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Abstract
The reflection of light from most materials consists of two ma-
jor terms: the specular and the diffuse. Specular reflection may
be modeled from first principles by considering a rough surface
consisting of perfect reflectors, or micro-facets. Diffuse reflection
is generally considered to result from multiple scattering either
from a rough surface or from within a layer near the surface. Ac-
counting for diffuse reflection by Lambert’s Cosine Law, as is
universally done in computer graphics, is not a physical theory
based on first principles.

This paper presents a model for subsurface scattering in layered
surfaces in terms of one-dimensional linear transport theory. We
derive explicit formulas for backscattering and transmission that
can be directly incorporated in most rendering systems, and a gen-
eral Monte Carlo method that is easily added to a ray tracer. This
model is particularly appropriate for common layered materials
appearing in nature, such as biological tissues (e.g. skin, leaves,
etc.) or inorganic materials (e.g. snow, sand, paint, varnished or
dusty surfaces). As an application of the model, we simulate the
appearance of a face and a cluster of leaves from experimental
data describing their layer properties.
CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.
Additional Key Words and Phrases: Reflection models, integral
equations, Monte Carlo.

1 Motivation
An important goal of image synthesis research is to develop a
comprehensive shading model suitable for a wide range of ma-
terials. Recent research has concentrated on developing a model
of specular reflection from rough surfaces from first principles.
In particular, the micro-facet model first proposed by Bouguer
in 1759 [4], and developed further by Beckmann[1], Torrance &
Sparrow[26], and others, has been applied to computer graphics
by Blinn [2] and Cook & Torrance[8]. A still more comprehen-
sive version of the model was recently proposed by He et al[12].
These models have also been extended to handle anisotropic mi-
crofacets distributions[24, 5] and multiple scattering from complex
microscale geometries[28].

Another important component of surface reflection is, however,
diffuse reflection. Diffuse reflection in computer graphics has al-
most universally been modeled by Lambert’s Cosine Law. This
law states that the exiting radiance is isotropic, and proportional
to the surface irradiance, which for a light ray impinging on the
surface from a given direction depends on the cosine of the angle

of incidence. Diffuse reflection is qualitatively explained as due to
subsurface scattering [18]: Light enters the material, is absorbed
and scattered, and eventually exits the material. In the process of
this subsurface interaction, light at different wavelengths is differ-
entially absorbed and scattered, and hence is filtered accounting
for the color of the material. Moreover, in the limit as the light ray
is scattered multiple times, it becomes isotropic, and hence the di-
rection in which it leaves the material is essentially random. This
qualitative explanation accounts for both the directional and col-
ormetric properties of diffuse materials. This explanation is also
motivated by an early proof that there cannot exist a micro-facet
distribution that causes equal reflection in all outgoing directions
independent of the incoming direction [10].

The above model of diffuse reflection is qualitative and not
very satisfying because it does not refer to any physical param-
eter of the material. Furthermore, there is no freedom to adjust
coefficients to account for subtle variations in reflection from dif-
ferent materials. However, it does contain the essential insight:
an important component of reflection can arise from subsurface
scattering. In this paper, we present a model of reflection of light
due to subsurface scattering in layered materials suitable for com-
puter graphics. The only other work in computer graphics to take
this approach is due to Blinn, who in a very early paper presented
a model for the reflection and transmission of light through thin
clouds of particles in order to model the rings of Saturn[2]. Our
model differs from Blinn’s in that it is based on one-dimensional
linear transport theory—a simplification of the general volume
rendering equation [19]— and hence is considerably more general
and powerful. Of course, Blinn was certainly aware of the trans-
port theory approach, but chose to present his model in a simpler
way based on probabilistic arguments.

In our model the relative contributions of surface and subsur-
face reflection are very sensitive to the Fresnel effect (which Blinn
did not consider). This is particularly important in biological tis-
sues which, because cells contain large quantities of water, are
translucent. A further prediction of the theory is that the sub-
surface reflectance term is not necessarily isotropic, but varies in
different directions. This arises because the subsurface scattering
by particles is predominantly in the forward direction. In fact, it
has long been known experimentally that very few materials are
ideal diffuse reflectors (for a nice survey of experiments pertaining
to this question, see [18]).

We formulate the model in the currently emerging standard
terminology for describing illumination in computer graphics [16,
11]. We also discuss efficient methods for implementation within
the context of standard rendering techniques. We also describe
how to construct materials with multiple thin layers. Finally, we
apply the model to two examples: skin and leaves. For these
examples, we build on experimental data collected in the last few
years, and provide pointers to the relevant literature.

Another goal of this paper is to point out the large amount of
recent work in the applied physics community in the application
of linear transport theory to modeling appearance.
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Figure 1: The geometry of scattering from a layered surface

(θi,φi) Angles of incidence (incoming)
(θr ,φr) Angles of reflection (outgoing)
(θt ,φt) Angles of transmission

L(z; θ,φ) Radiance [W / (m2 sr)]
Li Incident (incoming) radiance
Lr Reflected (outgoing) radiance
Lt Transmitted radiance
L+ forward-scattered radiance
L− backward-scattered radiance

fr(θi,φi; θr ,φr) BRDF
ft(θi,φi; θt ,φt) BTDF

fr,s(θi,φi; θr ,φr) Surface or boundary BRDF
ft,s(θi,φi; θt ,φt) Surface or boundary BTDF
fr,v(θi,φi; θr ,φr) Volume or subsurface BRDF
ft,v(θi,φi; θt ,φt) Volume or subsurface BTDF

n Index of refraction
σs(z;λ) Scattering cross section [mm−1]
σa(z;λ) Absorption cross section [mm−1]
σt(z; λ) Total cross section (σt = σa + σs) [mm−1]

W Albedo (W = σs
σt

)
d Layer thickness [mm]

p(z; θ,φ; θ′,φ′; λ) Scattering phase function ((θ′, φ′) to (θ,φ))

Table 1: Nomenclature

2 Reflection and Transmission due to Layered
Surfaces

As a starting point we will assume that the reflected radiance Lr

from a surface has two components. One component arises due to
surface reflectance, the other component due to subsurface volume
scattering. (The notation used in this paper is collected in Table 1
and shown diagramatically in Figure 1.)

Lr(θr,φr) = Lr,s(θr, φr) + Lr,v(θr,φr)

where:
Lr,s - reflected radiance due to surface scattering
Lr,v - reflected radiance due to volume or subsurface scattering
The models developed in this paper also predict the transmis-

sion through a layered surface. This is useful both for materials
made of multiple layers, as well as the transmission through thin
translucent surfaces when they are back illuminated. The transmit-
ted radiance has two components. The first component is called
the reduced intensity; this is the amount of incident light trans-
mitted through the layer without scattering inside the layer, but
accounting for absorption. The second is due to scattering in the
volume.

Lt(θt,φt) = Lri(θt,φt) + Lt,v(θt,φt)
where:

Lri - reduced intensity
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Figure 2: Fresnel transmission and reflection coefficients for a
ray leaving air (n = 1.0) and entering water (n = 1.33).

Lt,v - transmitted radiance due to volume or subsurface scat-
tering

The bidirectional reflection-distribution function (BRDF) is de-
fined to the differential reflected radiance in the outgoing direction
per differential incident irradiance in the incoming direction [23].

fr(θi,φi; θr, θr) ≡ Lr(θr,φr)
Li(θi,φi) cos θidωi

The bidirectional transmission-distribution function (BTDF) has a
similar definition:

ft(θi,φi; θt, θt) ≡
Lt(θt,φt)

Li(θi,φi) cos θidωi

Since we have separated the reflected and transmitted light into
two components, the BRDF and BTDF also have two components.

fr = fr,s + fr,v

ft = fri + ft,v

If we assume a planar surface, then the radiance reflected from
and transmitted across the plane is given by the classic Fresnel
coefficients.

Lr(θr, φr) = R12(ni, nt; θi,φi → θr, φr)Li(θi,φi)
Lt(θt, φt) = T 12(ni, nt; θi,φi → θt,φt)Li(θi,φi)

where

R12(ni, nt; θi,φi → θr,φr) = R(ni, nt, cos θi, cos θt)

T 12(ni, nt; θi, φi → θt,φt) = n2
t

n2
i

T = n2
t

n2
i

(1 − R)

where R and T are the Fresnel reflection formulae and are de-
scribed in the standard texts (e.g. Ishimura[14]) and θt is the
angle of transmission. Besides returning the amount of reflection
and transmission across the boundary, the functions R12 and T 12,
as a side effect, compute the reflected and refracted angles from the
Reflection Law (θr = θi) and Snell’s Law (ni sin θi = nt sin θt).
Note also the factor of (nt/ni)2) in the transmitted coefficient of
the above formula; this arises due to the change in differential
solid angle under refraction and is discussed in Ishimura[pp. 154-
155]. Plots of the Fresnel functions for the boundary between air
and water are shown in Figure 2.

In our model of reflection, the relative contributions of the sur-
face and subsurface terms are modulated by the Fresnel coeffi-
cients.

fr = Rfr,s + Tfr,v = Rfr,s + (1 −R)fr,v



Thus, an immediate prediction of the model is that reflection due to
subsurface scattering is high when Fresnel reflection is low, since
more light enters the surface layer. Notice in Figure 2 that the
percentage of transmission is very high for a quite wide range of
angles of incidence. Thus, the reflectance properties of materials
impregnated with water or oil (dielectrics with low indices of
refraction) are dominated by subsurface reflectance components at
near perpendicular angles of incidence, and surface components
at glancing angles of incidence.

Actually, light returning from the subsurface layers must refract
across the boundary again. Thus, it will be attenuated by yet an-
other Fresnel transmission factor. Recall that if light returns from
a media with a higher index of refraction, then total internal reflec-
tion may occur. All light with an incident angle greater than the
critical angle (θc = sin−1 ni/nt) will not be transmitted across the
boundary. By assuming an isotropic distribution of returning light,
we can compute the percentage that will be transmitted and hence
considered reflected. This sets an upper bound on the subsurface
reflectance of 1 − (ni/nt)2 (remember, nt > ni). For example,
for an air-water boundary, the maximum subsurface reflectance is
approximately .44.

3 Description of Materials

The aim of this work is to simulate the appearance of natural ma-
terials such as human skin, plant leaves, snow, sand, paint, etc.
The surface of these materials is comprised of one or more layers
of material composed of a mixture of randomly distributed parti-
cles or inhomogeneities embedded in a translucent media. Particle
distributions can also exist, in which case the properties are the
material are given by the product of each particle’s properties
times the number of particles per unit volume.

The layers of such materials can be described by a set of macro-
scopic parameters as shown in the following table. Measurements
of these properties have been made for a large variety of natural
materials.

Symbol Property
n index of refraction
σa [mm−1] absorption cross section
σs [mm−1] scattering cross section
d [mm] depth or thickness
p(cos j) scattering phase function
g mean cosine of phase function

• Index of Refraction
The materials considered are dielectrics where n is on the
order of the index of refraction of water (1.33).

• Absorption and scattering cross section
The intensity of the backscattered and transmitted light de-
pends on the absorption and scattering properties of the mate-
rial. The cross section may be interpreted as the probability
per unit length of an interaction of a particular type. The
total scattering cross section σt = σa + σs. The mean free
path is equal to the reciprocal of the total cross section. An
important quantity is the albedo, which equals W = σs/σt.
If the albedo is close to 1, the scattering cross section is
much greater than the absorption cross section, whereas if
the albedo is close to 0, absorption is much more likely than
scattering.

• Scattering phase function
The phase function, p(%x; θ,φ; θ′,φ′) represents the direc-
tional scattering from (θ′,φ′) to (θ, φ) of the light incident
onto a particle. This function depends on the nature of the
scattering medium. The form of p is affected by the size,

Figure 3: Henyey-Greenstein phase function for g = −.3 and
g = .6.

form and orientation of the suspended particles, the dielectric
properties of the particles, and the wavelength of the incident
light. The scattering of light from particles small compared
to the wavelength of light is given by the Rayleigh scatter-
ing formula, and the scattering due to dielectric spheres of
different radii by the Mie formula.
However, most materials contain distributions of particles
of many different sizes, so simple single particle phase func-
tions are not applicable. For this reason, we describe the ma-
terial phase function with the empirical formula, the Henyey-
Greenstein formula[13].

pHG(cos j) = 1
4π

1 − g2

(1 + g2 − 2g cos j)3/2

where j is the angle between the incoming and the outgoing
direction (if the phase function depends only on this an-
gle the scattering is symmetric about the incident direction).
The Henyey-Greenstein formula depends on a single param-
eter g, the mean cosine of the scattered light. The Henyey-
Greenstein phase function for different values of g is shown
in Figure 3. Note that if g = 0 the scattering is isotropic,
whereas positive g indicates predominantly forward scatter-
ing and negative g indicates predominantly backward scat-
tering.

In the model employed in this paper, material properties are
described macroscopically as averages over the underlying mi-
croscopic material property definitions. If the material is made
of several components, the resulting properties of the composite
materials can be computed by simple summation.

σa =
n∑

i=1

wi σa,i

σs p(cos j, g) =
n∑

i=1

wi σs,i p(cos j, gi)

and so on. Here wi is the volume fraction of the volume occupied
by material i.

Another very important property of real materials is that the
properties randomly vary or fluctuate. Such fluctuations cause
variation in the appearance of natural surfaces. This type of fluc-
tuation is easy to model with a random noise function or a texture
map.

Optical propagation in random media has been studied in a va-
riety of applications, including blood oximetry, skin photometry,
plant physiology, remote sensing for canopies and snow, the paint
and paper industry, and oceanic and atmospheric propagation. For
many examples the macroscopic parameters have been measured
across many frequency bands. A major attempt of our work is the
simulation of the appearance of natural surfaces by using mea-
sured parameters to be inserted into the subsurface reflection and
transmission formulas. This approach is similar to the attempt of
Cook & Torrance [8] to simulate the appearance of metallic sur-
faces by using appropriate values for the refractive index and the
roughness parameters.

4 Light Transport Equations
Linear transport theory is a heuristic description of the propagation
of light in materials. Transport theory is an approximation to elec-



tromagnetic scattering theory, and hence cannot predict diffrac-
tion, interference or quantum effects. In particular, the specular
reflection of light from rough surfaces whose height variation is
comparable in size to the wavelength of incident light requires
the full electromagnetic theory as is done in He et al[12]. A nice
discussion of the derivation of transport theory from electromag-
netism and the conditions under which it is valid is contained in
an recent article by Fante[9]. The applicability of transport theory,
however, has been verified by its application to a large class of
practical problems involving turbid materials, including inorganic
materials such as ponds, atmospheres, snow, sand and organic
materials such as human skin and plant tissue[14].

Transport theory models the distribution of light in a volume
by a linear integro-differential equation.

∂L(%x, θ,φ)
∂s

=

−σtL(%x, θ,φ) + σs

∫
p(%x; θ,φ; θ′,φ′)L(%x, θ′,φ′)dθ′ dφ′

This equation is easily derived by accounting for energy balance
within a differential volume element. It simply states that the
change in radiance along a particular infinitesimal direction ds
consists of two terms. The first term decreases the radiance due
to absorption and scattering. The second term accounts for light
scattered in the direction of ds from all other directions. Thus, it
equals the integral over all incoming directions.

For layered media, the assumption is made that all quantities
only depend on z and not on x and y. This assumption is valid if
the incoming illumination is reasonably constant over the region
of interest. It is also roughly equivalent to saying the reflected
light emanates from the same point upon which it hits the surface.
With this assumption, the above equation simplifies to

cos θ ∂L(θ,φ)
∂z

=

−σtL(θ, φ) + σs

∫
p(z; θ,φ; θ′,φ′)L(θ′,φ′) dθ′ dφ′

The above equation is an integro-differential equation. It can
be converted to an equivalent double integral equation, whose
solution is the same as the original integro-differential equation.

L(z; θ,φ) =
∫ z

0
e
−
∫ z′

0
σt

dz′′
cos θ

∫
σs(z′) p(z′;θ,φ;θ′,φ′) L(z′;θ′,φ′) dω′ dz′

cos θ

This is the basis of most current approaches to volume rendering.
The 1-dimensional linear transport equation must also satisfy

certain boundary conditions. This is most easily seen by consid-
ering the forward and the backward radiance separately.

L(θ,φ) = L+(θ,φ) + L−(π − θ,φ)

Where L+ is energy propagating in the positive z direction, and
L− in the negative direction. Note that L− is defined to be a
function of of π − θ, the angle between the backward direction
of propagation and the negative z axis. It is important to re-
member this convention when using formulas involving backward
radiances.

At the top boundary the forward radiance is related to the inci-
dent radiance.

L+(z = 0; θ′,φ′) =
∫

ft,s(θi,φi; θ′, φ′)Li(θi,φi) dωi

This simply states that the forward component of radiance entering
the volume at the boundary is due to light transmitted across the
surface. If we assume a planar surface and parallel incident rays,
then ft,s equals the Fresnel transmission term times a δ-function
that picks up the appropriate angle of incidence.

L+(z = 0; θ′,φ′) = T 12(ni, nt; θi,φi → θ′,φ′)Li(θi, φi)

In the more general case of a rough surface, ft,s is given by a
transmission coefficient times the probability that light will refract
in the desired direction.

The boundary conditions at the top let us formally state the
contribution to reflection due to subsurface scattering in terms of
the solution of the integral equation at the boundary z = 0.

Lr,v(θr,φr) =
∫

ft,s(θ,φ; θr,φr) L−(z = 0; θ,φ) dω

Assuming a planar surface, this integral simplifies to

Lr,v(θr, φr) = T 21(ni, nt; θ, φ → θr, φr)L−(z = 0; θ,φ)

Similar reasoning allows the transmitted radiance to be deter-
mined from the boundary conditions at the bottom boundary.

Lt,v(θt,φt) =
∫

ft,s(θ,φ; θt,φt)L+(z = d; θ,φ) dω

Once again, assuming a smooth surface,

Lt,v(θt, φt) = T 23(n2, n3; θ,φ → θt,φt)L+(z = d; θ,φ)

Thus, the determination of the reflection functions has been
reduced to the computation of L−(z = 0) and L+(z = d)—the
solution of the one-dimensional transport equation.

5 Solving the Integral Equation

There are very few cases in which integro-differential equations
can be directly solved. The most famous solution is for the case of
isotropic scattering and was derived by Chandrasekhar[7, p. 124].
Even for this simple phase function the solution is anisotropic.

The classic way to solve such an equation is to write it in
terms of the Neumann series. Physically, this can be interpreted
as expanding the solution in terms of the radiance due to an integer
number of scattering events. That is,

L =
∞∑

i=0

L(i)

where L(0) is the direct radiance assuming no scattering, L(1) is the
radiance due to a single scattering event, and L(i) is the radiance
due to i scattering events. Similar equations apply to the forward
and backward radiances, L(i)

+ and L(i)
− .

The radiance due to the i scattering events can be written using
the following recurrence.

L(i+1)(z; θ,φ) =
∫ z

0
e
−
∫ z′

0
σt

dz′′
cos θ

∫
σs(z′) p(z′;θ,φ;θ′,φ′ )L(i)(z′ ;θ′,φ′)dω′ dz′

cos θ

This is the basis for most iterative approaches for numerically
calculating transport quantities.



Figure 4: Solutions for f (1)
r,v and f (1)

t,v for different values of g and
τd. From left to right the phase function shifts from predominately
backward scattering (g = −0.3) to isotropic scattering (g = 0.0)
to forward scattering (g = 0.6). From top to bottom the optical
depth of the layer increases from 0.5 to 1.0 to 2.0.

5.1 First-Order Approximation
Another classic result in radiative transport, also derived by Chan-
drasekhar[7], is the analytic solution to the integral equation as-
suming only a single scattering event. As mentioned previously,
this is equivalent to the method described by Blinn but derived
using a completely different technique [2].

The 0th-order solution assumes that light is attenuated by the
scattering and absorption, but not scattered. The attenuated inci-
dent light is called the reduced intensity and equals

L(0)
+ (z) = L+(z = 0)e−τ/ cos θ

Here,

τ (z) =
∫ z

0
σt dz

is called the optical depth. If σt is constant, then τd = σtd.
Using the boundary conditions for incident and reflected light,

and also rewriting the above equation in terms of the angles of
incidence and reflection, we arrive at the following formula for
the 0th-order transmitted intensity

L(0)
t,v(θt,φt) = T 12T 23e−τdLi(θi,φi)

By substituting the 0th-order solution, or reduced intensity, into
the integral equation, the 1st-order solutions for forward and back-
ward scattering can be calculated. The details of this calculation
are described in Chandrasekhar and Ishimura and there is no need
to repeat them here.

Using the boundary conditions for incident and reflected light,
and also rewriting in terms of the angles of incidence and re-
flection, we arrive at the following formula for the backscattered
radiance:

L(1)
r,v(θr, φr) =

WT 12T 21p(π−θr ,φr ;θi,φi) cos θi
cos θi+cos θr

(1−e−τd(1/ cos θi+1/ cos θr ))Li(θi,φi)

This general formula shows that the backscattered light intensity
depends on the Fresnel transmission coefficients, the albedo, the
layer depth, and the backward part of the scattering phase function.

Figure 5: Solutions for fr and ft. In the left column is the
surface specular reflection and in the middle is the subsurface
reflection and transmission. On the right is the sum of surface
and subsurface modulated by the Fresnel coefficients. From top
to bottom the angle of incidence increases from 10 to 40 to 65
degrees.

A special case of this equation is Seeliger’s Law, the first at-
tempt to model diffuse reflection from first principles[25]. Seel-
iger’s Law can be derived by assuming a semi-infinite layer
(τd = ∞) and ignoring Fresnel effects.

Lr,v(θr, φr) = cos θi
cos θi + cos θr

Li(θi,φi)

At the boundary z = d, the forward scattered radiance is given
by

L(1)
t,v(θt,φt) =

WT 12T 23p(θt,φt;θi,φi) cos θi
cos θi−cos θt

(e−τd/ cos θi−e−τd/ cos θt )Li(θi,φi)

For cos θt = cos θi, the singular factors can be avoided by using
L’Hospital’s rule, yielding

L(1)
t,v(θt,φt) = WT 12T 23p(θt,φt; θt,φt)

τd
cos θt

e−τd/ cos θtLi(θt,φt)

Figure 4 shows fr,v and ft,v for various values of g and d.
Figure 5 shows the surface and subsurface components of the
reflection model for various angles of incidence. These reflection
and transmission distribution functions have several interesting
properties:

1. The reflection steadily increases as the layer becomes thicker;
in contrast, the transmission due to scattering increases to a
point, then begins to decrease because of further scattering
events.

2. Subsurface reflection and transmission can be predominately
backward or forward depending on the phase function.

3. As the angle of incidence becomes more glancing, the surface
scattering tends to dominate, causing both the reflection and
the transmission due to subsurface scattering to decrease.

4. Due to the Fresnel effect, the reflection goes to zero at the
horizons. Also, the reflection function appears “flattened”
relative to a hemicircle. Thus, reflection for near normal
angles of incidence varies less than Lambert’s Law predicts.

5. The distributions vary as a function of reflection direction.
Lambert’s Law predicts a constant reflectance in all direc-
tions (which would be drawn as a hemicircle in these dia-
grams).



Figure 6: Determining first-order solutions for multiple layers.
On the left, the contribution to the first order solution for a single
layer. One the right, the contribution to the first order solution
due to reflectance off a single layer.

The above formulas can be used to generate first-order solutions
for multiple layers. (This is shown diagrammatically in Figure 6.)
The total first-order scattering will be the sum of the first-order
scattering from each layer, weighted by the percentage of light
making it to the layer and returning from the layer. The percentage
of light making it to the layer is the product of the 0th-order
transmission functions (or reduced intensity) for a path through
the layers above the reflecting layer. Similarly, the percentage of
light leaving the entire layer after reflection is equal to the product
of the 0th-order transmission functions for the path taken on the
way out. Note that across each boundary the light may refract, and
thus change direction and be attenuated by the Fresnel coefficient,
but this is easy to handle. The process simplifies, of course, if
each layer has the same index of refraction, since no reflection
or change of direction occurs between layers. Given the above
formulas it is very easy to construct a procedure to perform this
calculation and we will make use of it in the results section.

The above formula can also be generalized to include reflection
from a boundary between layers. In many situations reflection can
only occur from the bottom layer. In this case, we add a single
term accounting for the reduced intensity to reach the lower bound-
ary, and also weight the returning light from that boundary. Such
a model is commonly employed to model the reflection of light
from a pool of water[15], and has been employed by Nishita and
Nakamae[22]. Further generalizations of this type are described
in Ishimura[14, p. 172].

6 Multiple Scattering
The above process of substituting the ith-order solution and then
computing the integral to arrive at the (i+1)th-order solution can
be repeated, but is very laborious. Note that subsequent integrals
now involve angular distributions, because, although the input ra-
diance is non-zero in only a single direction, the scattered radi-
ance essentially comes from the directional properties of the phase
function. Thus, this approach to solving the system analytically
quickly becomes intractable.

We have implemented a Monte-Carlo algorithm for computing
light transport in layered media. This algorithm is described in
Figure 7. A thorough discussion of the application of Monte Carlo
algorithms for layered media is discussed in the book [21], and
the techniques we are using are quite standard.

To investigate the effects of multiple scattering terms, we sim-
ulated a semi-infinite turbid media with different albedos. The re-
flectance was computed and when the particles returning from the
media are scored, we keep track of how many scattering events
they underwent. Figure 8 shows the results of this experiment.
The top curve is the total reflectance, and the lower curves rep-

1 Initialize: A particle enters the layer at the origin. Initialize %p to the
origin and the direction %s to the direction at which the ray enters
the layer. Set the weight w = 1.

2 Events : Repeat the following steps until the ray weight drops below
some threshold or the ray exits the layer.
2A Step: First, estimate the distance to the next interaction:

d = −
log r
σt

Where r in this and the following formulas is a uniformly
distributed random number between 0 and 1. Then, com-
pute the new position:

%p = %p + d%s

And, finally set the particle weight to

w = w
σs

σs + σa

Note: If d causes the particle to leave the layer, break from
the repeat loop and adjust the weight using the distance to
the boundary.

2B Scatter : First, estimate the cosine of the scattering angle for
the Henyey-Greenstein phase function using the following
formula.

cos j =
1

|2g|
(1 + g2 − (

1 − g2

1 − g + 2gr
)2)

and cosφ and sin φ with φ = 2πr. Then, compute the new
direction:

%t =

(
(%s.x cos φ cos θ − %s.y sinφ)/ sin θ
(%s.y cosφ cos θ + %s.x sin φ)/ sin θ

sin θ

)

%s = %s cos j + %t sin j

Here, cos θ = %s.z and sin θ =
√

1 − %s.z2. Note: Care
must be taken if sin θ = 0.

3 Score: Divide the sphere into regions of equal solid angle and add
the weight of the particle to the weight associated with the bin
in which it is contained.

Figure 7: Basic Monte Carlo algorithm for layered media

resent scattering up to some order. Note that when the albedo
is high, implying that σs >> σa, the first order term is only a
small percentage of the total reflectance. However, as the albedo
decreases, corresponding to greater absorption, a few low-order
terms accurately approximate the reflectance. This effect can be
explained by recalling that each term in the Neumann series rep-
resenting the reflection is on the order of W i, and since W is
always less than one, the magnitude of higher-order terms quickly
goes to zero.

We have also computed the BRDF as a function of the angle of
reflection using our Monte Carlo algorithm for the same configu-
ration as described in the last experiment. The results are shown
in Figure 9. Recall that the 1st-order reflection due to a semi-
infinite media is given by Seeliger’s Law: cos θi/(cos θi + cos θr).
The computed 1st-order BRDF matches the theoretical result quite
well. In this figure we also plot the total BRDF due to any num-
ber of scattering events, and the difference between the total and
the 1st-order BRDF. Note as in the previous experiment when the
albedo W is small, the BRDF is closely approximated by the 1st-
order term. However, note that the shape of the reflection function
is also largely determined by the shape of the 1st-order reflection,
which in turn is largely determined by the phase function. Fur-
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Figure 8: A plot of reflectance versus albedo for a semi-infinite
media. The top curve is the total reflectance (the total radiant
energy per unit area reflected divided by the incident irradiance).
The bottom curve is the reflectance assuming only a single scat-
tering event. Moving upward is a sequence of curves consisting
of additional terms corresponding to a single additional scatter-
ing event. The first 10 terms in the solution are shown; In our
simulations, we recorded terms involving thousands of scattering
events.

ther, observe that the difference between the 1st-order solution
and the full solution is approximately independent of the angle of
reflection. Thus, the sum of the higher order terms roughly obeys
Lambert’s Law. For this reason it is often convenient to divide
the subsurface reflection into two terms:

Lr,v(θr, φr) = L(1)(θr,φr) + Lm

where Lm is constant and represents the sum of all the multiple
scattering terms.

Finally, we have begun preliminary experiments where we in-
corporate a Monte Carlo subsurface ray tracer within a standard
ray tracer. When the global ray tracer calls the subsurface ray
tracer it attempts to estimate the BRDF and BTDF to a particular
light source. This is done by biasing the Monte Carlo procedure
to estimate the energy transported to the light. A simple method
to do this is to send a ray to the light at each scattering event, as
described in Carter and Cashwell[6]. This ray must be weighted
by the phase function and the attenuation caused by the traversal
through the media on the way to the light. If the albedo is less than
1, then only a few scattering events are important, and thus the
subsurface ray tracer consumes very little time on average (the
cost is proportional the the mean number of scattering events).
Also, since the subsurface ray tracer does not consider the global
environment when tracing its rays, the cost of subsurface Monte
Carlo simulation at every shading calculation is relatively low.
The advantage of this approach is that the BRDF’s do not have
to precomputed, and so if material parameters are varying across
the surface, the correct answer is still estimated correctly at each
point.

7 Results
The subsurface scattering models developed in this paper has been
tested on two common natural surfaces: human skin and plant
leaves. The goal of these experiments are twofold: First, to
compare our anisotropic diffuse reflection model with Lambertian
shading. Second, to attempt to simulate the optical appearance
from measured parameters. Our experiments are meant to be sug-
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Figure 9: Graphs of the BRDF (fr) as a function of the angle
of reflection for a semi-infinite slab with different albedos (on the
left W = 0.4 and on the right W = 0.8) and an angle of inci-
dence of 45◦. The solid line is the theoretical BRDF as given
by Seeliger’s Law (the superimposed dashed line is the computed
1st-order BRDF showing a good match). The top dashed curve
is the total computed BRDF; The bottom dotted curve is the dif-
ference between the total BRDF due to multiple scattering events
and the 1st-order BRDF.

Property Epidermis Dermis Pigment Blood
n 1.37-1.5 1.37-1.5 1.37-1.5 1.37-1.5
σa [mm−1] 3.8 0.3 32.6
σs [mm−1] 50.0 21.7 0.96
d [mm] 0.001-0.15 1-4
g 0.79 0.81 .79 .0

Table 2: Two Layer Skin Model Properties. Pigment coefficients
are mixed with epidermal coefficients to compute the properties
of the outer layer. Blood coefficients are mixed with dermal co-
efficients to compute the properties of the inner layer.

gestive of the power of this approach; we do not claim to have an
experimentally validated model.

7.1 Skin
Human skin can be modeled as two layers with almost homo-
geneous properties. Both layers are assumed to have the same
refractive index but a different density of randomly distributed
absorbers and scatterers. The outer epidermis essentially consists
of randomly sized tissue particles and imbedded pigment parti-
cles containing melanin. The pigment particles act as strongly
wavelength dependent absorbers causing a brown/black coloration
as their density increases. The inner dermis is considered to be
a composition of weakly absorbing and strongly scattering tissue
material and of blood which scatters light isotropically and has
strong absorption for the green and blue parts of the spectrum.
Experimental evidence also supports the hypothesis that light scat-
tering in the skin is anisotropic with significant forward scattering.
A comprehensive study of optical properties of human skin can
be found in van Gemert et al.[27]. The values chosen for our test
pictures are given in Table 2. We also add a thin outer layer of
oil that reflects light using the Torrance-Sparrow model of rough
surfaces.

A head data set was acquired using a medical MRI scanner.
Unfortunately, the ears and the chin were clipped in the process,
but enough of the head is visible to test our shading models. A
volume ray tracer was adapted to output the position and normal
vector of the skin layer for each pixel into a file, and this input
was used to evaluate the shading models described in this paper.

The influence of the various factors appearing in the subsur-
face reflection formula are shown on Plate 1. These pictures are



Plate 1.

Plate 2.

not shaded in the conventional way. In particular, a Lambertian
shading model would yield a constant image. The first picture
(upper left) shows the influence of the Fresnel factors. Observe
that the intensity is almost flat, but strongly attenuated for glancing
incident and viewing angles. The second picture (upper middle)
shows the action of Seeliger’s Law alone. Seeliger’s Law leads
to very little variation in shading, which makes the surface appear
even more chalky or dusty. The third picture (upper right) demon-
strates the action of the factor accounting for the finite layer depth
giving only weak enhancements for glancing angles. This is a mi-
nor effect. The fourth picture (lower left) shows the influence of
the Henyey-Greenstein scattering phase function for small back-
ward scattering (g = −.25) and the fifth picture (lower middle)
shows the effect of large forward scattering (g = .75). The result
is strong enhancement of glancing reflection for low angles of in-
cidence and viewing, assuming they are properly aligned. The last
picture (lower right) shows the superposition of these four factors
with g = .75 giving a complex behavior. An overall smoothing of
the reflection appears; the surface appears to be more “silk-like”
(see also Plate 3). Although these effects are all subtle, their com-
bination when controlled properly can create a wide variation in
appearance.

The appearance of the face with the new subsurface reflection
model is compared to the Lambertian diffuse reflection model for
different angles of incidence in Plate 2. The left column shows
the results for the Lambert scattering for angles 0 and 45 degrees,
and the middle column is rendered for the new model. Again,

Plate 3: Dark complexion controlled by setting the concentration
of melanin. On the left are images with just subsurface scattering.
On the right, an specular surface term is added to simulate an oily
coat. In these pictures g = .65.

Plate 4: Human face with variation in subsurface blood concen-
tration, an oily outer layer and Gaussian variation in parameters
to create the “freckles.”

notice a much smoother “silk-like” appearance. The right column
gives the relative difference of both models, red indicates more
reflection from the new model, and blue vice versa.

To illustrate the degrees of freedom of the model, we rendered
several faces with their parameters controlled by texture maps.
One texture map controls the relative concentration of blood in the
dermis; another texture map controls the concentration of melanin
in the epidermal layer. These faces are shown in Plates 3 and 4. To
create a dark complexion we modulate the percentage of pigment
in the otherwise transparent epidermis. This creates a dark brown
appearance due to the strong absorption of melanin (in this case we
set the absorption to .6). For the lips the epidermis is set to be very
thin such that the appearance is dominated by the reflection from
the dermis which has for the lips a large blood content (strong
absorption for green and blue light component). The epidermis
pigment part also has been varied locally with about 20% with a
Gaussian process. This allows us to create a wide variety of skin
colors, from black to suntanned to Caucasian, and from flushed to
burnt to relaxed. The pictures in Plate 3 also show the effect of
an additional specular term due to a thin layer of oil on the skin.
Finally, Plate 4 shows another picture created by our program.
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Figure 10: Typical leaf cross-section (Redrawn from [20]).

Plate 5: Leaf Model. On the left is the albedo image and on the
right is a thickness image (white indicates thick)

This picture took approximately 20 seconds to render on a Silicon
Graphics Personal Iris.

7.2 Leaves
Figure 10 shows an idealized leaf in cross-section. The leaf is
composed of several layers of cells. On the top and bottom are
epidermal cells with a thin smooth, waxy cuticular outer layer. The
waxy cuticular layer is largely responsible for specularly reflected
light. Below the upper epidermal cells there are a series of long
palisaide cells which are highly absorbing due to the numerous
chloroplasts contained within them. Below the palisaide cells are
a loosely packed layer of irregularly shaped spongy cells. The
spaces between the spongy cells are filled with air, which causes
them to scatter light. Both the palisaide and the spongy cells are
quite large (approximately 20 µm) compared to the wavelength, so
their scattering phase function is forward directed. Furthermore,
the cells are high in water content, so the index of refraction of
the leaf is approximately equal to that of water—1.33. A typical
leaf is .5 to 1 mm thick, with an optical depth of 5 to 10.

To test our model on a leaf, we constructed a leaf model us-
ing the technique described in Bloomenthal[3]. Although spectral
transmission and reflectance curves are available for leaves[29],
we have set the color of the leaf from an image acquired from a
digital scanner. An albedo image is texture mapped onto a series
of simply-shaped, bent polygons to create the leaf. Where the tex-
ture map is transparent the polygon is considered transparent and
the leaf is not visible. We also modulate the thickness of the leaf
with a thickness map drawn on top of the original leaf image. The
texture maps we used are shown in Plate 5. The waxy cuticle is
modeled using a rough specular surface with a specular exponent
of 10. The interior of the leaf is modeled as a single homogeneous
layer with an optical depth of 5 and a mean scattering cosine of
.3[20].

Pictures were generated by modifying a conventional ray tracer

Plate 6: A cluster of leaves. A series of leaf images under dif-
ferent simulated lighting conditions. On the left are two backlit
images, on the right, front lit.

to account for subsurface reflection and transmission. When a ray
encounters a leaf, the BRDF and BTDF are evaluated for direct
illumination from light sources. Shadow rays are cast to the light
source, and if the ray stabs any other leaves the light intensity
is attenuated by the 0th-order transmission function through each
leaf. Plate 6 shows a picture of a cluster of leaves with the sun in
different positions. Note that the reflection from leaves is largely
determined by specular reflection due to the waxy cuticle; there
is very little diffuse reflection and hence when the light source is
on the same side of the leaf as the viewer, the leaf is quite dark.
The transmission term, however, can be quite large, and therefore
the leaves may actually be brighter when the are illuminated from
behind. Note also that the increased thickness of the veins cause
dark shadows to be cast on other leaves. The veins also appear
dark when the leaf is back lit because they absorb more light, and
bright when the leaf is front lit because their increased thickness
causes more light to be reflected.

8 Summary and Discussion

We have presented a reflectance model consisting of two terms:
the standard surface reflectance and a new subsurface reflectance
due to backscattering in a layered turbid media. This model is
applicable to biological and inorganic materials with low indices
of refraction, because their translucent nature implies that a high
percentage of the incident light enters the material, and so the
subsurface reflection is quite large. This model incorporates di-
rectional scattering within the layer, so the resulting subsurface
reflection is not isotropic. This model can be interpreted as a the-
oretical model of diffuse reflectance. Thus, this model predicts
a directionally varying diffuse reflection, in contrast to Lambert’s
Law. However, if multiple scattering contributes significantly to
the reflection, then the higher scattering terms contribute to a re-
flection function with roughly the same shape.

As in any model, our model makes many assumptions. The two
most important are that the physical optics may be approximated
with transport theory, and that the material can be abstracted into
layered, turbid media with macroscopic scattering and absorption
properties. An “exact” model of biological tissues would explicitly
model individual cells, organelles and so on, in considerably more
detail. The Monte-Carlo algorithm for simulating reflection by
Westin et al.[28] is an example of such an approach. Although
such an approach may seem more accurate, often the experimental
data needed to describe the arrangements of these structures is
simply not available, and so in the end the results may be difficult
to validate. An advantage of the transport theory approach is that
the parameters of the model often may be directly extracted from
experimental data.



A legitimate criticism of our work is that we did not directly
compare the predictions of our model with experiment. The pre-
dictions of our model and the influence of measured material pa-
rameters should be checked carefully. However, we believe that
this model has many applications in computer graphics even if
it does not perfectly predict measured reflection functions. The
metaphor of layered surfaces is very easy for users to understand
because is a natural way to describe phenomenologically the ap-
pearance of many materials. It also fits easily into most rendering
systems and can be implemented efficiently.

Finally, transport theory is a heuristic theory based on abstract-
ing microscopic parameters into statistical averages. Transport
theory is also the basis of the rendering equation, which is widely
viewed as the correct theoretical framework for global illumina-
tion calculations. In this paper we propose to model surface re-
flection from layered surfaces with transport theory. Thus, when
our reflectance model for layered surfaces is incorporated into a
ray tracer, there is a hierarchy of transport calculations being per-
formed. Within this hierarchy, the lower level transport equation
computes the reflectance for the higher level transport equation.
When performing this calculation, the lower level transport equa-
tion uses as its initial conditions the values from the higher level
transport solution. Thus the two levels are coupled in a very sim-
ple way. In fact, it is possible to reformulate transport theory
entirely in terms of reflection functions, the result is an integral
equation for the reflection function itself; in this formulation the
radiance does not appear at all. Coupling transport equations at
different levels of detail in this manner is a promising approach
to tackling the problem of constructing representations with many
different levels of detail as proposed by Kajiya[17].
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