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Abstract

We describe a system that computes radiosity solutions for polyg-
onal environments much larger than can be stored in main mem-
ory. The solution is stored in and retrieved from a database as the
computation proceeds. Our system is based on two ideas: the use
of visibility oracles to find source and blocker surfaces potentially
visible to a receiving surface; and the use of hierarchical tech-
niques to represent interactions between large surfaces efficiently,
and to represent the computed radiosity solution compactly. Vis-
ibility information allows the environment to be partitioned into
subsets, each containing all the information necessary to transfer
light to a cluster of receiving polygons. Since the largest subset
needed for any particular cluster is much smaller than the total size
of the environment, these subset computations can be performed
in much less memory than can classical or hierarchical radiosity.
The computation is then ordered for further efficiency. Careful or-
dering of energy transfers minimizes the number of database reads
and writes. We report results from large solutions of unfurnished
and furnished buildings, and show that our implementation’s ob-
served running time scales nearly linearly with both local and
global model complexity.
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J.2 [Physical Sciences and Engineering]: Engineering .
Additional Key Words and Phrases: Multigridding; equilibrium
methods; spatial subdivision.
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1 Introduction

An important application of computer graphics is the modeling of
lighting in buildings. In fact, such interior lighting simulations
are the major application of the radiosity method. Unfortunately,
radiosity algorithms still are not fast and robust enough to handle
standard building databases. Evidence of this is that previous
radiosity images typically show a solution for only a single room
of modest geometric complexity. Furthermore, “tricks” are often
used to hide artifacts and to cope with even this low level of model
complexity. In this paper we describe radiosity computations on
very large databases.

There are three basic measures of the complexity of a radiosity
solution: the input complexity, the output complexity, and the
intermediate complexity.

• The input complexity is related to the number of geometric
primitives, textures, and light sources present.

• The output complexity is related to the number and type of
elements required to represent the computed radiosity solu-
tion. Note that the output complexity is much, much greater
than the input complexity, as it includes the input model
plus a representation of the radiosity on all surfaces. The
radiosity function may be very complex due to shadowing
and lighting variations, and much recent research has con-
cerned its compact, accurate representation. The optimal
output complexity is that which represents the radiosity so-
lution to within a specified error with a minimal amount of
information.

• The intermediate complexity is related to the size of the data
structure needed to perform the radiosity computation. The
major components of the intermediate complexity are the
form factor matrix and any data structures used to accel-
erate visibility computations. Since the form factor matrix
may grow quadratically in the output complexity, and since
accelerated visibility queries may involve sophisticated data
structures, the intermediate complexity may be even greater
than the output complexity, and is, in fact, usually the lim-
iting factor in performing large radiosity simulations. When
storage is unlimited, the optimal intermediate complexity is
that associated with the most rapidly converging iterative
scheme.

Model Surfaces Patches Elements Time
Theater [1] ∼5K ∼80K ∼1M 192 H
Mill [5] ∼30K ∼50K 195 H
Cathedral [28] ∼10K ∼75K 1 H

Table 1: Previous complex radiosity solutions.

Several complex radiosity computations have been reported in
the literature (Table 1). Perhaps the most complex is the Candle-
stick Theater reported in Baum et al [1]. This simulation gener-
ated over a million elements, performed 1600 iterations of a pro-
gressive refinement algorithm (shooting from a single source), and
took approximately 8 days to compute. Other reported complex
radiosity simulations each generated less than 100,000 elements.
Our goal is to render complete buildings at one square inch effec-
tive resolution, obviously a very resource-intensive computation.
For example, consider the model of the University of Califor-
nia, Berkeley Computer Science Building. The furnished building
model contains more than 8,000 light sources and 1.4 million sur-
faces and requires approximately 350 megabytes of storage [9].
We estimate that 10 to 100 million elements may be required to
represent a high-fidelity radiosity solution throughout the model.

Intermediate memory demands often determine the limits on
the size of the model used in a radiosity system. The interme-
diate memory usage depends on the representation of the form
factor matrix. Two general approaches have emerged for cop-
ing with the size of the form factor matrix: hierarchical radiosity



Figure 1: A locally dense,
globally sparse interaction
block matrix.

and visibility subspaces. Hierarchical radiosity (and its relative,
wavelet radiosity) efficiently approximate form factor matrices in
situations where a set of large surfaces are mutually visible. Tech-
niques are only recently emerging for handling large numbers of
small, mutually visible surfaces, for example by clustering. The
problem of efficiently computing cluster-cluster interactions is not
addressed in this paper. However, our visibility subspace meth-
ods do exploit the fact that in many environments, particularly
building interiors, only a small percentage of the environment is
visible from any particular surface. A global visibility precompu-
tation constructs this potentially visible set for each surface, and
the subspace methods maintain the set throughout hierarchical re-
finement.

Figure 1 depicts a sparse block-structured form factor matrix.
Each diagonal block represents a dense interaction within a cluster
of surfaces, e.g., the polygons comprising a room. Each off-
diagonal block represents the coupling between these clusters, e.g.
the rooms visible from a given room. Thus each block is locally
dense, but the matrix is globally sparse.

In this paper we describe our system to compute radiosity so-
lutions in such environments. The environment is assumed to be
very large and hence is stored in a database as the computation
proceeds. The ensuing radiosity computation is partitioned into
subsets. Each subset contains the information needed to perform
a transfer of light to a cluster of polygons. These subset com-
putations are ordered to perform the light transfers efficiently by
reducing the number of database reads and writes. We report the
results of simulations run for models of varying density (local
complexity) and overall size (global complexity).

This system is built upon previously described hierarchical
radiosity methods, global and local visibility algorithms, and
database and walkthrough implementations.

2 Prior Work

The problem of increasing the speed and accuracy of radiosity
solutions has been addressed on many fronts.

• Visibility. One of the most expensive operations in global
illumination is visibility computation. For a given surface,
the set of surfaces that illuminate (or are illuminated by) it
must be efficiently identified. Clearly this requires global
knowledge of the model.
Classical radiosity algorithms used a “hemicube” algorithm
to approximate each surface’s occluded view of the model
as an environment map onto faces of a cube centered on
a surface point [6]. The projection operation involved the
whole model and respected depth, producing discretized sur-
face fragments visible to the sample point. This and other
point-sampling techniques (e.g., [4]) may not detect relevant
light sources and/or blockers, however.
Shaft culling recast global visibility into a collection of vis-
ibility subspaces by generating a common shaft volume for
each interacting pair, and treating as blockers only those ob-

jects (potentially) intersecting the shaft [14, 18]. Finally,
preprocessing and incremental maintenance techniques used
a coherent global pass through the model to generate initial
blocker lists, then maintained the lists incrementally under
link subdivision [25]. These techniques, in contrast to those
based on point-sampling, are conservative in the sense that
they never wrongly exclude a blocker or light source from
an interaction.

• Solution Methods. Classical radiosity algorithms generate
a row-diagonally dominant interaction matrix [6]. The ra-
diosity matrix equation is then solved by repeatedly updat-
ing the matrix entries using a numerical solution technique,
typically Gauss-Seidel iteration. Several proposed improve-
ments address the order in which the matrix entries are up-
dated. Progressive radiosity techniques choose sources in
brightness order and shoot their energy into the environment
[5]. This may involve considerable bookkeeping, since each
shoot updates many brightnesses, and the relative priorities
of queued shooters may change considerably. Parallel imple-
mentations of progressive refinement have been reported [2,
19]. “Super-shoot gather” techniques repeatedly (over)shoot
from and gather to a small number of surfaces, ignoring any
interactions not involving the shooters [7, 12].

• Hierarchical Approaches and Clustering. Matrix-based
solutions consider the matrix at a single granularity, namely
the correspondence between each matrix entry and pair of
surfaces in the environment. The hierarchical radiosity algo-
rithm applied techniques developed for the n-body problem,
incorporating a global error bound and allowing surfaces to
exchange energy whenever they could do so within the spec-
ified error [15]. Thus, wherever sufficiently far-apart or dim
surfaces interact, hierarchical methods essentially compact
a block of the form-factor matrix into a scalar. Recursive
application of this idea yielded a radiosity algorithm with
running time that grows linearly with the number of out-
put elements. The hierarchical radiosity algorithm did not
address the “clustering” problem of efficiently handling in-
teractions among surfaces composed of many small surfaces;
some techniques have been recently proposed to do so [20,
22, 29].

• Meshing and Finite Element Methods. Finally, meshing
and finite-element techniques have been employed to im-
prove the accuracy of radiosity solutions. Classical and hi-
erarchical solution algorithms represented radiosity as con-
stant over each surface. Galerkin-based methods use finite
element techniques to represent radiosities more generally,
as weighted sums of smoothly varying basis functions de-
fined over each surface [16, 17, 27, 30]. The resulting so-
lutions have better smoothness and convergence behavior
than those of classical radiosity. Recently, the wavelet ra-
diosity method [13, 21] combined hierarchical radiosity with
Galerkin techniques.

3 Basic Ideas

Our system is based on two ideas: partitioning and ordering.
Partitioning decomposes the database into subsets. Each sub-

set contains the information needed to gather all the energy des-
tined for a cluster of receivers. We assume that the largest subset,
including the sources, receivers, and visibility and interaction in-
formation, requires fewer resources than would be required for the
whole model. Performing energy transfers for a partition amounts
to a single block iteration of an iterative solution of the radios-
ity system of equations. Partitioning is implemented by finding
those clusters of source polygons visible to a cluster of receiving



polygons. Only light originating from the sources may directly
illuminate the receivers. Furthermore, only polygons visible to the
receivers may block light transfers from the sources. Therefore,
the visibility and light transfer computations may use the same
database.

The goal of partitioning is to reduce the solver’s working set
to a manageable size. Receiver clusters may have dense interac-
tions in a local region, but should have sparse interactions with
the remainder of the environment. Our implementation inherits
clustering information (and thus local density) from the modeling
hierarchy, and achieves global sparseness by partitioning accord-
ing to visibility.

Ordering is scheduling radiosity subcomputations –the energy
transfers– to achieve rapid convergence. An example of an order-
ing algorithm is the progressive radiosity algorithm, in which the
source with the largest unshot radiosity is selected to “shoot” its
energy into the environment. In our system, the order must also
be chosen so that the memory “footprint” changes slowly; that is,
the working set needed for the next transfer should differ little
from that of the current transfer. Successful ordering strategies
reduce the read and write traffic of the working set from and to
external storage, while maintaining rapid convergence properties.

In this paper we analyze several methods for ordering the en-
ergy transfers: random order; model definition order; source order;
and spatial cell order. We also briefly discuss optimal orderings.

4 System Architecture

Our system is designed to solve the following problem: in prac-
tice, hierarchical radiosity is limited either by its intermediate
complexity (i.e., the number of links) or by its output complexity
(the description of the radiosity solution), or both. We address
both limitations by constructing small but complete working sets
(Figure 2) for the hierarchical algorithm, then invoking a radiosity
solver and storing away the result – an improved, typically larger,
answer – in a spatial database that can grow incrementally and ar-
bitrarily large. This partitioning of hierarchical radiosity is shown
in §5 to preserve its correctness and convergence properties.

Figure 2: A working set of source cluster (white outline), receiver
cluster (yellow outline), and blocker polygons (green outline) for
a solver invocation. The braid and links are not shown.

The types surface, patch, element, and link are familiar to ra-
diosity practitioners. The types blocker, shaft, and tube arise in
recent related work on shaft-culling and visibility subspaces [14,
18, 25]. The novel types described here are clusters and braids,
defined analogously to surfaces and links in existing hierarchical
radiosity systems.

• A tube is a list of blockers for a pair of geometric entities
p and q, and a shaft volume, the convex hull of (p ∪ q).
For any tube T , variety(T) lazily computes one of in-
visible, visible, or partial, when p and q are totally

mutually invisible, visible, or only partially visible, respec-
tively. Tubes can also subdivide themselves and reclassify
their child tubes’ varieties when one of p or q subdivides.
Only entities that impinge upon the shaft may be blockers.

• A braid is a list of links between two clusters. A link is a
directed edge to a patch p from a patch q, associating with p
and q a form factor estimate and other coupling information.
Every link contains a tube. Given the tube T describing
the shaft and blockers of clusters R and S, the braid over
this cluster-cluster interaction is simply the set of all links
between patches in clusters R and S, and a reference to T .

• A cluster is a list of surfaces and a bounding volume. Note
that a cluster may braid with itself if contains any patches p
and q such that variety(p, q) �= invisible.

The system has six principal computational modules. Five exist
in previous work, and have been adopted here with only slight
changes. The remaining component, the radiosity scheduler, is
the main novelty of our system. We describe each module in
top-down fashion (Figure 3).
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Figure 3: System block diagram.

• The radiosity scheduler is the conceptual center of the sys-
tem. It mediates between the database and the radiosity
solver, selecting a cluster for refinement and transfer oper-
ations (ordering), extracting a small portion of the model
from the database (partitioning), manipulating the solver’s
working set, invoking the solver, extracting the modified,
refined clusters, and returning them to the database.

• The database contains a persistent (disk) representation of
all clusters and a hierarchical spatial subdivision comprised
of convex cells and portals that connect cells [26]. The
database supports the operations of reading, dirtying, and
releasing clusters [9, 11]. Releases of dirty data result in
deferred writes to persistent storage.

• The global visibility oracle, given a receiver cluster, iden-
tifies those clusters potentially visible to the receiver, i.e.,
those clusters that may illuminate the receiver, or block en-
ergy transfers to it [23, 25]. A cluster may be visible to
itself.

• The hierarchical wavelet radiosity solver generates high-
quality radiosity solutions using wavelet bases of general
order and Gaussian quadrature [13, 15, 21].

• The local visibility oracle supports operations for allocating
and subdividing tubes, and accelerating point-to-point visi-
bility queries for quadrature [25]. The global oracle supplies
the initial blocker list for each tube.

• The visualization module employs the Silicon Graphics IRIS
GLtm to facilitate interaction, inspection, and animation of



geometric data structures and algorithms [24]. It has proven
indispensable to developing a working system.

5 Partitioning

We wish to partition a huge radiosity computation into a sequence
of small gathers to individual receivers, each of which can fit into
a small amount of memory. What information must be maintained
in order to schedule and perform each gather correctly? Clearly
the receiver and source cluster involved must be memory resident,
as must their braid (links) and blocker polygons (cf. Figure 2).
We compile this working set for each transfer, and supply it to the
radiosity solver.

Our system constructs partitioning information from three
sources. First, the modeling instantiation hierarchy yields clus-
ters of polygons that separately comprise the structural elements,
furnishings, light fixtures, etc., of the model. Second, a spa-
tial subdivision groups clusters into cells by proximity, separating
them along major sources of occlusion. Third, a visibility com-
putation identifies all cluster pairs that may exchange energy [11,
23, 26].

The final tool is a flexible database from which individual por-
tions of the model may be extracted, modified and replaced [11].
We adapted the database to support the new datatypes required
for radiosity.

5.1 The Algorithm

Our algorithm: extracts each receiver and its visible set from the
spatial database; links them; refines and gathers across the links;
and returns the modified clusters to the database. A hierarchi-
cal wavelet radiosity solver performs the refinement and gather
operations. Our algorithm loops over receiver clusters R in the
database until convergence, executing the following actions:

1. Read R
2. Install R into working set
3. For each source cluster S visible to R

(a) Read S, blockers B(R,S)
(b) Install S, blockers B(R, S) into working set
(c) T = Tube(R, S,B(R, S))
(d) Install( links in Braid(R, S, T ) ) into working set
(e) Invoke solver Gather( each patch of R )
(f) Discard newly refined links from working set
(g) Delete Tube T
(h) Remove S, blockers B(R,S) from working set
(i) SetDirty(S)
(j) Release(S) and blockers B(R,S)

4. Invoke solver PushPull( each patch of R )
5. Extract(R) from working set
6. SetDirty(R)
7. Release(R)

The function Braid(R,S, T ) in line 3−d simply generates top-
level links between visible patch pairs from R and S, using
blocker information from the tube T . Refined links are discarded
(line 3−f ), since A) they cannot be reused until the next full
database iteration, and B) they are so numerous that, at ∼250
bytes/link, they do not fit in a 32-bit (4Gb) address space.

5.2 Iteration Methods, Correctness, and Convergence

Hierarchical radiosity performs Jacobi iteration. That is, only af-
ter a complete update of all patch’s gather slots are any patch’s
shoot slots updated (by Push and Pull [15]). Jacobi iteration is
clearly an untenable strategy for extremely large models, since it
would necessitate reading and writing every patch twice per up-
date. Moreover, hierarchical radiosity is often memory-bound in

practice, i.e., limited by the number and computational complexity
of its active set of links, or by the size of the solution in progress.
Our partitioning scheme eliminates Jacobi iteration altogether, and
entirely removes the memory limitations on hierarchical radiosity
for environments of sufficiently limited visibility.

The correctness of the partitioned solver is easily shown. Dur-
ing any gather to a cluster R, the only patches excluded as sources
are invisible from R, and therefore cannot affect the computed
solution on R.

The convergence of the partitioned solver follows from a nu-
merical argument. The scheduler solves the radiosity matrix equa-
tion as does traditional hierarchical radiosity, but for one differ-
ence: each receiver sees a combination of old and updated shoot
slots on other clusters, rather than seeing uniformly old slots. The
scheduler is therefore performing Gauss-Seidel iteration of the lin-
ear system, rather than Jacobi iteration as in hierarchical radiosity.
Since both methods converge for row-diagonally dominant sys-
tems of radiosity equations [6], convergence of the partitioning
algorithm is assured.

5.3 Partitioning Results

We studied the performance of our system for models of varying
complexity. In one test, we increased local complexity using mod-
els Office, Office Low, and Office High which represent the same
office without furniture, with coarsely modeled furniture, and with
very detailed furniture. These three models contain roughly one
hundred, fifteen hundred, and thirty-five hundred input patches,
respectively. In a second test, we increased global complexity
using the unfurnished models Office, Floor, and Building which
represent an office, one entire floor of a building, and finally an
entire five floor building (including an atrium and many offices,
open areas, stairwells, and classrooms). These models contain
roughly one hundred, seven thousand, and forty thousand input
patches, respectively.
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Figure 4: Working set size while solving the Building model.

We measured the input, intermediate, and output complexity, as
well as working set memory requirements, for solutions of these
test models. Statistics for three complete iterations (gathers to
all clusters) of the radiosity solver are shown in Tables 2 and 3.
The minimum allowable element area was one square inch for all
runs. All times are wall-clock measurements using a 16 µ-sec
timer, on a lightly loaded SGI Crimson Reality Engine with a 50
MHz R4000 CPU, 256Mb memory, and 8Gb local disk. Figure 4
charts the size of the solver working set during one full iteration
of the most complex model, Building.

Several trends can be gleaned from the measurements. First,
the visibility and hierarchical radiosity techniques compacted large
numbers of potential elements and interactions to manageable
sizes. Second, partitioning techniques successfully bounded the
working set size at a few tens of megabytes, even for models de-
manding several gigabytes of intermediate solution data. Third,
intermediate and output complexity and running time appear to
vary nearly linearly with input complexity. Thus, partitioning



Input Intermediate Output Observed

Working Set (Mb) # Links # Elements Elapsed Time (s)
Model Clusters / Patches / Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4

Office Low 70 1,418 21 11.1 239.9 38,593 960,432 677 7,081 36,377 25.7 7,111 5.0
Office High 70 3,466 21 14.1 414.4 48,784 1,678,105 484 8,975 42,400 12.2 13,051 3.8

Table 2: Input, intermediate, and output complexities, and observed solution times, for models of increasing local complexity. The
tabulated quantities are divided into: WS (the largest working set processed by the solver); Total (the total data processed throughout the
run); and Per Patch (the total amount divided by the number of input patches). The intermediate working set WS was defined as the
size of the links (including tubes, shafts, and kernel coefficients), elements (including wavelet coefficients), and blocker polygons.

Input Intermediate Output Observed

Working Set (Mb) # Links # Elements Elapsed Time (s)
Model Clusters / Patches / Lights WS Total WS Total / Patch WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 24.7 180 1.4
Floor 1,761 7,054 788 3.7 1,116.1 12,532 4,307,705 611 2,686 250,933 35.6 56,712 8.0

Building 9,625 39,979 7,826 14.5 6,063.0 52,454 23,528,943 589 7,104 1,265,843 31.7 491,040 12.2

Table 3: Input, intermediate, and output complexities, and observed solution times, for models of increasing global complexity.

successfully exploited the global sparsity of the interaction ma-
trix to achieve radiosity solutions for very large models, while
maintaining quite small working sets.

6 Ordering

Partitioning alone is not sufficient to produce a practical system
for large radiosity solutions. The partitioned transfers must be
ordered so as to minimize expensive reads and writes of partial
solution data from and to the database.

To be effective, an ordering algorithm must schedule successive
gathers so as to minimize disk accesses, while maintaining rapid
convergence properties. Much work has focused on the effects
of ordering on convergence rates for the radiosity computation
[5, 7, 12]; here we concentrate on the effect of ordering on disk
accesses.

A good ordering algorithm maintains a high degree of coher-
ence among the working sets of successive cluster interactions.
Unfortunately, finding an optimal ordering is intractable. The
problem is computationally equivalent to finding a solution to the
traveling salesman problem. As a practical simplification, we have
considered only orderings in which all gathers to a single cluster
are performed successively (i.e., complete gathers). These order-
ings are particularly efficient and easy to implement because all
sources and blockers for a complete gather to a single cluster are
contained in the gatherer’s visible set. Our implementation reads
the entire set of clusters visible from the gatherer into the memory
resident cache before performing any transfers to the gatherer.

We experimented with several ordering algorithms:

• Random order gathers to clusters in random order.

• Model order gathers to clusters in the order in which they
were instantiated by the modeler. In most cases, this is
not a random order since models are often constructed by
successive addition of related parts. For instance, in the
Berkeley Computer Science building model, walls, ceilings
and floors were instantiated first (grouped roughly by room),
followed by patches representing light fixtures and furniture.

• Source order gathers to that cluster which has most often
acted as a source (ties are broken by proximity to the most
recent gatherer). This strategy is based on the intuition that
the working set of a cluster that has been visible to many

previous receivers is likely to have a large overlap with the
current working set.

• Cell order schedules clusters by traversing cells of the wall-
aligned BSP-tree [8] spatial subdivision [23, 26]. Consec-
utive cells are chosen by selecting the neighbor cell whose
intervening boundary has the largest transparent area. This
approach exploits the visibility coherence of clusters due to
proximity and local intervisibility.

Figure 5 illustrates the effect that ordering can have on the co-
herence of the working set during an actual radiosity computation
involving almost 2,000 clusters. The figure depicts matrices with
a dot at position (i, j) if clusters Ci and Cj were potentially vis-
ible to each other. Otherwise, no interaction between Ci and Cj

was possible, and the space (i, j) is left blank. Four permutations
of the underlying interaction matrix were generated, by number-
ing clustering according to the order in which they were gathered
to. Thus, the position of a cluster along the axes of the matrix
depends on the gather order. Figure 5 depicts the permuted ma-
trix resulting from gathers in A) random order, B) model order,
C) source order and D) cell order, respectively.

In the case of random and model orders, the interactions are
spread uniformly over the matrix. No block structure is evident,
indicating that objects with similar visibility characteristics are
gathered to at very different times. When gathering in source
order the matrix appears much more block structured, especially in
the early iterations. However, as gathering proceeds the coherence
appears to degrade as evidenced by the fact that the block structure
disappears in the upper right. The best ordering strategy appears
to be cell order, yielding a matrix in natural block diagonal form,
as would be expected in a building model. Note the horizontal
and vertical stripes; these correspond to clusters in long corridors
with many interactions.

6.1 Ordering Results

We studied the effects of ordering algorithms on cache perfor-
mance by restricting the memory resident cache size to 32Mb
while solving a one-floor building model. In each test, every clus-
ter gathered exactly once. We logged statistics regarding cluster
reads, writes, cache hit ratio, and I/O time during the third com-
plete iteration of the radiosity computation (Table 4). All runs
were executed on a 100 MHz R4000 SGI Indigo2 with 160Mb of
fast memory and 1Gb of local disk.



A) Random B) Model C) Source D) Cell

Figure 5: Matrices depicting permutations of the cluster-cluster interaction matrix. A dot at position (i, j) denotes potential intervisibility
of Ci and Cj . Cluster position along axes corresponds to gather order during a complete radiosity iteration in A) random order, B) model
order, C) source order, and D) cell order.

Clusters Mb Cache I/O Total
Order Read Read Hit Ratio Time(s) Time(s)
Random 77,916 4,374 35.4% 23,330 49,111
Model 44,163 2,376 63.4% 12,806 43,685
Source 30,798 1,708 74.4% 8,912 33,815
Cell 11,312 617 90.6% 3,180 26,454

Table 4: I/O statistics for various ordering algorithms.

There are significant differences in the I/O overhead incurred
by each ordering algorithm. Figure 6 shows the percentage of total
execution time spent on I/O (transfers between the disk and mem-
ory resident cache) for different gather orders. Random order had
a 35.4% cache hit ratio, spending 23,330 seconds (47.5% of the
total execution time) on more than 4.3GB of I/O between the disk
and memory resident cache. In contrast, cell ordering achieved a
90.6% hit ratio, spending only 3,180 seconds on I/O (12.0% of the
execution time). We conclude that the order in which clusters are
processed can greatly affect performance during radiosity compu-
tations on very large models. We are currently investigating other
possible ordering algorithms, including ones derived from pro-
gressive radiosity [5], nearest neighbors, and minimum spanning
trees [3]. We expect that the best ordering algorithms will take
into account both cache coherence and convergence behavior.
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Figure 6: Time distributions for various gather orders.

7 Results

Using a Silicon Graphics Crimson workstation with a single 50
MHz processor and 256 megabytes of main memory, we computed
three complete iterations of a radiosity solution on the entire un-
furnished Berkeley Computer Science Building model to one inch
resolution. The input model had 9,625 clusters comprising a total
of 39,979 polygons. Of these polygons, 7,826 were emissive and
served as light sources.

To give an idea of scale, the total area of all polygons in the un-
furnished building model is 64,517,972 square inches. Therefore,

without the use of visibility-based partitioning and hierarchical
techniques, the numbers of elements and links potentially created
during the radiosity computation at one inch resolution are approx-
imately 6.4 × 107 and 4.2 × 1015 , respectively – unmanageably
high.

Statistics regarding the time and space complexity of the radios-
ity solution for the entire unfurnished building model are shown
in Table 5. To our knowledge, this is the most complex model for
which a radiosity solution has been computed. The entire radios-
ity computation took 136.4 hours and created 1,265,843 elements
and 23,528,943 links – 2.0% and 0.00000056% of the potential
numbers at one inch resolution, respectively. The partitioning
techniques yielding a maximum working set size of 14.5MB, or
0.24% of the 6.1GB of total intermediate and output data. Cell
ordering yielded a total I/O time of 14.2 hours, or 10.4% of the
total execution time.

# # # Max Solver I/O Total
Iter Elements Links WS Time Time Time

0 39,979 - - - - -
1 295,039 2,649,521 2.0 3.3 0.2 5.1
2 884,905 15,860,111 11.2 40.6 3.2 47.0
3 1,265,843 23,528,943 14.5 69.9 10.8 84.3

Total 1,265,843 23,528,943 14.5 113.8 14.2 136.4

Table 5: Complexity of radiosity solution for the unfurnished
building model (times are in hours).

The five color plates on the next page show images of a ra-
diosity solution for one furnished floor of the Berkeley Computer
Science Building model, after two complete iterations. The solu-
tion contains 734,665 elements and took 48.5 hours to compute.
Plate I shows an overhead view of the furnished floor. Plates II
and III show interior views of a typical furnished office, shaded
and with an overlaid quadtree mesh, respectively. The global and
local complexities of the radiosity solution are readily apparent
from these views. Plates IV and V show a typical work area and
hallway view, respectively.

The radiosity solutions generated by this system are used as
input for the real-time walkthrough program (the color plates were
generated using screen-captures from this program). The same
visibility information and computations used to determine source
and receiver interactions are used to maintain an interactive frame
rate in the walkthrough. The hierarchical (quadtree) representation
of radiosity on each polygon is particularly useful, as it allows
easily selectable levels of detail [10] for each polygon.



Plate I. The entire furnished floor, solved to one inch effective resolution (734,665 elements).

Plate II: Office, gouraud shaded.

Plate IV: Workroom, gouraud shaded.

Plate III: Office, meshed.

Plate V: Hallway, gouraud shaded.



8 Summary and Discussion

This paper presented a system that exploits visibility and coher-
ence information to compute radiosity solutions for very large
geometric databases, using existing high-quality global illumi-
nation algorithms. Physically-based lighting simulation is more
challenging than standard rendering algorithms in that the output
complexity is very high, and the intermediate complexity and cal-
culation costs are even higher. However, in the future there are
likely to be many applications requiring display of complex, real-
istic virtual environments, such as the building used in this study.
To achieve such complexity requires advances at both the theoret-
ical and the practical level. The theoretical advances discussed in
this paper are the visibility and hierarchical radiosity algorithms.
The practical advances include the use of system techniques such
as databases, scheduling, and caching.

Specifically, we have implemented a system capable of com-
puting radiosity solutions from large models residing in a database
stored on a disk. We show how partitioning the model leads to
small working sets, allowing us to process databases much larger
then those we could handle without partitioning. Poor partitioning
of the database can cause it to be read and written many times.
We show how clever ordering can significantly reduce disk traffic.
The combination of these two techniques allow us to handle very
large geometric models.

Given our experience with the system to date, the follow-
ing research directions seem promising. First, the tradeoffs be-
tween gathering and shooting algorithms in hierarchical radiosity
should be investigated, as preliminary results indicate that shoot-
ing converges more rapidly in some situations. Second, interac-
tions among objects comprised of many small polygons must be
handled more efficiently, perhaps by incorporating the notion of
levels of detail into the radiosity solution method. Third, the vis-
ibility calculations used to determine soft shadows are still very
expensive, and should be improved. Finally, the refinement or-
acle employed by the hierarchical radiosity algorithm is far too
conservative. Rather than relying solely on estimates of form fac-
tor and transport error, it should incorporate a term based upon
representation error over each receiver surface.
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