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Abstract
This paper presents a state of the art report of those global illumination algorithms which involve Monte-Carlo or
quasi-Monte Carlo techniques. First it surveys the basic tasks of global illumination, which can be formulated as
the solution of either the rendering or the potential equation, then reviews the basic solution techniques, including
inversion, expansion and iteration. The paper explains why stochastic approaches are good to solve these integral
equations and highlights what kind of fundamental choices we have when designing such an algorithm. It com-
pares, for example, finite-element and continuous methods, pure Monte-Carlo and quasi-Monte Carlo techniques,
different versions of importance sampling, Russian roulette, local and global visibility algorithms, etc. Then, a lot
of methods are reviewed in a unified framework, that also allows to make comparisons.

Keywords: Rendering equation, potential equation, Monte-
Carlo and quasi-Monte Carlo quadratures, finite-
element techniques, radiosity, importance sampling, Russian
roulette, shooting and gathering random walks, stochastic
iteration, Metropolis sampling, distributed ray-tracing, path
tracing, photon tracing, light tracing, bi-directional path trac-
ing, photon-map, instant radiosity, global ray-bundle tracing,
stochastic ray-radiosity, transillumination method, first-shot,
error and complexity

1. Introduction

Generally, theglobal illumination problemis a quadruple28
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whereS is the geometry of surfaces,fr is the BRDF of
surface points,Le is the emitted radiance of surface points
at different directions andWe is a collection of measuring
functions.

Global illumination algorithms aim at the modeling and
simulation of multiple light-surface interactions to find out
the power emitted by the surfaces and landing at the measur-
ing devices after some reflections.

A light-surface interaction can be formulated by theren-

dering equationor alternatively by its adjoint equation,
called thepotential equation.

Therendering equation26 expresses theradianceL(~x; !)
[W �m�2 �sr�1] of a surface point~x in direction!, and has
the following form:

L = L
e
+ T L: (1)

If only direct contribution is considered, thenL = Le. The
light-surface interaction is described by integral operatorT ,
which has the following form

(T L)(~x; !) =

Z
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(2)
whereL(~x; !) andLe(~x; !) are the radiance and emission
of the surface in point~x at direction!, 
 is the directional
sphere,h(~x; !0) is the visibility function defining the point
that is visible from point~x at direction!0, fr(!0; ~x; !) is
the bi-directional reflection/refraction function, and�0 is the
angle between the surface normal and the incoming direction
�!0 (figure 1).

Thepotential equation42, on the other hand, uses thepo-
tentialW (~y; !0) as a fundamental measure, which expresses
the effect of emitting unit power from~y in direction!0 on
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Figure 1: Geometry of the rendering equation
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Figure 2: Geometry of the potential equation

a measuring device having sensitivityW e(~y; !0) (for ex-
ample, this device can measure the power going through a
single pixel of the image, or leaving a surface element at
any direction). If only direct contribution is considered, then
W (~y; !0) = W e(~y; !0). To take into account light reflec-
tions, we can establish the potential equation

W = W
e
+ T

0
W: (3)

In this equation integral operatorT 0 — which is the adjoint
of T — describes the potential transport

(T
0
W )(~y; !

0
) =

Z
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where� is the angle between the surface normal and the out-
going direction!.

According to the definition of the radiance

L(~y; !) =
d�(~y; !)

d~y d! cos �
;

the power detected by a measuring device can be computed

by the measuring function from the radianceZ
S

Z



d�(~y; !) �W
e
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Z
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L(~y; !) cos � �W
e
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whereM is the radiance measurement operator. Having in-
troduced the scalar producthu; vi

hu; vi =

Z
S

Z



u(~y; !) � v(~y; !) d~y d!;

and the cosine weighted scalar producthu; vicos

hu; vicos = hu � cos �; vi = hu; v � cos �i;

we can obtain an alternative form of the measurement oper-
ator

ML = hL;W e
icos:

A simple measurement function for a pinhole camera is

W
e
(~y; !) =

�(! � !f )

cos �
� �(h(~y; !))

where!f is the focal point andcos � is the cosine angle
between the normal of the visible surface and the viewing
direction. With this measurement function, the power going
through a pixel of areaP can be obtained using equation (5):Z

SP

L(h(~p;�!~p); !~p) � �(~p) d~p; (6)

whereSP is the support of�. SP is usually, but not neces-
sarily, equal to the pixel surface.

Alternatively to the radiance, the power arriving at the
measuring device can also be computed from the potential:Z
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whereM0 is the potential measuring operator. Note that un-
like the radiance measuring operator, the potential measur-
ing operator integrates on the lightsource.

This measuring operator can also be given in a scalar
product form

M
0
W = hL

e
;W icos: (8)

Since the rendering or the potential equation contain the
unknown radiance function both inside and outside the in-
tegral, in order to express the solution, this coupling should
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be resolved. The possible solution techniques fall into one
of the following three categories:inversion, expansionand
iteration.

OperatorT represents light-surface interaction, thus each
of its application generates a higher-bounce estimate of
the light transport (or alternativelyT 0 represents potential-
surface interaction). For physically plausible optical material
models, a reflection or refraction always decreases the to-
tal energy, thus the integral operator is always a contraction.
However, when the transport is evaluated numerically, com-
putation errors may pose instability problems if the scene is
highly reflective. As we shall see, expansion and iteration
exploit the contractive property of the transport operator, but
inversion does not.

1.1. Inversion

Inversiongroups the terms that contain the unknown func-
tion on the same side of the equation and applies formally
an inversion operation:

(1� T )L = L
e

=) L = (1� T )
�1
L
e
: (9)

Thus the measured power is

ML =M(1� T )�1Le: (10)

However, sinceT is infinite dimensional, it cannot be in-
verted in closed form. Thus it should be approximated by a
finite dimensional mapping, that is usually given as a matrix.
This kind of approximation is provided by finite-element
techniques that project the problem into a finite dimensional
function space, and approximate the solution here. This pro-
jection converts the original integral equation into a system
of linear equations, which can be inverted, for example, by
Gaussian elimination method. This approach was used in
early radiosity methods, but have been ruled out due to the
cubic time complexity and the numerical instability of the
Gaussian elimination.

Inversion has a unique property that is missing in the other
two methods. Its efficiency does not depend on the contrac-
tivity of the integral operator, neither does it even require the
integral operator to be a contraction.

Since no stochastic alternative has been proposed yet for
the deterministic inversion, we do not consider this option
any further in this paper.

1.2. Expansion

Expansion techniques eliminate the coupling by obtaining
the solution in the form of an infinite Neumann series.

1.2.1. Expansion of the rendering equation: gathering
walks

Substituting the right side’sL by Le + T L, which is obvi-
ouslyL according to the equation, we get:

L = L
e
+T L = L

e
+T (L

e
+T L) = L

e
+T L

e
+T

2
L:

(11)
Repeating this stepn times, the original equation can be ex-
panded into a Neumann series:

L =

nX
i=0

T
i
L
e
+ T

n+1
L: (12)

If integral operator T is a contraction, then
limn!1 T

n+1L = 0, thus

L =

1X
i=0

T
i
L
e
: (13)

The measured power is

ML =

1X
i=0

MT
i
L
e
: (14)

The terms of this infinite Neumann series have intuitive
meaning as well:MT

0Le = Le comes from the emission,
MT

1Le comes from a single reflection,MT
2Le from two

reflections, etc.

In order to understand how this can be used to determine
the power going through a single pixel, let us examine the
structure ofMT

iLe as a single multi-dimensional integral
for thei = 2 case:
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(15)
where

~x1 = h(~p;�!~p);

~x2 = h(~x1;�!
0
1);

~x3 = h(~x2;�!
0
2) = h(h(~x1;�!

0
1);�!

0
2); (16)

and the weights are

w0 = �(~p);

w1 = fr(!
0
1; ~x1; !~p) � cos �

0
1;

w2 = fr(!
0
2; ~x2; !

0
1) � cos �

0
2: (17)

Thus to evaluate the integrand at point(~p; !01; !
0
2), the fol-

lowing algorithm must be executed:

1. Point~x1 = h(~p;�!~p) that is visible through the point
~p of the pixel from the eye should be found. This can be
done by sending a ray from the eye into the direction of
~p and identifying the surface that is first intersected.
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2. Surface point~x2 = h(~x1;�!
0
1)— that is the point which

is visible from ~x1 at direction�!01 — must be deter-
mined. This can be done by sending another ray from~x1
into direction�!01 and identifying the surface that is first
intersected.

3. Surface point~x3 = h(h(~x1;�!
0
1);�!

0
2) — that is the

point visible from~x2 at direction�!02 — is identified.
This means the continuation of the ray tracing at direction
�!02.

4. The emission intensity of the surface at~x3 in the direction
of !02 is obtained and is multiplied with the cosine terms
and the BRDFs of the two reflections.
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Figure 3: The integrand ofMT
2Le is a two-step gathering

walk

This algorithm can easily be generalized for arbitrary
number of reflections. A ray is emanated recursively from
the visible point at direction!01 then from the found surface
at!02, etc. until!0n. The emission intensity at the end of the
walk is read and multiplied by the BRDFs and the cosine
terms of the stages of the walk.

These walks provide the value of the integrand at “point”
~p; !01; !

0
2; : : : ; !

0
n.

Note that a single walk of lengthn can be used to esti-
mate the 1-bounce, 2-bounce, etc.n-bounce transfer simul-
taneously, if the emission is transferred not only from the
last visited point but from all visited points.

The presented walking technique starts at the eye and
gathersthe illumination encountered during the walk. The
gathered illumination is attenuated according to the cosine
weighted BRDFs of the path.

So far, we have examined the structure of the terms of
the Neumann series as a single multi-dimensional integral.
Alternatively, it can also be considered as recursively evalu-
ating many directional integrals. ExaminingMT

2Le again:

Z
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2
64Z
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2
64Z


0

2

w2 � L
e
d!
0
2

3
75 d!01

3
75 d~p: (18)

In order to estimate the outer integral of variable~p, the

integrand is needed in the sample points~p. This, in turn,
requires the estimation of the integral of variable!01 at ~p,
which recursively needs again the approximation of the in-
tegral of variable!02 at (~p; !01).

If the same number — saym— of sample points are used
for each integral quadrature, then this recursive approach
will usem points for the 1-bounce transfer,m2 for the two-
bounces,m3 for the three-bounces, etc. This kind of sub-
division of paths is calledsplitting2. Splitting becomes pro-
hibitive for high-order reflections and is not even worth do-
ing because of the contractive property of the integral oper-
ator. Due to the contraction, the contribution of higher-order
bounces is less thus it is not very wise to compute them as
precisely as low-order bounces.

1.2.2. Expansion of the potential equation: shooting
walks

The potential equation can also be expanded into a Neumann
series similarly to the rendering equation.

W =

1X
i=0

T
0i
W

e
; (19)

which results in the following measured power

M
0
W =

1X
i=0

M
0
T
0i
W

e
: (20)

M
0W e is the power measured by the device from direct

emission.M0
T
0W e is the power after a single reflection,

M
0
T
02W e is after two reflections, etc.

Let us again consider the structure ofM0
T
02W e:

M0T 02W e =Z
S
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L
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e(~y2; !~p) d!3d!2d!1d~y1 =
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Z

1

L
e(~y1; !1) � w0(~y1) �w1(~y2) � w2(~y3) d!2d!1d~y1:

(21)
if ~y3 is visible though the given pixel and 0 otherwise, where

~y2 = h(~y1; !1);

~y3 = h(~y2; !2) = h(h(~y1; !1); !2) (22)

and the weights are

w0 = cos �1;

w1 = fr(!1; ~y2; !2) � cos �2;

w2 = fr(!2; ~y3; !~p) � �(~p): (23)

Thus to evaluate the integrand at point(~y1; !1; !2), the
following algorithm must be executed:
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1. The cosine weighted emission of point~y1 in direction!1
is computed. Surface point~y2 = h(~y1; !1) — that is the
point which is visible from~y1 at direction!1 — must
be determined. This can be done by sending a ray from
~y1 into direction!1 and identifying the surface that is
first intersected. This point “receives” the computed co-
sine weighted emission.

2. Surface point~y3 = h(h(~y1; !1); !2) — that is the point
visible from ~y2 at direction!2 — is identified. This
means the continuation of the ray tracing at direction!2.
The emission is weighted again by the local BRDF and
the cosine of the normal and the outgoing direction.

3. It is determined whether or not this point~y3 is visible
from the eye, and through which pixel. Then the trans-
ferred emission is weighted again by only the local BRDF
and the contribution to the pixel is incremented by the
weighted emission.
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Figure 4: The integrand ofT 02W e is a two-step shooting
walk

This type of walk, calledshooting, starts at a known point
~y1 of a lightsource and simulates the photon reflection for a
few times and finally arrives at a pixel whose radiance this
walk contributes to.

Note that in gathering walks the BRDF is multiplied with
the cosine of the angle between the normal and the incom-
ing direction, while in shooting walks with the cosine of the
angle between the normal and the outgoing direction. On the
other hand, in gathering walks, the cosine angle of the emit-
ting surface is not used, while in shooting walks the cosine
angle of the last visible surface is neglected.

1.2.3. Merits and disadvantages of expansion methods

The main problem of expansion techniques is that they re-
quire the evaluation of very high dimensional integrals that
appear as terms in the infinite series. Practical implemen-
tations usually truncate the infinite Neumann series, which
introduces some bias, or stop the walks randomly, which
significantly reduces the samples of higher order interreflec-
tions. These can result in visible artifacts for highly reflective
scenes.

On the other hand, expansion methods also have an impor-
tant advantage. Namely, they do not require temporary repre-
sentations of the complete radiance function, thus do not ne-
cessitate finite-element approximations. Consequently, these
algorithms can work with the original geometry without tes-
sellating the surfaces to planar polygons.

Expansion techniques generate random walks indepen-
dently. It can be an advantage, since these algorithms can be
suitable for parallel computing. However, it also means that
these methods “forget” the previous history of walks, and
they cannot reuse the visibility information gathered when
computing the previous walks, thus they are not as fast as
they could be.

1.3. Iteration

Iteration techniquesrealize that the solution of integral equa-
tion (1) is the fixed point of the following iteration scheme

Ln = L
e
+ T Ln�1; (24)

thus if operatorT is a contraction, then this scheme will
converge to the solution from any initial functionL0.

The measured power can be obtained as a limiting value

ML = lim
n!1

MLn; (25)

In order to store the approximating functionsLn, usu-
ally finite-element techniques are applied, as for example,
in diffuse radiosity57, or in non-diffuse radiosity usingparti-
tioned hemisphere21, directional distributions59 or illumina-
tion networks8.

There are two critical problems here. On the one hand,
since the domain ofLn 4 dimensional, an accurate finite-
element approximation usually requires very many basis
functions, which, in turn, need a lot of storage space. Al-
though,hierarchical methods19; 4, waveletor multiresolution
methods11; 51 and clustering58; 10; 61 can help, the memory
requirements are still prohibitive for complex scenes. This
problem is less painful for the diffuse case since here the
domain of the radiance is only 2 dimensional.

On the other hand, when finite element techniques are ap-
plied, operatorT is only approximated, which introduces
some non-negligible error in each step. If the contraction
ratio of the operator is�, then the total accumulated error
will be approximately1=(1 � �) times the error of a single
step66. For highly reflective scenes, the iteration is slow and
the result is inaccurate if the approximation of the operator is
not very precise. Very accurate approximations of the trans-
port operator, however, require a lot of computation time and
storage space.

In the diffuse radiosity setting several methods have been
proposed to improve the quality of the iteration. For exam-
ple, we can use Chebyshev iteration instead of the Jacobi or
the Gauss-Seidel method for such ill conditioned systems5.
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On the other hand, realizing that the crucial part of designing
such an the algorithm is finding a good and “small” approx-
imation of the transport operator, the method calledwell-
distributed ray-sets39; 6 proposes the adaptive approximation
of the transport operator. This approximation is a set of rays
selected carefully taking into account the important patches
and directions. In6, the adaptation of the discrete transport
operator is extended to include patch subdivision as well,
to incorporate the concepts ofhierarchical radiosity19. The
adaptation strategy is to refine the discrete approximation
(by adding more rays to the set), when the iteration with
the coarse approximation is already stabilized. Since the dis-
crete approximation of the transport operator is not constant
but gets finer in subsequent phases, the error accumulation
problem can be controlled but is not eliminated.

Both the problem of prohibitive memory requirements
and the problem of error accumulation can be successfully
attacked bystochastic iteration.

Compared to expansion techniques, iteration has both ad-
vantages and disadvantages. Its important advantage is that
it can potentially reuse all the information gained in previ-
ous computation steps, thus iteration is expected to be faster
than expansion. Iteration can also be seen as a single infi-
nite length random walk. If implemented carefully, iteration
does not reduce the number of estimates for higher order in-
terreflections, thus it is more robust when rendering highly
reflective scenes than expansion.

The property that iteration requires tessellation and finite-
element representation is usually considered as a disadvan-
tage. And indeed, sharp shadows and highlights on highly
specular materials can be incorrectly rendered and light-
leaks may appear, not to mention the unnecessary increase
of the complexity of the scene description (think about,
for example, the definition of the original and tessellated
sphere). However, finite-element representation can also
provide smoothing during all stages of rendering, which re-
sults in more visually pleasing and dot-noise free images.
Summarizing, iteration is the better option if the scene is not
highly specular.

2. Why should we use stochastic methods?

Expansion techniques require the evaluation of very high-
dimensional — in fact, infinite dimensional — integrals.
When using classical quadrature rules for multi-dimensional
integrals44, such as for example the trapezoidal rule, in order
to provide a result with a given accuracy, the number of sam-
ple points is in the order ofO(MD), whereD is the dimen-
sion of the domain. This phenomenon is called thedimen-
sional coreor dimensional explosionand makes classical
quadrature rules prohibitively expensive for higher dimen-
sions. The reason of the dimensional explosion is that these
rules are usually based on uniform grids — that are simple
Cartesian products of the 1D grid in higher dimensions — in
which different dimensions do not effectively interact.

However, Monte-Carlo or quasi-Monte Carlo techniques
distribute the sample points simultaneously in all dimen-
sions, thus they can avoid dimensional explosion. For ex-
ample, the probabilistic error bound of Monte-Carlo integra-
tion is O(M�0:5), independently of the dimension of the
domain.D-dimensional low discrepancy series41 can even
achieveO(logDM=M) = O(M�(1��)) convergence rates
for finite variation integrands.

Furthermore, classical quadrature cannot be used for infi-
nite dimensional integrals, thus the Neumann series should
be truncated afterD terms. This truncation introduces a bias
of order�D+1

� jjLejj=(1 � �). Using a Russian roulette
based technique, on the other hand, Monte-Carlo methods
are appropriate for even infinite dimensional integrals.

Thus we can conclude that the stochastic approach is in-
dispensable for expansion methods.

The application of randomized techniques in iteration is
not so evident, but can also be justified. On the simplest
level, these methods also use integration in each iteration
step. The dimension of the domain is usually not very high.
For example, iterative diffuse radiosity methods need to
evaluate 4-dimensional integrals to obtain form factors. The
dimension is often reduced to 2 by a brutal simplification,
which computes one of the two surface integrals from a
single value. For even 4-dimensional integrals Monte-Carlo
methods are superior than classical quadratures thus in ac-
curate algorithms they are highly recommended.

Furthermore, when stochastic iteration is applied, the op-
erator should be like the real operator just in the average
case. This allows us to use significantly simpler realizations.
For example, the integral part of the operator can also be ap-
proximated as an expectation value, thus in a single transfer
usually no explicit integral is computed. As we shall see, it
is relatively easy to apply random operators whose expected
case behavior gives exactly back that of the real operator.
Thus the error accumulation problem can also be avoided.

If the operator is highly simplified, it does not require the
integrand everywhere in the domain, thus a lot of storage
space can be saved. Compared to the astronomical storage
requirements of non-diffuse radiosity methods, for example,
with stochastic iteration we can achieve the same goal with
one variable per patch69. This argument loses some of its im-
portance when view-independent solution is also required,
since the final solution should be stored anyway. This is not
a problem if only the diffuse case is considered, since using a
single radiosity value per patch the image can be generated
from any viewpoint. For the non-diffuse case, the reduced
storage gets particularly useful when the image is to be cal-
culated in only a single, or in a few eye positions.

Summarizing, the advantages of stochastic iteration are
the simplicity speed, affordable storage requirements and
numerical stability even for very large systems containing
highly reflective materials.
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Figure 5: 100 points distributed by a regular grid (left), random distribution (middle) and Halton low-discrepancy sequence
(right)

3. Options in constructing stochastic rendering methods

3.1. Monte-Carlo versus quasi-Monte Carlo

The core of the computations of all methods is the evaluation
of high-dimensional integrals (for inversion and iteration it
means 4 dimensional integrals, for expansion, it means, at
least theoretically, infinite-dimensional integrals). To evalu-
ate an integral, we can use quadrature formulae, that have
the following form in the simplest case:

Z
[0;1]D

f(z) dz �
1

M
�

MX
i=1

f(zi): (26)

Those sets of sample points that provide an exact integral
value in the asymptotic sense are calleduniform sequences.

Well known examples for uniform sequences are the uni-
form grid or the uniformly distributed random samples (fig-
ure 5). The application of random samples can be justified
by assuming that the integrand is multiplied by a constant
p(z) = 1 function which is the probability density of a uni-
formly distributed random variable, then realizing that the
integral is the formula of the expectation off(z). Expecta-
tions can be approximated by averages if sample points are
selected according to probability densityp(z) = 1:

Z
[0;1]D

f(z) dz =

Z
[0;1]D

f(z)�p(z) dz = E[f(z)] �
1

M
�

MX
i=1

f(zi):

(27)

To find out which are those sample sets that can effec-
tively be used in numerical integration, theKoksma-Hlawka
inequality41 gives us some hints (unfortunately, it is valid
only for finite-variation functions, but the basic observations

are still useful in more general circumstances):

j

Z
z2[0;1]D

f(z) dz�
1

M

MX
i=1

f(zi)j � VHK �D
�
(z1; : : : zN );

(28)
whereVHK is thevariation of f in the sense of Hardy and
Krause, andD�(z1; : : : zN ) is the star-discrepancyof the
used sample set (for the bounds and computation of the dis-
crepancy refer to41; 53; 16).

According to this inequality, the error can be upper-
bounded by the product of two independent factors, the
variation of the integrand and the discrepancy of the used
samples set. The discrepancy shows how uniformly the set
is distributed53. This immediately presents two orthogonal
strategies to improve the quality of quadratures. Either we
try to make the function flat by appropriate variable trans-
formations, or use very uniformly distributed sample sets.
The first technique is calledimportance sampling60, while
the second involves thestratification60; 36; 1 of random points
or the application oflow-discrepancy series41; 82; 44; 29; 60.

Low-discrepancy samples are deterministic point sets that
are designed to be optimally uniform, thus replacing the ran-
dom points by them improves the accuracy of the integral
quadrature. Quadrature rules that use low-discrepancy series
instead of random points are calledquasi-Monte Carlo meth-
ods.

Quasi-Monte Carlo techniques have been first applied to
solve the diffuse rendering equation by Keller27, where the
integrand was generally discontinuous and therefore of in-
finite variation, thus the superiority of quasi-Monte Carlo
method could not been theoretically justified (note that
the Koksma-Hlawka inequality is meaningless if the vari-
ation is infinite). However, the numerical evidence showed
that quasi-Monte Carlo methods can slightly be better than
Monte-Carlo techniques.

The quasi-Monte Carlo integration of infinite variation
functions has been analyzed in44; 70, where it was concluded
that quasi-Monte Carlo methods are still better but lose their
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Figure 6: Error measurements for 1, 5 and 10 bounces

advantage in higher dimensions. The other important prob-
lem is that although a low-discrepancy series has almost lin-
early decreasing discrepancy in the asymptotic sense, this
discrepancy can still be high for not very many points (in
the solution of the rendering equation we rarely use more
than 1000 samples for the estimation of a single pixel). In
the case of the Halton series, for example, thebaseof the
series strongly affects the initial behavior of the discrepancy.
These base numbers are different prime numbers for differ-
ent dimensions, thus for high-dimensional integrals the base
numbers can be quite high, which results in degraded perfor-
mance.

To demonstrate this, in figure 6 the errors of different
bounces generated by quasi-Monte Carlo and the Monte-
Carlo quadratures have been compared for a spherical dif-
fuse scene where only a part is lightsource. For this scene the
analytical solution of the rendering equation is possible20; 70.

3.2. Continuous versus finite-element based methods

Iteration requires the representation of the temporary radi-
ance functionLn. So does expansion if view-independent
solution is needed since the final radiance distribution must
be represented in a continuous domain.

To represent a function over a continuous domain, finite
element methods can be used which approximate the func-
tion in the following form:

L(~x; !) �

nX
j=1

Lj � bj(~x; !) = b
T
(~x; !) � L (29)

wherebj(~x; !) is a system of predefined basis functions, and
Lj factors are unknown coefficients.

This representation can also be seen as projecting the in-
finite dimensional space of the possible radiance functions
into a finite-dimensional function space defined by the basis
functions.

Substituting this approximation into the rendering equa-

tion we can obtain:

b
T
� L � b

T
� L

e
+ T (b

T
� L): (30)

Note that equality cannot be guaranteed, since even if
bT (~x; !) � L is in the subspace defined by the basis func-
tions, the integral operatorT may result in a function that is
out of this space. This can be solved by projecting the result
back to the subspace and using a projected integral operator
TF in the following way:

TFL = hT b
T
� L; ~bi: (31)

wherehT L; ~bi is a vector of scalar products

hT L;~b1i; : : : hT L;~bni

and ~bi is an adjoint basis ofbi, since we require that
h~bi; bji = 1 if i = j and 0 otherwise.

SinceL is constant, we can also obtain

TFL = hT b
T
; ~bi � L = F � L; (32)

whereF = hT bT ; ~bi is a matrix, where thei; j element is
hT bj ;~bii:

Thus the projection converts the original integral to the
following form:

L = L
e
+ TFL = L

e
+ F � L: (33)

An adjoint of this linear equation can be derived by sup-
posing that each basis functionbi is associated with a mea-
surement deviceW e

i that measures the powerPi leaving the
support of the basis function. Thus we obtain

hW e

i ;b
T
� Licos = hW e

i ; biicos � Li = Pi:

Similarly, the measured emission power is

hW
e

i ;b
T
� L

e
icos = hW

e

i ; biicos � L
e

i = P
e

i :

Applying measurement operatorW e

i for equation (33),

c
 Institute of Computer Graphics 1998



Szirmay-Kalos / Stochastic Methods in Global Illumination 9

we can obtain the following equation:

hW
e

i ; biicos�Li = hW
e

i ; biicos�L
e

i+hW
e

i ; biicos�

nX
j=1

FijLj

(34)
This can also be presented in matrix form

P = P
e
+H �P; (35)

where

Hij = Fij �
hW e

i ; biicos

hW e

j
; bjicos

: (36)

When finite-element techniques are used together with ex-
pansion, finite-element representation can either be used to
represent the final result27, or even be involved in the random
walk42.

The latter case may correspond either to the random-walk
solution of the linear equation derived by projecting the inte-
gral equation, or to the Monte-Carlo evaluation of the multi-
dimensional integral containing both the transport and the
projection operators. The second case is preferred, because
it does not require matrixF to be explicitly computed and
stored.

The main problem of finite-element representations is
that they require a lot of basis functions to accurately ap-
proximate high-variation, high-dimensional functions. Not
surprisingly, finite-element methods become really popular
only for the diffuse case, where the radiance depends on 2
scalars and is relatively smooth. For solving the non-diffuse
case, they are good only if the surfaces are not very specular.

3.3. Diffuse versus the general case

If the surfaces have only diffuse reflection and emission —
which is a general assumption of theradiosity method12 —
then the rendering (or the potential) equation has a simplified
form:

L(~x) = L
e
(~x)+

Z



L(h(~x;�!
0
))�fr(~x)�cos �

0
d!
0
: (37)

In this case, the BRDF and the radiance depend on the
surface point, but not on the direction, which reduces the
inherent dimensionality of the problem and simplifies the
finite-element representation:

L(~x; !) � L
(n)

(~x) =

nX
j=1

Lj � bj(~x): (38)

A widely used approach is the application of piece-wise
constant basis functions for whichbj(~x) = 1 if ~x is on sur-
face elementAj and 0 otherwise. An appropriate adjoint ba-
sis is bj(~x) = 1=Aj if ~x is on surface elementAj and 0
otherwise.

Using this set of basis functions, the original rendering
equation is projected to the following linear equation:

L = L
e
+ F � L (39)

where

Fij = hT bj ;~bii =Z
S

Z



bj(h(~x;�!
0
)) � fr(~x) � cos �

0
d!
0~bi(~x) d~x: (40)

Let us extend the formula of the solid angle to be valid
for cases when~x and~y are not necessarily visible from each
other. If the visibility indicator isv(~x; ~y), then

bj(h(~x;�!
0
)) � d!

0
=

d~y � cos �

jj~x� ~yjj2
� v(~x; ~y):

Using this substitution we obtain

Fij =

Z
S

Z
S

bj(~y)�~bi(~x)�fr(~x)�
cos �0 � cos �

jj~x� ~yjj2
�v(~x; ~y) d~y d~x:

(41)

Taking advantage that the base functions are zero except
for their specific domain, we get

Fij =
fi

Ai

�

Z
Ai

Z



bj(h(~x;�!
0
)) � cos �

0
d!
0
d~x =

fi

Ai

�

Z
Ai

Z
Aj

cos �0 � cos �

jj~x� ~yjj2
� v(~x; ~y) d~y d~x: (42)

Applying the

bi(h(~y; !)) � d! =
d~x � cos �0

jj~x� ~yjj2
� v(~x; ~y):

substitution, we can derive yet another form of the transport
matrix

Fij =
fi

Ai

�

Z
Aj

Z



bi(h(~y; !)) � cos � d! d~y: (43)

For the diffuse case, the adjoint equation can be derived
as a special case of equation (35). LetW e

i be1 in points of
Ai and at the directions of the hemisphere ofAi.

Thepower equationis then

P = P
e
+H �P; (44)

where

Hij = Fij � Ai=Aj = Fji � fi=fj : (45)

Note that using equation (43), we can also obtain

Hij =
fi

Aj

�

Z
Aj

Z



bi(h(~y; !)) � cos � d! d~y: (46)
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In order to solve the projected integral equation, basically
the same techniques can be applied as for the original inte-
gral equation: inversion, expansion and iteration.

3.3.1. Random walk solution of the projected integral
equation

Expansion expands the solution into a discrete Neumann se-
ries

L = L
e
+ F � L

e
+ F

2
� L

e
+F

3
� L

e
+ : : : (47)

Let us again examine theF2
� Le term. Using the defini-

tion of the matrixF, this can also be expressed as a multi-
dimensional integral:

(F2 � Le)ji =

nX
j=1

nX
k=1

Fij � Fjk � L
e

k
=

Z
S

Z



Z
S

Z



~bi(~x1) �w1(i) �

nX
j=1

bj(h(~x1;�!
0
1
))�

~bj(~x2) �w2(j) �

nX
k=1

bk(h(~x2;�!
0
2
)) � Le

k
d!
0
2
d~x2d!

0
1
d~x1;

where

w1(i) = fi � cos �
0
1;

w2(j) = fj � cos �
0
2: (48)

Considering the integrand,~x1 should be in patchi for ~bi
to be non zero. Then, only a singlebj will give non-zero
value for the~y1 = h(~x1;�!

0
1) point. To select this, a ray

has to be traced from~x1 in direction�!01 and the visible
patch should be identified. Following this, another point on
the identified patchi should be selected, which is denoted by
~x2, and a ray is traced in direction�!02 to obtain an indexk
of a patch whose emission should be propagated back on the
walk. During propagation, the emission is multiplied by the
BRDFs (fi; fj) and the cosine (cos �02; cos �

0
1) factors of the

visited patches (figure 7).

Note that this is basically the same walking scheme, as
used to solve the original integral equation. The fundamental
difference is that when a patch is hit by the ray, the walk is
not continued from the found point but from another point
of the patch.

The power equation can be treated similarly. Again, let us
examine the two-bounce case

(H2 �Pe)ji =

nX
j=1

nX
k=1

Fji �
fi

fj

�Fkj �
fj

fk

�Pe
k
=

i

j

k
x

y

y

1

1

1 2

2

x

ω

ω2

’

’

Figure 7: Random walk solution of linear equation

Z
S

Z



Z
S

Z



P
e

k
� ~bk(~y1) �w1(k) �

nX
j=1

bj(h(~y1; !1))�

~bj(~y2) �w2(j) �

nX
k=1

bi(h(~y2; !2)) � w3(i) d!2d~y2d!1d~y1;

where

w1(k) = cos �1;

w2(j) = fj � cos �2;

w3(i) = fi: (49)

It means that the integrand in a single point can be obtained
by selecting a point~y1 on patchk, then tracing a ray in di-
rection!1. Having identified the intersected patchj a new
point~y2 is selected on this patch and the ray-tracing is con-
tinued at direction!2. The patch which is hit by this ray
receives the power of patchk attenuated by the BRDFs and
the cosine factors of the steps.

3.4. Global versus local methods

Randomized transport operators transfer the radiance or the
potential in the scene. The source and destination of the
transfer can be points in the case of continuous methods or
patches in the case of finite-element methods.

If the random operator is such that it always selects a sin-
gle source for shooting or single destination for gathering,
then the method is calledlocal method. On the other hand, if
many sources and destinations are taken into consideration
simultaneously in each transfer, then the method is called
global methodor multi-path method47.

Since global methods handle larger transfers in a sin-
gle step, they can be expected to be more efficient than
local methods. On the other hand, the single source or
destination points of local methods directly correspond to
the single “eye” of classical visibility algorithms. Thus, to
exploit the capabilities of global methods, classical visi-
bility algorithms should also be generalized for “moving”
eye positions. These algorithms are calledglobal visibility
algorithms43.
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4. Stochastic expansion: random walks

In computer graphics the first Monte-Carlo random walk al-
gorithm — calleddistributed ray-tracing— was proposed
by Cook et al.13, which spawned to a set of variations, in-
cluding path tracing26, light-tracing17, bi-directional path
tracing30; 77, Monte-Carlo radiosity54; 37; 42, and two-pass
methodswhich combine radiosity and ray-tracing52; 84; 79.

The problem of naive generation of walks is that the prob-
ability that a shooting path finds the eye is zero for a pin-hole
camera or very small if a non-zero aperture camera model
is used, while the probability that a gathering random path
ends in a lightsource may be very little if the lightsources are
small, thus the majority of the paths do not contribute to the
image at all, and their computation is simply waste of time.
Note that shooting is always superior for view-independent
algorithms since they do not have to face the problem of
small aperture.

Thus, on the one hand, random walk must be combined
with a deterministic step that forces the walk to go to the
eye and to find a lightsource. On the other hand,impor-
tance sampling60 should be incorporated to prefer useful
paths along which significant radiance is transferred. Note
that although the contribution on the image is a function
of the complete path, computer graphics applications usu-
ally assign estimated importance to individual steps of this
path, which might be quite inaccurate. In a single step the
importance is usually selected according to the BRDF17; 30,
or according to the direction of the direct lightsources56.
Combined methods that find the important directions using
both the BRDF and the incident illumination have been pro-
posed in76; 22; 31; 64. Just recently, Veach and Guibas78 pro-
posed the Metropolis method to be used in the solution of
the rendering equation. Unlike other approaches, Metropo-
lis sampling35 can assign importance to a complete walk not
just to the steps of this walk, and it explores important re-
gions of the domain adaptively while running the algorithm.
Thus no a-priori knowledge is required about the important
rays to construct a probability density function in advance.
Instead, the algorithm converges to this probability density
automatically.

4.1. Handling infinite-dimensional integrals

Expansion methods require the evaluation of infinite-
dimensional integrals. One way of attacking the problem
is truncating the Neumann series, but this introduces some
bias, which can be quite high if the scene is highly reflec-
tive.

Fortunately, there is another approach that solves the
infinite-dimensional integration problem through random-
ization. In the context of Monte-Carlo integration, this ap-
proach is called theRussian roulette2, but here a somewhat
more general treatment is given that can also justify this ap-
proach for quasi-Monte Carlo quadratures.

The basic idea is very simple. Higher order terms are in-
cluded in the quadrature only randomly with probability de-
creasing with the order of the term. In order to compensate
the missing terms in the expected value, the computed terms
are multiplied by an appropriate factor. If the used proba-
bility goes to zero quickly, then the possibility of requiring
very high dimensional integrals is rather low, which saves
computation time but increases the variance. However, the
expected value will still be correct, thus the integral quadra-
ture will provide an asymptotically unbiased estimate.

A term of the Neumann series has generally the following
form

In =

Z
: : :

Z
W (z1; : : : zn) � L

e
(z1; : : : zn) dz1 : : : zn;

(50)
whereW (z1; : : : zn) = w0 � w1 � : : : � wn is the product of
the weights including the cosine functions of the angles and
the BRDFs.

Let us randomize this integral by introducing a random
variable C(z1; : : : zn), called thecontribution indicator,
that is 1 if a samplez1; : : : zn should be taken into account
in the integral quadrature and 0 if it should not. Using this,
we can define the following random variable,

I
�
n =

Z
: : :

Z
C � ~W � ~L

e
dz1 : : : zn; (51)

where ~W and ~Le are appropriate modifications ofW and
Le, which can compensate the missing terms.

The expectation value of this random variable is

E[I
�
n] =

Z
: : :

Z
E[C(z1; : : : zn)] � ~W � ~L

e
dz1 : : : zn =

Z
: : :

Z
p(z1; : : : zn) � ~W � ~Le dz1 : : : zn; (52)

where p(z1; : : : zn) is the probability of using sample
z1; : : : zn in the integral quadrature.

Obviously, this equals to the original integralI if

p(z1; : : : zn) � ~W � ~L
e
= W � L

e
: (53)

There are many possible selection of the contribution in-
dicator and the~W and ~Le functions, that can satisfy this
requirement, thus there are many different unbiased estima-
tors.

A widely used selection is letting

~W = 1; ~L
e
= L

e and p(z1; : : : zn) = W (z1; : : : zn):

which corresponds to continuing the walk after stepi with
probabilityw(zi).

c
 Institute of Computer Graphics 1998



12 Szirmay-Kalos / Stochastic Methods in Global Illumination

4.2. Importance sampling

When solving the rendering equation, usually directional
integrals (or surface integrals in other formulation) should
be evaluated. Thus to allow the application of random or
low-discrepancy point sets, the integration domain should be
transformed to the unit cube or square.

For example, when dealing with directions, we have to
find a mapping! = T (z) that projects the unit square to the
surface of the sphere (or hemisphere) and use the following
integration ruleZ




f(!) d! =

Z
[0;1]D

f(T
�1

(z)) �

����dT�1(z)dz

���� dz; (54)

where ����dT�1(z)dz

���� = 1

t(z)

is the Jacobi determinant of the inverse mapping.

If the Jacobi determinant is large, then a small portion of
the unit square is mapped onto a large region. Thus sample
points that are uniformly distributed in the unit square will
be quite rare in these regions. Alternatively, where the Ja-
cobi determinant is small, the sample points will be dense.
Considering this, the meaning oft(T�1(z)) is thedensityof
sample points in the neighborhood of! = T�1(z). This has
an illustrative content for the random case. Ifz is uniformly
distributed random variable, then the probability density of
! = T (z) will be t(z).

The same conclusion can also be made in the context of
pure Monte-Carlo integration assuming that the samples are
not uniformly distributed in the domain but following ap(z)
probability density:Z

[0;1]D

f(z) dz =

Z
[0;1]D

f(z)

p(z)
� p(z) dz =

E

�
f(z)

p(z)

�
�

1

M
�

MX
i=1

f(zi)

p(zi)
(55)

The variance of this estimate is low iff(z)=p(z) is flat, thus
p(z) should be, at least approximately, proportional tof(z).

Mathematically, the solution of either the rendering or the
potential equation for a given point(~x; !) requires the eval-
uation of the following multi-dimensional integral

L(~x; !) = L
e
+ T L

e
+ T

2
L
e
+ : : : =Z

: : :

Z
L
e
+
w1

t1
�L

e
+
w1

t1
�
w2

t2
�L

e
+: : : dz1dz2 : : : (56)

which can be estimated using formula (26) by evaluating the
integrand in sample points and averaging the results.

An important design decision of such an algorithm is the

selection of mappingsTi. Using probabilistic approach, it
means the determination of the probability densities of find-
ing new directions during the walks.

Following the directions concluded from the Koksma-
Hlawka inequality, the mappings should make the integrand
flat — that is of low variation, or constant in the ideal case. It
means that the probability of selecting a walk is proportional
to its contribution.

Looking at formula (56), which is the single multi-
dimensional solution of the rendering equation, this decision
seems to be hard to made, since there are too many free pa-
rameters to control simultaneously. Fortunately, this solution
can also be presented in the following recursive form:

L
e
+

Z
w1

t1
� [L

e
+

Z
w2

t2
� [L

e
+ : : :] : : :] dz1dz2 : : : (57)

If we could ensure that each of the integrands of the formZ
wi

ti
� [L

e
+

Z
: : :] dzi

is constant (at least approximately), then the integrand of the
single multi-dimensional integral will also be constant.

An optimal importance sampling strategy thus requires
densityti to be proportional to the product of the incom-
ing illuminationLe +

R
: : : and the cosine weighted BRDF

wi. Unfortunately, during random walks the incoming non-
direct illumination is not known (the random walk is just
being done to estimate it).

Thus, we have three alternatives. Information about the
illumination in the space can be gathered in a preprocessing
phase, then this information can be used to obtain probability
densities for importance sampling. This is called theglobal
importance sampling.

The second alternative is using the information gained
during previous walks to approximate the illumination. This
strategy is calledadaptive importance sampling.

In the third alternative, the problem is simplified and the
indirect illumination is not considered in importance sam-
pling. When the directions are generated, we use onlywi

depending on the local orientation, the BRDF andLe rep-
resenting the direct illumination of the actual point. This is
called thelocal importance sampling.

It turns out that we have to encounter severe problems
when we have to find a mapping which has density that is
proportional to the product of the effects of the BRDF and
the direct lighting. Consequently, local importance sampling
strategies usually use only eitherwi orLe to identify impor-
tant directions. The first alternative is called theBRDF sam-
pling, while the second is called thelightsource sampling.

4.2.1. BRDF sampling

BRDF based importance sampling means that at stepi the
densityti of the sample points is proportional to the weight
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wi, that is

ti / wi = fr(!in; ~x; !out) � cos � (58)

In gathering algorithms!out is known, � is the angle be-
tween!in and the surface normal, and!in should be de-
termined. In shooting algorithms, on the other hand,!in is
known,� is the angle between!out and the surface normal,
and!out should be determined.

Due to the fact thatti represents density (probability den-
sity for Monte-Carlo methods), its integral is 1. Thus for
gathering walks, the ratio of proportionality in equation (58)
isZ

w d!in =

Z
fr(!in; ~x; !out)�cos �in d!in = a(~x; !out)

wherea(~x; !out) is thealbedoof the surface at point~x in
the outgoing direction. Similarly, the proportionality ratio
for shooting walks isZ

w d!out =

Z
fr(!in; ~x; !out)�cos �out d!out = a(~x; !in):

Thus the weightswi=ti are the albedos at the visited
points.

When combining this with Russian roulette of type~W =

1; ~Le = Le, the probability of continuing the walk will be
equal to the albedo. This can also be interpreted in the fol-
lowing way. When the next direction is sampled, we use a
subcritical densitywi which does not integrate to 1 but to a
valuea(~x; !) and with the “missing” probability1�a(~x; !)
it is decided whether or not the walk is stopped.

4.2.2. Lightsource sampling

Lightsource sampling is used indirect lightsource calcula-
tions56 and as a complementary sampling strategy to BRDF
sampling in random walks.

Since in this case, the samples are selected from the light-
source instead of the directional sphere, the surface integral
form of the transport operator is needed:

(T L
e
)(~x; !) =Z




Le(h(~x;�!0); !0) � fr(!
0; ~x; !) � cos �0 d!0 =

Z
S

L
e
(~y; !~y!~x)�fr(!~y!~x; ~x; !)�

cos �0
~x
� cos �~y

jj~x� ~yjj2
�v(~x; ~y) d~y;

(59)
wherev(~x; ~y) is 1 if points~x and~y are not occluded from
each other and 0 otherwise.

If the scene has a single, homogeneous lightsource, it is
relatively small and is far from the considered point, then the
integrand will be approximately constant on the lightsource

surface, thus point~y can be generated using a uniform dis-
tribution on the lightsource.

If the scene has many lightsources, either one ray is sent
to each of them, or just a single lightsource is sampled that
is selected randomly.

4.2.3. Sampling the lightsources in gathering random
walks

Since lightsource sampling generates samples only on the
direct lightsources, it completely ignores indirect illumina-
tion. Thus it cannot be used alone in global illumination al-
gorithms, but only as a complementary part of, for example,
BRDF sampling.

The simplest way to combine the two strategies is to gen-
erate all but the last directions of the gathering walk by sam-
pling the BRDF and to compute the last direction by sam-
pling the lightsource. Note that when stopping the walk, the
indirect illumination is assumed to be zero, thus following
the directions of the lightsources is a reasonable approach.

Another combination strategy is to trace one or more
shadow rays from each visited point of the walk towards the
lightsources, not only from the last of them.

Formally, this approach can be presented as a restructur-
ing of the Neumann series

L = L
e
+ T L

e
+ T

2
L
e
+ T

3
L
e
: : : =

Le + (T Le) + T (T Le) + T
2(T Le) : : : (60)

and using lightsource sampling for theLe� = (T Le) inte-
gral while sampling the BRDFs when evaluating theT iLe�

integrals. Practically it means that having hit a surface, one
or more shadow rays are traced towards the lightsources and
the reflection of the illumination of this point is estimated.
This reflection is used as if it were the emission of the sur-
face. This method is particularly efficient if the scene con-
sists of point lightsources. Tracing a single ray to each point
lightsource, the illumination due to the point lightsources
can be determined exactly (with zero variance).

4.2.4. Importance sampling in colored scenes

So far, we have assumed that the weights containing the
BRDFs and the emissions are scalars thus the densities can
be made proportional to them. This is only true if the render-
ing equation is solved on a single wavelength.

However, if color images are needed, the rendering equa-
tion should be solved on several (at least 3) different wave-
lengths. If the different wavelengths are handled completely
independently, then the proposed importance sampling strat-
egy can be used without any modifications. However, this
approach carries out geometric calculations, such as trac-
ing rays, independently and redundantly for different wave-
lengths, thus it cannot be recommended.
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14 Szirmay-Kalos / Stochastic Methods in Global Illumination

A better approach is using rays that transport light on all
wavelengths simultaneously. In this case the emission and
the BRDF can be represented by vectors, thus to allow im-
portance sampling, we need a scalarimportance functionI
that is large when the elements in the vector are large and
small when the elements are small. A straightforward way is
using theluminanceof the light as the importance function.

4.2.5. Multiple importance sampling

So far, we mentioned two basic importance sampling strate-
gies, the BRDF sampling and the lightsource sampling,
which are local in the sense that they focus on a single re-
flection. It is easy to imagine that if the sampling considers
simultaneously many reflections, then the number of possi-
ble strategies increases dramatically.

Obviously, we desire to use the best sampling strategy.
Unfortunately the performance of a sampling strategy de-
pends on the properties of the scene, which is usually not
known a-priori, thus the best strategy cannot be selected. In-
stead of selecting the best, Veach and Guibas77 proposed to
combine several strategies in a way that the strengths of the
individual sampling methods are preserved.

Suppose that we can usen different sampling techniques
for generating random paths, where the distribution of the
samples is constructed from severalp1; :::; pn importance
sampling distributions. The number of samples taken from
pi is denoted byMi, and the total number of samples by
M =

P
i
Mi. TheMi values are fixed in advance before

any samples are taken. The “average probability density” of
selecting the samplez is then

p̂(z) =

nX
i=1

Mi

M
� pi(z): (61)

Thus the integral quadrature using these samples isZ
[0;1]D

f(z) dz =

Z
[0;1]D

f(z)

p̂(z)
� p̂(z) dz �

1

M

nX
i=1

MiX
j=1

f(zi;j)

p̂(zi;j)
=

nX
i=1

1

Mi

MiX
j=1

wi(zi;j) �
f(zi;j)

pi(zi;j)

(62)
wherezi;j is thejth sample taken from theith distribution,
and the weights are

wi(z) =
Mi � pi(z)P
n

k=1
Mk � pk(z)

: (63)

Other heuristic weight factors can also provide good
results30; 75. For the unbiased estimation

P
i
wi(z) = 1

should hold for allz.

4.2.6. Global importance sampling

Global importance sampling methods are two-phase proce-
dures. In a preprocessing phase they build a data structure
that guides the second phase to find important directions.
These methods can be classified according to their incorpo-
rated data structure. Since the ray-space is 5-dimensional,
it is straightforward to apply a5D adaptive tree31 that is
similar to the well-known octree to store radiance informa-
tion. Jensen proposed the application of thephoton-mapas
the basis of importance sampling22. We assigned the power
computed in the preprocessing phase tolinksestablished be-
tween two interacting patches64.

4.2.7. Adaptive importance sampling

Adaptive importance sampling methods neither require the
non-uniform probability densities to be constructed in ad-
vance, nor simplify them to take only into account local
properties, but converge to a desired probability density us-
ing the knowledge of previous samples. Three techniques are
particularly important, which have also been used in render-
ing: genetic algorithms32 the Metropolis sampling35; 78 and
the VEGAS method33; 62. In this paper only the Metropolis
sampling is discussed.

4.2.8. Metropolis sampling

The Metropolis algorithm35 converges to the optimal prob-
ability density that is proportional to the importance, that is
in the limiting caseI(z) = b � p(z):

However, this probability density cannot be stored, thus
in the Monte-Carlo formula the importance should be used
instead, in the following way:

I =

Z
V

f(z)

I(z)
� I(z) dz = b �

Z
V

f(z)

I(z)
� p(z) dz =

b � E

�
f(z)

I(z)

�
�

b

M
�

MX
i=1

f(zi)

I(zi)
(64)

In order to generate samples according top(z) = 1=b �

I(z), a Markovian process is constructed whose stationary
distribution is justp(z). Informally, the next statezi+1 of
this process is found by letting an almost arbitrarytentative
transition functionT (zi ! zt) generate atentative sam-
ple zt which is either accepted as the real next state or re-
jected making the next state equal to the actual state using
an “acceptance probability” a(zi ! zt) that expresses the
increase of the importance (if this “acceptance probability”
is greater that 1, then the sample is accepted deterministi-
cally).

The formal definition of this Markovian process
fz1; z2; : : : zi : : :g is as follows:
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for i = 1 to M do
Based on the actual statezi,

choose another random, tentative pointzt

a(zi ! zt) = (I(zt) � T (zt ! zi))=((I(zi) � T (zi ! zt))

if a(zi ! zt) � 1 then accept(zi+1 = zt)

else // accept with probabilitya(zi ! zt)

Generate random numberr in [0; 1].
if r < a(zi ! zt) then zi+1 = zt

else zi+1 = zi

endif
endfor

Note that “acceptance probability”a(x! y) has the fol-
lowing property:a(x! y) = 1=a(y! x).

The transition probability of this Markovian process is:

P (x! y) =

(
T (x! y) if a(x! y) � 1 ;

T (x! y) � a(x! y) otherwise:
(65)

In equilibrium state, the transitions between two statesx and
y are balanced, that is

p(x) � P (x! y) = p(y) � P (y! x):

Using this and equation (65), and assuming without the loss
of generality thata(x! y) � 1, we can prove that the sta-
tionary probability distribution is really proportional to the
importance:

p(x)

p(y)
=

P (y! x)

P (x! y)
=

T (y! x)

T (x! y)
� a(y! x) =

I(x)

I(y)
:

(66)

If we select initial points according to the stationary distri-
bution — that is proportionally to the importance — then the
points visited in the walks originated at these starting points
can be readily used in equation (64).

When we use Metropolis sampling in the solution of the
global illumination problem, the “state”z corresponds to
a complete walk. Mutation strategies are responsible for
changing the walk a “little”, by perturbing one or more direc-
tions or surface points, adding or deleting steps in the path,
etc.

The first use of Metropolis sampling in rendering aimed
at speeding up bi-directional path tracing78.

4.3. Gathering-type random walk algorithms

Gathering type random walks correspond to the Monte-
Carlo solution of the rendering equations. They start at the
eye position and gather the emission of the visited points.
This approach is quite ineffective if the lightsources are
small, since it has rather low probability that a walk visits
a lightsource.

4.3.1. Visibility ray-tracing

Classical ray tracing is a deterministic algorithm and is in-
cluded here only for completeness. It only models ideal re-

flections and transmissions (also called thecoherent compo-
nents) that follow the laws of geometric optics — i.e. the law
of reflection and the Snellius-Descartes law of refraction —
but does not take into account multiple diffuse or incoherent
specular reflection or refraction.

D

S

S

Light Source

Eye

Image Plane

Shadow Ray

Figure 8: Visibility ray tracing

In visibility ray tracing (backward tracing) rays are emit-
ted from the viewpoint. Rays are traced until they reach a
surface which have no coherent reflection or refraction (un-
less they leave the environment or the length of the walk
exceeds a predefined limit), so child rays are only generated
(and traced recursively) when the given ray hits a surface
that is reflective or transmissive. Restricting the continuation
to coherent components, a ray can spawn to maximum two
child rays, which is low enough not to necessitate random
techniques.

The diffuse and incoherent specular reflection of a sur-
face, on the other hand, is determined by taking into account
only the direct illumination. For point lightsources, this can
be done deterministically by tracing one ray, calledshadow
ray, to each lightsource to decide whether or not the given
lightsource is visible from the intersection point. For area
lightsources, the illumination can be computed by tracing
random shadow rays as proposed by direct-lightsource com-
putation.

4.3.2. Distributed ray-tracing

Distributed ray tracingsuggested by Cook13 can model all
the possible paths. In this method the ray tracing is not termi-
nated when reaching a diffuse surface. After a ray has hit a
diffuse surface, child rays are generated randomly according
to the BRDF characterizing the surface. For the appropriate
estimation of the diffuse interreflection, child rays have to
be traced and the average of their contributions have to be
computed.

This approach is based on the recursive formulation of the
integrals in the Neumann series (equation (18)).
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Light Source

Eye

Image Plane

Figure 9: Distributed ray-tracing

4.3.3. Path-tracing

Another Monte-Carlo approach proposed by Kajiya ispath
tracing 26, which is based on the multi-dimensional inte-
gral formulation of the terms of the Neumann series (equa-
tion (15)).

Light Source

Eye

Image Plane

Figure 10: Path tracing

This method simply creates a path history for a single par-
ticle interacting with the environment until absorption. That
is, rather than spawning new rays at an intersection, it sim-
ply chooses a random direction according to the BRDF for
the ray to follow. The walk is continued with a probability
equal to the albedo.

4.4. Shooting-type walks methods

Shooting walks are based on the Monte-Carlo solution of the
potential equation.

4.4.1. Photon tracing

Photon tracing(forward ray-tracing) is the inverse of visi-
bility ray-tracing and uses similar simplifying assumptions,

thus they also stop tracing when hitting a surface that does
not have coherent reflection or refraction. In photon tracing
the rays are emitted from the light sources, and at each hit it
is examined whether the surface has ideal reflection, refrac-
tion and incoherent reflection or refraction. In the directions
of ideal reflection or refraction, the tracing is continued by
starting new child rays. The effect of incoherent interactions,
on the other hand, is stored in a map or is projected to the eye
by tracing a ray towards the camera position.

4.4.2. Light Tracing

In light tracing17 photons perform random walk through the
scene starting at the lightsources. Whenever a surface is hit,
a ray is traced from the intersection point to the eye and the
contribution is added to the selected pixel (if any).

Light Source

Eye

Image Plane

particle path
contribution path

Figure 11: Light tracing

Light tracing is the direct implementation of the Monte-
Carlo quadrature of the multi-dimensional formulation.
When the next direction is determined, the BRDF based im-
portance sampling can be applied and combined with the
random termination according to the albedo.

4.4.3. Bi-directional Path Tracing

Bi-directional path tracing30; 77 is based on the combination
of shooting and gathering walks thus it can combine the ad-
vantages of both techniques. Namely, it can effectively han-
dle small lightsources and small aperture cameras.

Walks are initiated at the same time from a selected light
source and from the viewpoint. After some steps, either a
single deterministic shadow ray is used to connect the two
types of walks77, or all points of the gathering walk are con-
nected to all points of the shooting walk using deterministic
rays30. If the deterministic shadow ray detects that the two
points are occluded from each other, then the contribution of
this path is zero.

Note that gathering and shooting walks use different in-
tegration variables, namely a gathering walk is specified by
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a point on the pixel area and a sequence of incoming di-
rections, while a shooting walk is defined by a point on the
lightsource and a sequence of the outgoing directions. Thus
when the two walks are connected, appropriate transforma-
tions should take place.

Let us first consider a walk of a single bounce (figure 12).
According to the definition of the solid angle, we obtain

d!01
d!2

=
dA � cos �out=r

2

1

dA � cos �in=r22
=

r22
r2
1

�
cos �out

cos �in
; (67)

and for the substitution of the surface integral on the light-
source

d!
0
2 =

d~y � cos �

r2
2

: (68)

Thus the transformation rule is

cos �
0
1 � cos �in d!

0
1d!

0
2 =

cos �01 � cos �out

r2
1

� cos � d!2d~y;

which means that when converting a shooting type walk to a
gathering type walk, then the radiance should be multiplied
by

cos �01 � cos �out

r2
1

:

r
r

d

d

d

dA

dy

ω

ω

ω

θ

θ θ

1
2

out in

1

2

2
’

θ1

Figure 12: Correspondence between the solid angles of in-
coming and outgoing directions

When the shooting walk consists of more than 1 steps,
then formula (67) should be applied to each of them, but
formula (68) only to the last step. This conversion replaces
the incoming directions by the outgoing directions and the
subsequent steps compensater2k+1=r

2

k scaling. Finally, we
end up with a formula which is similar to the 1-step case:

cos �
0
k � cos �

0
k+1 � : : : cos �

0
n d!

0
k : : : d!

0
n =

cos �0k � cos �n�k+1

r2
k

�cos �n�k�: : : cos �1 d!n�k : : : d!1d~y:

Figure 13 shows an example whenk = 2 andn = 4.
This formula means that we can use the rules of sections
1.2.1 and 1.2.2 to generate the shooting and gathering walks
— gathering walks use the cosine of the incoming angle,

while shooting walks use the cosine of the outgoing angle
— and the transformation of the combined walk to a single
gathering walk requires a multiplication by

cos �0k � cos �n�k+1

r2
k

:

Image Plane
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Figure 13: Bi-directional path tracing with a single deter-
ministic step

Light Source

Image Plane

y0 y1

y2

x0

x1

x2

eye path

light path

shadow rays

Figure 14: Bi-directional path tracing with multiple deter-
ministic steps

In Lafortune’s version of the bi-directional path tracing30

not only the endpoints of the shooting and gathering walks
are connected, but all intersection points are linked by
shadow rays. The flux is estimated by a weighted sum of
the different walks as suggested by the concept of multiple
importance sampling.

4.4.4. Photon-map

Bi-directional path tracing connects a single gathering walk
to a single shooting walk. However, if the effects of a shoot-
ing walk, for instance, could be stored, then when a new
gathering walk is computed, it could be connected to all
of them simultaneously. This is exactly what Jensen24; 23; 25

proposed, also giving the definition of a data structure, called
the photon-mapwhich can efficiently store the effects of
many shooting walks.

A photon map is a collection of photon hits generated in
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the shooting phase of the algorithm. The photon-map is or-
ganized in akd-treeto support efficient retrieval. A photon
hit is stored with the power of the photon on different wave-
lengths, position, direction of arrival and with the surface
normal.

The gathering phase is based on the following approxima-
tion of the transport operator:

L(~x; !
0
) =

Z



L(h(~x;�!
0
); !

0
)�fr(!

0
; ~x; !)�cos �

0
d!
0
=

Z



d�(!0)

dA cos �0d!0
� fr(!

0
; ~x; !) � cos �

0
d!
0
�

nX
i=1

��(!0i)

�A
� fr(!

0
i; ~x; !); (69)

where��(!0i) is the power of a photon landing at the sur-
face�A from direction!0i. The�� and�A quantities are
approximated from the photons in the neighborhood of~x in
the following way. A sphere centered around~x is extended
until it containsn photons. If at this point the radius of the
sphere isr, then the intersected surface area is�A = �r2.

4.4.5. Instant radiosity

Instant radiosity28 elegantly subdivides the shooting walks
into a view-independent walk and into the projection of the
contribution to the eye. Let us call this last step with eye
projection theeye-step. The view-independent walk is quite
similar to the light-tracing algorithm, but the new directions
are sampled from the Halton sequence instead of a random
distribution.

When a surface hit is found, the eye-step is calculated tak-
ing advantage of the rendering hardware of advanced work-
stations. The reflection of this hit is assumed to be a point
lightsource (in the radiosity setting the emission of the light-
source is also diffuse), and the rendering hardware is used
to render the effect of this lightsource on the scene and also
to compute shadows. The final image is the average of such
estimates, which are computed using the hardware accumu-
lation buffer.

Instant radiosity is quite similar to photon-map based
techniques. However, instead of using ray-tracing for fi-
nal gather, the photons in the photon map are used as
lightsources and fast and hardware supported visibility and
shadow algorithms are applied. The other fundamental dif-
ference is that instant radiosity allows just a relatively low
number of photons which therefore should be very well
distributed. The optimal distribution is provided by quasi-
Monte Carlo light walks.

4.4.6. Random walks for the radiosity setting

As mentioned, the projected rendering equation can also be
solved by random walks54; 47. The basic difference is that
when a patch is hit by a ray, then instead of initiating the next
ray from this point, another independent point is selected on
the same patch.

Considering the concept of importance sampling and Rus-
sian roulette, many different strategies can be elaborated by
appropriately defining thep, ~W and~Le functions (recall that
according to equation (53) the requirement of an unbiased
estimate isp � ~W � ~Le = W � Le).

For example, let us use the following simulation54; 47 to
obtain a radiance estimate of patchi1:

First a ray is found that starts on this patch. The starting
point ~x1 is sampled from a uniform distribution, while the
direction!01 is sampled from a cosine distribution, thus the
probability density is1=Ai1

�cos �01=�. This ray is traced and
the next patch is identified. Let it be patchi2. At patchi2 it
is decided whether or not the walk should be stopped with
probability of the albedo of the patch. Note that for diffuse
surfaces the albedo isa = f ��. If the walk has to be contin-
ued, then a new starting point~x2 is found on patchi2, and
the same procedure is repeated recursively.

With this strategy, the probability density of completing
ann step walk is

p(~x1; !
0
1; ~x2; !

0
2; : : : ~xn�1; !

0
n�1) =

1

Ai1

�
cos �01
�

�
ai2
Ai2

�
cos �02
�

: : :
ain�1

Ain�1

�
cos �0n�1

�
�(1�ain ) =

fi1
Ai1

�cos �
0
1 �

fi2
Ai2

�cos �
0
2 : : :

fin�1

Ain�1

�cos �
0
n�1 �

1� ain
ai1

=

W �
1� ain
ai1

: (70)

Thus the required weight~W of the walk is

~W =
ai1

1� ain
: (71)

Thus if the patch on which the walk is terminated is a source
having emissionLen, then the estimator of the radiance of
patchi is

L
e

n �
ai1

1� ain
:

Other gathering or shooting estimators have been pro-
posed and their variances have been estimated in54; 47.

4.4.7. Global ray-bundle tracing

Realizing that an accurate solution requires great many sam-
ples,global ray-bundle tracing68; 69; 62 uses a bundle of very
many (e.g. 1 million or even infinite) global parallel rays,
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which can be traced simultaneously using image coherence
techniques. In order to represent the radiance that is trans-
ferred by a ray, finite-element techniques are applied that ap-
proximate the positional (but not the directional) dependence
of the radiance by piece-wise continuous or piece-wise lin-
ear functions67.

L(~x; !) �

nX
j=1

bj(~x) � Lj(!) = b
T
� L(!): (72)

Note that this is a mixed finite-element and continuous
method, since the positional dependence of the radiance is
approximated by finite-elements, while the directional de-
pendence is not.

Substituting this into the rendering equation and project-
ing that into an adjoint base we obtain

L(!) = L
e
(!) + TFL(!); (73)

whereTF is a composition of the original transport operator
and its projection to the adjoint base

TFL(!) = hT b
T
� L(!); ~bi: (74)

Let us use again piece-wise constant basis functions. Then
the result of the application of the transport operator on patch
i is

TFL(!)ji =
1

Ai

�

Z



Z
Ai

L(h(~x;�!0); !0)�cos �0� ~fi(!
0
; !) d~x d!0:

(75)
Taking into account that the integrand of the inner surface

integral is piece-wise constant, it can also be presented in
closed form:Z

Ai

L(h(~x;�!
0
); !

0
) � cos �

0
� ~fi(!

0
; !) d~x =

nX
j=1

~fi(!
0
; !) �A(i; j; !

0
) � Lj(!

0
); (76)

whereA(i; j; !0) expresses the projected area of patchj that
is visible from patchi in direction!0. In the unoccluded case
this is the intersection of the projections of patchi and patch
j onto a plane perpendicular to!0. If occlusion occurs, the
projected areas of other patches that are in between patchi

and patchj should be subtracted as shown in figure 15.

This projected area can be efficiently calculated simulta-
neously for all patch pairs using global discrete or continu-
ous visibility algorithms62 and also exploiting the hardware
z-buffer69. These algorithms can also have random nature,
that is, they can result inA(i; j; !0) � Lj(!0) just as an the
expected value63.

Using equation (76) the rendering equation can be ob-

A

A

’

j

i
A(i,j,    )

projection of

projection of

Akprojection of

ω

’ω

Ak

Ai

A j

’ω

projection plane

Figure 15: Interpretation ofA(i; j; !0)

tained as:

L(!) = L
e
(!) +

Z



F(!
0
; !) �A(!

0
) � L(!

0
) d!

0
; (77)

whereL(!) is the vector of radiance values,F(!0; !) is a
diagonal matrix of BRDFs, andgeometry matrixA contains
the relative visible areas:A(!0)jij = A(i; j; !0)=Ai.

Note that equation (77) is highly intuitive as well. The ra-
diance of a patch is the sum of the emission and the reflection
of all incoming radiance. The role of the patch-direction-
patch “form-factors” is played byA(i; j; !0)=Ai.

This is also an integral equation but unlike the original
rendering equation it provides the radiance of not only a sin-
gle point but for all points at once. This integral equation is
solved by random or quasi-random shooting type walks.

image plane

direction 1

direction 2

direction 3

Figure 16: A path of ray-bundles

A single walk starts by selecting a direction either ran-
domly or quasi-randomly, and the emission transfer of all
patches is calculated into this direction (figure 16). Then a
new direction is found, and the emission is transferred and
the incoming radiance generated by the previous transfer is
reflected from all patches into this new direction. The algo-
rithm keeps doing this for a few times depending on how
many bounces should be considered, then the emission is
sent and the incoming radiance caused by the last transfer
is reflected towards the eye. Averaging these contributions
results in the final image. There are basically two different
methods to calculate the image estimate. On the one hand,
evaluating the BRDF once for each patch, a radiance value
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is assigned to them, then in order to avoid “blocky” appear-
ance, bi-linear smoothing can be applied.

Using Phong interpolation, on the other hand, the radiance
is evaluated at each point visible through a given pixel us-
ing the incoming radiance field, the surface normal and the
BRDF of the found point. In order to speed up this proce-
dure, the surface visible at each pixel, the visibility direction
and the surface normal can be determined in a preprocessing
phase and stored in a map. Phong interpolation is more time
consuming but the generated image is not only numerically
precise, but is also visually pleasing.

In the simplest case, when the global ray-bundles are han-
dled similarly to the light-tracing algorithm, this requires just
one variable per patch. In the more elaborate versions of the
algorithm, the radiance of the steps of a walk are combined
in all possible ways, which significantly improves the per-
formance but needs more storage space.

The global directions defining the ray-bundles are sam-
pled from uniform random and low-discrepancy sequences.
In 69; 62 adaptive importance sampling, such as the Metropo-
lis method, is also considered, but it is concluded that this
method does not offer significant improvement for relatively
smooth integrands.

4.4.8. Multi-path method using global random lines

Multi-path methodsrepresent a bridge between random walk
and iterative methods. They are essentially random walk
methods, but in their single step many random walks are ad-
vanced parallely.

Sbert47; 50; 49 proposed a complete family of multi-path
methods, that are based on randomglobal lines, which was
the basic “engine” to advance the walks. A single global line
transfers the reflected power of all those patches that are in-
tersected by this line to the direction of this line. The global
line also transfers a portion of the emission of the intersected
patches. Thus a line initiates those walks that would start in
a patch intersected by this line, and continues those previ-
ous walks which carried some power onto the intersected
patches.

4.5. Software implementations of the random-walk
methods

An important practical implementation of the path-tracing
algorithm is theRADIANCEsystem80. It incorporates a lot
of coherence, importance sampling and caching techniques
to efficiently handle complex scenes. For example, the scene
is stored in an octree to reduce ray-object intersections. The
irradiance is cached in another octree81 to take advantage of
the fact that diffuse reflections do not change abruptly. This
allows to compute the color of neighboring pixels without
tracing rays in the directions responsible for diffuse inter-
reflections.

Another versatile package is theART72 developed at the
Vienna University of Technology. It is an open system that
can easily be extended by new global illumination algo-
rithms, BRDF models, object types, etc. ART has an efficient
ray-casting engine using hierarchical bounding boxes to re-
duce ray-object intersection calculations, a scene processing
subsystem that takes generalized CSG models as scene de-
scriptions, and an image postprocessing subsystem to handle
different image formats. Visibility ray-tracing, path tracing
and photon tracing have already been implemented. These
methods use BRDF based importance sampling and termi-
nate the walks using Russian roulette. Bi-directional path
tracing with Metropolis sampling is being implemented. The
system can work withR;G;B coordinates and also with dif-
ferent spectral representations.

5. Stochastic iteration

The basic idea of stochastic iteration is that instead of ap-
proximating operatorT in a deterministic way, a much sim-
pler random operator is used during the iteration which “be-
haves” as the real operator just in the “average” case. The
concept of stochastic iteration was proposed for the diffuse
radiosity problem in37, that is for the solution of finite-
dimensional linear equations.

In this section we present a generalized formulation that
is somewhat different from the original concepts to allow to
attack also non-diffuse global illumination problems63.

Suppose that we have a random linear operatorT
� so that

E[T
�
L] = T L (78)

for any integrable functionL.

In the case of finite-element representations, equation (78)
should be true for theTFL operator that also involves the
projection to the finite function space.

During stochastic iteration a random sequence of oper-
atorsT �1 ; T

�
2 ; : : : T

�
i : : : is generated, which are instantia-

tions of T �, and this sequence is used in the iteration for-
mula:

Ln = L
e
+ T

�
n Ln�1: (79)

Since in computer implementations the calculation of a
random operator may invoke finite number of random num-
ber generator calls, we are particularly interested in random
operators having the following construction scheme:

1. Random “point”pi is found from a finite dimensional
set� using probability densityprob(p). This probability
density may or may not depend on functionL.

2. Usingpi a “deterministic” operatorT �(pi) is applied to
L.
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Pointpi is called therandomization pointsince it is respon-
sible for the random nature of operatorT �.

Using a sequence of random transport operators, the mea-
sured power

Pn =MLn (80)

will also be a random variable which does not converge but
fluctuates around the real solution. Thus the solution can be
found by averaging the estimates of the subsequent iteration
steps.

Formally the sequence of the iteration is the following:

P1 = ML1 =M(L
e
+ T

�
1 L

e
)

P2 = ML2 =M(L
e
+ T

�
2 L

e
+ T

�
2 T

�
1 L

e
)

...

PM = MLM =M(L
e
+ T

�
ML

e
+ T

�
MT

�
M�1L

e
+ : : :)

Averaging the firstM steps, we obtain:

~P =
1

M

MX
i=1

MLi =

M(Le +
1

M

MX
i=1

T �
i
L
e +

1

M

M�1X
i=1

T �
i+1

T �
i
L
e + : : :) =

M(Le+
1

M

MX
i=1

T �
i
L
e+

M � 1

M
�

1

M � 1

M�1X
i=1

T �
i+1

T �
i
L
e+: : :):

(81)

In order to prove that~P really converges to the solution
of the integral equation, first it is shown that the expectation
value of

T
�
i+kT

�
i+k�1 : : : T

�
i+1T

�
i L

e

is T k+1Le. For k = 0, it comes directly from the require-
ment of equation (78). Fork = 1, thetotal expectation value
theoremcan be applied:

E[T
�
i+1T

�
i L

e
] =

Z
�

E[T
�
i+1T

�
i L

e
jpi+1 = p] � prob(p) dp:

(82)
Since for a fixedpi+1 = p, operatorT �i+1 becomes a deter-
ministic linear operator, its order can be exchanged with that
of the expected value operator:

E[T
�
i+1T

�
i L

e
jpi+1 = p] = T

�
i+1(p) (E[T

�
i L

e
]) : (83)

Using requirement (78) for the expected value we further
obtain

E[T
�
i+1T

�
i L

e
jpi+1 = p] = T

�
i+1(p)(T L

e
): (84)

Substituting this back to equation (82), we get

E[T
�
i+1T

�
i L

e
] =

Z
�

T
�
i+1(p)(T L

e
) � prob(p) dp =

E[T
�
i+1(T L

e
)] = T (T L

e
) = T

2
L
e
: (85)

which concludes our proof for thek = 1 case. The very
same idea can be used recursively for more than two terms.

Returning to the averaged solution~P , its expected value
is then

E[ ~P ] =

M(Le+T Le+
M � 1

M
T 2

L
e+

M � 2

M
T 3

L
e+: : :+

1

M
TM

L
e);

(86)
which converges to the real solution

M(L
e
+ T L

e
+ T

2
L
e
+ T

3
L
e
+ : : :)

if M goes to infinity. Note also that there is some power “de-
fect” because of the missing higher order terms for finiteM

values. Denoting the contraction ratio of the integral opera-
tor T by �, and assuming that the measuring device is cal-
ibrated to show unit power for unit homogeneous radiance,
this defect can be upperbounded by63

1

M
�

�2

(1� �)2
� jjLejj:

Another error formula is presented for the diffuse case in47.
This can be neglected for high number of iterations, or can
even be reduced by ignoring the first few iterations in the
averaged result37; 47.

Finally, it must be explained why random variable~P con-
verges to its expected value. Looking at formula (81) we can
realize that it consists of sums of the following form:

1

M � k
�

M�kX
i=1

T
�
i+kT

�
i+k�1 : : : T

�
i+1T

�
i L

e
:

According to the theorems of large numbers, and particularly
to the Bernstein46 theorem, these averages really converge to
the expected value if the terms in the average are not highly
correlated (note that here the terms are not statistically inde-
pendent as assumed by most of the laws of large numbers).
It means that random variablesT �i+kT

�
i+k�1 : : : T

�
i L

e and
T
�
j+kT

�
j+k�1 : : : T

�
j L

e should not have strong correlation if
i 6= j. This is always true if the sequence of operators are
generated from independent random variables.

5.1. Other averaging techniques

In the previous section we solved the problem that stochas-
tic iteration is not convergent by simply averaging the val-
ues generated during iteration. There are other averaging
schemes, however, that use even more combinations of the
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preceding random operators. In the subsequent sections two
such schemes are presented.

5.1.1. Semi-iteration

Semi-iteration37 uses the following formulae to derive a new
value from the previous one:

L
0
n = L

e
+ T

�
n Ln�1;

Ln = �n � L
0
n + (1� �n) � Ln�1;

~Pn = MLn; (87)

where�n is an appropriate sequence that converges to 0, as
for example,�n = 1=n.

To allow comparison, the corresponding formulae of the
normal iteration are also presented here:

Ln = L
e
+ T

�
n Ln�1;

~Pn = �n � MLn + (1� �n) � ~Pn�1 (88)

Note that the fundamental difference is that semi-iteration
uses the average of the previous samples not only in the final
estimate but also to continue iteration. Semi-iteration thus
can use all combinations of the preceding random operators
to compute the actual result. However, it also has energy de-
fect.

5.1.2. D-step iteration

Let us approach stochastic iteration from the direction of re-
ducing the bias of finite-length random walks. The bias can
be eliminated using a simple correction of the emission func-
tionLe when calculating higher order interreflections.

Note that a global walk of lengthD provides the following
terms:

L
e
+ T

�
1 L

e
+ T

�
(1;2)L

e
: : :+ T

�
(1;D)L

e
;

where

T
�
(i;j) = T

�
j T

�
j�1 : : : T

�
i+1T

�
i :

Thus having computed the first walk, we also have an esti-
mate forT �

(1;D)
Le = T

�
DT

�
D�1 : : : T

�
2 T

�
1 L

e. Let us use this
estimate to correct the emission function in the higher order
terms when the second walk is computed:

L
e
+T

�
D+1(L

e
+T

�
(1;D)L

e
)+: : :+T

�
(D+1;2D)(L

e
+T

�
(1;D)L

e
) =

L
e
+ T

�
D+1L

e
+ : : :+ T

�
(D+1;2D)L

e
+

T
�
(1;D+1)L

e
+ : : :+ T

�
(1;2D)L

e
: (89)

This gives us estimates not only for the bounces from 0 toD

but also for the bounces fromD + 1 to 2D. Again the last-
bounce will storeT �

(1;D)
Le+ T �

(1;2D)
Le, which can be used

to compensate the emission. Thus after the second step we
have estimates for the 0 to3D bounces. Asymptotically, this
method will generate estimates for all bounces. However, if

M global walks are generated, then the number of estimates
for bounces of 0 toD isM , for bounces ofD + 1 to 2D is
M � 1, for bounces2D+1 to 3D isM � 2 etc., which still
results in some small energy defect.

This type of iteration takesD steps before making an it-
eration step, which allows the combination of the steps in
more sophisticated ways. Such a combination happens in bi-
directional path-tracing using multiple deterministic steps30

and also in global ray-bundle tracing62.

5.2. Definition of random transport operators

In order to use this general stochastic iteration scheme in
practice, the key problem is the definition of the random
transport operator. This operator should meet the require-
ment of equation (78) and should be easy to compute.

For the continuous case, a single application of the trans-
port operator contains a directional integral. For the finite
element case, the transport operator also includes the projec-
tion to the adjoint basis which requires additional integration
in the domain of basis functions. This additional integration
means a surface integral for the diffuse radiosity setting and
also for the ray-bundle tracing. For other non-diffuse finite-
element methods a surface and a directional integrals need
to be evaluated (note that directional integrals are sometimes
“hidden” by integrals on the surfaces visible at different di-
rections).

Following the general concepts of Monte-Carlo methods,
we usually do not intend to compute the integralsexplic-
itly, but want to get them as an expected value. Thus dif-
ferent random transport operators can be classified accord-
ing to which integrals are evaluated explicitly using some
deterministic quadrature and which integrals are computed
implicitly as an expectation value.

5.3. Transport operator for the continuous, non-diffuse
setting

The continuous formulation has just a single directional inte-
gral, thus a random transport operator can evaluate this sin-
gle integral implicitly. This results in a method that uses a
“single” random walk to obtain the solution.

An example of such single walk techniques is the follow-
ing modification of the light tracing algorithm63:

In each stepi a ray is obtained that has random origin~yi
and direction!i with a probability that is proportional to the
cosine weighted radiance of this point at the given direction.
This ray is traced and the whole power

� =

Z
S

Z



L(~y; !
0
) cos �~y d!

0
d~y

is transported to that point~xwhich is hit by the ray. Formally
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the random transport operator is

(T
�
L)(~x; !) = � � �(~x� h(~y; !i)) � fr(!i; ~x; !): (90)

Interestingly this iteration is a sequence of variable length
random walks, since at each step the point that is last hit
by the ray is only selected with a given probability as the
starting point of the next ray. This probability depends on
the albedoa~xi(!i) of the found point.

The algorithm selects initially a point from a lightsource
and then starts a random walk. The walk finishes after each
step with probability1=(1+a~xi(!i)) and also when the ray
hits no object. If a walk finishes, another walk is initiated
from the lightsource. When the walk is continued, the trans-
ferred power is weighted by(1 + a~xi(!i)), which provides
unbiased estimate even if less number of samples are used to
simulate higher order bounces. This technique is called the
Russian roulette2; 57.

5.4. Random transport operators for the diffuse
radiosity

In the gathering type radiosity algorithms the projected
transport operator has the following form

TFL = F � L:

Alternatively, shooting radiosity algorithms are based on the
projected potential equationT 0FP = H �P:

According to the basic requirement of stochastic iteration
we need to find random operatorsT �F or T

0

�
F that behave as

the real operator in average, that is

E[T
�
F L] = F � L; (91)

E[T
0

�
F P] = H �P: (92)

The evaluation of(F � L)i or alternatively(H � P)ji re-
quires a surface and a directional integration (or in other for-
mulations two surface integrations).

The possible alternatives for a random transport operator
are

1. Both integrals are explicitly computed but only for a ran-
domly selected subset of the patches.

2. The surface integral explicitly computed but the direc-
tional integral implicitly.

3. Compute the surface integral implicitly but the direc-
tional integral explicitly. This method can, for example,
use hemicubes for the directional integration but selects
the center of the hemicube randomly on the patch.

4. Both integrals are computed implicitly.

5.4.1. Stochastic radiosity

In stochastic radiosity38, the randomized operator is simpli-
fied in a sense that it first selects a single (or a few) patches

with probability proportional to their power and then calcu-
lates the transfer only from this important patch as if it had
all the power� =

P
n

k=1
Pk: Thus here both integrals are

explicitly computed but only for a subset of patches.

To prove that it meets requirement stated by equation (92),
let us examine the new power of patchi and suppose that
patchj has been selected.

(T
0

�
F P)ji = Hij � � (93)

Since the probability of selecting patchj is Pj=�, the ex-
pectation of the new power is

E[(T
0

�
F P)ji] =

nX
j=1

Hij � � �
Pj

�
=

nX
j=1

Hij �Pj (94)

which we wanted to prove.

5.4.2. Transillumination radiosity

The transillumination radiosity method37; 66 has also a
stochastic iteration version. It defines the random transport
operator by uniformly selectingM transillumination direc-
tions !01; : : : !

0
M and allowing patches to interact only in

these transillumination directions. In order to calculate these
interactions, a large discretized window is placed perpendic-
ularly to each transillumination direction and the radiance
transfer to a patch is approximated by elementary transfers
going through the pixels covering the projection of the patch.

Let us consider a single transillumination direction. Pro-
jecting patchAi onto a plane that is perpendicular to the
transillumination direction and then approximating the inte-
gral of the incoming radiance here by a discrete sum, we getZ

Ai

L(h(~x;�!
0
d)) � cos �

0
d d~x =

Z
A
p

i

L(h(~x
0
;�!

0
d)) � d~x

0
�

X
P2A

p

i

Lbu�erd[P ]
� �A: (95)

wherebu�erd[P ] stores the index of that patch which is vis-
ible in pixel P in the transillumination direction!0d from
patchi, and�A is the size of a pixel of the buffer (figure 17).

x A

L

 A

transillumination
plane

transillumination
direction

δA

i

i

pixelP

buffer[P]

d

p

ω

Figure 17: Integration on the transillumination plane
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Thus the random transfer operator is

(T
�
F L)ji =

4� � fi � �A

M

MX
d=1

X
P2A

p

i

Lbu�erd[P ]
: (96)

If the transillumination directions are uniformly dis-
tributed and the buffer is uniformly jittered, then the ex-
pected value of this operator is

E[(T �
F
L)ji] =

1

M

MX
d=1

Z



Z
P

X
P2A

p

i

Lbu�erd[P ]
� fi � dp d!

0
d
:

If uniform jittering is applied during rendering into the
buffer, then we can usually assume that the discrete approxi-
mation of the positional radiance distribution gives back the
real distribution in the average case, that isZ

P

X
P2A

p

i

Lbu�erd[P ]
dp =

Z
A
p

i

L(h(~x0;�!0d)) d~x
0: (97)

However, this statement is not always true if incremental
polygon filling algorithms are applied62; 63. Note, for exam-
ple, then an incremental polygon filling algorithm always
generates an approximation whose width and height are at
least 1. Thus this assumption is correct if the resolution of
the discrete buffer is high enough to project each polygon
onto at least a few pixels.

Substituting this to the expectation value integral we get

E[(T �
F
L)ji] =

1

M

MX
d=1

Z



Z
A
p

i

L(h(~x0;�!0
d
)) d~x0 � fi d!

0
d
=

Z



Z
Ai

L(h(~x0;�!0)) � fi � cos �
0
d~xd!

0
: (98)

UsingL(h(~x0;�!0)) =
P

n

j=1
bj(h(~x

0;�!0)) � Lj and
equation (42), we can prove that the expectation really gives
back the real projected transport operator:

E[(T �
F
L)ji] =

nX
j=1

Z



Z
Ai

bj(h(~x
0
;�!0))�fi �cos �

0
d
d~xd!

0 �Lj =

nX
j=1

Fij �Lj :

(99)

5.4.3. Stochastic ray-radiosity

Stochastic ray-radiosity40 approximates the transport oper-
ator byM random rays that are sampled proportionally to
the power of the patches. On a patch the starting point of

the ray is sampled using a uniform distribution, while the
direction follows a cosine distribution. A single ray carries
�=M power. Thus this method approximates both integrals
implicitly.

Let us examine the case when a single ray is selected
(since different rays are sampled from the same distribution,
the effect ofM rays will beM times the effect of a single
ray in the expected value). Suppose that patchj is selected
as a shooting patch. The probability of the selection event is
Pj=�. Thus the probability density of selecting a point~x of
a patch and a direction! is

Pj

�
�
1

Aj

� cos �:

This transfers�=M power to the patch that is hit by the
ray where the reflected power is computed. Thus the random
transport operator for a single ray is

E[(T
0�
F
P)ji] =

M � fi �

nX
j=1

Z
Aj

Z



bi(h(~y; !)) �
�

M
�

1

Aj

� cos � d~yd! �
Pj

�
=

nX
j=1

fi

Aj

�

Z
Aj

Z



bi(h(~y; !)) � cos � d~yd! �Pj =

nX
j=1

Hij �Pj :

(100)

5.5. Transport operators for the non-diffuse
finite-element case

When moving towards the non-diffuse case, another require-
ment must be imposed upon the random transport operator. It
must not only meet the requirement of equation (78), be easy
to compute, but it must also allow the compact representa-
tion of theT �i L functions. This extra requirement is evident
if we take into account that unlike in the diffuse case, the
domain ofL is a 4-dimensional continuous space, so is the
domain ofT �i L (for ray-bundle tracing only 2-dimensional
continuous space). From the point of view of compact rep-
resentation, what we have to avoid is the representation of
these functions over the complete domain.

Thus those transport operators are preferred, which re-
quire the value ofL just in a few “domain points” (e.g. in a
single “domain point”). Note that the evaluation ofT �i L now
consists of the following steps: first a randomization pointpi
is found to define random operatorT �i , which in turn deter-
mines at which domain point the value ofL is required. Up
to now, we have had complete freedom to define the set of
randomization points. One straightforward way is defining
this set to be the same as the domain of the radiance func-
tion and using random transport operators that require the
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value of the radiance function at their randomization points.
Although this equivalence is not obligatory, it can signifi-
cantly simplify the computations, since when the random-
ization point is generated, the required domain point is also
known.

Using random operators that evaluate the radiance in a
single point is not enough in itself, since even a single
“point” can result in a continuousT �i L function, which must
be stored and re-sampled in the subsequent iteration step and
also by the measurement. The solution is the postponing of
the complete calculation ofT �i L until it is known where its
value is needed in the next iteration step and by the mea-
suring device. In this way, the random operator should be
evaluated twice but just for two points. Once for the actual
and the previous “points” resulting in[T �(pi)L(pi)](pi+1),
and once forpeye which is needed by the measuring device
and for previous point providing[T �(pi)L(pi)](peye).

The complete iteration goes as follows:

P = 0
Findp1 randomly
L(p1) = L

e(p1)

for i = 1 to M do
P
new = L

e(peye) + [T �(pi)L(pi)](peye)

P =MP
new � 1=i+ (1� 1=i) � P

Findpi+1 randomly
L(pi+1) = L

e(pi+1) + [T �(pi)L(pi)](pi+1)

endfor
Display final image

Note that using normal iteration we have to store the ra-
dianceL just in a single pointpi, while in semi-iteration all
the previous points should be remembered. In semi-iteration
the important feature that the transport operator should be
evaluated just for a single point pairpi; pi+1 is lost. In the
case ofD-step iteration, the computation needs to be done
at a finite number of point pairs whose number is limited
by
�
D

2

�
. For semi-iteration, however, there is no such up-

per limit, which eventually results in requiring the complete
representation of the function. This can be allowed in diffuse
case, but not in the general case, thus in methods handling
the non-diffuse case normal iteration is preferred,D-step it-
eration is still allowed, but we have to avoid semi-iteration,
despite of its better combination capability.

5.5.1. Global ray-bundle based iteration

Recall that the finite-element approximation applied by ray-
bundle tracing converts the rendering equation to the follow-
ing form (section 4.4.7):

L(!) = L
e
(!) + TFL(!); (101)

whereTF is a composition of the original transport operator
and its projection to the adjoint base

TFL(!) =

Z



F(!
0
; !) �A(!

0
) � L(!

0
) d!

0
: (102)

Let the random approximation of the transport operator
be the transfer of the radiance of all surface points of the
scene in a single uniformly distributed random direction.
This transfer can be effectively realized by sending a ray-
bundle into this direction. Thus the random transport opera-
tor is!0

(T
�
L)(!) = 4� � F(!

0
; !) �A(!

0
) � L(!

0
): (103)

If the directions are sampled from a uniform distribution,
then this obviously gives back the integral operator as an
expected value:

E[(T �L)(!)] =

Z



4��F(!0; !)�A(!0)�L(!0)
d!0

4�
= TFL(!):

(104)
In the definition of the random operator! is the actually

generated direction and!0 is the previously generated direc-
tion. Thus a “randomization point” is a global direction in
this method.

The resulting algorithm is quite simple. In a step of the
stochastic iteration a new direction is found and this direc-
tion together with the previous direction are used to evalu-
ate the random transport operator. Then an image estimate
is computed by reflecting the previously computed radiance
estimate towards the eye. The complete algorithm is summa-
rized in the following:

Generate the first random global direction!1
for each patchi doL[i] = Le

i
(!1)

for m = 1 to M do // iteration cycles
Calculate the image estimate relfecting
the incoming radianceL[1]; L[2]; : : : L[n] from!m towards the eye
Average the estimate with the Image
Generate random global direction!m+1

for each patchi do
L
new[i] = Le

i
(!m+1)+

4� �
P

n

j=1

~fi(!m; !m+1) �A(i; j; !m)=Ai � L[j]

endfor
endfor
Display Image

The methods to calculate the reflection of the incoming
radiance towards the eye are the same as in ray-bundle trac-
ing.
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5.6. Can we use quasi-Monte Carlo techniques in
iteration?

Stochastic iteration can also be viewed as a single walk
which uses a single sequence of usually 4-dimensional ran-
domization points (for ray-bundle tracing 2-dimensional
randomization points), and theT �i+kT

�
i+k�1 : : : T

�
i L

e terms
are used in integral quadratures simultaneously for allk.

It means that the randomization points should support not
only 4-dimensional integration, but using subsequent pairs
also 8-dimensional integration, using the subsequent triplets
12-dimensional integration, etc. Sequences that supportk-
dimensional integrals when subsequentk-tuples are selected
are calledk-uniform sequences29. The widely used Halton
or Hammersley sequences are only 1-uniform, thus theoreti-
cally they should provide false results.

This is obvious for the Hammersley sequence, in which
the first coordinate is increasing. Such a sequence would
search for only those multiple reflections where the angle
corresponding to the first coordinate always increases in sub-
sequent reflections. It is less obvious, but is also true for the
Halton sequence. Due to its construction using radical in-
version, the subsequent points in the sequence are rather far,
thus only those reflections are considered, where the respec-
tive angle changes drastically.
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Figure 18: Ray-bundle based stochastic iteration with ran-
dom and quasi-random numbers

In order to avoid this problem without getting rid of
the quasi-Monte Carlo sequences,66 proposed the random
scrambling of the sample points. The same problem arises,
for example, when generating uniform distributions on a
sphere, for which9 proposed to increase the dimension of
the low-discrepancy sequence.

Note that this problem is specific to quasi-Monte Carlo
integration and does not occur when classical Monte-Carlo
method is used to select the sample points (a random se-
quence is1-uniform29).

In order to demonstrate these problems, we tested the
ray-bundle based iteration for different random (i.e. pseudo-
random) and low-discrepancy sequences. The test scene was
the Cornell box. In figure 18 we can see that the Hammers-
ley sequence gives completely wrong result and the Halton
sequence also deteriorates from the real solution. The two
random generators (rand and drand48), however, performed
quite-well.

The figure also included a modification of theqn = f�ng

quasi-Monte Carlo sequence (operatorfg selects the frac-
tional part of a number). This is believed to be (but has not
been proven to be)1-uniform15. However, this sequence
is very unstable numerically, therefore we used theqn =

f(� � 2) � qn�1 mod100000g scheme.

6. Initial smoothing: first shot

Monte-Carlo integration is efficient if the integrand is rel-
atively smooth and does not exhibit high variations. For
global methods, point lightsources may pose problems. For-
tunately, these lightsources can be easily handled separately
by deterministic techniques.

This algorithm can be applied in a preprocessing step, and
is called thefirst-shot. For the diffuse radiosity problem, the
preprocessing type first-shot algorithm has been first pre-
sented in50, extended to multiple interreflections in9 and
has been generalized to non-diffuse environments in69.

+=

Figure 19: First shot technique

Formally, the unknown radianceL is decomposed into
two terms:

L = Lep + Lnp (105)

whereLep is the emission of the small, point-like light-
sources,Lnp is the emission of the area lightsources and the
reflected radiance. Substituting this into the rendering equa-
tion we have:

L
ep

+ L
np

= L
e
+ T (L

ep
+ L

np
): (106)

Introducing the new lightsource term

L
e�

= L
e
� L

ep
+ T L

ep (107)

which just replaces the point lightsources (Lep) by their ef-
fect (T Lep), the equation forLnp is similar to the original
rendering equation:

L
np

= L
e�

+ T L
np
: (108)
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It means that first the direct illumination caused by the
point lightsources must be computed, then they can be re-
moved from the scene and added again at the end of the
computation.

In diffuse environments the storage of the direction in-
dependentLe� function requires just one extra variable per
patch.

In non-diffuse environments, however,Le� can be a non-
constant function, which is difficult to represent and store.
Instead, the incoming radiance received by the patches from
each point lightsource should be stored (this requiresl ad-
ditional variables per patch, wherel is the number of point
lightsources). WhenLe� is needed for a given direction, then
it is computed on the fly from these incoming radiances.

7. Error and complexity of the stochastic global
illumination methods

This paper reviewed a lot of different global illumination
techniques. Thus at the end of the paper, a natural expec-
tation would be a qualitative comparison of these methods,
or set of criteria that tell for a particular scene which method
is better than the others. However, ranking these methods is
a very hard task.

Even the quality metrics are difficult to define. We can
use, for example, error metrics and running time measure-
ments, and say that if a methods gets more accurate results
in shorter time than it is better than the other. The error met-
rics can be simple norms of the difference of the actual and a
reference radiance function, or can even be based onpercep-
tual based metrics45. Running time measurements depend
also on the computer used. To formulate resource require-
ments of a particular algorithm in a machine independent
way, complexity measures can be used.

Unfortunately, error measures and even abstract complex-
ity measures are very difficult to derive analytically for a
given algorithm. A taxonomy of different errors occurring
when solving the rendering equation is presented in3. The
error of the solution of the diffuse rendering equation was
analyzed by34. An error metric to guide Russian roulette
and splitting has been introduced by7.

The complexity of classical radiosity algorithms has been
investigated in71 and concluded that deterministic, non-
hierarchical algorithms requireO(n2) time, wheren is the
number of patches. Stochastic methods seem to be bet-
ter, since they can achieveO(n log n) time complexity
48; 43; 54; 65; 6.

In 66, we have provided a technique based on the tran-
sillumination method to reformulate the diffuse radiosity
problem to make the integrand have finite variation, to fully
take advantage of the improved performance provided by the
low-discrepancy series. This reformulation also allowed to
apply the Koksma-Hlawka inequality in analytic error for-
mulae.

8. Conclusions

This paper presented a review of stochastic global illumina-
tion algorithms.
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