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1 Introduction

Monte Carlo methods refer to any method that uses averages of random computations to
get an approximate answer to a problem. In computer graphics Monte Carlo techniques
can be used to perform radiosity calculations and can be used in distribution ray tracing
for effects such as soft shadows and motion blur. These course notes were originally written
in 1993 and rewritten the next year. They still serve as an introduction to the tools of
Monte Carlo, but a broader treatment on Monte Carlo methods for rendering can be found
in Glassner’s recent two-volume book [14].

In these notes I will cover the basics of both Monte Carlo simulation, where a physical
system is modeled, Monte Carlo integration, where random numbers are used to approxi-
mate integrals, and Quasi-Monte Carlo integration, where non-random numbers are used.
This discussion will cover the general techniques, and will use global illumination problems
as examples.

One appeal of using Monte Carlo methods is that they are easy to design and use.
However, it is not so easy to design a good Monte Carlo method, where the computation
can be completed to the desired accuracy relatively quickly. Here both cleverness and some
analytic skills are required. Fortunately, the analytic skills are fairly narrow in scope, so
many of them can be covered in this short tutorial. A more formal discussion of Monte Carlo
simulation can be found in the neutron transport literature (e.g. [53]) and an extremely
current survey of Monte Carlo integration for practical applications can be found in the
survey article by Spanier and Maize [54].

2 Background and Terminology

Before getting to the specifics of Monte Carlo techniques, we need several definitions, the
most important of which are continuous random wvariable, probability density function, ez-
pected value, and variance. This section is meant as a review, and those unfamiliar with
these terms should consult an elementary probability theory book (particularly the sections
on continuous, rather than discrete, random variables).

Loosely speaking, a continuous random variable x is a scalar or vector quantity that
‘randomly’ takes on some value from a continuous space S, and the behavior of x is entirely



described by the distribution of values it takes. This distribution of values can be quanti-
tatively described by the probability density function, p, associated with z (the relationship
is denoted = ~ p). If z ranges over a space S, then the probability that z will take on a
value in some region S; C S is given by the integral:

Prob(z € S;) = / p(z)dy (p: S — RY). (1)
Here Prob(event) is the probability that event is true, so the integral is the probability
that x takes on a value in the region S;. The measure y is the measure on our probability
space. In graphics S is often an area (duy = dA = dzdy), or a set of directions (points on
a unit sphere: dy = dw = sinfdfd¢). Loosely speaking, the probability density function
describes the relative likelihood of a random variable taking a certain value; if p(z1) = 6.0
and p(z2) = 3.0, then a random variable with density p is twice as likely to have a value
“near” z; than it it to have a value near zo. The density p has two characteristics:

p(z) >0 (Probability is nonnegative), (2)

/S p(x)dp =1 (Prob(z € §) = 1). (3)

As an example, the canonical random variable ¢ takes on values between zero (inclusive)
and one (non-inclusive) with uniform probability (here uniform simply means each value
for ¢ is equally likely). This implies that:

1 ifo<¢e<
0 otherwise

o~

The space over which £ is defined is simply the interval [0,1). The probability that ¢ takes
on a value in a certain interval [a, b] € [0,1) is:

b
Prob(aﬁ{ﬁb):/ 1dz =b—a.
a

As an example, a two dimensional random variable « is a uniformly distributed random
variable on a disk of radius R. Here uniformly means uniform with respect to area, e.g., the
way a bad dart player’s hits would be distributed on a dart board. Since it is uniform, we
know that p(«) is some constant. From Equation 3, and the fact that area is the appropriate
measure, we can deduce that p(a) = 1/(7R?). This means that the probability that « is in
a certain subset S; of the disk is just:

Prob(a € S1) = / ! dA.

s, mR?
This is all very abstract. To actually use this information we need the integral in a form we
can evaluate. Suppose S; is the portion of the disk closer to the center than the perimeter.
If we convert to polar coordinates, then « is represented as a (r,6) pair, and S; is where
r < R/2. Note that just because « is uniform does not imply that theta or r are necessarily
uniform (in fact, theta is, and r is not unifrom). The differential area dA becomes r dr d#.
This leads to:

R 2 31
Prob(r < 5) = /0 /0 R dr do = 0.25.
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The average value that a real function f of a one dimensional random variable will take
on is called its ezpected value, E(f(z)):

B(f(@) = [ f@p()dn.

The expected value of a one dimensional random variable can be calculated by letting
f(xz) = z. The expected value has a surprising and useful property: the expected value of
the sum of two random variables is the sum of the expected values of those variables:

E(z +y) = E(z) + E(y),

for random variables z and y. Since functions of random variables are themselves random
variables, this linearity of expectation applies to them as well:

E(f(z) +9(y)) = E(f(z)) + E(g(y))-

An obvious question is whether this property hold if the random variables being summed are
correlated (variables that are not correlated are called indepedent. This linearity property
in fact does hold whether or not the variables are independent! Since the sum of two
random variables is itself a random variable, this principle generalizes. As an example of
expectation, consider random points on the disk of radius R. What is the expected distance
r from the center of the disk of radius R?

2 (R (] 2R
E(r)—/0 /0 (Wr)rdrdﬁ—?.

The variance, var(z), of a one dimensional random variable is the expected value of the
square of the difference between z and E(z):

var(z) = E([z — E(z)]?).
Some algebraic manipulation can give the non-obvious expression:
var(z) == B(z?) — [B(2)].

The expression E([z — E(x)]?) is more useful for thinking intuitively about variance, while
the algebraically equivalent expression E(z2)—[E(z)]? is usually convenient for calculations.
The variance of a sum of random variables is the sum of the variances if the variables are
independent. This summation property of variance is one of the reasons it is frequently used
in analysis of probabilistic models. The square root of the variance is called the standard
deviation, o, which gives some indication of expected absolute deviation from the expected
value.

Many problems involve sums of independent random variables z;, where the variables
share a common density f. Such variables are said to be independent identically distributed
random variables. When the sum is divided by the number of variables, we get an estimate
of E(z):

1 N
=1



As N increases, the variance of this estimate decreases. We want n to be large enough that
we have confidence that the estimate is “close enough”. However, there are no sure things
in Monte Carlo; we just gain statistical confidence that our estimate is good. To be sure,
we would have to have n = oco. This confidence is expressed by Law of Large Numbers:

Prob | E(x) :1\}1m NZxZ =1
—00

3 Monte Carlo Simulation

For some physical processes, we have statistical models of behavior at a microscopic level
from which we attempt to derive an analytic model of macroscopic behavior. For example,
we often think of a luminaire (a light emitting object) as emitting a very large number of
random photons (really pseudo-photons that obey geometric, rather than physical, optics)
with certain probability density functions controlling the wavelength and direction of the
photons. From this a physicist might use statistics to derive an analytic model to predict how
the luminaire distributes its energy in terms of the directional properties of the probability
density functions. However, if we are not interested in forming a general model, but instead
want to know about the behavior of a particular luminaire in a particular environment, we
can just numerically simulate the behavior of the luminaire. To do this we computationally
“emit” photons from the luminaire and keep track of where the photons go. This simple
method is from a family of techniques called Monte Carlo Simulation and can be a very easy,
though often slow, way to numerically solve physics problems. In this section simulation
techniques are discussed, and methods for improving their efficiency are presented.

The first thing that you might try in generating a highly realistic image is to actually
track simulated photons until they hit some computational camera plane or were absorbed.
This would be very inefficient, but would certainly produce a correct image, although not
necessarily while you were alive. In practice, very few Monte Carlo simulations model the
full physical process. Instead, an analog process is found that is easier to simulate, but
retains all the important behavior of the original physical process. One of the difficult parts
of finding an analog process is deciding what effects are important.

An analog process that is almost always employed in graphics is to replace photons with
set wavelengths with power carrying beams that have values across the entire spectrum. If
photons are retained as an aspect of the model, then an obvious analog process is one where
photons whose wavelengths are outside of the region of spectral sensitivity of the film do
not exist.

Several researchers (e.g. [3]) have used Monte Carlo simulation of a simple analog of
optics, where only Lambertian and specular surfaces are used. A lambertian surface is one
with several simple properties. First, its radiance at any wavelength does not vary with
viewing angle. Second, this radiance varies linearly according to the total incident power
per unit area and the reflectance of the surface. Quantitatively this can be written:

L(A) _ pd()‘)(bi;zjzming()\) (4)

where L(A) is the spectral radiance at wavelength A, ps(A) is the reflectance of the surface
at A, Qincoming(A) is the incident power per unit wavelength at X, and A is the area of the
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surface being illuminated. What makes the Lambertian surface attractive is that if we can
figure out how much light is hitting it (irrespective of where the light comes from), then we
know its radiance for all viewing directions. Note that py is the reflectance, not the BRDF,
of the surface. The BRDF is a constant function with value pg/7.

As an example of an analog process, the illumination ray tracing of Arvo [3] assumed
photons traveled as bundles with a spectral distribution. He further assumed that these
bundles were attenuated when reflecting from a specular surface. Like almost all graphics
programs, his also assumed that the optical properties of the scene were constant within the
time interval the picture represented, and that this time interval was very large relative to
the speed it takes light to travel any distances in the scene. This last assumption, usually
taken for granted, makes it possible to treat light as moving instantaneously within our
programs. Finally, Arvo assumed that diffuse surfaces can be broken into zones whose
radiances are described by the power incident to them (i.e. they obey Equation 4 and are
constant within a small neigborhood defined by the illumination pixel).

These assumptions allowed Arvo to trace power-carrying rays and mark each zone with
the accumulated power. Once the simulation was over, the radiance of each zone could
be calculated using Equation 4. Although we often think of this as being a brute force
physical simulation, it is important to remember that this is really the simulation of an
analog process where all wavelengths follow the same paths, and time dependent behavior
can be ignored.

The trickiest part of implementing Arvo’s simulation method is tracking the power
through the environment. A natural choice for tracking the power is to use ray tracing.
However, it is not so obvious how many rays to send, or where to send them. This question
has been examined in a fairly sophisticated way in [19], but even for a simple implementation
the answer is non-obvious. The number of rays that must be sent is “enough”. This depends
on how much noise is acceptable in an image, and how small the zones are. In [46] it is
argued that the number of rays should be linearly proportional to the number of zones,
so doubling the number of zones implies that the number of rays should also be doubled.
A visual example of this argument is shown in Figure 1 where an environment with four
times as many zones seems to require four times as many rays for the same level of accuracy
as the environment with fewer zones'. The other detail, where the rays should be sent, is
easier. The rays should be generated randomly with the same distribution as the emitted
power of the luminaire. Generating rays sets with such directional distributions is discussed
in Appendix A. The rays should also be sent from points distributed on the surface of the
luminaire. To do this, first choose a random point on the luminaire surface, and then choose
a random direction based on the surface normal at that point.

Arvo’s method can be extended to a radiosity [15] method by letting the Lambertian
zones interreflect light [32, 1, 2, 44]. This is really just a ray tracing variant of the progressive
refinement radiosity method [8]. In this method, reflectance (pq;) and emitted power (. ;)
of the ith zone are known, and the reflected power (®,;) (®r; = Pincoming,i) i unknown.
If we solve for @, ;, then we can find ®;, the total power coming from the ith patch.

Once the total power of each patch is found, it can be converted to radiance using
Equation 4. These radiance values can then be interpolated to form a smooth appearance [9].

!The number of rays sent can be thought of as the number of photons tracked in a certain time interval.
The number of rays will be proportional to the time a “shutter” is open. Once the “exposure” is long enough,
the noise will not be objectionable.
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Figure 1: Noise reduction as the number of energy bundles increases. Note that the number
of bundles needed is approximately inversely related to the surface area of each zone.
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Figure 2: Reflection Simulation. The patch on the floor is a luminaire and emits a “photon”
with 12 watts of power. Each reflection damps some of the power and scatters the photon
according to a diffuse (cosine) distribution. On the right is the reflected power from each
patch after the photon leaves the environment. The emitted power is also stored for each
patch but is not shown.

We first set our estimate of ®; to be ®.; for all . For each surface ¢ that has non-zero
®,. ;, we can shoot a set of n; energy packets each carrying a power of ®¢/n;. When a packet
with power @ hits a surface j, we can add pg ;® for our estimate of ®;, and reflect a new
energy packet with power py ;®. This energy packet will bounce around the environment
until it is depleted to a point where truncation is used. This basic energy packet tracing
technique has been used in Heat Transfer [21, 13, 56], Illumination Engineering [55], and
Physics [53, 23].

This method, which I call reflection simulation (see Figure 2), is problematic in that
each reflection is followed by a ray intersection test to find the next surface hit. The
later reflections will carry a relatively small amount of power, so tracing these later rays
is somewhat wasteful in the sense that we have bad ‘load-balancing’: some rays do more
work than others. One solution to this problem is to use “Russian roulette” and keep all
particles with the same power by probabilistically absorbing them according to the albedo of
the surface [5, 36]. Another solution to this problem of low energy particles is to replace the
reflection model with an analog model where light is absorbed and immediately reemitted
(after attenuation by the reflectance) (see Figure 3). A scene where light is absorbed and
reemitted in this way looks similar to a scene where light is reflected, so solving for the
transport in either model will hopefully yield a similar solution. The difference is that now
light may strike one side of a zone and later be reemited on the other side of the zone. This
can give rise to objectional artifacts if the zone is partially in a dark area and partially in a
light area? (e.g. goes under a door between the outside and a dark room). To solve for this
absorb and reemit model, we can again send power in bundles from light sources. When a
bundle carrying power @ hits a surface j, the absorbed power that will later be reemitted by
surface j can be scaled by pq ;®. After each light source emits its power, reflective surfaces
can, in turn, emit their absorbed power. The efficiency of this method is best if surfaces

*Thanks to Dani Lischinski for pointing this out. Earlier versions of this document said that absorb and
reemit was asymptotically equivalent to the photon tracking model.
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Figure 3: Absorb and reemit. The patch on the floor has 36 units of power that it has not
distributed. Each patch has two numbers, the total reflected power (left of pair), and the
power that still needs to be sent (right of pair).

with the greatest amount of power send their power first.

The reason that we have the freedom to let the zones emit in any order we choose is
that our analog has lost its time dependence. We are lucky the speed of light is so fast!
There are two points which are crucial to the implementation of this progressive refinement
method. The first is that the number of rays emitted from a certain zone is proportional to
the power being emitted in that iteration (each ray carries approximately the same amount
of power). The other is that, unlike in [8], the zone with the most power is not searched for,
or the time complexity of the method will increase from O(N log N) to O(N?), where N is
the number of zones [46]. This problem can be avoided if a heap or similar structure is used
to make the search for maximum O(log N) rather than O(N). A more detailed discussion
of the implementation of Monte Carlo radiosity can be found in [45].

Recently, Neumann et al. have compared various Monte Carlo strategies for radiosity
on predefined meshes [35]. Interestingly, the straightforward particle tracing with Russian
roulette converges faster inm their tests than “absorb and reemit”, and that “absorb and
reemit” can be improved by viewing it in a linear algebra context.

The biggest problem with these Monte Carlo radiosity methods is that small zones will
be undersampled and will have large errors, or enough rays will be sent that the large area



Radiosity Gather from Final (corrected)
Solution solution for small solution
area zones

Figure 4: Zones with small areas have their radiance recalculated more accurately in a
postprocess. The arrows indicate the direction of rays sent into the environment to find
energy sources and thus flow against the direction of light transport.

zones are oversampled. This is only a problem in scenes with a large range of zone areas,
but this is not uncommon. One way to get around this problem (that I have not yet tried)
is to do a “gather” on small zones in the scene after the first radiosity solution is done. The
radiance of the zone is simply its reflectance times the average radiance “seen” by the gather
rays provided they are sent in a cosine distribution. This idea is illustrated in Figure 4.

This simple simulation method could also be used for diffuse transmission, in a manner
similar to that of Rushmeier and Torrance [40]. Some of the simulation techniques discussed
earlier can be extended to non-diffuse reflection types. The most important application is
to scenes that include specular surfaces, but glossy surfaces are sometimes desirable too.

The simplest method of including specular reflection in a radiosity calculation is the
image method [57, 40]. In the image method, a specular surface is replaced by a hole into a
virtual environment. This method works only for planar mirrors, but performs very well for
environments that have one important specular surface like a mirror or highly polished floor.
Malley extended his Monte Carlo power transport method to account for zonal transport
by specular surfaces [32]. He did this by allowing power carrying rays to reflect off specular
surfaces as shown in Figure 5. The colors of specular surfaces can be determined in the
viewing phase by standard ray tracing. Sillion and Puech used a similar technique to account
for specular reflection, and included subdivision strategies for sampling more heavily where
ray paths diverged [52].

Any non-diffuse reflectors can have zonal values, as long as each incoming power packet
adds to a power distribution function that will be reemitted. In the viewing stage, this
distribution can be queried with results depending on viewer position. The distribution
functions could be stored in a Hemicube as done by Immel et al. [22], as spherical harmonics
as done in [6, 51], or in hemispherical tables as done in [16, 41, 47]. These latter methods
use Monte Carlo by generating outgoing power rays according to the shape of the unemitted
power function as shown in Figure 6. My experience has been that non-diffuse radiosity
does not work well for near mirrors because more zones are needed (the surfaces have detail



Figure 5: Monte Carlo emission of energy with and without specular reflection. On the
left, energy is transported directly between diffuse zones. On the right, the vertical wall is
a mirror, and light that hits it is reflected until it hits a diffuse surface.

'y o

absorb re—emit

Figure 6: Absorb and re-emit strategy requires directional distribution at each zone and a
way to directionally shoot power to directions where the accumulated distribution is large.

visible in them) and each zone needs a larger table to represent the complicated outgoing
power distribution.

4 Monte Carlo Integration

In this section the basic Monte Carlo solution methods for definite integrals are outlined.
These techniques are then straightforwardly applied to certain integral problems. All of
the basic material of this section is also covered in several of the classic Monte Carlo texts.
This section differs by being geared toward classes of problems that crop up in Computer
Graphics. Readers interested in a broader treatment of Monte Carlo techniques should
consult one of the classic Monte Carlo texts [18, 50, 17, 63].

From Section 2 we saw that for a function f and a random variable x ~ p, we can
approximate the expected value of f(z) by a sum:

N

B(f@) = [ f@padu= 53 1. )

=1

Because the expected value can be expressed as an integral, the integral is also approximated
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by the sum. The form of Equation 5 is a bit awkward; we would usually like to approximate
an integral of a single function g rather than a product fp. We can get around this by
substituting ¢ = fp as the integrand:

[CUEES> gg; (6)

i=1 P

For this formula to be valid, p must be positive where ¢ is nonzero.

So to get a good estimate, we want as many samples as possible, and we want the g/p
to have a low variance (g and p should have a similar shape). Choosing p intelligently
is called importance sampling, because if p is large where g is large, there will be more
samples in important regions. Equation 5 also shows the fundamental problem with Monte
Carlo integration: diminishing return. Because the variance of the estimate is proportional
to 1/N, the standard deviation is proportional to 1/ V'N. Since the error in the estimate
behaves similarly to the standard deviation, we will need to quadruple N to halve the error.

Another way to reduce variance is to partition S, the domain of the integral, into several
smaller domains S;, and evaluate the integral as a sum of integrals over the S;. This is called
stratified sampling. Normally only one sample is taken in each S; (with density p;), and in
this case the variance of the estimate is:

(i g((a;z))) =S ar (e -

i=1 Pi i=1 pi(wi)

It can be shown that the variance of stratified sampling is never higher than unstratified if
all strata have equal measure:

/5« p(z)dp = %/Sp(w)du-

3

The most common example of stratified sampling in graphics is jittering for pixel sam-
pling [12].

As an example of the Monte Carlo solution of an integral I set g(x) to be z over the
interval (0, 4):

I:/04:1:d:v:8. (8)

The great impact of the shape of the function p on the variance of the N sample estimates
is shown in Table 1. Note that the variance is lessened when the shape of p is similar to the
shape of g. The variance drops to zero if p = g/I, but I is not usually known or we would
not have to resort to Monte Carlo. One important principle illustrated in Table 1 is that
stratified sampling is often far superior to importance sampling. Although the variance
for this stratification on I is inversely proportional to the cube of the number of samples,
there is no general result for the behavior of variance under stratification. There are some
functions where stratification does no good. An example is a white noise function, where
the variance is constant for all regions. On the other hand, most functions will benefit from
stratified sampling because the variance in each subcell will usually be smaller than the
variance of the entire domain.
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method sampling function | variance samples needed for
standard error of 0.008

importance (6 —x)/(16) 56.8N ! 887,500

importance 1/4 21.3N 1 332,812

importance (r +2)/16 6.3N 1 98,437

importance z/8 0 1

stratified 1/4 21.3N 3 70

Table 1: Variance for Monte Carlo Estimate of f(;l rdz

4.1 Quasi-Monte Carlo Integration

Although distribution ray tracing is usually phrased as an application of Equation 6, many
researchers replace the & with more evenly distributed (quasi-random) samples (e.g. [11,
33]). This approach can be shown to be sound by analyzing decreasing error in terms
of some discrepancy measure [64, 62, 33, 42] rather than in terms of variance. However,
it is often convenient to develop a sampling strategy using variance analysis on random
samples, and then to turn around and use non-random, but equidistributed samples in
an implementation. This approach is almost certainly correct, but its justification and
implications have yet to be explained.

For example, when evaluating a one dimensional integral on [0, 1] we could use a set of
N uniformly random sample points (z1,z2,---,zn) on [0, 1] to get an approximation:

N

1 1
| f@de ~ 53 (e

i=1

Interestingly, we can replace the points (z1,z9,---,2zny) with a set of non-random points
(y1,y2,---,yn), and the approximation will still work. If the points are too regular, then
we will have aliasing, but having correlation between the points (e.g. using one dimension
Poisson disk sampling), does not invalidate the estimate (merely the Monte Carlo argument
used to justify the approximation!). In some sense, this quasi-Monte Carlo method can be
thought of as using the equidistributed points to estimate the height of f. This does not
fit in with the traditional quadrature approaches to numerical integration found in most
numerical analysis texts (because these texts focus on one-dimensional problems), but is no
less intuitive once you are used to the idea.

4.2 Multidimensional Monte Carlo Integration

Applying Equation 6 to multidimensional integrals is straightforward, except that choosing
the multidimensional sampling points can be more involved than in the one dimensional
case. More specifics on this can be found in Appendix A.

As an example in two dimensions, suppose we want to integrate some function f on the
origin centered square [—1,1]2. This can be written down as a integral over a single two
dimensional variable x:

T= /[_1,1]2 F(x)dA.
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Applying Equation 6 to this gives us:

1 X f(xi)
I~ —
N;P(Xz')’

where each x; is a two dimensional point distributed according to a two dimensional density
p. We can convert to more explicit Cartesian coordinates and have a form we are probably
more comfortable with:

1 1 N o
=[] F (o, y)dady ~ = 3 L Eir¥)

This is really no different than the form above, except that we see the explicit components
of x; to be (x4, y;).

If our integral is over the disk of radius R, nothing really changes, except that the sample
points must be distributed according to some density on the disk. This is why Monte Carlo
integration is relatively easy: once the sample points are chosen, the application of the
formula is always the same.

For a more complicated example, we look at the four dimensional integral for the form
factor between two surfaces S; and Ss:

7 _i/ / g(x1,x2) cos 61 cos OadA1dAs
= At Jxie81 Jx,e8, .

7[[x1 — %2 [?

The sampling space is the four dimensional space S; x So. A four dimensional point in this
space is just an ordered pair (x1,X2), where x; is a point on S; and x3 is a point on Ss.
The simplest way to proceed is to choose our four dimensional sample point as a pair of
uniformly random points, one from each surface. The probability density function for this
is the constant 1/(A;As), because Aj Ay is the four dimensional volume of the space, and
this value just enforces Equation 3. If we use only one sample we have the estimate:

0 0
F12zA2g(x1,x2)cos 1 cos O

s — xal|?

A ray would be sent to evaluate the geometry term g. If many samples were taken, we could
increase our accuracy. Notice that the shape of the surfaces was never explicitly used. This
formula is valid whenever we have a method to choose random points from a shape!

4.3 'Weighted Averages

We often have integrals that take the form of a strictly positive weighted average of a
function:

I:/Sw(x)f(a:)du.

where w is a weighting function with unit volume. To solve this by Equation 6, the optimal
choice for the probability function is p(z) = Cw(z)f(z), but as is often pointed out, this
choice requires us to already know the value of 1. Instead, people often either choose uniform
p, or set p(x) = w(z) [11, 37, 30].
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An example of a weighted average often used is pixel filtering. The color of a pixel I(3, )
can be expressed as an integral:

1(i,5) = /S w(p)L(p)dA. 9)

where p is a point on the viewport (or filmplane if a camera model is used), L(p) is the
radiance seen through the viewport at p, and S is the non-zero region of the filter function
w.

Rewriting with the assumption that the same origin-centered weighting function is used
for every pixel yields the estimator :

1 X Lz . ] .
I(’L,j) ~ _Zw(mk,yk) (Z+O5+$ka]+05+yk)

N &= P(Tks Yk) ' (10

This assumes a coordinate system where a pixel (i,7) has unit area and is centered at
(1 +0.5,5 + 0.5) as suggested by Heckbert [20].

Once a w is chosen for filtering, implementation is straightforward with p proportional to
w provided that w is strictly positive (as it must be if negative pixel colors are disallowed).
But how do we choose non-uniform random points? As discussed in Appendix A, sample
points can be chosen uniformly from [0,1]? and then a warping transformation can be
applied to distribute the points according to w [50, 42, 30].

For several practical and theoretical reasons [43] we have chosen the width 2 weighting
function that is non-zero on (z,y) € [—1,1]%:

w(z,y) = (1 —[zf) (1= y[).- (11)

We generate random points with density equal to w by applying a transformation to a
uniform random pair (r1,72) € [0,1]2. The transformed sample point is just (¢(r1),%(r2)),
where the transformation function ¢ is:

—0.5 + v2u if u< 0.5
t(u) =

15— 21 —w) ifu>05

An important detail is that we do not really use uniform (r1,72), but instead use jittered
or an otherwise better distributed set of points. After warping, we still have a better than
random distribution.

Another example of a weighted average is the radiance of a point x on a Lambertian
surface:

L(x) = pd(x)/i lL(x,qp') cos Odw'.

ncoming 1)’ T

Where L(x,') is the incoming radiance seen at point x coming from direction 1’. Again,
we might be more comfortable with the explicit form:

2r g
L(x) = pafy(x) /¢ § /0 § %L(O, $) cos Osin 0d0dg.

The sin@ term arises because the measure is solid angle (area on the unit sphere: dw =
dA = sinfdfd¢). To solve this we just need to choose a random direction 1 to sample with
a distribution according to the density function cos #/m7. This gives the estimator:

L(x) = pafr(x)L(x, ).
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Figure 7: Random, Jittered, Dart-throwing, Regular.

This makes it easy to figure out the color of the ground in the midwest: it’s the weighted
average of the color of the sky times the reflectance of the ground!

4.4 Multidimensional Quasi-Monte Carlo Integration

Suppose we want to numerically estimate the value of an integral I on [0, 1]%:

I= /01 /01 f(z,y)dzdy.

For pure Monte Carlo we might use a set of uniform random points (z;,y;) € [0,1]? and
estimate I to be the average of f(z;,v;). For stratified sampling we might partition [0, 1]2
into several equal-area rectangles and take one sample (z;,y;) in each rectangle and again
average f(x;,v;). Interestingly, we might also use "Poisson-disk” sampling to generate the
points, or even just use points on a regular grid. No matter which of these point distributions
(shown in Figure 7) we use, the estimate of I is the average of f(z;,y;). Interestingly, only
when we use one of the first two patterns are we doing Monte Carlo integration. With
Poission-disk (dart-throwing), the samples are correlated, and in regular sampling they are
deterministic.

As in the one-dimensional case, we can replace the random sample points with any set of
samples that are in some sense uniform, and this is just quasi-Monte carlo integration. There
is a rich literature on this topic, but Mitchell has indicated that the graphics community
will not be able to find many useful answers there, because the patterns that are used in
that literature are deterministic, which causes aliasing in images [34].

4.5 Direct Lighting

In this section the famous direct lighting calculation is discussed. Even if radiosity is used,
it can often be used only for the indirect component and the direct component can be done
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Figure 8: Definitions for the rendering equations.

using the machinery of this section.
The rendering equation can be written down in two basic ways. It can be written down
in terms of all directions visible to x (as in [22]):

L(Xﬂ/)) = , Pbd(xﬂ/)awl)L(xﬂ/)l) cos Odw'. (12)

incoming v
or it can written down as an integral over all surfaces (as in [25]):

dA’ cos ¢’
L) = [ | gl )onaloe ) L 01 cos 5

(13)
When Equation 12 is used, we can view ppq(x,,%') cos @ as a weighting function and
sample according to it. Because there is some energy absorbed by a surface, this gives us
the estimator:

L(x,9) = R(x,%)L(x,¢), (14)
where ¢ is a random direction with density proportional to pyq(x,,%’) cos#. The reflec-
tivity term is simply:

R(X, w) = [ . pbd(xa ’lpa ,(/)I) cos fdw.
incoming

For an ideal specular surface, the ¢ will always be the ideal reflection direction. For a
dielectric, & can be chosen randomly between reflected and transmitted directions [5], or it
can be split into two integrals as is done in a Whitted-style ray tracer [61]. For a diffuse
surface, ¢ will follow a cosine distribution: p(¢') = cos /.

When Equation 13 is used, the sampling takes place over all surfaces in the environment.
In practice, only the direct lighting is calculated, so the integration space becomes all
luminaire surfaces. This can be split into one integral for each surface [11], or can be
viewed as a single sampling space [30, 49]. To simplify this discussion, we will assume only
one luminaire, so the sampling space is just a single surface. Looking at Equation 13, an
ideal estimator for diffuse luminaires would result if we sampled according to the density:

cos &'

p(a') = Cg(x,x")poa(x, ¥, ') cos 0|| x|
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Figure 9: Implicit and explicit lighting calculation.

where C is a normalization constant. In practice, this isn’t practical because the geometry
term g and the BRDF py4 can be very difficult to characterize. Instead, many researchers [12,
25] sample uniformly within the solid angle subtended by the luminaire, which yields:

cos @’

pa’) =C' (15)

[l — x>
This can be done for triangular luminaires [4], and for spherical luminaires [27, 58]. If

Equation 15 is used to choose points on the luminaire, then radiance can be estimated to
be:

L(x,%) ~ g(x,x") pra(x, 1, 9") L(x', ') cos fw, (16)

where w is the total solid angle subtended by the luminaire as seen by x.

We call the use of Equation 12 an implicit direct lighting calculation because any scat-
tered ray that hits a luminaire will account for light from that luminaire. The use of
Equation 13 is an ezplicit direct lighting calculation because each luminaire is explicitly
queried using shadow rays (see Figure 9). Which should be used, an implicit or explicit
direct lighting calculation? Clearly, the implicit method must be used for perfect mirrors,
because that method implicitly evaluates the delta function BRDF. For a diffuse surface,
the explicit method is usually used for direct lighting, and the implicit method is used only
for indirect lighting [25, 60, 30]. To decide which method to use, variance should be ana-
lyzed, but the general rule is that specular surfaces should be dealt with using the implicit
calculation and diffuse surfaces are treated explicitly.

If indirect lighting is to be added, then the surfaces that use the explicit direct lighting
calculation can calculate indirect lighting implicitly with a scattered reflection ray [25]. This
method, called path tracing, just recursively applies the direct lighting calculation and adds
indirect lighting. If you implement this, be sure not to double count the indirect lighting!

5 Hybrid Methods

Many methods use some combination of view-dependent and view-independent methods.
There are three basic approaches that have been used:

1. Generate a radiosity solution and view with ray tracing.
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Figure 10: Combined, indirect, and direct lighting. Note that the the sharp shading changes
are in the direct component

2. Generate a radiosity solution and use only for indirect lighting. Use ray tracing for
direct lighting.

3. Generate a radiosity solution on a low resolution environment and use this in the
viewing phase.

In method 1 the ray tracing is really just to accurately capture specular effects [57] and
the radiosity phase my or may not include specular transport [32, 52] or directional diffuse
transport [41, 47, 51]. Any problems with the meshing in high gradient areas will be very
obvious in method 1, so some form of discontinuity meshing should be used [31].

In method 2 the fine detail caused by shadows (see Figure 10) is handled in the direct
phase and the indirect lighting is handled by some precomputed values [44, 7, 29]. Ward’s
Radiance program [60, 59] is in the second family although the indirect information is
calculated on the fly and cached, and the mesh is implicit.

In method 3, a zonal solution is carried out on a low-resolution version of the scene,
and this is used as sources for gather phases at each pixel [39, 38, 28]. This in some
sense is a generalization of the patch and elements approach [10]. The application of this
technique and brute-force path tracing [25] is shown in Figure 11. The Rushmeier method
ran eight times faster because it did not have to recursively fire rays. On complex scenes
this advantage will only grow.

I am a fan of method 3 for many applications. I used to use method 2 (see [44]) but I
found it cumbersome to have to mesh all diffuse objects. The beauty of method 3 is that it
works even if the high resolution environment is an on-demand procedural model, it is easy
to code, and that there are no smoothing issues. The radiosity solution does not have to
look good! However, there are a number of open questions related to method 3:

e How should directional diffuse surfaces be handled?

How should nearly specular surfaces be handled?

How should caustics be handled?

Should a hierarchy of various low-resolution environments be used?

How should the low-resolution environment be created?
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Figure 11: Left: Low-resolution radiosity solution. Middle: Rushmeier solution. Right:
Path tracing.

6 Conclusion

I hope that this tutorial has revealed the elegance and simplicity of Monte Carlo methods.
This elegance and simplicity allow the modeling and solution of many problems with very
few assumptions. However, these benefits come with the price of long execution times. If
you need speed, use other techniques, or supplement Monte Carlo techniques with other
methods. A good example of this combined strategy is Ward’s Radiance program described
in the conference procedings [59].

Since these notes appeared at SIGGRAPH ’94, there has been a lot of work in Monte
Carlo rendering. The work on image-based and bidirectional techniques has been nicely
surveyed and expanded in Eric Lafortune’s dissertation, which is available at the web page:

http://www.graphics.cornell.edu/"eric.

Particle tracing techniques have been pushed for view-independent [48], and view-dependent [24].
There is certainly a lot of work left to do!

When designing new Monte Carlo methods, we usually think in terms of variance re-
duction. Work by Arvo and Kirk [5, 26] has detailed that this can be a non-trivial and
sometimes counter intuitive process. To add to the confusion, we usually use quasi-random
sampling, so the variance calculations are only an approximation. In the end I find that
developing a theory using straight Monte Carlo assumptions, and then adding to it using
intuition works the best for me. The most common heuristic I use is that every sample
should do about the same amount of work. This is intuitively related to importance sam-
pling, because the way to come close to this is to try to give every sample the same weight
(load balancing).

The real key to a successful Monte Carlo method is the design of the probability density
functions and stratification strategies used to generate the samples. This is where your
efforts should be concentrated. There is a tendency to think that your work is done (and
the computer’s starts!) once you have chosen to use a Monte Carlo method, but the very
freedom to choose any density function dooms us to look for a better choice!
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A Generating Random Numbers With Non-Uniform Densi-
ties

We often want to generate sets of random or pseudorandom points on the unit square for
applications such as distribution ray tracing. There are several methods for doing this
such as jittering and Poisson disk sampling. These methods give us a set of N reasonably
equidistributed points on the unit square: (u1,v1) through (uy,vy).

Sometimes, our sampling space may not be square (e.g. a circular lens), or may not be
uniform (e.g. a filter function centered on a pixel). It would be nice if we could write a
mathematical transformation that would take our equidistributed points (u;,v;) as input,
and output a set of points in our desired sampling space with our desired density. For
example, to sample a camera lens, the transformation would take (u;, v;) and output (r;, 6;)
such that the new points were approximately equidistributed on the disk of the lens.

If the density is a one dimensional f(z) defined over the interval = € [Zin, Zmaz), then
we can generate random numbers «; that have density f from a set of uniform random
numbers &;, where & € [0,1]. To do this we need the cumulative probability distribution
function P(z):

T
Prob(a < ) = P(z) = / F(z')du (17)
Tmin
To get «; we simply transform &;:
a; = P7H(&) (18)

where P! is the inverse of P. If P is not analytically invertible then numerical methods
will suffice because an inverse exists for all valid probability distribution functions.

For example, to choose random points ; that have the density p(z) = 322/2 on [-1,1],
we see that P(z) = (23 4+ 1)/2, and P~!(z) = ¢/2z — 1, so we can “warp” a set of
canonical random numbers (&1, ---,&n) to the properly distributed numbers (z1,---,zn) =
(28, —1,---,/26x —1). Of course, this same warping function can be used to transform
“uniform” Poisson disk samples into nicely distributed samples with the desired density.

If we have a random variable o = (o, o) with two dimensional density (z,y) defined
on [Tmin; Tmaz) X [Ymin, Ymaz) then we need the two dimensional distribution function:

y T
Prob(a; <z and ay < y) = F(z,y) = / f@' ) du(’, o)
min ¥ Tmin

We first choose an z; using the marginal distribution F(z,¥ymqz), and then choose y; ac-
cording to F(z;,y)/F (i, Ymaz)- If f(z,y) is separable (expressible as g(x)h(y)), then the
one dimensional techniques can be used on each dimension.
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For example, suppose we are sampling uniformly from the disk of radius R, so p(r,0) =
1/(mR?). The two dimensional distribution function is:

o rro rdrdf Or?
P = F(ro,0) = T
rob(r < rof < 6p) (ro,6o) /0 /0 TRZ ~ 27RZ2

This means that a canonical pair (£1,&2) can be transformed to a uniform random point on
the disk: (r,0) = (Rv&1,273).

To choose random points on a triangle defined by vertices pg, p1, and ps, a more compli-
cated analysis leads to the transformation v =1 — /1 — &, v = (1 — u)&s, and the random
point p will is:

p =po +u(p1 —po) +v(p2 — po)-

To choose reflected ray directions for zonal calculations or distributed ray tracing, we
can think of the problem as choosing points on the unit sphere or hemisphere (since each
ray direction 1 can be expressed as a point on the sphere). For example, suppose that we
want to choose rays according to the density:

n+1

p(0,¢) = o

Where n is a Phong-like exponent, 6 is the angle from the surface normal and 6 € [0, 7/2]
(is on the upper hemisphere) and ¢ is the azimuthal angle (¢ € [0,27]). The distribution
function is:

cos™ 0 (19)

6 0
PO.9) = [ [ 20, 4)sin0dtta (20)

The cos @' term arises because on the sphere dw = cos #dfd¢p. When the marginal densities
are found, p (as expected) is separable and we find that a (£1,&2) pair of canonical random
numbers can be transformed to a direction by:

(0, ¢) = (arccos((1 — 7"1)"%1),2#7"2)

One nice thing about this method is that a set of jittered points on the unit square can
be easily transformed to a set of jittered points on the hemisphere with a distribution of
Equation 19. If n is set to 1 then we have a diffuse distribution needed for a Monte Carlo
zonal method.

For a zonal or ray tracing application, we choose a scattered ray with respect to some
unit normal vector N (as opposed to the z axis). To do this we can first convert the angles
to a unit vector a:

a = (cos ¢sinf, sin ¢sin 6, cos H)

We can then transform & to be an & with respect to ¢ by multiplying & by a rotation
matrix R (& = R&). This rotation matrix is simple to write down:

where U = (ug, Uy, u,), V = (g, Uy, V;), W = (Wg, Wy, w,), form a basis (an orthonormal set
of unit vectors where i = Vv Xx W, v = W X @, and W = d x V) with the constraint that W
is aligned with N:
- N
W = ——
IN|



To get @ and ¥, we need to find a vector € that is not collinear with Ww. To do this simply
set t equal to w and change the smallest magnitude component of t to one. The @ and v
follow easily:

. tx W
U= 5——

|t x W|
V=w X u

As an efficiency improvement, you can avoid taking trigonometric functions of inverse
trigonometric functions (e.g. cosarccos#). For example, when n = 1 (a diffuse distri-
bution), the vector & simplifies to

d = (cos (2mé1) /o, sin (27€1) V€, /1 — &2)
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