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Abstract : One of the major problems in Monte Carlo based methods for
global illumination is noise. This paper investigates adaptive sampling as a
method to alleviate the problem. We introduce a new reÞnement criterion,
which takes human perception and limitations of display devices into account
by incorporating the tone-operator. Our results indicate that this can lead to a
signiÞcant reduction in the overall RMS-error, and even more important that
noisy spots are eliminated. This leads to a very homogeneous image quality.
As most adaptive sampling techniques our method is biased. In order to inves-
tigate the importance of this problem, a nonparametric bootstrap method is pre-
sented to estimate the actual bias. This provides a technique for bias correction
and it shows that the bias is most signiÞcant in areas with indirect illumination.

1 Introduction

Monte Carlo based global illumination methods such as path tracing [6] and bidirec-
tional path tracing [10, 9, 17] are very powerful techniques when highly complex scenes
with complex reßection models are rendered. The main disadvantage of Monte Carlo
based ray tracing is the high variance of the result which is seen as noise in the rendered
images. This noise can be eliminated by increasing the number of samples per pixel,
but it is costly due to the slow convergence of the Monte Carlo method.

Adaptive image sampling methods tries to avoid the problem of using a Þxed (high)
number of samples per pixel by concentrating the samples in the difÞcult parts of the
image. Several methods which apply adaptive sampling to regular ray tracing have been
presented. The primary aim of most of these methods is to concentrate the samples
along the edges in the image to reduce aliasing effects [13, 12]. In Monte Carlo based
ray tracing such as path tracing these edges represents a minor problem compared to
the noise seen as spots in the image. Only a few adaptive sampling techniques capable
of handling this kind of noise have been presented.

Lee et al. [11] presented a method in which each pixel is sampled based on the



variance of the samples, and Purgathofer [14] presented a technique in which conÞ-
dence intervals are used. The use of conÞdence intervals has the advantage that error
bounds can be speciÞed explicitly for each pixel. However, as demonstrated by Kirk
and Arvo [8] both these methods are biased. To avoid bias, Kirk and Arvo presented a
method in which an initial sample set is used only to estimate the necessary number of
samples per pixel.

An alternative to using adaptive sampling is Þltering in which the noisy spots are
located and removed using for example a median Þlter [5] or a more complex energy
preserving Þlter [15]. These methods have the advantage that it is relatively cheap to
reduce the amount of noise in the picture. The accuracy of the Þltered image is however
difÞcult to predict since the blurring of noisy pixels also introduces errors in the image.

In this paper we investigate the use of adaptive sampling with path tracing. We use
a conÞdence interval based approach similar to Purgathofer�s, but with a modiÞed for-
mula for computing the conÞdence interval in which a tone-operator is included. This
has the advantage that samples are concentrated in those regions where they contribute
most to the Þnal appearance of the image. Like other adaptive sampling techniques our
method is biased. In order to see whether this bias is signiÞcant we estimate it using a
statistical technique known as non-parametric bootstrapping.

2 Adaptive sampling

In this section we will consider adaptive sampling using conÞdence intervals. In addi-
tion to [14] we will present a new reÞnement criterion which includes the tone operator.

Adaptive sampling using conÞdence intervals is based on an analysis of the pixel
radiance, L . This is computed by integrating the image-function, p(x, y), which rep-
resents the radiance towards a viewer for any point (x, y) in the rendered image. The
radiance through a pixel, L̄, is thus found by :

L̄ =
∫
A
p(x, y) f (x, y) dx dy (1)

where f (x, y) is an appropriate anti-aliasing Þlter1 and A is the support area of the
Þlter. p(x, y) is unknown and L̄ is estimated by a Monte Carlo method based on n
random samples, Xi , i = 1, . . . , n :

�̄L = 1
n

∑
i

Xi (2)

where the samples are distributed according to the chosen Þlter kernel.
The idea in [14] is to continue sampling until the conÞdence that the true value, L̄ ,

is within a given tolerance of the estimate has reached a certain level. More formally
this means that sampling continues until :

P{L̄ ∈ [ �̄L − d; �̄L + d]} = 1 − α (3)

1Since the Þnal image contains one value for each pixel, the Nyquist frequency of interest for anti-
aliasing is 0.5 pixel−1. The attenuation of the box Þlter at this frequency is not very good, and it is our
experience that a Gaussian Þlter provides visually superior images.



where 1 − α is the conÞdence level, d is the allowed tolerance, and P denotes the
probability of the speciÞed event.

The advantage of this approach is that pixel values are estimated with the same
degree of uncertainty and thus that the noise level should be the same all over the image.
Considering that one of the major problems with Monte Carlo based rendering is large
differences in the noise level across an image, this property is very desirable.

However, in the quest for realism, calculating accurate radiance values is not enough.
Human perception must also be taken into account, and so must the limitations of cur-
rent display devices. While the human eye has an input range in the order of 10−5 to
105 cd/m2 (cf. [16]), typical displays can only show values between 1 and 100 cd/m2,
so a transformation is obviously necessary. In order to deal with these problems, tone
operators have been investigated in e.g. [16, 1, 18]. These operators take as input a
�real world� radiance and returns a corresponding display value.

Thus, instead of displaying L̄ , the displayed value should be :

L = T (L̄) (4)

where T (·) is the tone operator.
In order to incorporate this in adaptive sampling, we propose that the reÞnement

criteria is changed so the conÞdence interval concerns L and not L̄ . This means that
sampling continues until the conÞdence of the displayed value is within a given toler-
ance. Formally this requires two values, �LL and �LU , to be found, such that :

P{L ∈ [ �LL; �LU ]} = 1 − α, �LU − �LL = 2d (5)

where �LL and �LU are estimated from the available samples.
Compared to Eq. (3) the difference is subtle. However, the important thing is that

the amount of work done depends on the displayed value, and that samples will not be
wasted at obtaining accurate estimates for small differences which cannot be displayed,
or differences which are simply not perceived by the viewer. If for example the display
device can display values between 0 and 1 there is no point in using many samples to
Þnd out whether the radiance for a given pixel is 6.5 or 7.5 � even though the absolute
difference between these values is large.

The drawback of this approach is obviously that an image rendered for one display
type should not be used with a different display type. For many practical purposes
though, this restriction is not severe, and it is already seen in other renders which include
gamma correction.

3 Evaluation of conÞdence intervals

While a reÞnement criterion based on conÞdence intervals is relatively easy to under-
stand in words, the transformation into a criterion which can be computed is not trivial.
This section points out why it is not trivial, presents an empirical method to justify the
necessary approximation, and presents a the new stopping condition corresponding to
Eq. (5).

The reason that the desired conÞdence intervals are not trivial to estimate, is that the
marginal distribution of the samples used to estimate the value of a pixel is unknown.
And except for artiÞcially constructed examples it will always be so. Even for the



simple mean considered in Eq. (3) this means that approximations must be made. These
approximations have not been investigated previously, so before the tone operator is
included in the reÞnement criterion we will give a brief overview.

Given n samples, an approximate 1 − α conÞdence interval for L̄ is given by (cf.
[3]) :

[ �̄LL; �̄LU ] =
[

�̄L − t (n − 1)1−α/2

√
s2/n; �̄L + t (n − 1)1−α/2

√
s2/n

]
(6)

where t (n − 1)1−α/2 is the 1 − α/2 quantile of the t�distribution with n − 1 degrees of
freedom, and s2 is the sample variance of Xi , i = 1, . . . , n.

Unfortunately, when n is Þnite the coverage probability, 1 − α, will only be correct
for d → 0 and under the assumption that the distribution of X i is symmetric with
respect to the median (cf. [3]). In applications d is typically 5% (cf. [14, 15]) or
smaller which is reasonably close to 0, but there is no guarantee that the distribution of
Xi is symmetric. As an example, the distribution of samples from a two colored region
where one color is more frequent than the other, will not be symmetric with respect to
the median. Hence, even as an approximation Eq. (6) may fail. To see whether this
is a problem assume that n is large. Since each of the samples are independent and
identically distributed, it follows from the central limit theorem that :

�̄L ∈
approx.

N(L̄, σ2/n) (7)

where σ2 is the variance of the distribution of X i . Based on this, Eq. (6) can then easily
be rederived, so the question is : How large should n be for this approximation to hold ?

There is no single answer to this question because the distributionof X i is unknown.
However, if it can be justiÞed that �̄L is normal distributed for a given n, then that n must
be large �enough�. Consider therefore, the empirical distribution of m independent
estimates made with n samples. By comparing this to a normal distribution by means
of a statistical χ2 goodness of Þt test [7], the hypothesis that �̄L is normal distributed
can be tested. If it cannot be rejected it must be reasonable to assume that � at least
as a working assumption � the approximation is acceptable. An experiment based on
this method is reported in section 5, and it is shown that the approximation actually is
acceptable for most pixels in a test scene even with a relatively small value of n (i.e. 10
to 20).

Hence, in the following it will be assumed that :

P{L̄ ∈ [ �̄LL; �̄LU ]} = 1 − α (8)

where the values of �̄LL and �̄LU are given in Eq. (6). Assuming furthermore that the
tone operator of choice is a non-decreasing function, we get the following stopping
condition :

P{L̄ ∈ [ �̄LL; �̄LU ]} = P{T (L̄) ∈ [T ( �̄LL); T ( �̄LU )]}
= P{L ∈ [T ( �̄LL); T ( �̄LU )]} = 1 − α (9)

and combined with Eq. (5) this shows that sampling should continue until :

T ( �̄LU ) − T ( �̄LL) ≤ 2d (10)



where d is the accepted tolerance and �̄LL and �̄LU are given by Eq. (6). It should be
noted that since this condition has been derived from an approximation it is obvious
that it is only an approximation itself. However, for most practical purposes it is a
reasonable approximation.

4 Bootstrapping and bias estimation

One of the problems with adaptive sampling is bias (cf. [8]). This means that in average
the estimated pixel values will be incorrect. Obviously this is undesirable. Whether it
has any practical signiÞcance though, is not a question about biased or unbiased, but a
question about how large the bias is. If for example a display device with 8 bitplanes
per color is used, a bias which is signiÞcantly less than 1/256 will seldomly change any
pixel values at all.

Consequently, it is interesting to estimate the bias. To this end we will introduce
nonparametric bootstrapping which is a statistical method based on resampling, [2].
For this purpose, let θ be some statistic derived from a distribution F , by the functional
relation θ = t (F), and let �θ = s(x) be an estimator for θ based on a set of n samples,
x, from F . With adaptive sampling in mind, F can be thought of as the marginal
distribution of image values in a region that contributes to a given pixel, s(·) can be
thought of as the adaptive sampling algorithm, and θ corresponds to the radiance, L .
Given these deÞnitions, the true bias caused by adaptive sampling is :

biasF ( �θ, θ) = EF { �θ } − θ = EF {s(x)} − t (F) (11)

where EF {·} denotes expectation with respect to F . Thus, if the true value, θ , is known,
it is possible to estimate the bias directly, but in most situations this is not the case. Yet,
F is not completely unknown. The bootstrap technique exploits this by using the initial
n samples to obtain a consistent estimate, �F , of F (for the nonparametric bootstrap this
is the empirical distribution2). The idea is then to transfer all calculations from the �real
world� where F is the underlying and unknown distribution, to the �bootstrap world�
where �F is the underlying but known distribution. Because �F is known a number of
statistics which cannot be calculated in the real world can be computed in the bootstrap
world, and because �F is a consistent estimate of F , these statistics will be consistent
estimates of the corresponding statistics in the real world.

The actual computations are very simple : F is replaced by �F , such that e.g. samples
are drawn from �F instead of F . When �F is the empirical distribution of the original
samples, this means that the original data are resampled.

Lettingx∗ denote a bootstrap sample (i.e. a vector of samples from �F), the bootstrap
estimate of the bias, becomes :

bias �F( �θ∗, �θ) = E �F {s(x∗)} − t ( �F) (12)

where �θ∗ = s(x∗) is the bootstrap estimate of θ . Since resampling from �F is inexpen-
sive (compared to sampling from F which requires e.g. path tracing) many bootstrap
estimates can easily be obtained for θ . Thus, if { �θ∗

b }Bb=1 are B such estimates, E �F {s(x∗)}
2However, the method is not restricted to the nonparametric case.



can be approximated by :

�θ∗(·) =
B∑
b=1

�θ∗
b /B (13)

This leads to the following estimate of bias :

b̂iasB = �θ∗(·) − t ( �F) (14)

In a similar manner the variance of �θ can be estimated by :

�se2
B =

B∑
b=1

[ �θ∗
b − �θ∗(·)]2/(B − 1) (15)

The ideal bootstrap estimates are obtained for B → ∞, but for most practical purposes
B can be chosen between 25 and 200 for the standard error estimate, and between 400
and 1000 for the bias estimate (cf. [2]).

Bootstrap estimates of bias can theoretically be used for bias correction, but the
price will often be a higher variance of the Þnal estimate. In images this is seen as
noise, so by using it, the advantage obtained by adaptive sampling may be lost, although
it need not be the case. This will require further research. The primary goal here has
been to provide a method which can be used to characterize the the bias caused by
adaptive sampling empirically.

The bootstrap method can also be used to estimate conÞdence intervals. However,
the corresponding theory is fairly involved, and we will not go into details with it. Fur-
thermore, our initial experiments have indicated that the conÞdence intervals obtained
this way are not signiÞcantly better than those obtained with the simpler approximation
in Eq. (3), and the computational burden is quite large.

5 Results and Discusssion

We have implemented the adaptive sampling scheme presented in this paper for a pure
path tracing algorithm using gamma correction (γ = 2.2 cf. [4]) as the tone opera-
tor. The tolerance has been set to d = 1/256 corresponding to the color resolution
of the Þnal images, and the minimal number of samples has been chosen according
to the lower bound, n, given in [14]. If the reÞnement criteria has not been met after
these n samples, another n samples have been taken and so forth. Unless otherwise
stated, all images have been calculated using a Gaussian Þlter for anti-aliasing with 3
dB attenuation at the Nyquist frequency, 1/2 pixel−1.

The results presented here are based on two test scenes, which have been rendered
with 160× 120 pixels. A Cornell box model and a glass sphere on a table of wood. The
Cornell box is characterized by much indirect illumination and a shiny sphere, while
the primary difÞculty with the glass sphere is a caustic on the table.

5.1 Approximation of conÞdence intervals

In order to investigate the approximation used to calcultate conÞdence intervals below,
the χ2 goodness of Þt test mentioned in section 3 has been made for the Cornell box test



scene using a box Þlter. Each pixel value has been estimated m = 100 times using 10
samples for each estimate, and based on these 100 estimates the mean, �µ, and sample
variance, s2 have been calculated. Given ( �µ, s2), 8 classes have been made using the
12.5%, 25%, . . . , 87.5% percentiles of the N( �µ, s2) distribution as delimiters. The test
value has then been calculated as :

z =
8∑
i=1

(# observations in class i − 12.5)2

12.5
(16)

For a test at a 5% level this value should be compared to the 95% percentile of the χ2(5)

distribution, i.e. 11.07. Thus for values of z larger than 11.07 the hypothesis about the
estimate of the pixel value being normal distributed is rejected. Since the level of the
test is 5% the largest probability of this happening when the hypothesis is actually true
is 5%.

Counting the pixels in the Cornell box scene for which z is larger than 11.07 gives
approximately 1900 out of 19200 pixel corresponding to about 10% of all pixels. This
is higher than the expected 5% but not much considering that only n = 10 samples have
been used to estimate each pixel value. For larger values of n the reject rate approaches
5%, and for e.g. n = 50 it is has been found to be about 7% for the Cornell box scene.

Fig. 1. The testvalue for the hypothesis that the pixel values follow a normal distribution is
here visualized. Brighter values correspond to pixels where the hypothesis is less probable.
The image has been histogram equalized to show the random pattern which otherwise would
be very dark.

The distribution of test values is visualized in Fig. 1, and except for the border
around the lightsource no pattern is apparent. The reason that the border of the light-
source stands out is obviously that the distribution here is bimodal (either light or dark),
so this was to be expected. As for the rest of the image, there is no pattern. This indi-
cates that the deviations from the hypothesis are random, so it must be concluded that
Eq. (6) is valid, and this conclusion remains unchanged for higher values of n.

5.2 Improvements in image quality

The results of using the adaptive sampling scheme is shown and compared to traditional
sampling in Fig. 4 (see Appendix).



Table 1. The RMS error relative to a reference image based on 100, 000 samples per pixel. n
indicates the average number of samples per pixel.

Adaptive with Adaptive without
n Fixed tone operator tone operator
40 0.062 0.049 0.069
100 0.042 0.035 0.047

Visually the difference is characterized by having eliminated virtuallyall noisy spots
and by giving a more homogeneous image quality. The price is slightly more noise in
some regions, but very importantly it should be noticed that the noise level is uniform.
For the chosen conÞdence level all noise is not removed but the noise which remains
is spread out evenly all over the image. Experiments have shown that this is not only
true for the conÞdence level shown here, but also for other levels. This means that the
conÞdence level is a good parameter for choosing the overall image quality prior to
rendering.

Because of the random nature of the sampling process it is impossible to guarantee
that all noisy spots are eliminated. As a consequence a few pixels in the caustic of
the glass sphere scene are still obviously wrong. It is however evident that there is a
signiÞcant improvement when using adaptive sampling instead of traditional sampling.
The problem may possibly be solved by including adjacency information in the adaptive
algorithm, but this will require further research.

In order to quantify the results, an analysis of the RMS error has been made for the
Cornell box scene. Table 1 shows a few of these results based on a reference image
with 100,000 samples per pixel. It is important to notice that the adaptive sampling
without the tone operator does not perform well, because a large amount of samples are
used to estimate the pixel values in the light source accurately. However, these values
are all outside the display range, so in this case the accuracy is not needed. This is no
longer a problem when the tone operator is included in the computation, which leads to
a signiÞcant reduction of the RMS error.

All the results obtained with the Cornell box scene is shown in Fig. 2. A statistical
analysis of these results shows that by using adaptive sampling with the tone operator,
the reduction of the RMS error is in average 12%. Equivalently it has been found that
the same RMS error can be obtained with 24% less samples when adaptive sampling is
used instead of traditional sampling.

The actual value of the reduction obviously depends on the chosen test scene, so it
is not possible to draw a general conclusion about the size of the reduction. However,
by considering the distribution of samples in Fig. 3 is it clear that there is a tendency
toward using more samples in areas with indirect illumination. Thus, it is to be expected
that the largest improvements will occur in complex scenes with both direct and indirect
illumination.
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Fig. 2. The RMS error as a function of the average number of samples used per pixel. The
upper curve corresponds to traditional (Þxed) sampling while the lower curve corresponds to
adaptive sampling with the tone operator.

Fig. 3. The distribution of samples over the image is here visualized. Brighter values corre-
sponds to more samples per pixel.

5.3 Bias estimation

The analysis of bias for a given pixel is made from an initial set of 10, 000 samples from
the pixel, which constitute the bootstrap distribution, �F . Based on this the pixel value,
�θ , is estimated (giving the true pixel value in the bootstrap world), and the adaptive
sampling algorithm is applied to obtain B = 1000 bootstrap estimates of the pixel
value by resampling (adaptively) from �F . Inserting these estimates in Eq. (13) and
Eq. (14) then gives the desired bias estimate.



Noticing that the bias estimate is obtained by summing 1000 independent and iden-
tically distributed random variables, we have constructed an approximate 95% conÞ-
dence interval (by means of Eq. (15)) to answer the following 2 questions : Is it possible
that the bias is 0, i.e. does the conÞdence interval contain 0 ? - And, is it possible that
the bias is larger than 1/256 ?

For both test scenes the number of pixels for which the bias could possibly be 0,
is well below 10%, so it must be concluded that the bias is statistically signiÞcant. On
the other hand the results have also shown that for about 80% of all pixels in the glass
sphere scene the bias is deÞnitely less than 1/256, so if a display with 8 bitplanes per
color is used, it is insigniÞcant for most practical purposes. For the Cornell box the
number is somewhat smaller but the bias is still quite small.

The regions with signiÞcant bias are typically those which are also sampled many
times. This agrees nicely with the theoretically based observation made in [8] that
bias will be highest in regions with high contrast, since these regions are sampled most
because of the variability of the samples. The results are also in agreement with [8] in
the sense that as the conÞdence level (and thus the number of samples) increases, the
bias tends toward 0. Since the length of the conÞdence intervals approaches 0 as the
number of samples is increased this means that the total error decreases monotonically
toward 0. Hence, the method is consistent.

6 Conclusion

We have proposed that the tone operator is incorporated in the reÞnement criterion for
adaptive sampling given by Purgathofer. This takes human perception and limitations
of display devices into account while retaining the desirable concept of a conÞdence
level for the entire image. Using this method on a pure pathtracing algorithm it has
been shown that most noisy spots are eliminated and that the overall RMS error is
reduced signiÞcantly. Furthermore it has been found that the overall image quality is
controlled consistently by the conÞdence level, which makes it a useful parameter prior
to rendering.

One of the problems with conÞdence based reÞnement criteria is the actual evalu-
ation of the conÞdence intervals. It has been pointed out that even in the simple case
where the mean of n samples is considered, a number of assumptions and approxi-
mations are necessary to calculate the conÞdence intervals. These assumptions cannot
always be justiÞed theoretically, but our results indicate that in most cases they can-
not be rejected either. Based on this, a simple extension, which incorporates the tone
operator in the calculations, has been suggested and applied succesfully.

Since the adaptive sampling scheme provided here leads to biased estimates, we
have presented a method based on nonparametric bootstrapping which is used to ana-
lyze the bias. The conclusion of this analysis is that the bias is statistically signiÞcant
(i.e. not zero), but that it is often insigniÞcant in the sense that it is smaller than the
color resolution of most display devices.
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