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Abstract

We present a fundamental procedure for instant rendering from the
radiance equation. Operating directly on the textured scene descrip-
tion, the very efficient and simple algorithm produces photorealistic
images without any finite element kernel or solution discretization
of the underlying integral equation. Rendering rates of a few sec-
onds are obtained by exploiting graphics hardware, the determinis-
tic technique of the quasi-random walk for the solution of the global
illumination problem, and the new method of jittered low discrep-
ancy sampling.

CR Categories: I.3.3 [Computer Graphics]: Picture/ Image
Generation—Antialiasing— Bitmap and framebuffer operations—
Display algorithms— Viewing algorithms; I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Animation—
Color, shading, shadowing, and texture— Radiosity

Keywords: Radiance equation, radiosity, shading, Monte Carlo
integration, quasi-Monte Carlo integration, quasi-random walk, jit-
tered low discrepancy sampling, hardware, accumulation buffer, re-
altime rendering algorithms, photorealism.

1 Introduction

Provided a realistic scene description, rendering from the radiance
integral equation [Kaj86] yields realistic images. Under the as-
sumption of diffuse reflection, the most popular approaches to ap-
proximate the solution of the Fredholm integral equation are ra-
diosity algorithms. In the classical algorithms [CW93], the kernel
of the radiance integral equation is projected onto some finite base,
yielding the form factor matrix which is of quadratic order in the
number of scene elements. For its sparse representation, hierarchi-
cal methods with hierarchical base functions have been introduced.
Nevertheless, these Galerkin algorithms need to store the kernel and
solution discretization of the integral equation. In addition to the
high complexity of accurate mesh generation for shadow represen-
tation [LTG92], such projections introduce a discretization error.

From the domain of Monte Carlo simulation, algorithms with-
out kernel discretization are available, using the random integra-
tion scheme for only projecting the solution onto a finite base.
Similar to the random approaches, a deterministic particle simu-
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lation scheme based on low discrepancy sampling has been intro-
duced in [Kel96b]. This deterministic scheme converges smoother
at a slightly superior rate and exposes no variance as compared to
stochastic algorithms. In bidirectional path tracing [LW93, VG94],
even the discretization of the solution of the radiance equation has
been avoided, but the rendering time is far from realtime.

On the other hand, graphics hardware is capable of illuminating
and shadowing textured scenes by extended light sources [HA90,
Hei91, SKvW+92] in realtime.

In our new approach we combine the advantages of deterministic
particle simulation of light, i.e. the quasi-random walk principle,
with the available hardware capabilities to consistently render from
the radiance equation, neither using a kernel nor an intermediate
solution projection of the integral equation, resulting in a very fast,
robust and straightforward to implement procedure.

Following this introduction, in the second section of this paper
we briefly resume the mathematical model of the global illumina-
tion problem. The third section explains the new rendering proce-
dure and its underlying techniques of quasi-Monte Carlo integration
and the quasi-random walk principle. After pointing out some ex-
tensions of the basic algorithm for including antialiasing by jittered
low discrepancy sampling, specular effects, and modifications for
realtime application in section four, the algorithm is discussed in
the fifth section. The final section draws the conclusion and points
out directions of future research.

2 Global Illumination

Our eyes perceive radiance, which is power per unit area per unit
solid angle. In vacuum the radianceL fulfills the radiance equation
[Kaj86]

L(y, ~ωr) = Le(y, ~ωr)

+

∫
Ω

fr(~ωi, y, ~ωr)L(h(y, ~ωi),−~ωi) cos θidωi,

whereΩ is the set of all directions~ω = (θ, φ) of the unit hemi-
sphere aligned normal to the surface in pointy. S is the surface
of the scene modelled as boundary representation. The functionh
returns the first point hit when shooting a ray fromy into direction
~ωi. The termcos θi projects the incoming radiance normal to the
surface, whereθi is the azimuth angle between the surface normal
in y and the direction of incidence~ωi. The radianceL in a point
y ∈ S into direction~ωr ∈ Ω so is the sum of the source radiance
Le and the reflected radiance. Using operator notation we have the
shorthand

L = Le + Tfr L.

The bidirectional reflectance distribution functionfr accounts for
the surface properties like color and gloss. In the general setting
this function depends on the incident direction~ωi and reflection
direction~ωr of radiance and the locationy. In theradiosity setting
fr = fd(y) := ρd(y)

π
is restricted to only diffuse reflection. Then

the radiance becomes isotropic, too:

L(y) = Le(y) +
ρd(y)

π

∫
Ω

L(h(y, ~ωi)) cos θidωi,
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whereρd(y) is the reflectivity of the diffuse surface texture.
Given the quadruple(S, fr, Le, Ψ), the global illumination

problemconsists in calculating functionals of the form

〈L, Ψ〉 :=

∫
S

∫
Ω

L(y, ~ω)Ψ(y, ~ω) cos θdωdy

either in the radiosity setting or for the full radiance equation. There
are various choices for the detector functionalΨ, e.g. the sum of or-
thonormal base vectors of a finite vector space, as used in classical
or hierarchical radiosity approaches [CW93]. Instead of discretiz-
ing the solution of the integral equation and then having to render it
in a separate pass, we directly select

Ψmn(y, ~ω) :=
δ(~ω − ~ωyf )

cos θ

1

|Pnm|
χPmn(h(y, ~ω))

detecting the average radiance passing through the pixelPmn of
the image matrix as seen by a pinhole camera1 from the focal point
yf . ~ωyf := P − yf is the direction of a pointP in the support of
Pmn throughyf . χPmn is the characteristic function of the pixel’s
support andδ the Kronecker delta function.

3 The new Algorithm

Our new algorithm generates a particle approximation of the diffuse
radiance in the scene using the quasi-random walk [Kel96b] based
on the method of quasi-Monte Carlo integration. Then the graphics
hardware renders an image with shadows for each particle used as
point light source. Global illumination finally is obtained by sum-
ming up the single images in an accumulation buffer [HA90] and
displaying the result. The algorithm calculates the average radiance

Lmn := 〈L, Ψmn〉 = 〈Le, Ψmn〉+ 〈Tfr L, Ψmn〉
= 〈Le, Ψmn〉+ TmnL (1)

passing through a pixelPmn, where the shorthandTmnL defines
the rendering operator, which determines the at least once reflected
radiance throughPmn. If the radianceL in the radiosity setting can
be approximated by a discrete density ofM point light sources

L(y) ≈
M−1∑
i=0

Liδ(y − Pi), (2)

whereLi is the radiance andPi is the position of thei-th light
source, the application ofTnm to the particle approximation yields
the very fast rendering algorithm

Lmn ≈ 〈Le, Ψmn〉+

M−1∑
i=0

TmnLiδ(y − Pi).

Tmn applied to a point light source simultaneously can be eval-
uated for all pixels of the image matrix by calling a standard
graphics hardware illumination routine in the manner of [Hei91,
SKvW+92], producing the shaded image of the textured scene in-
cluding shadows. The directly visible light sources in〈Le, Ψmn〉
are rendered on the fly by assigning emission to the corresponding
surface elements (see the light source in figure7). The algorithm
thus directly operates on the textured scene description in image
space and does not apply any kernel or solution discretization to
the integral equation. In consequence, no mesh artifacts will oc-
cur and also no topological data structure like e.g. a winged-edge
representation is required for interpolation or overlapping coeffi-
cients evaluation. A small numberM (usually50 . . . 300) of point

1For more elaborate camera models we refer to [KMH95].
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Figure 1: Two-dimensional uniform sampling patterns: a) random,
b) jittered, and c) Halton forN = 64 samples.

light sources will be sufficient, since from multipass rendering with
expensive local pass calculations [CSSD94, Kel95, Kel96a], it is
known that a very coarse radiosity solution suffices to produce real-
istic images. So the speed of the algorithm mainly depends on the
frame generation rate of the graphics hardware, promising interac-
tive rates of photorealistic image generation.

3.1 Quasi-Monte Carlo Integration

Similar to [Kel96b], we use the method of quasi-Monte Carlo inte-
gration for the evaluation of the integrals. For the approximation

∫
[0,1)s

f(x)dx ≈ 1

N

N−1∑
i=0

f(xi)

we generate theN sample pointsx0, . . . , xN−1 ∈ [0, 1)s using the
Halton sequence. Based on the radical inverse function

Φb(i) :=

∞∑
j=0

aj(i) b−j−1 ∈ [0, 1) ⇔ i =

∞∑
j=0

aj(i) bj ,

thes-dimensional Halton low discrepancy sequence (see compari-
son in figure1) is

xi = (Φb1(i), . . . , Φbs(i)) , i ∈ N0,

wherebj is thej-th prime number. Note that each segmentPN′ of
a larger segmentPN , N ′ < N , of successive points of the Halton
sequence is a quadrature rule, too, which is not the case for vari-
ance reduced sampling methods like jittered orN -rooks sampling.
In addition, the Halton points are available for any choice ofN in-
dependent of dimensions. Compared toN -rooks sampling, where
for each dimension a random permutation of sizeO(N) and un-
known quality has to be stored, the Halton points can be generated
for arbitraryi (see figure2) or successively (see figure3) by the al-
gorithm of [HW64] at a speed comparable to usual pseudo-random
generators without additional storage.

The integrands in computer graphics are discontinuous, allowing
only very pessimistic upper error bounds (for details see [Nie92])
for the integral approximation. Nevertheless, the numerical evi-
dence in [Kel95, Kel96a, Kel96b] shows that the calculation of
functionals of the solution of the radiance equation by means of
low discrepancy sequences results in a much smoother convergence
at a slightly superior rate as compared to random sampling. In

[PTVF92] a plausibility argument gives the rate ofO(N− s+1
2s ) as

upper bound for the quasi-Monte Carlo method applied to discon-
tinuous functions. For high dimension, this rate converges to the
random rate ofO(N− 1

2 ), but sinces � ∞, the rate of sampling
with Halton points is superior to random sampling. The above argu-
ments also apply to jittered sampling [Mit96], but the low discrep-
ancy pattern is deterministic and therefore works without variance!



double Φ(int b, int i)
{

double x = 0.0, f = 1
b ;

while( i)
{

x += f * (double) ( i % b);
i /= b;
f *= 1

b ;
}

return x;
}

Figure 2: Direct calculation of the radical inverse function.

double Φ(int b, double x)
{

double h, hh, r = 1.0 - x - 1e − 10;

if( 1
b < r)
x += 1

b ;
else
{

h = 1
b ;

do
{

hh = h;
h *= 1

b ;
}
while( h >= r);

x += hh + h - 1.0;
}

return x;
}

Figure 3: Incremental calculation of the radical inverse function.

3.2 The Quasi-Random Walk

In realistic applications the transport operator norm‖Tfr‖ < 1,
meaning that less than 100% of the incident radiance is reflected.
So the Neumann series

L = (I − Tfr )−1Le =

∞∑
j=0

T j
fr

Le

converges and can be used to solve the integral equation. Inserted
in (1), after some transformations, for the radiosity setting we get

TmnL =
1

|Pmn|

∞∑
j=0

∫
Pmn

∫
Ωj

∫
Se

pj(y0, ~ω0, . . . , ~ωj)

V (yj , y
′)fd(y′)

cos θj cos θ′

|yj − y′|2 dy0dω0 · · · dωjdP . (3)

HereSe := supp Le ⊆ S is the support of the light sources,
andy′ = h(yf , P − yf ) ∈ S is the first point hit when shoot-
ing a ray from the eye atyf through the pointP ∈ Pmn into the
scene.V (yj , y

′) checks the mutual visibility of the pointsyj and
y′, yielding1 in case of visibility and0 else. The radiance density

pj(y0, ~ω0, . . . , ~ωj) := Le(y0)

j∏
l=1

(cos θl−1fd(yl))

represents the source radiance afterj reflections. Herey0 ∈ Se

is a point on a light source, and the subsequent pointsyl+1 :=
h(yl, ~ωl) ∈ S, 0 ≤ l < j, of a path are determined by ray shoot-
ing. Taking the diffuse part of the scene, the operator norm can be
estimated by the mean reflectivity

ρ :=

∑K
k=1 ρd,k|Ak|∑K

k=1 |Ak|
≈ ‖Tfd‖,

where the sceneS := ∪K
k=1Ak is composed ofK surface elements

Ak with average diffuse reflectivity ofρd,k.
As in [Kel96b], the radiance density is simulated by its particle

nature using the technique of the quasi-random walk. Since in re-
alistic scene models the actual diffuse reflectivity has only small
deviation fromρ, we can use fractional absorption and avoid Rus-
sian Roulette absorption [AK90]. So fromN particles started at the
light sources,ρN particles are supposed not to be absorbed by the
first reflection,ρ2N survive the second reflection and so on. Then
the numberM of radiance points generated is bounded by

M <

∞∑
j=0

ρjN =
1

1− ρ
N =: lN

and thus is linear inN depending on the average scene reflectiv-
ity ρ, wherel is the mean path length. The quasi-random walk
scheme now evaluatesTmnLe usingN point lights,TmnTfdLe by
usingbρNc point lights, and so on, where the particles are gener-
ated using the Halton sequence. As a consequence, the particles are
concentrated in the lower powers of the reflection operator, which
due to the operator norm contribute the most important parts of the
image, thus fully exploiting the advantages of low discrepancy sam-
pling.

3.3 Implementation

The pseudocode of the instant radiosity algorithm is given in fig-
ure 4. To generate the discrete density approximation ofpj by
low discrepancy points, we first fix the numberN of particles
to start off the light source. By an isometryy0 (e.g. see the
collection in [Shi92]) the first two components of the Halton se-
quence are mapped from the unitsquare onto the surface of the light
source, yielding the starting pointy = y0(Φ2, Φ3) with power
L = Le(y) supp Le. In the case of multiple light sources, first
a light source is selected by the composition method identical to
[Kel96b], then the isometry is applied. Exploiting the property of
the Halton sequence that segments of the sequence have small dis-
crepancy, too, thebρNc first points are used to shoot a ray into
direction~ω using

~ω = ~ωd(Φb2j+2 , Φb2j+3) = (arcsin
√

Φb2j+2 , 2πΦb2j+3),

where the direction already is distributed with respect to the cosine-
term in the densitypj . In the next hitpointy = h(y, ~ω) the parti-
cle’s radiance is attenuated byfd(y). From these particles the first
bρ2Nc continue their paths, repeating the diffuse scattering pro-
cedure until no particles remain. The starting points and the sub-
sequent hitpoints of the above quasi-random walk then form the
discrete density approximation (2) which is used for the hardware
lighting call glRenderShadowedScene , i.e. the scene is ren-
dered with shadows and the point light source located iny with
the power N

bwcL. The termw = ρjN is used to compensate the

attenuation by
∏j

l=1 fd(yl), making the contribution of each im-
age equally important. Finally the quasi-Monte Carlo integration is
performed by accumulating all images with the weight1

N
.



void InstantRadiosity(int N , double ρ)
{

double w, Start; int End, Reflections = 0;
Color L; Point y; Vector ~ω;

Start = End = N ;

while(End > 0)
{

Start *= ρ;

for(int i = (int) Start; i < End; i++)
{

// Select starting point on light source
y = y0(Φ2(i), Φ3(i));
L = Le(y) ∗ supp Le;
w = N ;

// trace reflections
for(int j = 0; j <= Reflections; j++)
{

glRenderShadowedScene( N
bwcL, y);

glAccum(GL ACCUM, 1
N );

// diffuse scattering
~ω = ~ωd(Φb2j+2 (i), Φb2j+3 (i));

//trace ray from y into direction ~ω

y = h(y, ~ω);
// Attenuate and compensate
L *= fd(y);
w *= ρ;

}
}

Reflections++;
End = (int) Start;

}

glAccum(GL RETURN, 1.0);
}

Figure 4: Instant radiosity pseudocode (see section3.3).

4 Extensions

The fast, deterministic radiosity algorithm introduced in the previ-
ous section consistently renders diffuse global illumination for still
images. By the new concept of jittered low discrepancy sampling,
we treat issues of antialiasing in order to improve image quality at
low sampling rates by random elements. Then specular effects are
added to the algorithm. Finally modifications for realtime walk-
throughs are indicated.

4.1 Jittered Low Discrepancy Sampling

Taking a look at the two-dimensional Hammersley sequence
( i

N
, Φ2(i))

N−1
i=0 in figure 5, it becomes obvious that the low dis-

crepancy points based on radical inversion are aligned to a grid.
This grid structure guarantees a minimum distance property, and
thus an implicit stratification, but is prone to aliasing. The new
concept of jittered low discrepancy sampling joins the two worlds
of Monte Carlo and quasi-Monte Carlo integration by using low dis-
crepancy point sets as stratification. Approximating the grid resolu-
tion by 1

N
, this is done by randomizing each low discrepancy point

in its raster cell, i.e. replacing the radical inverseΦb by Φb + ξ
N

,
whereξ is a random variable, assuring that the sample remains in
the unit interval. From the images in figure5 it also becomes ob-
vious that the jittered Hammersley sequence in two dimensions is a
special case ofN -rooks sampling. The Hammersley points, how-
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Figure 5: Grid structure of the a) Hammersley and b) jittered Ham-
mersley sampling patterns forN = 16.
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Figure 6: Convergence of different sampling patterns.

ever, can be generated without storing a random permutation; they
implicitly are a permutation with low discrepancy.

Applied to pixel supersampling for antialiasing as in [HA90],
the two dimensional jittered Hammersley sequence exposes an even
faster convergence than standard variance reduced sampling. This
can be seen in figure6, where the RMS-error is plotted versus the
sampling rateN for an experiment where images of the textured
scene in figure8 at a sampling rate ofN = 1 . . . 64 were compared
to a master calculation at 640 samples per pixel.

In our new algorithm then, according to the path numberi, the
correspondingxi of the Hammersley sequence is jittered for each
image produced by the particles of the path. Using this sampling
pattern in the manner of [HA90], hardware antialiasing, as available
on some graphics accelerators, becomes redundant. Concerning the
quasi-random walk, the components of the Halton vector have to be
jittered by different ranges. Starting on the light sources we have
N particles, where the coordinates(Φ2, Φ3) will be jittered by ξ

N
,

in the next step onlybρNc particles are traced, so the jitter range
is 1

bρNc , and so on. By this procedure aliasing is reduced, even
improving the convergence rate.

4.2 Specular Effects

To add specular effects, we first letTmn use the full BRDFfr in
the hardware lighting pass, enabling specular highlights as can be
seen in figure8. In the particle generation phase, by a random deci-
sion each surface is tested to be specular or diffuse according to its
BRDF [CRMT91, War92]. In case of specular reflection a virtual
light source is generated, i.e. the origin of the ray is mirrored by the



specular surface under consideration. The virtual light source now
illuminates the part of the scene inside the pyramid spanned by it-
self and the contour of the reflecting element using techniques of
[DB94, Die96]. Note that virtual light sources can only be applied
at planar polygon level. Afterwards the incoming particle is ran-
domly scattered according to the specular part of the BRDF. Parti-
cles hitting specular surfaces so produce a virtual light source rais-
ing M and cause a lengthening of the low discrepancy path by a
random piece. If the graphics hardware supports spot lights and
the particles(Li, Pi, ~ωi) are equipped with their direction of inci-
dence, even more general light source emission, i.e. with acosd-
distribution, and caustics can be simulated. Finally the visible spec-
ular objects have to be treated separately by ray tracing or advanced
hardware techniques as illustrated in [DB94, Die96].

4.3 Realtime Walkthroughs

The algorithm designed so far produces still images. In an ani-
mated environment, the quasi-random walk is substituted by tracing
fixed length paths generated by the Halton sequence as introduced
in [Kel95, Kel96a]. All images produced by one path are accumu-
lated and the resulting image is stored with its time of generation.
Keeping the lastN images of the lastN paths, each time a new
path is completed, the oldest image is replaced by the new one. The
currentN images then are accumulated and displayed, thus implic-
itly performing temporal antialiasing. As path length we choose
the maximal length of the paths obtained in the quasi-random walk
procedure

lmax :=

⌊
− log N

log ρ

⌋
.

Then the maximal frame rate of the graphics accelerator is reduced
by the factor 1

lmax
for one time step, allowing for realtime render-

ing rates (e.g.ρ = 0.5774 of the scene in figure7 with N = 64
yields lmax = 7), and since the algorithm directly operates on the
scene graph, dynamic environments can be treated without further
effort!

Using texture mapping hardware for displaying illumination
maps, generalizing the method of [HH96] yields another approach
to realtime walkthroughs for static environments. Instead of us-
ing jittered sampling andρ = 0, i.e. only direct illumination, we
replace the light samples of [HH96] by our discrete density approx-
imation of radiance (see section3.3). By this simple enhancement
the algorithm of [HH96] renders the global diffuse illumination into
textures, which then interactively can be displayed. Besides consid-
erable memory consumption, the solution of the radiance equation
now is discretized in textures, which may result in visible artifacts
if the texture resolution has been chosen too small.

5 Discussion of the Algorithm

The algorithm displayed in figure4 is illustrated by figure7. For a
path number ofN = 10 the single images created by the point light
sources (red balls) are shown. In addition, the results of accumu-
lating N ∈ {10, 32, 64} paths (i.e.M = 20, 42, or 147 images in
PAL-resolution 720x576 pixels) are displayed. The images of the
scene of 402 quadrangles have been produced on a Silicon Graphics
Onyx with Reality Engine2 graphics and a 75MHz R8000 proces-
sor in 24 seconds by the shadow algorithm of [Hei91], i.e. by eval-
uating the shadow volume of each primitive drawn over the depth
buffer image of the scene for stenciling out the shadows. Using the
shadow techniques of [SKvW+92] would result in an at least twice
as fast algorithm. This emphasizes the fact that the performance
of our approach mainly depends on the hardware rendering speed,
since the particle approximation can be generated instantly. Note
that the smooth shadows and the indirect illumination are obtained

without any meshing which would have raised the number of poly-
gons to a multiple.

Two problems of the algorithm become apparent at very low
sampling ratesN . The first problem is the weak singularity of the
operatorTmn, when the distance|yj − y′|2 of point light sourceyj

and pointy′ to be lit comes close to zero (see figure7). Then the
value to be entered into the frame buffer is overmodulated and will
be clipped to the maximal representable value. The second problem
is that each light point colored by a texture has a large influence on
the overall color of the scene. Since all images are weighted by
1
N

in the accumulated image, however, the impact of one of the
above cases is at most of order1

N
, which in most cases is hardly

perceivable.
Our access to graphics hardware was restricted to the above ex-

ample, so we exploited shadow caching and eye ray coherence, to
simulate the hardware evaluation ofTmn for the point lights by ray
tracing. For the conference room consisting of 39584 scene prim-
itives, N was chosen independent of the number of extended light
sources, as demonstrated in figure9, where onlyN = 128 paths
are used for a scene with 248 light sources.

Since the algorithm directly operates on the scene graph without
additional storage for discretizations animated environments, cyclic
graphs as used for plant modelling, or level-of-detail modelling eas-
ily can be rendered in a photorealistic way. The only additional data
structure required is a space order like e.g. a BSP-tree for acceler-
ating the ray shootingh(y, ~ω). On the one hand it is possible to
generate the discrete density approximation(Li, Pi)

M−1
i=0 of the ra-

diance and to affix these point light sources to the scene description,
e.g. MGF or VRML. Then the final rendering process, i.e. loading
the scene graph and illuminating it by the point light sources, does
not need the space order for ray shooting. On the other hand the
BSP can be used for rendering with impostors similar to [SLS+96]
and hierarchical clipping, speeding up the frames-per-second rate.
These techniques have not yet been included in the implementa-
tion used for the time measurements, but reduce the constant of the
time complexityO(NK) of our algorithm, where the numberN
of paths can be freely chosen with respect to the frame and accu-
mulation buffer accuracy, andK is the number of elements in the
scene.

6 Conclusion and Future Work

A new method for rendering from the radiance equation has been
introduced. Based on the quasi-random walk, point light sources
are generated for fast hardware illumination. The single images are
superimposed, yielding one of the fastest physically correct render-
ing procedures. Working in image space, the algorithm does not
need any storage for kernel or solution discretization or topologi-
cal information. The efficient algorithm itself is very compact and
can be easily implemented using a standard graphics API, requiring
only a ray intersection routine and an isometry from the unit square
onto the surface of each light source. The deterministic algorithm
has been extended by the new concept of jittered low discrepancy
sampling.

Since our method already includes importance sampling, stratifi-
cation of low discrepancy, and jittering for antialiasing, future work
will be spent on the investigation of the adjoint transport operator
for efficiently sampling the light sources with high impact on the
final image (especially in large and/or indirectly illuminated envi-
ronments), reducing the numberM of point lights, and decreasing
the influence of the weak singularity of the transport operator. Pro-
vided that the rendering hardware supplies fog attenuation, even an
extension to participating media is possible, since the direct simu-
lation is easily extended for volume scattering.
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Figure 7: Illustration of the quasi-random walk integration scheme showing the intermediate images accumulated forN = 10 paths with
ρ = 0.5774 and the resulting images forN ∈ {10, 32, 64}.



Figure 8: Specular effects of the standlight on the floor by using the full BRDFfr in Tmn for N = 128.

Figure 9: Conference room image forN = 128.
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