserman publish code for a multiple kernel learning-based image classifier at http:
//www.robots.ox.ac.uk/~vgg/software/MKL/. Manik Varma publishes code for
general multiple-kernel learning at http://research.microsoft.com/en-us/um/
people/manik/code/GMKL/download.html, and for multiple-kernel learning us-
ing SMO at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html. Peter Gehler and Sebastian Nowozin publish code for
their recent multiple-kernel learning method at http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/index.html.

1.4 BASIC IDEAS FOR NUMERICAL MINIMIZATION

Assume we have a function g(x), and we wish to obtain a value of x that achieves
the minimum for that function. Sometimes we can solve this problem in closed
form, but more usually we need a numerical method. Implementing these numerical
methods is a specialized business; it is usual to use general optimization codes. This
section is intended to sketch how such codes work, so you can read manual pages,
etc. more effectively. Personally, I am a happy user of Matlab’s fminunc, although
the many different settings take some getting used to.

Typical codes take a description of the objective function (typically, the name
of a function), a start point for the search, and a collection of parameters. All codes
take an estimate x(i), update it to x(i+1), then check to see whether the result is
a minimum. This process is started from the start point. The update is usually
obtained by computing a direction p(i) such that for small values of h, g(x(i)+hp(i))
is smaller than g(x(i). Such a direction is known as a descent direction.

Assume we have a descent direction. We must now choose how far to travel
along that direction. We can see g(x(i) + hp(i)) as a function of h. Write this
function as φ(h). We start at h = 0 (which is the original value x(i), so φ(0) =
g(x(i)), and move in the direction of increasing h to find a small value of φ(h)
that is less than φ(0). The descent direction was chosen so that for small h > 0,
φ(h) < φ(0); one way to tell we are at a minimum is we cannot choose a descent
direction. Searching for a good value of h is known as line search. Typically,
this search involves a sequence of estimated values of h, which we write hi. One
algorithm is to start with (say) h0 = 1; if φ(hi) is not small enough (and there are
other tests we may need to apply — this is a summary!), we compute h(i+1) = 1/2hi.
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This stops when some hi passes a test, or when it is so small that the step is
pointless.

There are two main methods to choose a descent direction. The first, known
as gradient descent, uses the negative gradient of the function. We write p(i) =
−∇g(x(i)). This works (as long as g is differentiable, and quite often when it isn’t)
because g must go down for at least small steps in this direction. There are two
ways to evaluate a gradient. You can require that the software estimate a numerical
derivative for you, which usually slows things down somewhat, or you can supply a
gradient value. Usually this gradient value must be computed by the same function
that computes the objective function value.

One tip: in my experience, about 99% of problems with numerical optimiza-
tion codes occur because the user didn’t check that the gradient their function
computed is right. Most codes will compute a numerical gradient for you, then
check that against your gradient; if they’re sufficiently different, the code will com-
plain. You don’t want to do this at runtime, because it slows things up, but it’s an
excellent idea to check.

The other method to choose a descent direction is Newton’s method. The
point we seek has the property that ∇g(x) = 0. Now assume that our estimate x(i)

is rather close to the right point. We can then write a Taylor series. Write H(x(i))
for the matrix of second derivatives of g, evaluated at x(i). This is usually called
the Hessian. The Taylor series for g(x(i) + p) is then

g(x(i) + p) ≈ g(x(i)) +∇g(x(i))p+
1

2
pTHp

and so we have
∇g(x(i) + p) ≈ ∇g(x(i)) +Hp.

Now we want x(i+1) = x(i) + p to be the right answer. So we want

∇g(x(i)) +Hp = 0

or
Hp = −∇g(x(i)).

In the ideal case, this update places x(i+1) on the solution. This doesn’t happen all
that often (though it can happen in important cases), and we may need to iterate.
When we are close to the right point, Newton’s method can converge extremely
fast. However, it can behave rather badly when we are far away. Typical codes
estimate a p using a modified form of Newton’s method, then apply the line search
above. To use Newton’s method, you must either allow the code to compute a
numerical Hessian (which can be rather slow), or provide the Hessian yourself.

Another tip: in my experience, about 99% of problems with codes that use
Newton’s method occur because the user didn’t check that both the gradient and the
Hessian their function computed is right. Again, most codes will check a numerical
estimate against your value if you want. It’s an excellent idea to check.

1.5 NOTES

We warn readers that a search over classifiers is not a particularly effective way to
solve problems; instead, look to improved feature constructions. However, many



Section 1.5 Notes 23

application problems have special properties, and so there is an enormous number
of different methods to build classifiers. We have described methods that reliably
give good results. Classification is now a standard topic, with a variety of important
textbooks. Accounts of most mainstream classifiers can be found in major recent
texts. We recommend ?, ?, ?, and ?. An important theoretical account of when
classification methods can be expected to work or to fail is in ?.
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Listing 1.1: Matlab code used to train a histogram based classifier for the pizza data

[num, txt , raw]= x l s r e ad ( ’ ˜/Current/Courses /Probcourse/SomeData/DataSets / c l e a np i z
ndat=s ize (num, 1 ) ;
pdiams=num( : , 5 ) ;
l a b e l s=zeros ( ndat , 1 ) ;
for i =1:ndat

i f strcmp ( txt ( i , 2 ) , ’Dominos ’)==1
l a b e l s ( i )=1;

else

l a b e l s ( i )=−1;
end

end

% now we do a t e s t−t r a in s p l i t
nt ra in=f loor ( 0 . 8 ∗ 2 5 0 ) ;
permutev=randperm( ndat ) ;
%% how many boxes in the histogram
nboxes=20;
hn=(1−1e−9)∗min( pdiams ) ;
hx=(1+1e−9)∗max( pdiams ) ;
hs=(hx−hn )/ nboxes ;
h i s td=zeros ( nboxes , 1 ) ;
h i s t e=zeros ( nboxes , 1 ) ;
%%

for i =1: n t r a in
pd=pdiams ( permutev ( i ) ) ;
l v=l a b e l s ( permutev ( i ) ) ;
hptr=f loor ( ( pd−hn)/ hs+1);
i f lv>0

h i s td ( hptr )=h i s td ( hptr )+1;
else

h i s t e ( hptr )= h i s t e ( hptr )+1;
end

end

h i s t e=h i s t e+1e−9;
h i s td=h i s td+1e−9;
pxcd=hi s td /sum( h i s td ) ;
pxce=h i s t e /sum( h i s t e ) ;
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Listing 1.2: Matlab code used to test a histogram based classifier for the pizza data

%%
% i t ’ s t ra ined . Now t e s t f o r var iou s t h r e s h o l d s

t h r e s ho l d s =[0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2 ] ;
fp s=zeros (11 , 1 ) ;
fn s=zeros (11 , 1 ) ;
tps=zeros (11 , 1 ) ;
tns=zeros (11 , 1 ) ;
for th=1:11

thresh=th r e s ho l d s ( th ) ;
for i=nt ra in +1:ndat

pd=pdiams ( permutev ( i ) ) ;
l v=l a b e l s ( permutev ( i ) ) ;
hptr=f loor ( ( pd−hn )/ hs+1);
t e s t v=pxcd ( hptr )/ pxce ( hptr ) ;
i f te s tv>thresh

p r ed l a b e l=1;
else

p r ed l a b e l=−1;
end

i f pr ed labe l>0&&lv>0
tps ( th)=tps ( th )+1;

e l s e i f pr ed labe l>0&&lv<0
fp s ( th)= fps ( th )+1;

e l s e i f pr ed labe l<0&&lv>0
fn s ( th)= fns ( th )+1;

else

tns ( th)=tns ( th )+1;
end

end

end

tpr=tps /( ndat−nt ra in ) ;
fp r=fps /( ndat−nt ra in ) ;
figure ( 1 ) ; c l f ;
plot ( fpr , tpr , ’ r ’ ) ;
axis ( [ 0 1 0 1 ] )
ylabel ( ’ True p o s i t i v e r a t e or de te c t r a t e ’ ) ;
xlabel ( ’ Fa l se p o s i t i v e r a t e ’ ) ;
hold on
plot ( [ 0 , 1 ] , [ 0 , 1 ] , ’−−r ’ ) ;
cd ( ’ ˜/Current/Courses /Probcourse/ C l a s s i f i c a t i o n / Figures ’ ) ;
print −depsc2 p i z za ro c . eps


