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Abstract

In a distribution ray tracer, the crucial part of the direct lighting calculation is the sampling strategy
for shadow ray testing. Monte Carlo integration with importance sampling is used to carry out this
calculation. Importance sampling involves the design of integrand-specific probability density functions
which are used to generate sample points for the numerical quadrature. Probability density functions are
presented that aid in the direct lighting calculation from luminaires of various simple shapes. A method
for defining a probability density function over a set of luminaires is presented that allows the direct
lighting calculation to be carried out with one sample, regardless of the number of luminaires.

CR Categories and Subject Descriptors: G.1.4 [Mathematical Computing]: Quadrature and Nu-
merical Differentiation; I.3.0 [Computer Graphics]: General; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Additional Key Words and Phrases: direct lighting, importance sampling, luminaires, Monte Carlo
integration, ray tracing, realistic image synthesis.

1 Introduction

Monte Carlo Methods have been used extensively for image rendering since Cook et al.’s landmark paper [7]
on distribution ray tracing. Monte Carlo techniques have been used in classic ray tracing (view-dependent)
methods [22, 6, 16, 18, 21, 19, 30], zonal (view-independent) methods [23, 35], and hybrid techniques [1, 39,
3, 20, 29]. Most recent implementations have handled the direct lighting! using Monte Carlo integration in
a view-dependent manner, and have stored the indirect lighting within some kind of spatial lookup table
[47, 29]. This paper extends traditional Monte Carlo methods for carrying out the direct lighting calculation
so that they can be applied to scenes with hundreds or thousands of luminaires (light emitting objects). Our
method is designed to work with tens to thousands of samples for each numerical quadrature, and technically
this is a “low sampling density”, meaning that the results of traditional asymptotic analysis are not directly
applicable. Instead, we follow the advice of Spanier and Maize [40] and focus on the design of probability

!Lighting is often separated into three components in image synthesis programs: emitted (or self-emitted) lighting that
originates at an object (called a luminaire), direct lighting that consists of light emitted from a luminaire and reflected from
exactly one surface before reaching the viewer, and indirect lighting that consists of light emitted from a luminaire and reflects
from at least two surfaces before reaching the viewer.



density functions that are well-suited to the particular characteristics of the integrands that arise in direct
lighting calculations.

As shown by Kajiya [16], the radiance [15, 27] at a point in a scene can be written down as an integral
equation over the set of all points in the environment?. The direct lighting component of this radiance is a
two-dimensional integral (as opposed to an integral equation) over the set of all points in the scene. As shown
by Cook et al. [7], this direct lighting integral is a natural target for Monte Carlo integration [13, 17]. A
difficult question in any application of Monte Carlo integration is what probability density function should
be used to generate sample points on the domain of integration. This is especially difficult in the direct
lighting calculation where the domain is typically all surfaces in a complex three-dimensional environment.
The selection of a good density function (i.e. one that produces a low variance solution) is the key step in
applying Monte Carlo integration. In this paper, we attempt to find good probability density functions to be
used in the direct lighting calculation. The main contributions of this paper are a careful discussion of the
design of probability density functions for single luminaires, and a method for the construction of a single
probability density function over a set of luminaires, so that only one shadow ray need be shot per viewing
ray, regardless of the number of luminaires in the scene. This makes ray tracing feasible for scenes with many
luminaires. This method is most suitable for images where multiple samples will be taken in each pixel. If
the number of samples per pixel is very low (e.g. four samples), then a culling method such as Ward’s [45]
would be preferable to the method described in this paper.

In Section 2 we state the direct lighting integral, and describe basic Monte Carlo integration. In Section 3
we design probability density functions for shapes commonly used to approximate luminaires. In Section 4,
we describe how to design a probability density function over large sets of luminaires. In Section 5, we
speculate on how the techniques presented in this paper will fit into future rendering systems.

2 Mathematical Formulation

In this section the basic Monte Carlo solution method for definite integrals is outlined, and Monte Carlo
integration is applied to the direct lighting integral. Most of the basic Monte Carlo material of this section
is also covered in several of the classic texts [13, 38, 12, 49]. This section differs by being geared toward
classes of problems that crop up in realistic image synthesis.

2.1 Monte Carlo Integration

Suppose we have a real valued function i : & — IR, where § is a possibly multidimensional space, and we
wish to estimate the expected value of h(1)), where ¢ is a random variable with probability density function
9 : S — IR* (denoted ¥ ~ p). That g is a probability density function on S means that (u(p) = 1)® (where
p is a measure defined on §). From the definition of expected value, we can approximate the expected value

of h(v), ETh(¢)], as a sum:

N

P = [ ) ole') dutv') = 5 3 hiws) (1)

i=1

The samples 1); are a set of N instantiations of the random variable ). We need this formulation with
arbitrary dimension and measure, rather than the one-dimensional discussion found in most Monte Carlo
texts, because we will integrate over surface areas and solid angles which do not have the simple measure
of length. The form of Equation 1 is a bit awkward; we would usually like to approximate an integral of a

2This transport equation only applies to steady-state scenes made up of surfaces (with vacuum between them) obeying
geometrical optics. In practice, this is a reasonable approximation to the human-observable behavior of visible light for many
scenes [10].

3The notation u(p) = 1 means that the measure of p is one, and is equivalent to the notation fS p(d)du(¥d) = 1. We will
occasionally use the symbol du(%)) in isolation. Although this technically violates measure theoretic notation, we follow many
authors by indulging in this violation for convenience.
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The set of real numbers: (—oo, +00).

The set of non-negative real numbers: [0, +00).

An unspecified space used for examples.

An unspecified measure defined on & used for examples.
Some probability density function defined on & using measure p.
A canonical random number: uniformly random in [0, 1).

A function that maps elements of set A to elements of set B
Expected value of random variable a.

Variance of random variable a.

The number of samples taken in a Monte Carlo integration.
The set of all points on surfaces.

A point in X’ being illuminated.

A point in X s.t. x' = x +¢(—&') with ¢ = [|]x — x||.
The Area measure.

The distance between points x and x’.

The unit surface normal direction at x.

The unit surface normal direction at x’.

The hemisphere of directions with pole nn (i.e. for allw € Q, @ - n > 0).
The hemisphere of directions with pole —# (i.e. for all @' € U, @' - n < 0).
The solid angle measure.

A direction (unit vector) in € from which x is viewed.

_
A direction (unit vector) in U that is parallel to x — x'/||x — x'||.

The spectral bidirectional reflectance distribution function (BRDF).

Visibility function: one if no surface is between x and x’ zero otherwise.

Surface spectral radiance at point x in direction w.

Field (incident) spectral radiance at point x coming from direction &’.

Surface spectral radiance at point x in direction @ emitted from x’ (emitted
lighting).

Surface spectral radiance at point x in direction @ caused by light coming directly
from a luminaire (direct lighting).

Some probability density function defined on A using measure A.

Some probability density function defined on Q using measure o.

The number of luminaires in the environment.

The zth luminaire.

The maximum BRDF of a point over all & and &'.

The set of all luminaires ¢;.

The set of “unimportant” luminaires.

The set of “important” luminaires.

An estimate of the average L; for £; € Lgim-

The number of luminaires in Lgim .

The number of luminaires in Luyrighs.

The radiance conribution from #; at some (x,).

An extimate of L;.

A type of function that has “low variation” so is roughly constant.

A type of function that has “high variation” so is not roughly constant.

A type of function that is unknown, but can be evaluated at points.

Table 1: Some important symbols and terms used in this paper.




single function f rather than a product hgp. We can get around this by substituting f = hgp as the integrand:

/f ) du(y i::

For this formula to be valid, p must be positive where f is nonzero. The variance of the sum in Equation 2

[NZ%]—N H (3)

Equation 3 implies that to get a good (low variance) estimate, we want as many samples as possible (i.e. N

(2)

is large), and we want the density f/g to have a low variance. Choosing g intelligently is called importance
sampling, because if g is relatively large where f is relatively large, there will be more samples in important
regions. Equation 3 also shows the fundamental problem with Monte Carlo integration: diminishing return.
Because the variance of the estimate is proportional to 1/N | the standard deviation is proportional to 1/\/N
Since the error in the estimate behaves similarly to the standard deviation, we will need to approximately
quadruple n to halve the error.

Another way to reduce variance is to partition &, the domain of the integral, into N several smaller
domains §;, and evaluate the integral as a sum of integrals over the §;. This is called stratified sampling.
Normally only one sample is taken in each S; (with density ;), and in this case the variance of the estimate

is:
f( 1/% f(Wi) ]
4
[Z Z pi (1) @)
Typically, a density g on S will be chosen and g; will be made proportional to ¢:

(o) = p(¥)

s, P(¥)du(’)

There are some functions where stratification does no good. An example is a white noise function, where

(5)

the variance is constant for all regions. Intuitively, stratification will pay off when f varies slowly relative to
the distance between adjacent sample points.

Although distribution ray tracing is usually phrased as an application of Equation 2, many researchers
replace the v; with more evenly distributed (quasi-random) samples (e.g. [6, 24, 31]). This approach can be
shown to be sound by analyzing decreasing error in terms of some discrepancy measure [50, 48, 24, 34] rather
than in terms of variance. However, in practice it is often convenient to develop a sampling strategy using
variance analysis on random samples, and then to turn around and use non-random, but equidistributed
samples in an implementation. This approach is almost certainly correct, but its justification and implications
have yet to be fully explained. For the rest of this paper we will assume unstratified random sample points
for our derivations, but in our implementation we have used stratified random samples (which should never
produce higher variance estimates than unstratified random samples would produce).

2.2 Generating Random Samples

There are many ways to generate random samples with specified density functions. Most of these methods
assume we have the ability to generate a sequence of canonical random numbers (€1, £, €3, .. .), where each &;
is an identically distributed uniform random number between zero and one (more formally, < : [0,1) — R
is the canonical probability density function, meaning for all y € [0, 1) that ¢(y) = 1, and £ being a canonical
random number means & ~ ). For example, to choose uniform random points in the ball with unit radius
centered at the origin, we can pick a uniform point 7 in the cube with sidelength two centered at the origin,
where r = (26;—1,28;41—1, 26;42—1), and check whether r is inside the ball. If it is not in the ball, we repeat
the process with r = (2&;42— 1, 2§;43— 1, 2£;+4 — 1), and so on, until we find a point in the ball. This is a so
called rejection method, and it is very useful for picking random points in spaces with complex boundaries.



Unfortunately, it is often not as obvious how to apply a rejection method for nonuniform densities, and a
rejection method is not easy to combine with stratified sampling.

A method that does not suffer from the problems of the rejection method is to pass the canonical numbers
through a function. To illustrate why this will work, notice that for some function f : [0,1) — IR, and a
canonical random number £, f(£) is a random variable with a possibly nonuniform density function. For
example, the quantity f(£) = &? is more likely to have a value near zero than one, so it must have a
nonuniform density function. We can reverse-engineer what f(z) must be to get a sample with desired

density function g : [tbo, 1] — IR. This will be P~1(3) where P : [tbo, 1] — [0, 1] is given by

WP
P) = / o(4)du? (6)

The function P is often called the cumulative probability distribution function associated with the proba-
bility density function g because P (1) is the probability that a random variable with density o has a value
less than or equal to . This basic method has been in use since at least the 1950s [13], and was first used
in image synthesis by Ward et al. to generate reflection rays with a cosine density [47]. Note that P~ will
always exist, but may not be analytical, in which case numerical function inversion must be used.

One nice thing about generating a sequence of nonuniform random numbers using the inverse of the
cumulative distribution function is that the ordering of the ¢; and the P~!(¢;) will be the same, and thus if
we input stratified ¢; instead of a completely random sequence, then P~1(¢;) will also be stratified.

For a two dimensional probability density function g : [tg, ¢1] X [10, 71] = IRT, where g is defined with
respect to measure du(¢, 7) = m(y, 7)dy dr, we can do a similar transformation by using the marginal
density function pg : [tho, ¥1] — IRT:

po¥)= [ (v )m(w, )z’ ™)
The function pg is a valid density function that represents the density of ¢ values without reference to .
Once a 1 value has been chosen with ; = ”P\I_,l(&), the 7 value can be chosen with density

L oW, T)
pT|\II(T|1/)Z) - 50\11(1/)) ) (8)

where @7 (7[1;) is the conditional probability of 7 given ;. In the special case where pm is separable,
meaning (v, 7)m(1, 7) can be expressed as by (¢)b2(7), where both by : [t ¥1] — IR* and by : [0, 7] =
IRT are probability density functions, then we can chose ¢; = By '(¢;) and 7, = By '(&41), where By is
the cumulative probability distribution function associated with b, and Bs is the cumulative probability
distribution function associated with bs.

2.3 Design Strategies for Importance Sampling

The key step in an implementation of Monte Carlo integration is the choice of the probability density function
of the sample points. This 1s something of a “black art” because the goal is not to have the lowest variance
for a given number of samples, but is instead to have the lowest variance for a given execution time. This is
an important distinction because samples that produce low variance may take many times longer to generate
than higher variance samples. In this section we outline the general rules we have used when choosing our
density functions for sampling. We will apply these rules when estimating the values of specific integrals in
Section 3.
The integrals that arise in lighting calculations are often of the form

[ / R Fa () - () dp()) (9)

where the f; are strictly non-negative functions. The f; may vary a great deal in both shape and execution
cost. They may be known a priori or their character may only be attained through point sampling. In

ot



this section we discuss several strategies for the design of density functions for Monte Carlo integration of
integrals of the form of Equation 9
First we will categorize the f; into one of the following general behaviors:

Known, low variation (LO) f; is known a priori and has low variation over S.
Known, high variation (HI) f; is known a priori and has high variation over S.
Unknown (UN) f; is known only by sampling.

By grouping terms in Equation 9 we can rewrite it as a product of at most three functions of the types listed
above (note that grouping two terms of type HI could result in one term of type LO, so this grouping must
be done carefully). The integrals in this paper will always contain an integral of type UN (usually evaluated
by tracing a ray), and some weighting function (usually representing local properties of the surface) that is
a combination of functions of type LO and HI. We consider several cases below.

If the integrand is a product of a function fg; of type HI and a function fyy of type UN, then ideally
we would set ©(¥) o« fur(v¥)fun (). Since fuyn is unknown we might evaluate it at several locations and
approximate 1t, but in image synthesis applications this is not usually practical because evaluations are so
expensive, and fyy may be quite complex. If we can assume nothing about fyn, we might still want to
make p(v) < frr(), which is often done in practice. This is in some limited sense optimal, as is shown in
Appendix 5.

If the integrand is a product of a function fro of type LO and a function fynx of type UN, we might
follow the logic of the frr(¢)fun () case, but we might also just want to set (1) to be a constant. This
is because the improvements in variance caused by a choice of p(¥) « fro(v¥) would probably be made
inconsequential by the large variance that fun (1) can cause. We certainly do not want to bother making
9(¥) « fro(v) if this would add much computation time to generating the random points with density p.

In summary, when the integrand is a known weighting function times an unknown expensive function, we
let g be proportional to the components of the weighting function which are not roughly constant. If this is
too expensive, we make (1) proportional to an approximation to the components of the weighting function
which are not roughly constant. More formally, we rewrite f(v) as fro(¥)fur(¥)fun(¢) and try to find a
way to generate samples ¥; ~ o with p(v) o frr(¢). If this is difficult we use p(¥) fHI(l/)) where fur
is an approximation of fry(1). This is the general strategy we will use in later sections to choose density
functions.

2.4 Direct Lighting

Here we will review the rendering equation that governs our approximation to light transport, and we will
separate out the direct lighting integral that we will later solve with Monte Carlo integration. The rendering
equation is usually written in one of two basic ways, one as an integral of radiometric quantities* over solid
angles, and one as an integral equation of radiometric quantities over all surfaces. It can be written down in
terms of all directions @’ visible to x (as done by Immel [14]):

Ls(x,w) = Le(x,w) —1—/Up(x,d;,&)’)Lf (x,0")(—w"-n)do(w') (10)

where L(x,w) is the surface radiance® of x in direction w, L.(x,w) is the emitted surface radiance in
direction w at x, U is the unit hemisphere of incoming directions oriented about 7, p(x,&,&') is the BRDF

4In this paper we use the a slight variant of the radiometric terms and symbols standardized by the Illumination Engineering
Society (IES) 15, 27]. To simplify notation, we drop the spectral term even though all of the radiometric quantities we use are
spectral quantities. So to denote spectral radiance we use I rather than .y recommended by the TES.

5Radiance is a quantity that is defined for all points in space, directions w € O, and wavelengths A\ € A in a homogeneous
material and can be though of as a function I : R? x O x A — TR. This function is not defined at boundaries between
materials (i.e. at surfaces) because the light abruptly changes direction [32]. To solve this problem, authors commonly refer
to “incoming” and “outgoing” radiance. Because the outgoing radiance is what we perceive when we look at a surface, the
outgoing radiance is sometime called “surface radiance”, and the incoming radiance from the “field” is called “field radiance”
[2]. For transparent surfaces, both the surface and field radiances are defined on all directions in Q. For opaque surfaces, the
surface radiance Ls(x, &) is defined on & in the outgoing hemisphere of directions Q, and the field radiance Lf(x, ') is defined
on &' in the incoming hemisphere of directions U.



dA(X’)

" do(6v)

Figure 1: Geometry for the rendering equation

at x, Ly (x,&’) is the field radiance from direction &’ incident at x, amd o is the solid angle measure. The
geometric quantities are illustrated in Figure 1.

Although Equation 10 has the form of an integral, the evaluation of the field radiance L;(x,&’) will
typically require the evaluation of L (x’,w’) for some point x’ “seen” by x in direction —&’. This leads to
other way the rendering equation is often written as integral equation over all surfaces (as done by Kajiya

[161° ) A
Ls(x,w) = Le(x,w) +/Xg(x,x')p(x,(.D,(.D')Ls(x',d’)(—@'ﬁ)(iz dA(x") (11)

= —x'||
where X is the set of all points on surfaces and g(x,x’) is the geometry term, which is zero if there is an

obstruction between x and x’ and one otherwise, ||x — x'|| is the distance between x and x’, and A is the
area measure.

The direct lighting, Lg(x,&), can be written down as an integral over all directions by dropping the
reflected light at x’ in Equation 10:

Ld(x,d;):/Up(x,&;,&)')Le(x',Q')(—A'~ﬁ)d0'(d;') (12)

where x’ is the point seen by x in direction —&’. In a program a ray (x + ¢(—&’)) will be traced from x

in direction —&’ to find x’. The direct lighting can also be written down as an integral over all points by
dropping the reflected light at x’ from Equation 11:

La(x,w) :/Xg(x,x')p(x,d},(.Z)')Le(x',cb')(—(.b'ﬁ)(iz dA(z") (13)

Here the geometry term g(x,x’) is calculated by sending the “shadow” ray (x +¢(x’ — x)) into the environ-
ment. The geometry term is one if ¢ & 1 at the first surface the ray hits.

When Monte Carlo integration is used to approximate Equation 12, a probability density function ¢(&’)
(where q is defined using the solid angle measure o) is built over 8. Applying Equation 2 with N = 1 (one

6 Technically, Kajiya’s equation is not written in terms of radiance, but it can be mapped to Equation 11.



sample) gives:

p(x, w0, 0" YL (x', &) (=)
q(w’)

where W’ ~ ¢q. Using Monte Carlo integration to approximate Equation 13 using a probability density

function p(x’) where p is defined on X using the area measure A yields:

La(x,0) = (14)

La(x,w) =~ g(x,x")p(x,0,0") L. (x',&") (—&"-R) L)Q (15)

where x’ ~ p.

All that must be done to actually implement the direct lighting calculation is to choose which integral we
will evaluate (the directional integral or the integral over all points), create a density function, and somehow
generate random samples according to that density. The details of these steps are described for direct lighting
from a single luminaire in Section 3 and for multiple luminaires in Section 4.

3 Direct Lighting from One Luminaire

To calculate Lg(x,@) for a single luminaire using Monte Carlo integration, we can use Equation 14, with a
density that is positive for the directions subtended by the luminaire, or we can use use Equation 15, with
a probability density function that is positive at all visible points on the luminaire (in practice it will be
positive for all points on the luminaire because the visibility is hard to establish a priori). For large luminaires
(such as the sky), sampling from solid angles might make sense, but for luminaires that are small in angle
space as seen from the points where we are calculating direct lighting (e.g. the Sun and most man-made
luminaires), most of the integrand will be zero, and it will thus be hard to design good density functions.
Therefore, we will use Equation 15 because it is usually easier to design densities on the surfaces themselves.
For reflection rays from specular or near-specular surfaces it is usually more natural to use Equation 14, but
we will not address reflection rays in this paper. The issues involved in choosing between Equations 14 and
15 are discussed in more detail in [37]. Several of the examples used in this section have been used by other
authors (e.g. [18, 21, 25]) who use the same transformation strategies.

3.1 Designing Probability Density Functions

In designing a density function p(x’) to use in Equation 15, we can immediately set p(x’) = 0 wherever
L.(x',&") = 0 (all points not on the luminaire). A perfect (zero variance) estimate would result from:
Y
() = Cglx,x)plx, @, &) Lo, ) (&) ) (16)

[l — x|

where C' is a normalization constant. As is usually pointed out in the Monte Carlo literature, the integral
must be evaluated before we know C| so this is not very practical.

Instead, as was suggested in Section 2.3, we will attempt to partition the integrand into fro, fmr, and
fun. If we assume the luminaire is diffuse or has a radiance that does not vary much across the surface as
seen by most directions, and we assume that p(x,&,&’) is roughly constant over the directions subtended
by the luminaire, then our integrand can be classified as

(@)

plx, @, &) Le(x', &) (—w"n) 5 9(x,x') (17)
1.0 Ix—x  un
HI
So following the strategy of using the HI component of the function guide our design of p we get
plx) o (=) =) (19
[Ix— x|l



Note that for some luminaires some of the components of Equation 18 might be roughly constant. For
example, if the luminaire is small as seen from x, then (—&’-7) will be roughly constant. If the luminaire
is also planar, then (&'-7') is roughly constant. If the luminaire’s extent is small compared to its distance

from x, then [|[x —x'|| is roughly constant. If we can move any of these terms into the LO component
of the integrand, then it will make p easier to design. For the remainder of this section, we discuss how
to choose p for several simple luminaire shapes. In particular, we discuss probability density functions for
luminaires that are approximated by spheres, polygons, disks, and cylinders. We will use the case of spheres
to illustrate the mechanics of choosing nonunifomly random points, and the case of triangles as an example
how to deal with non-separable densities, and will then summarize results for the other shapes. More details
on the derivations of the material in this section can be found in [44].

3.2 Sampling Spherical Luminaires

In this section we will discuss three different density functions that could be used to choose samples on a spher-

-2
ical luminaire with radius r and center ¢ = (¢, ¢y, ¢;). To classify the components of (—&'-n)(&'-7')||x — x||

we first notice that even for small distant luminaires, (w"7') varies from zero to one, so it is a HI component.
-2

—
The other two terms, (—&’7) and ||x — x’|| can be LO or HI depending on the parameters of the sphere
and the location of x. For example, if the sphere almost touches x then both terms are HI, but for a distant
source such as the Sun, both terms are LO. So in different circumstances, different density functions are
useful.

3.2.1 Uniform density

For the purposes of debugging, a constant density function is useful. Because the density function must have
unit volume on the surface of the sphere, this density is just the inverse of the sphere area:

1

)=

To generate a random point on the sphere, we define the density in a spherical coordinate system with 6
being the polar angle (the positive Z axis is § = 0), and ¢ being the azimuthal angle (the positive # axis is
¢ = 0). This yields a density with a related differential measure dA(x’) = r? sin #dfd¢. Using the techniques
of Section 2.2, we separate the density 1/(4mr?) and r? sin #dfd¢ into two density functions: p,(¢) = 1/(2)
and pp(0) = sin §/2. This gives us (, ¢) = (arccos(1 —2¢1), 27€3). Converting to cartesian coordinates gives:
x' = [eg +rcosgsinb, c, + rsingsinb, c, + rcosf]” which can be simplified to

¢y + 2r cos(2m€a) /&1 (1 — &1)
X = | ey +2rsin(2nés)\/& (1 — &) (19)
e; +r(1—2&))

An immediate optimization one could do is to take samples only on the portion of the sphere visible to x.
However, because the uniform area case is ideal for debugging, we will instead leave it as is and move on to
nonuniform densities.

3.2.2 Sampling uniformly in directional space

The first nonuniform density we might try is p(x’) o (&"7'). This turns out to be just as complicated as
2

sampling with p(x’)  (@’-7')||x — x|| , so we instead discuss that here. We observe that sampling on the
-2

—
luminaire using (&"-7’)||x — x’||  is the same as using a density constant function q(w’) defined in the space
of directions subtended by the luminaire as seen from x. We now use a coordinate system defined with x at

the origin, and a right-handed orthonormal basis with @ = ¢ — x/||c — x||, and © = (@ x 1) /||(@ x 7)|| (see



Figure 2: Geometry for spherical luminaire.

Figure 2). We also define (', ¢’) to be the azimuthal and polar angles with respect to the 49w coordinate
system.
The maximum 6’ that includes the spherical luminaire is given by:

2
/ . r r
6 ,ax = arcsin —— | =arccos |1 - | —
[Ix = ¢l lIx = ¢ll

Thus a uniform density (with respect to solid angle) within the cone of directions subtended by the sphere
is just the reciprocal of the solid angle 27(1 — cos @/, .. ) subtended by the sphere:

max

And we get
[ 6’/ ] _ | arccos(l — &1 +&1y/1— (—||x£c||)2)
¢ 27,

This gives us the direction to x’. To find the actual point, we need to find the first point on the sphere in
that direction. The ray in that direction is just (x + ¢d), where a is given by:

Uy Uy Wy cos ¢’ sin 6’
a=| uy vy Wy sin ¢’ sin 6’
U, v, W, cos 8’

We must also calculate pa(x’), the probability density function with respect to the area measure (recall

that the density function ¢ is defined in solid angle space). Since we know that g2 is a valid probability
y 2
!

/===,

density function using the o measure, and we know that do (&) = dA(X')(&" ) we can relate

10



any probability density function ¢(@’) with its associated probability density function p(x’):

o(@') = L) (20)

—
llx — x|
So we can solve for py(x'):

(@)

pa(x) = 2 2
27||x — x| (1— 1—(||x5c||))

For further details on sampling the sphere with py see [43].

3.2.3 Cosine-Weighted Solid Angle:

To bring the (—&'-7) term into the density function we again use the space of directions: ¢3(@w’) o (—&'-n).
Integrating this density function gives the constant of proportionality for the case that the entire sphere is
above the horizon as seen from x (if this is not the case we must use a different density function because ¢3
as stated above would have regions with negative values), and thus the density function is:

(=)

7(w - n) sin? O,ax

(@) =

The direction @’ can be found by in the following two formulas:

sin? ¢/
- sin? O ax
and (4-n)sin@ sin ¢’ + (w - n)¢’ cos '
&= 2w (w - n) cos (21)
So we get 6’ = arcsin(v/€1 sin fpmax) but, we must numerically invert the second formula to solve for ¢'.

For our implementation, we used a simple binary search to perform this inversion, which requires tens of
evaluations of Equation 21 so it is quite costly (so in practice we do not usually use ps to sample spherical
luminaires). Getting the actual point x’ on the luminaire is handled in the same way as in Section 3.2.2,
and the value of p3(x’) is found using Equation 20.

A spherical luminaire sampled with one sample per pixel for each of the three cases discussed in this
section, along with a uniform sampling of the visible region of the sphere, is shown in Figure 3. Although
the sphere sampled with ps generates the smoothest image, in practice we use ps because it is much less
expensive than ps, and because we use multiple samples for edge and shadow antialiasing, we can tolerate
the variance caused by ps.

3.3 Sampling Planar Luminaires

H -2
For any planar luminaire, the quantity (—&’-n)(w"n')||x — x||  stays roughly constant provided the lu-
minaire subtends a relatively small solid angle at x. So for planar luminaires, we use a constant density
function to generate most of our images. In our implementation we have disks, triangles, rectangles, and
general polygons.

3.3.1 Sampling Polygonal Luminaires

For simple polygons (polygons that have no holes) we have resorted to picking uniformly from the bounding
rectangle of the polygon and using a rejection technique based on whether the sample is in the polygon.
This test can be accomplished using a ray test in the plane of the polygon[11], which works for all polygons,
even those with holes. This probability density function is just the inverse of the polygon area, which can
be found using Stoke’s Theorem [28].

11
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Figure 3: A spherical luminaire sampled using p; (top left), p} (uniform on visible portion; top right), ps
(bottom left) and p3 (bottom right).
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Figure 4: A disk luminaire sampled using p4.

3.3.2 Sampling Disk Luminaires

To choose a random sample from a disk, we suppose its center is at the ¢, the radius is r, and #/ = w in its
49w coordinate system. So pa(x’) = 1/(wr?), and

Uy Uy Wy r/€1 cos(2mEs)
X'=c 4 | u vy wy /&1 sin(27més)
0

Uy Uy W

An image with a disk luminaire sampled using ps4 with one sample per pixel is shown in Figure 4.

3.3.3 Sampling Rectangular Luminaires

If a rectangle is defined with a point xy and side vectors 71 and ¥4, then a uniform random point is given

by
X' =x0+&T1+ET

and has density ps(x’) = 2/||71 X 72” If the luminaire is entirely above the horizon, then it is also possible

-2 -2
to choose a random point with density ps(x’) o (@7)|[|x — x'|| and pr(x’) x (=&’ n)(&"n')||x —x||
but the evaluation of pg and p7 are costly, and their implementation is difficult (see [44] for details). One
sample per pixel images using ps, pg, and p7 are shown in Figure 5. Note that the complex density functions
performs better when the luminaire and x are close to each other, as should be expected because all the

-2

terms in (—&’-n)(w"A')|[|x — x'||  vary most in those regions.

3.3.4 Sampling Triangular Luminaires

To generate uniform random points on a triangle, we use the natural barycentric coordinates of the triangle,
and note that the determinant of the Jacobian that takes a triangle defined with barycentric coordinates
to a triangle with an unnormalized coordinate system is a constant. This means that if we pick random
barycentric coordinates for one triangle, we can use them for any other triangle and the random point will
still be uniform. We now go into some detail on the mechanics of choosing a uniform x’, because when the
uniform density function is written in terms of the two coordinates on the triangle, it is not separable. Using
barycentric coordinates, every point, on the plane containing a triangle with vertices pg, py, and p, can be

13



Figure 5: A rectangular luminaire sampled with ps (left) and ps (middle) and p7 (right).

described by x’ = py+B(p; — Po) +7(P2 — Po)’ and the x'is in the triangle if an only if (8 > 0) and (y > 0)
and (B + v < 1). Integrating the constant one across the triangle gives

1 1—’Y 1
/ / dgdy = -
y=0J3=0 2

This means the value of our density function is 2 in barycentric coordinates (and 1/A in cartesian space,
where A is the area of the triangle, implying the determinant of the Jacobian that transforms from barycentric
to cartesian space has the value 2A).

To perform an inversion we must first find densities which correspond to § and v separately. If § and
~ were independent we could simply use the marginal density for each. In this case, § is dependent on ~.
Therefore, we will use the marginal density for v, fg(7), and the conditional density of 3 given v, fg|a(8|7).
By definition

fo) =/0  F(Bay) dp = 2(1 - )

and

f(B,7) 1

fe1c(Bly) = fol) 1=~

Now we can perform the inversion by letting {1 = Fg(y') and & = Fp|g(0'|7’) and solving for #' and

y'. Here Fg and Fp|¢ are the cumulative densities corresponding to the random variables 4" and §'|y'

respectively. Again by definition

’Y’
& = Fa(v') :/U fa(y) dy=2v -+

Solving for ' we get ' = 1 — /1 — &;. For
ﬂl
L=

ﬁ/
& = Fua(#17) = [ fma(P1) dp =
thus 8’ = &2(1 — ') = €2+/1 — &1. Therefore
xlzp0+52\/1_£1(1)1_l)0)+1_\/1_51(1)2_1)0) (22)

, -2
A triangular luminaire sampled using this constant ps, as well as using pg o (—&’-n)(w"n')||x — x'|| (as

/

with spheres and rectangles, this only works if the entire luminaire is above the horizon) is shown in Figure 6.
Details on using pg can be found in [44].

"Three barycentric coordinates are often used with x’ = [0 4+ a(pg — 0) + 8(pP; — 6) + ¥(p5 — 0)], where o is the coordinate
origin and a + 3 + v = 1. We just use the substitution o = (1 — 8 — ).

14



Figure 6: Triangular luminaire sampled using pg (left) and pg (right).

3.4 Sampling Cylindrical Luminaires

If we have a cylinder of radius r. with its axis along the w axis, and boundaries w = 0 and w = wmax,
then we can choose a point in the %W coordinate system that is uniform on the cylinder: [u,v,w]? =
[r.cos(2mE1), e sin(2mEy ), Eawmax]T . If the base origin of the @91 coordinate system is o, then a random

point in cartesian coordinates 1is:

Up Vp W re cos(2mEy)
X' =0+ | uy vy wy resin(2méy)
Uz Vs Wy 52 Wmax

A more practical (lower variance) cylinder sampling strategy that approximates a density function propor-
tional to (w'-n') is presented in [51].

3.5 Discussion

Since the density functions developed in this section assume that p(x,&,&') and L.(x',&') are roughly
constant in the directions subtended by the luminaire, a variance increase can be introduced by specular
reflection or directional luminaires. If p(x,w,&’) or L.(x',@’) vary more than other terms in L, (x,w), then
all the methods discussed in this section may have a high variance. For example, if we use a rectangle with a
texture controlling emission to represent a TV screen, then the variance will be roughly proportional to the
variance of the pixels in the texture. When p(x,@,&’) is the most important term, we want p < p(x,w,w’)
as in [45, 21] and when L.(x’,&’) is the key factor, we want to use p x L.(x,&’).

There are many luminaire shapes we have not discussed that might be of interest. For example, neon lights
could be considered swept disks, and common light bulbs can be modeled as surfaces of revolution. However,
in practice we can often use the simple shapes discussed in this section in preference to the complex shapes
of the real luminaires. For example, Figure 7 shows a room lit by flourescent fixtures that are approximated
by rectangles for the lighting calculations at other surfaces. This idea is used extensively in Ward’s Radiance
program [46], where the far-field photometry of the entire fixture is known (see [10] for details on getting
CIE or IES standard far-field photometry for real luminaires) and the luminaire is displayed with a complex
geometry. This can be thought of as a special case of geometric simplification as used by Rushmeier et al.

[29].

4 Direct Lighting from Many Luminaires

Traditionally, when Ny luminaires are in a scene, the direct lighting integral is broken into N separate
integrals [7]. This implies at least Nj, samples must be taken to approximate the direct lighting, or some
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Figure 7: Rectangular Luminaires are used as imposters
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bias must be introduced (as done by Ward where small value samples are not calculated [45]). Instead we
leave the direct lighting integral intact and design a probability density function over all Nz luminaires.

As an example, suppose we have two luminaires, £; and £3, and we devise two probability functions p; (x’)
and ps(x’), where p;(x’) = 0 for x’ not on ¢; and p;(x’) is found by a method such as one of those described
Section 3 for generating x’ on ;. These functions can be combined into a single mizture density [41] over
both lights by applying a weighted average:

p(x') = api (x') + (1 — a)ps(x)

where a € (0,1). We can see that p is a probability density function because its integral over the two
luminaires is one, and it is strictly positive at all points on the luminaires. The coefficients a and (1 — «)
are called the mizing weights.

To estimate I = (L1 + L), where L is the direct lighting and L; is the lighting from luminaire ¢;, we first
choose a random canonical pair (£1,&3), and use it to decide which luminaire will be sampled. If 0 < &; < a,
we estimate L; with L, using the methods described in Section 3 to choose x’ and to evaluate p;(x’), and
we estimate L with ﬁl/a. If £ > o then we estimate L with ﬁz/(l — a). In either case, once we decide
which source to sample, we cannot use (£1,&z) directly because we have used some knowledge of &;. So if we
choose 1 (so {1 < a), then we choose a point on £; using the random pair (§1/a,&2). If we sample £5 (so
&1 > a), then we use the pair ((§1 — a)/(1 — @), &2). This way a collection of stratified samples will remain
stratified in some sense. Note that it is to our advantage to have £; stratified in one dimension, as well as
having the pair (§1,§2) stratified in two dimensions, so that the ¢ we choose will be stratified over many
(€1, &2) pairs, so some multijittered sampling method may be helpful (e.g [5]).

This basic idea used to estimate I = (L1 + L) can be extended to Nz, luminaires by mixing Ny, densities

p(x') = aipi (x') + aapa(x') + - + an, pr, (X) (23)

where the «;’s sum to one, and where each «; is positive if ¢; contributes to the direct lighting. The value
of a; is the probability of selecting a point on the £;, and p; is then used to determine which point on ¢; is
chosen. If ¢; is chosen, the we estimate L with L;/ai. Given a pair (£1,&2), we choose £; by enforcing the

conditions
i—1 i
oo <& < )0
j=1 j=1
And to sample the light we can use the pair (€1, &2) where

¢ = & — 23:11 @

€7
This basic process is shown in Figure 8. It cannot be over stressed that it is important to “reuse” the random
samples in this way to keep the variance low, in the same way we use stratified sampling (jittering) instead
of random sampling in the space of the pixel®. To choose the point on the luminaire ¢; given (£, &3), we can
use the same types of p; for luminaires as used in the last section. The question remaining is what to use
for a;.

4.1 Constant o;

The simplest way to choose values for a; was proposed by Lange [21] (and this method is also implied
in the figure on page 148 of [16]), where all weights are made equal: «; = 1/Ngp for all . This would
definitely make a valid estimator because the a; sum to one and none of them is zero. Unfortunately, in
many scenes this estimate would produce a high variance (when the Li are very different as occurs in most
night “walkthroughs”).

81t is also important to not introduce any bais by correlated points in screen space and “luminaire space”. Typically a set
of N sample pairs is chosen in screen space, and a different set of N sample pairs is chosen for luminaire space, and these are
combined into N quadruples in screen-luminaire space. If there is some regularity in how these points are generated (e.g. the
first point is in a particular corner of canonical space), then the mapping between pairs should be random [6].
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Figure 8: Diagram of mapping &; to choose £; and the resulting remapping to new canonical sample ] .

4.2 Linear o;

Suppose we had perfect p; defined for all the luminaires. A zero variance solution would then result if we
could set «a; o< L;, where L; is the contribution from the ith luminaire. If we can make «; approximately
proportional to L;, then we should have a fairly good estimator. We call this the linear method of setting «;
because the time used to choose one sample 1s linearly proportional to Ny, the number of luminaires.

To obtain such «; we get an estimated contribution L; at x by approximating Equation 13 for ¢; with
the geometry term g(x,x’) set to one. These L;s (from all luminaires) can be directly converted to a; by
scaling them so their sum is one:

L;
a; = = = =
Li+Ls+---+ LN,

This method of choosing «; will be valid because all potentially visible luminaires will end up with positive
a;. We should expect the highest variance in areas where shadowing occurs, because this is where setting
the geometry term to one causes «; to be a poor estimate of «;.

Figure 10 shows a scene with four rectangular luminaires sampled using the linear method and 49 rays
per pixel. Figure 9 shows a scene with 100 rectangular luminaires sampled with 49 rays per pixel using the
linear method. This method of setting a; was first used in [33], and was first theoretically justified in [36].

Implementing the linear a; method has several subtleties. We implemented a method for each type of
luminaire that estimated L; for a particular x and p(x,@,&’). If the entire luminaire is below the tangent

(24)

plane at x, then the estimate for L; should be zero. An easy mistake to make (which we made in our initial
implementation), is to set L; to zero if the center of the luminaire is below the horizon. This will make
a; take the one value that is not allowed: an incorrect zero. Such a bug will become obvious in pictures
of spheres illuminated by luminaires that subtend large solid angles, but for many scenes such errors are
not noticeable (the figures in [33] had this bug, but it was not noticeable). To overcome this problem, we
make sure that for a polygonal luminaires all of its vertices are below the horizon before it is given a zero
probability of being sampled. For spherical luminaires, we check that the center of the luminaire is a distance

greatew than the sphere radius under the horizon plane before it is given a zero probability of being sampled.

4.3 Spatial Subdivision

In the linear method, choosing a; based on estimated contribution requires querying every luminaire in the
scene. This is acceptable for many scenes, but if Ny, is large (thousands or millions), even that might be too
slow. In such scenes at most a few hundred luminaires (and usually at most tens) will contribute significantly

18



Figure 9: An image that used the “linear” method with 100 luminaires.

iy e
g

Figure 10: An image that used the “linear” method with four luminaires.
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to the radiance at any particular point. Suppose we can partition £ = {¢1, ..., ¢y, } into two subsets Lprignt
and Lgim, where Lyright is the set of luminaires that are “important” at x (i.e. they contribute significantly
to Ly(x,w) for some w), and (Lgim = (£ — Loright). With these two subsets of £ we can construct low cost
(a7
Suppose that the size of Lirighe is Ny and that Lyrigne = {b1,b2,...,bn, }, and that Lgim = {d1,ds, ..., dn,},

where Ny = Np, — Np. If Np, is large and we have partitioned £ correctly, then N should be much less than
Ng4. For each b; in Lprighs, We estimate L; in the same way we did in the linear method. We now assume
that all members of Lg4im contribute approximately the same amount ﬁd as a random element d, of Lgim.
To pick a random element in L4, we use a rejection method where we repeatedly choose a luminaire at
random from £ (which we store in a linear array) until we find a light that is not in Lbright (that is faster
than finding one that is in Lqim because we expect that Ng >> Ny). If we want a better estimate for the
average contribution of a luminaire in L4i,, we can take more than one sample. The appropriate number
of such samples to take in Lgim is scene dependent, and is something that should be studied further. For
our implementation we have taken one sample. This gives estimates L; for contributions from all luminaires
without consulting more than one (or a few if more than one sample is taken) element of Lgim, and will be
reasonably accurate for the important luminaires. We can now construct a probability density function by
setting «; equal to the normalized value of L

_ L; _ L;
Li+Ly+--+ 1Ly, szeﬁbright L + N4L,

(25)

(&7

where ﬁr 1s our estimate for the contribution of the random luminaire from £gim.

The difficult part of this method is deciding which luminaires are in Lyrign for a particular x. As pointed
out by Kok and Jansen [19], a luminaire that is responsible for a large fraction of the radiance of x is
likely to be responsible for a large fraction of the radiance of the neighboring points of x. This implies
we can use a spatial subdivision scheme to precompute a Lyrghs list for each spatial cell in the spatial
subdivision structure. For a particular cell a luminaire is put in Lprighe if it might contribute more than a
threshold average spectral radiance to a diffuse surface within the cell. A simple way to determine whether
the maximum potential contribution of a luminaire is above the threshold is to evaluate Equation 13 with
g(x,x') and (—@'-7) each set to one, and p(x,&,d") set to pmax for all points (implementationally a large
number of points) on the boundary of the spatial subdivision cell. Because specular surfaces are usually
handled using reflection rays (and thus Equation 12. See [37] for details) rather than shadow rays, we can
expect pmax to not be extremely large. In Figure 11, a set of luminaires and their regions of importance are
shown. The stratification of the scene into boxes is arbitrary.

An easy way to choose the subdivision cells 1s to use the leaf cells of the conventional subdivision structure
(e.g. the octree leaves of a Glassner style octree used for ray intersection acceleration[9]), and maintain a
separate Luprighs list at each leaf. This is a finer than needed subdivision for scenes where the number of
objects is much greater than the number of luminaires. An advantage of this is that no luminaire lists need
to be constructed for empty cells, and the characteristics of reflective objects can be used to construct the
lists (because the objects in each cell are known in advance). Instead, we have implemented a separate light
octree that recursively subdivides itself until each leaf i1s at a maximum allowed depth or when the size of
Luright for that cell is below a specified limit. The depth and size limits are similar to those in a conventional
octree, and their values are even less well-understood by us so far. To avoid excess subdivision, we check
whether the minimum contribution of an important luminaire to a cell is above the threshold. If all members
of Lpright are thus determined to be in Lyrighe for any possible descendant of that cell, we do not subdivide.

Another difficulty in building the light octree is what to use for the average radiance threshold. For our
program we assume we know what radiance L,, would map to white on the display device (white would be
an rgb triple of [255,255,255] on a typical 24 bit frame-buffer driven CRT). We set the radiance threshold
T to be some fraction of L,,°. Because our display device typically has eight bits per channel, we usually
make the threshold a few percent of L,,. Such a threshold will ensure that any luminaire that can change

9 Lw should be chosen according to a perceptual viewer model, such as the model implemented by Tumblin and Rushmeier
[42]. L. may also vary from pixel to pixel if spatially varying mappings are used [4]. Such models will become increasingly
important as physically based rendering becomes more popular.
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Figure 11: A subdivision of space where luminaire is a member of Lyrignt for a cell if it has the potential to
contribute significantly to the surface radiance of a point in that cell.

the pixel color more than a few steps will be included in Lpright. If Ly, is chosen correctly, then the sum of
contributions of luminaires should be no more than L,,, and thus the number of important luminaires should
be less than one hundred for most scenes.

To characterize important vs unimportant luminaires, we associate an axis aligned influence boxr with
each luminaire that includes all points that might include that luminaire in its Lpright list. When deciding
whether a luminaire is important to a cell, we just check whether the cell and the influence box overlap,
and 1f so, then the luminaire is treated as an important light source. To avoid an important luminaire being
overlooked, the influence box must contain every point whose reflected radiance might be larger than a
predefined threshold 7" when receiving the light only from that luminaire. Although this gives the chance of
a non-important luminaire being selected as an important one, that is preferred to risk missing an important
luminaire because our estimate 1s ﬁi/ai which will blow up if L is large and «; is small, but will just change
a small component if L; is small, regardless of ;.

To decide where a luminaire might cause an object to change its radiance more than 7', we first examine
a point source at point x’ with radiant intensity'® distribution I(&’). The potential contribution due to this
source can be bounded by replacing p(x,&,&") with pmax, and (—w@'-7) with one:

L(x,2) < Lo ) (26)

[Ix — x|

To make sure this potential contribution is below T', we make sure the distance is above a certain quantity:

Pmaxl(‘:’l)

Ml >
I =] > /72

(27)
Note that the set of points x that have a potential above T' are the inside of an influence isosurface that
depends only on I(w') (see Figure 12). The box that bounds this influence isosurface is that luminaire’s
influence box.

10The radiant intensity, I(&'), is the power per unit solid angle in direction ¢&’.
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Figure 12: The goniometric diagram of radiant intensity of a point source (left) and the associated influence
isosurface where the maximum radiance contribution is 7.

As an example of finding an influence isosurface and the resulting influence box of a finite sized luminaire,
we now consider a spherical luminaire with a directionally isotropic emission pattern and emitted power @,
and a resulting far-field radiant intensity of I(w’') = ®/(47). Allowing for a finite radius r just makes the
radius 7; of the sphere’s influence isosurface expand by r:

pmaxq)
47T

r; = +7r (28)

If 7(@') of the luminaire has w as an axis of symmetry, then 7(&') will depend only on (w - &'). If we
define ¥ to be the angle between @ and &’ then we have a function I(d) that fully describes the emission
of the luminaire. To find the influence box which contains points [ug, u1] X [vg, v1] X [wo, w1], we first note
that because of symmetry, ug = vg = —u; = —v1. For simplicity, we assume that I(d) = 0 for > /2, so
wg = 0 (when this is not true, the analysis for ¥ > 7/2 is analogous to the analysis for ¥ < 7/2). To find w;
we note that on the potential isosurface at angle ¥, the value of w can be found from Equation 27:

Pmaxl(a}/)
T

w = cos ¥

To find w; we can differentiate w? (which will be maximum when w is maximum) with respect to ¥ and find
where this derivative is zero. This occurs when:

dI(9
— 2s8in 97(9) + cos 19% =0 (29)
Similar analysis for u; yields that The largest u inside the influence isosurface occurs at ¥ such that
dI (9
2cosVI(V) + sinﬁ% =0 (30)

Equations 29 and 30 can help us find the influence box of a point “phong”’ luminaire with power ® located
at x’ with 1 1)0 9
e+ cos®
()= ————
(v) 27
Differentiating 7(«) yields
dI(9)  e(e+1)®cos* ! Jsin¥

dv 27

This implies that w on the potential isosurface will be a maximum when ¥ = 0, so

wi — Pmax(“3 + 1)<I)
TV 2T
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Applying Equation 30 implies that u will be maximum on the potential isosurface when (2cos? ¥ = e sin? v),

SO
e \? Prax P
Uy =
! e+2 (e +2)T

This will give us an influence box about a point phong source in the v coordinate system. To extend ths
result to polygonal luminaires, we can apply the point source analysis to a given vertex, and the add to u;
the maximum u distance to any other vertex. To find the importance box in cartesian coordinates, we apply
the conservative strategy of finding the cartesian axis aligned bounding box of the v influence box.
Figure 13 show two images of a pair of “sphereflakes” (generated using Eric Haines’ procedural database
software), with each sphereflake is composed of 7381 spheres. In the image with 7381 luminaires, the light
-2

octree was used. In both cases, individual luminaires had were sampled with a (&"7')||x — x|  density
function. The single luminaire case used ten samples per pixel, and the 7381 luminaire case used forty
samples per pixel, and took about eight times as long as the ten sample single luminaire image. This means
the overhead of choosing the ray using the light octree does not swamp the cost of sending the shadow ray,
even in this extreme case where half of the objects are luminaires. In less pathological scenes, the light octree
should be smaller relative to the number of primitives, and performance should be even better.

Clearly, the linear and light octree methods are most useful for scenes with a large number of luminaires.
Such scenes are becoming increasingly important. In outdoor scenes, especially in urban settings, scenes
with thousands and even hundreds of thousands of luminaires are commonplace. In opera and theater
applications, hundreds or thousands of luminaires are common [8]. In infrared scenes, almost all surfaces
are luminaires, so something such as the light octree is crucial. These methods also make i1t easy to use
luminaires defined by many polygons or parametric patches. No matter how many patches define a light
bulb surface, 1t will receive only one shadow ray.

5 Conclusion

We have presented techniques for constructing probability spaces on luminaire surfaces for the direct lighting
calculation. These techniques make the calculation of direct lighting from thousands of luminaires feasible.
The chief limitation of the work is that it does not take into account the geometry term (visibility) or the
BRDF. Extending the methods to include these terms is possible, but it will not be easy. The geometry
term in particular should probably be attacked using probabilistic methods, because the visibility problem
in high complexity scenes is very difficult, and exact solutions will take too long.

The basic rationale for the techniques presented in this paper is that direct lighting should not be
calculated to a higher accuracy than necessary. This is very similar in concept to Kajiya’s argument that
we should not expend much work for deep parts of the ray tree [16]. It is certainly not always true that one
shadow ray per viewing ray is optimal, however. For the 100 luminaire case, one shadow ray is better than
100 shadow rays, but two or three might be better still. This issue requires further investigation.

Even in scenes with only a few luminaires, the linear or light octree techniques presented in Section 4
can be useful. Many of the recent rendering techniques can be viewed in terms of replacing surfaces with
tmposters. An example of an imposter is a luminaire with zero reflectivity that is shaped like a reflecting
patch and emuts light in roughly the same distribution and intensity as the reflecting patch reflects light.
This concept has been used by Kok and Jansen[19], Chen et al.[3], Rushmeier et al. [29] and Ward [46].
Adding an imposter reduces the number of patches whose reflected light needs to be calculated and increases
the number of luminaires. Using imposters becomes more attractive if the cost of direct lighting does not
increase linearly with N, so we believe the techniques in this paper will be used with both radiosity and
ray tracing programs.
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Figure 13: Single luminaire, 10 rays per pixel (top), 7381 luminaires, 40 rays per pixel (bottom).
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Appendix: Proof of Optimal Sampling for Weighted Integrands

In image synthesis often have integrands that take the form of a product of a strictly nonnegative function
w: 8 — IR and a strictly nonnegative function f : § — IRT whose values are only attainable through point
sampling:

= /8 w() () dp ()

To solve this by Equation 2, the optimal choice for the probability function is p(v) < w(¥)f(), but as is
often pointed out, this choice requires us to already know the value of I. Instead, people often either choose
uniform p, or set p(v) = w(y)[6, 26, 21]. This section extends arguments in [37] that letting p(¥) = w(y)
1s in some sense optimal.

In graphics we usually repeatedly perform an integral for every member of a set F' = {f1, fa,..., fn}-
To decide which g to use, we could try to minimize the average variance of our estimate across all f € F.
We cannot do this with such a vague definition of F', but we can approximate our situation in graphics by
assuming that we are no more likely to have large values of f in a particular point in S than any other.
This makes sense when thinking of § being the support of a filter w on a pixel on the image plane, and f as
being the radiance hitting the film plane; we do not expect the exact location of features in the luminance
function to be correlated with the details of how the pixels are arranged. This is especially true if we will
use the same w for many different images in an animation.

The average variance V of the estimator I’ = w() f(¥)/p(¢) is:

B[ - ([rorn)]

i=1

Because the righthand (squared) term is > I; (a constant), and because we assume that average values of
members of F' are not correlated with the evaluation point in S, then as n becomes large we should expect
the average value of f%(¢) at any given ¢ is some constant f2. The average variance of the estimator I’ is

then just: o
P= S| ]

i=1

Because the 12 term is a constant, the sum and the 1/n term will cancel each other (there are no more f;
terms, minimizing V is equivalent to finding ¢ that minimizes

[, .
fv_/s ) (32)

with the constraint that g is strictly nonnegative, and p(p) = 1.

To find a constrained function that minimizes a quantity, we use the calculus of variations with Lagrange
multipliers. We first replace p(v) with p(v) + avy(¥), where a is a constant and () is a pertubation
function. Because p(1) + ay(¥) must be a valid probability density function, we restrict v to have zero
volume: p(y) = 0. We now define a new integral 7.(a) to be

(e . \
o= [ o +A(9(0) + v ()] dutw) (3)



where A is the Lagrange multiplier (a constant). The calculus of variations tells us that I, will be stationary
(an extremum) when the partial derivative of I. evaluated at zero is zero. This is:

01c(a) _/[ —y(¥)w’ (¥)
da s L(p(¥) +ax(¥))

4 w»)] dpu(x) (34)

Setting 01.(0)/0a = 0 yields

01 (0) _ [’7(7/))102(1/2) _ ] _ .
ot = [ [ = )| dute) = 0 (3)
Because the integral must vanish for any valid (1), we get
w?(¥) = Ap®(¥) (36)

Since both w and p are nonnegative, this implies that the intuitively appealing choice of ¢ = w has some
theoretical justification as well. the second derivative 9?1.(0)/0a? is always positive, so setting p = w will
ensure a minimum variance.
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