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Abstract

In this paper we discuss the efficient and accurate incorporation of
texture maps into a hierarchical Galerkin radiosity algorithm. This
extension of the standard algorithm allows the use of textures to
describe complex reflectance and emittance patterns over surfaces,
increasing the realism and complexity of radiosity images. Previ-
ous approaches to the inclusion of textures have either averaged
the texture to yield a single color for the radiosity computations,
or exhaustively generated detail elements—possibly as many as
one per texture pixel. The former does not capture important
lighting effects due to textures, while the latter is too expensive
computationally to be practical.

To handle texture maps requires a detailed analysis of the under-
lying operator equation. In particular we decompose the radiosity
equation into two steps: (i) the computation of irradiance on a sur-
face from the radiosities on other surfaces, and (ii) the application
of the reflectance operator ρ to compute radiosities from irradi-
ances. We then describe an algorithm that maintains hierarchical
representations of both radiosities and textures. The numerical
error involved in using these approximations is quantifiable and
a time/error tradeoff is possible. The resulting algorithm allows
texture maps to be used in radiosity computations with very little
overhead.
CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – Radios-
ity; G.1.9 [Numerical Analysis]: Integral Equations – Fredholm
equations; J.2 [Physical Sciences and Engineering]: Engineering .
Additional Key Words and Phrases: global illumination,
wavelets, hierarchical radiosity, texture mapping.

1 Introduction

Radiosity methods compute the illumination, both direct and indi-
rect, from environments consisting of perfectly diffuse (Lamber-
tian) reflecting and emitting surfaces [10, 15, 6, 5]. The resulting
pictures contain subtle but important lighting effects, such as soft
shadows and color bleeding, that enhance their realism. However,
radiosity algorithms are still complex and far from general. For
example, most computer graphics radiosity algorithms are limited
to environments consisting of polygonal elements whose radiosi-
ties and reflectances are constant. Naturally such assumptions
limit both the realism of the resulting pictures, and the utilization
of the radiosity method in many applications. This immediately
leads to the question of what additional rendering and modeling
techniques can be combined with the radiosity method to further
enhance the realism of the final imagery.

Figure 1: A complex scene illustrating the lighting effects due
to texture maps. The window and surrounding wall are a single
polygon with emittance and reflectance textures (see Figure 9).

One of the oldest rendering techniques is the use of texture
maps to modulate surface color [3]. In the case of radiosity, tex-
ture maps may be used to spatially modulate the emittance and
reflectance of the surface. The advantage of texture maps is that
the apparent surface complexity increases without the increase in
geometric complexity that arises if the surface were to be subdi-
vided into many small surface polygons. This last distinction is
particularly important in the case of radiosity, since the computa-
tional cost of a radiosity simulation may grow quadratically with
the number of primitives in the scene.

These difficulties notwithstanding earlier researchers have in-
corporated emissive as well as reflective textures into radiosity
systems to increase the realism of the generated images. Cohen et
al. [5] incorporated textures as a post process. During the radios-
ity computations a texture mapped polygon would have a constant
reflectance equal to the average texture map reflectance. For final
renderings the textures were incorporated at the resolution of the
original texture. This was done by dividing the computed radiosi-
ties by the average reflectance and then multiplying them by the
true reflectance. This yields visually complex images, but does
not accurately account for lighting effects because the spatially
varying emission and reflection across a surface is not considered
during the radiosity calculation. Dorsey et al . [8] also incorpo-
rated texture maps. They were motivated by the need to simulate
lighting effects for opera lighting design. Consequently the simple
average/post-process technique was not applicable. Instead they
created many small polygons to get a reasonable approximation



of the original texture. As mentioned above this quickly leads
to excessive computation times, but does lead to extraordinary
pictures.

To summarize, the averaging technique does not compute the
correct illumination effects, and the exhaustive approach is ex-
pensive in both time and storage. An approach that captures the
indirect illumination effects due to texture maps to within some
accuracy while having low computational cost is clearly desirable,
and is the motivation behind this paper.

Two developments in recent radiosity research are relevant for
our present discussion, hierarchical radiosity, and higher order
Galerkin methods. A two level hierarchy was first proposed by
Cohen et al. [7] as substructuring. They allowed coarse subdivi-
sion of sources while requiring a finer subdivision of receivers.
Hanrahan et al. [12] introduced a multi level hierarchy. In their al-
gorithm objects are allowed to exchange energy at many different
levels of detail. This is based on the observation that interactions
between relatively far away primitives can be approximated with
a coarse subdivision, while only close interactions require a fine
subdivision. The level of detail at which two objects (or parts
of objects) interact is determined by their ability to capture an
interaction correctly within a specified error criterion. An asymp-
totically faster radiosity algorithm results.

Galerkin approaches, first introduced by Heckbert [13] and con-
sequently elaborated by Zatz [20], and Troutman and Max [18],
use classical finite element techniques to solve the underlying ra-
diosity integral equation. The main goal is to compute smoother
answers than classical radiosity. The higher order basis functions
also reduce the need for subdivision and accelerate convergence
overall. In any Galerkin approach all functions (emittance, re-
flectance, and the geometric kernel) are written out with respect
to some set of basis functions. It has been pointed out by Zatz that
this trivially allows for emittances which vary in some complex
way over a surface so long as this variance can be described with
the chosen set of basis functions.

The benefits of hierarchical radiosity and Galerkin methods
have recently been unified under the framework of wavelets by
Gortler et al. [11] and Schröder et al. [16].

Starting with a wavelet radiosity system we extend it to handle
both emission and reflection textures. The theory and the resulting
algorithm is the subject of this paper. We first carefully examine
the structure of the underlying operator equation. In particular
we show that the usual computation of radiosity as the product of
reflectance and irradiance (and possibly active emission) is com-
plicated by the hierarchical framework, which aims to preserve
the computational advantage afforded by multi level descriptions.
In fact, we formally and algorithmically separate the computa-
tion of irradiance from that of radiosity. This allows us to exploit
economies in each of the computational steps which would be hard
to take advantage of in the usual combined framework. In the re-
sulting algorithm, the cost of performing a radiosity computation
with texture maps is very similar to the cost without texturing.

2 Theory

2.1 The radiosity equation
The radiosity equation can be written as a simplification of the ren-
dering equation [14] by assuming that all participating surfaces are
perfectly diffuse (Lambertian), giving rise to the classical radiosity
integral equation

B(x) = Be(x) + Br(x) = Be(x) + ρ(x)E(x) (1)

= Be(x) + ρ(x)

∫
dAx′G(x, x′)π−1B(x′)
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Figure 2: Reflected radiosity,Br, is computed in two steps. First
the computation of irradiance, denoted by G, second the compu-
tation of the scattered irradiance, denoted by S.

where B(x) is the radiosity at point x, consisting of emitted
and reflected radiosity, ρ(x) the reflectance, and G(x,x′) =
cos θx cos θx′

‖x−x′‖2 V (x, x′) characterizes the radiant coupling between

points x and x′. G accounts for relative surface orientations, dis-
tance, and visibility, V = 1 or V = 0, depending on whether x
can or cannot see x′. The integral is taken over the hemisphere
about x and represents the amount of energy per unit area re-
ceived from other surfaces. This is the irradiance E(x), which
contributes to radiosity after multiplication by ρ(x).

2.2 The radiosity operator
The radiosity equation may be decomposed into two steps as
shown in Figure 2:

1. Compute irradiance from scene radiosities.
Define the operator G for a general function f

G(f)(x) =

∫
dAx′G(x, x′)π−1f(x′)

then E(x) = G(B)(x). Note that G is a geometric opera-
tor that takes into account the radiant exchange between a
receiver surface and all other source surfaces in the scene.
G is dense and non-local, but it is smooth (in the absence of
shadows). It is dense since G may potentially couple any part
of the environment to any other part. It is smooth because
G varies slowly as a function of position on the source and
receiver. In the parlance of integral equations we say that G
has a smooth kernel [2].

2. Compute radiosities from irradiances and reflectivities.
Define the scattering operator S

S(f)(x) = ρ(x)f(x)

yielding Br(x) = S(E)(x). Note that S is completely de-
termined by surface properties and as such does not depend
on the environment.
In contrast to G, S is a local operator but not always smooth.
This is because the texture map representing the reflectance
may contain high frequencies. Since it is a local operator
it does however have efficient representations as a diagonal,
sparse operator in the proper basis.

Using this operator notation we can rewrite Equation 1 as

B(x) = Be(x) + K(B)(x) = Be(x) + S ◦ G(B)(x)

where ◦ denotes concatenation. The separation into G and S al-
lows us to pursue different strategies to efficiently represent each



operator individually. Sparse operators such as S are easy to
represent efficiently. In contrast, dense operators such as G are
normally difficult to represent efficiently. However, methods exist
to efficiently approximate dense, smooth integral operators [2]. In
particular, hierarchical or wavelet radiosity algorithms provide an
efficient method for representing G [12, 11, 16]. They work be-
cause the smoothness of G allows it to be approximated efficiently
using a hierarchy of levels of detail. Unfortunately, combining S
with G creates an operator which is dense, but no longer smooth,
causing difficulties for the hierarchical methods.

2.3 Projection methods
In order to make a radiosity system tractable it must be approxi-
mated by using a finite dimensional function space. This is done
by projecting the radiosity, emittance, and reflectance functions
onto a finite set of basis functions {Ni}i=1,...,n (for some arbi-
trary but fixed n). For example, these basis functions might be
piecewise constant, as in classical radiosity, they might be higher
order polynomials as proposed by Zatz [20] for Galerkin radiosity,
or wavelets [11]. The level of resolution in the reflectance is typ-
ically limited by the solution of the input geometry. We treat the
case of incorporating reflectance functions which have potentially
much finer resolution than the element subdivision induced by the
radiosity solver. The term nodal basis will be used to describe a
basis consisting of functions at some finest level. For example,
a piecewise constant or linear basis over small elements. This is
in contrast to hierarchical bases which contain functions at many
levels of resolution and often overlapping support. The projec-
tion results in approximations B(x) ≈ B̂(x) =

∑n
i=1 BiNi(x),

ρ(x) ≈ ρ̂(x) =
∑n

l=1 ρlNl(x). Limiting everything to these ba-
sis functions, the solution to the original radiosity integral equation
can be approximated by solving the following linear system1

∀i : Bi = Be
i +

n∑
j=1

KijBj

Kij =

∫
dx ρ̂(x)

∫
dAx′ G(x, x′)π−1Nj(x

′)Ni(x)

Writing it in this conventional form (e.g. for constant radiosity
Kij = ρiFij ) we have approximated the compound action of
S ◦ G by a single set of coefficients Kij .

Instead let us consider each step separately. First irradiance
is computed with respect to the chosen basis. This step is not
fundamentally different from the compound step if ρ is assumed
constant across the support of the given basis function. In this
case one typically finds a computation step of the form Ei =∑n

j=1 FijBj . However, if ρ(x) is allowed to vary, the second
step, multiplication with ρ(x), changes in a significant way. Since
ρ(x) is given in some basis (typically the same as that used for
E), we get

Br(x) = ρ̂(x)E(x) =

(
n∑

l=1

ρlNl(x)

)(
n∑

i=1

EiNi(x)

)
(2)

Finally the emitted radiosity is added. This is straightforward and
we will therefore focus on the scattering operator in the remaining
discussion.

2.4 Representation of S
If our chosen basis is a piecewise constant nodal basis, as is typ-
ically used in classical radiosity, the application of S is straight-
forward. For such a basis the supports of two basis functions with

1To avoid cluttering the following derivations and help expose the fundamental
connections between basis functions, we will ignore all scaling constants and assume
an orthogonal basis.
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Figure 3: Multiplying an irradiance and reflectance, both rep-
resentable by a given basis (e.g. piecewise linear), can yield a
reflected radiosity (e.g. piecewise quadratic) not representable in
the same basis, requiring a reprojection step.

different index do not intersect. Therefore the application of the
operator reduces to a simple multiplication of Ei’s and ρi’s. In
this basis S is a diagonal, sparse operator. Suppose instead that
our basis was a piecewise polynomial basis of some higher order,
but still with local support. In this case the matrix corresponding
to S would be block diagonal. Each block couples the basis func-
tions with overlapping support. Once again the resulting operator
is sparse since only a small constant number of functions overlap.

The important observation is that the local support property of
a given basis results in a (block-) diagonal scattering operator S ,
which can be executed efficiently due to its sparse nature.

When multiplying basis functions a difficulty arises. Consider
the use of a piecewise linear basis set and the case depicted in Fig-
ure 3. A linearly varying irradiance is multiplied with a linearly
varying reflectance resulting in a quadratically varying radiosity.
The latter cannot be represented in the chosen basis. The radios-
ity is of higher polynomial order than the individual component
functions. This difficulty can be addressed by following up the
multiplication with a reprojection step (see the rightmost step in
Figure 3). The error incurred by the reprojection will be ana-
lyzed below in the context of the proper level of representation
for irradiance and radiosity.

The above operator decomposition can be turned into a straight-
forward algorithm. Whichever basis is used, the application of S
leads to the following four step algorithm:

Algorithm 1

1. Transform irradiance from its preferred basis to a nodal basis
2. Apply (block-) diagonal S
3. Reproject onto the nodal basis
4. Transform back to preferred basis for radiosity

This algorithm has the advantage that S is represented efficiently.
However, it has the disadvantage that it requires an intermediate
transformation between the preferred basis and the nodal basis.
In general, this transformation may require n2 operations. Fortu-
nately, if the preferred basis is the wavelet basis, the transforma-
tion to and from the nodal basis requires only a linear number of
operations.

At this point the two step decomposition of G and S has already
resulted in a very efficient algorithm. The first step proceeds as
usual, but by separating out the second step we avoid forcing
unnecessary subdivision on all surfaces due to the presence of
textures. The second step is linear in the complexity of the texture
because of the diagonal, sparse nature of S . However, we can do
even better since much of the detail computed in going to the
finest level will not be needed for the next iteration step.

An obvious improvement would be to express S directly in the
wavelet basis. Unfortunately, the multiplication of the representa-
tions of ρ and E is more expensive. The support of many of the
functions may overlap, resulting in many non-zero terms. Hence,
the representation of S is no longer sparse. Fortunately, if we
are only computing to within some chosen accuracy it may turn
out that many of the products in Equation 2 make a negligible
contribution to the total. It would be desirable to only compute
the components that matter.
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Figure 4: Two possible algorithms for applying S to the irradiance
E for an example which exhibits a large difference. The bottom
shows error magnitude (white, high error).

Two observations suggest methods for producing such an algo-
rithm:

1. S may be smooth and if represented in the wavelet basis
it may have a sparse representation. If, for example, the
texture has regions with fairly little high frequency detail
we will be able to adequately represent the texture in those
regions with few coefficients. Wavelets afford us one way
to optimally take advantage of smoothness if present.

2. The operator S will be followed by the operator G in the

next iteration. Hierarchical radiosity systems [12, 11] use
different levels of detail to compute the irradiance from the
radiosity. The decision as to how far to subdivide the sur-
faces is based on the smoothness of G. As a result there is
no need to compute the radiosity at a finer level of detail
than needed in the next iteration. This is distinct from the
finest level of radiosity used in a final rendering.

These observations can be formulated into two variants of an
algorithm which work directly with the given basis:

Algorithm nodal:

1. Push the irradiance to the resolution level of ρ
2. Apply S
3. Reproject
4. Pull to level of outgoing radiosity

We use the term outgoing radiosity to denote the level at which
radiosity is needed for the next iteration of the solver. This is
distinct from the level at which irradiance was computed, since
incoming power may need a finer (or coarser!) subdivision than
outgoing power.

Algorithm wavelet:

1. Push/pull2 the irradiance to the radiosity resolution level
2. Apply S
3. Reproject

The term push denotes transfer (addition) from a parent to chil-
dren in a subdivision hierarchy, while pull refers to averaging a
quantity from children to their parent [12].

These two algorithms are illustrated in Figure 4. At the top
is the computed irradiance on the far wall due to a light source
at the top. On the left S is a applied at the finest level of the
ρ texture. The resulting radiosity is reprojected and pulled to
the level of outgoing radiosity. On the right the application of
S is performed at the level of outgoing radiosity followed by
reprojection. The results can be markedly different as shown by
the difference between the two at the bottom. Note that it is also
possible for radiosity to be computed at a finer level than the
reflectance texture. In this case the texture is simply interpolated,
or pushed in the parlance of wavelet radiosity.

2.5 Error analysis
In order to facilitate the following error analysis we define all
the terms in the matrix realizations of the operators G and S .
Replacing K = S ◦ G in the traditional form of the linear system
we have

Bi = Be
i +

n∑
j=1

KijBj = Be
i +

n∑
k=1

Sik

n∑
j=1

GkjBj

Using 〈f, g〉 to denote the inner product, we can write Kij =
〈S ◦ G(Nj), Ni〉, Gkj = 〈G(Nj), Nk〉. Finally Sik as given as a
function of the coefficients of ρ

Sik = 〈S(Nk),Ni〉 =

n∑
l=1

ρl〈NlNk, Ni〉 (3)

We now analyze the error introduced by the approximate algo-
rithm. In what follows let P denote the projection operator onto
the level of the outgoing radiosity, and let ρd(x) = (ρ−P(ρ))(x)
denote the difference between ρ and its projection at a particular
level of detail. This corresponds to the finer levels of detail below
the given level. We may then write

P ◦ S(E) = P(P(ρ)E) + P(ρdE)

2We say push/pull since in some regions of the reflectance texture one may need
to pull while in other regions one may need to push.



Gather( QuadNode p )
p.E = 0
ForAllElements( q, p.Interaction )
p.E += Interaction[i].K * q.B

Gather( p.sw )
Gather( p.se )
Gather( p.nw )
Gather( p.ne )

PushPull( QuadNode p )
if( !p.Leaf() )
p.children.E += WaveletTransformDown( p.E )
PushPull( p.sw )
PushPull( p.se )
PushPull( p.nw )
PushPull( p.ne )
p.B = WaveletTransformUp( p.children.B )

else
p.B = p.Be + ApplyOpS( p.rho, p.E )

Figure 5: Pseudo code for Gather and PushPull. Note that B,
E, rho, and Be are two dimensional arrays of coefficients and the
operations on them are matrix operations. The function ApplyOpS
is given by Equation 4.

Examining the right hand side we see two terms. The first,
P(P(ρ)E), arises from multiplying the approximation of ρ at
the chosen subdivision level with the irradiance computed at that
level, followed by a reprojection. The second term, P(ρdE),
describes the effect of multiplying the finer detail with the irradi-
ance and again reprojecting. Both are potential sources of error.
If we only compute S at the level of the outgoing radiosity we
are completely dropping the second term, P(ρdE) (Figure 4 was
designed to make this term large). Using the fact that the mag-
nitude of a linearly transformed vector is bounded above by the
product of the magnitudes of the vector and the linear operator,
‖Ax‖ ≤ ‖A‖ ‖x‖, we may write

‖P(ρdE)‖ ≤ ‖P‖ ‖ρd‖ ‖E‖
For orthogonal projections P we have ‖P‖ = 1 and consequently
the error in this term can be bounded by the product of the irradi-
ance magnitude and the magnitude of the ignored texture detail.
Recall that ρd was the detail lost when using ρ as projected at a
given level (P(ρ)) compared to the actual ρ.

In the standard wavelet radiosity algorithm an oracle function
is used to decide whether a given interaction needs subdivision to
meet the error criterion [11] with regard to G. The presence of
reflectance textures requires an additional oracle to decide at what
level of detail S can be executed. This oracle can be based on
a test whether ‖ρd‖ ‖E‖ is less than some error threshold. This
is very similar to the BF refinement [12] in ordinary hierarchical
radiosity. In BF refinement an interaction between two elements
(G) is refined if the product of the magnitudes of radiosity and the
form factor error estimate is above the error threshold. This BF
refinement also insures the proper handling of emissive textures.

The other source of error arises from the fact that some infor-
mation is lost in the reprojection step after P(ρ) and E have been
multiplied. This error however, is already implicitly taken into
account by the oracle which governs the expansion of G. This
oracle decided that the radiosity at the receiving element is only
needed to the level of detail at which we computed E.

3 Implementation

We have added reflectance and emittance textures to a wavelet
radiosity system based on [11, 16] and [17]. Pseudo code for the

two functions which changed from previous hierarchical radiosity
systems, Gather and PushPull is given in Figure 5.

In the paragraphs below we give some more details regarding
the following three parts of the overall system

1. functions to build wavelet representations of the texture (im-
age) input files

2. extending the push/pull algorithm to include non-constant
emissions and a new function ApplyOpS

3. implementation of RenderMan shaders [19] for final render-
ing output.

3.1 Wavelet encoding of textures
For the encoding of texture maps we used the same basis functions
as were used in the rest of the system. These are the multi-
wavelets introduced by Alpert [1], which are based on Legendre
polynomials up to some order (we used order 0 through 3). The
mathematics do not require us to use the same wavelet basis for
the textures as for the other parts of the system, but it is a natural
choice with the least modifications to the system overall.

After reading in a texture, which is currently limited to have
a power-of-2 u and v extent, we pyramid transform it using the
low pass and high pass filter sequences associated with the multi-
wavelets [16]. This results in averaged representations of the
original texture from the finest (input) level all the way to the
overall average for use during the solution process. Of the detail
information (high pass bands) only a running total of the energy
is maintained for use by the oracle.

To start the transform we treat each pixel value as the coef-
ficient of a constant basis function whose domain is the pixel’s
area. These constant functions are then projected, i.e. taking the
inner product with the multi-wavelets, onto the finest level of the
hierarchy. This was chosen for simplicity, but other choices are
possible. For example, one might use a cubic spline interpolant
of the texture values at the finest level and evaluate the integrals
of this function with the multi-wavelet bases at the finest level,
before beginning the pyramid transform. The rest of the hierarchy
is created by running the PyramidUp algorithm described in [11,
16].

At this point we have a full quadtree representation of the
texture. For space reasons it may be desirable to prune subtrees in
regions which do not have enough spatial detail to warrant finer
level descriptions. This is akin to a lossy compression scheme
applied to the original texture. During actual production use of
our system we have seen a significant savings from this pruning.

3.2 Extending push/pull
The modification to the push/pull algorithm only occurs when it
reaches the leaves of the hierarchy. After gathering irradiance,
which is the G step, we need to push the irradiance to the leaves
of the subdivision as induced by the G oracle. Ordinarily we
would now multiply the coefficients of the basis functions with
the scalar ρ before executing the pull to get ready for the next
iteration. Instead we apply S as given by Equation 3 at this level
or an even finer level, if required by the original ρ map and the
modified oracle. In practice most applications of S happen at the
irradiance level without any need to go to finer levels (Figure 4
shows an extreme case where application of S must occur at a
lower level).

So far we have used a single index on all coefficients to indi-
cate which basis function they belong to. In so doing we have
abstracted the fact that all functions are defined with respect to
surfaces, i.e. with 2 parameters. We will be explicit about the 2
parameter nature of our basis functions for a moment to give the
exact expression for the application of S . Let {Ni(u)}i=1,...,M



Figure 6: These pictures illustrate the difference in radiosity solutions produced by using true texture maps and approximating them with
average values. The left column shows the effect of a reflectance texture with averaging (left half) and without averaging (right half).
Similarly the right column shows the difference between averaging and correct solution for emittances. These images were computed with
cubic basis functions (M4 multi-wavelets).

be the multi-wavelets of order M . For a moment the index num-
bering is limited to a single element. Surface basis functions
are given by {Ni(u)Nj(v)}i,j=1,...,M and consequently we use
double indices on B, E, and ρ. For example, if we use cubic
basis functions with M = 4 all the coefficients can be thought
of as 4 × 4 matrices. We still need the reprojection coefficients
Rikm =

∫
du Nk(u)Nm(u)Ni(u). With this notation we have

Br
ij =

M∑
kl=1

M∑
mn=1

RikmRjlnρklEmn i, j = 1, . . . ,M (4)

Note that Rikm can be precomputed once for a given choice of
basis. Taking the example of M = 4 again we see that the
4 × 4 coefficients Br

ij are a sum over all combinations of the
4×4 irradiance coefficients with the 4×4 reflectance coefficients.
The weights in this sum are given by the 4 × 4 × 4 reprojection
coefficients. Only emittance is left to be added in before executing
the pull and starting the next iteration

Bij = Be
ij + Br

ij.

3.3 Final output
As the renderer for final output we use RenderMan [19]. This re-
quires the creation of a RenderMan Interface Bytestream (rib) file
containing descriptions of the geometry of each leaf element gen-
erated during subdivision, as well as the computed coefficients for
the basis functions associated with the element. We have written
RenderMan shaders which accept these coefficients as parameters
and evaluate the radiosity function at a given point (u, v) in pa-
rameter space of the surface element. In the case of multi-wavelets
this is achieved by implementing the Legendre basis functions in
the shading language. Note that we do no post processing, such
as, for example, vertex averaging, as is done in many traditional

radiosity systems. The rendered images show the functions ex-
actly as computed by the radiosity system, because the color of
each sample is interpolated using the appropriate basis function
during the rendering process.

For surfaces which do not have texture maps associated with
them, we write out the coefficients of the radiosity. For sur-
faces with associated texture maps (emittance and/or reflectance)
we write out the coefficients of the irradiance together with tex-
ture coordinates and references to the original texture files. The
shaders take this description and for a given (u, v) evaluate the
irradiance, multiply with the reflectance texture value, and add the
emittance texture value.

Although our final renderings were done with RenderMan, the
texture mapping and basis function interpolation scheme used
could be easily added to any rendering system.

4 Results

Figure 6 shows the difference between using averaged textures
and true textures during the radiosity computation:

• The left column demonstrates the case of a reflectance tex-
ture mapped onto the floor. The texture map has equal
amounts of red, green and blue, and these were chosen so
the average texture value is gray and colorless. The left
half shows the result of using the average texture color and
adding the texture as a post process; the right half shows the
result achieved using the true texture map. Below each half
images is a cutout of the region just above the floor to show
the difference between the two computations more clearly.
Note the strong color bleeding near the floor. These colors
are absent if the average value is used.



Figure 7: This scene illustrates the visual complexity added to a
radiosity simulation by the inclusion of reflectance and emission
textures (62). Total simulation time to convergence 10 minutes.

• The right column shows the results of a similar experiment
for emittances. In this case there are 4 ceiling lights with
the same texture map, this time used for emittance instead
of reflectance. Once again the left half shows the solution
when using only the average color, and the right when using
the true colors during the simulation itself. In both cases
we also have a cutout of the region just below the ceiling
lights where the differences are most pronounced. Again,
with averaging no colored light is cast onto the ceiling and
walls near the lights.

For these examples we used multi-wavelet M4 (piecewise cubic)
basis functions.

To test the robustness of the system, and to measure the im-
pact of texturing on the running time of the radiosity algorithm,
we computed more complicated scenes shown in Figures 1 and 7.
Figure 1 was modeled with 23 quadrilaterals and 10 texture maps.
The stained-glass window is a single quadrilateral with the emit-
tance and reflectance maps shown in Figure 9. We solved the
system using cubic multi-wavelets. A total of 29 seconds was
spent on hierarchy creation for all texture maps (each with a reso-
lution of 1282 pixels). The solution was run to convergence in 10
complete gather sweeps. 1795 elements with 12831 interactions
were created. The process size reached 51Mb out of which 26Mb
were consumed by texture map data. The execution time was 36
minutes on an SGI Indigo (R4000 50MHz) computer. Over 90%
of this time was spent computing quadratures. The increased cost
in the application of S due to the textures is only felt during the
iterations (the remaining 10%), which become approximately 10%
more expensive. Figure 7 shows another scene. It contained 99
quadrilaterals and 62 texture maps (most had a resolution of 322

pixels), which resulted in 9515 elements and 90362 interactions
using linear basis functions. Total memory size grew to 54Mb
of which 9Mb were used for textures. The solution required 10
minutes and 15 complete gather iterations for convergence on an
SGI Indigo (R4000 50MHz) computer.

These performance numbers demonstrate that the resulting sys-
tem can simulate scenes with many textures efficiently incurring

Figure 8: Two details from Figure 7. On top the recessed colored
windows on the far wall of the room illustrate the subtle lighting
effects possible. Each window is a single polygon. On the bottom
the effect of reflectance maps on the staircase. The top of each
step has a reflectance map. Notice the patterns in the induced
color bleeding.

Figure 9: The stained glass window was created with the emissive
texture on the left and the reflective texture (matte) on the right.

only a small time penalty. Extending the existing wavelet radios-
ity system was straightforward since only a few functions needed
minor modifications.

Figure 8 shows close-up views of some of the areas that were
most influenced by the texture maps. The color changes around
the colored glass windows and the reflection off the staircase steps
are effects that would have been difficult to model without the use
of texture maps. Similarly in Figure 1 the use of texture maps
allowed the system to cluster many floor tiles or window panes
together when determining interactions by using the standard hi-
erarchical error criteria [12, 11]. The fact that high visual com-
plexity was achieved with only a few quadrilaterals attests to the
power of the texture mapping paradigm in the radiosity context.

5 Summary and conclusion

We have presented a technique which extends hierarchical radios-
ity algorithms to include reflectance and emittance textures during
the solution process. This extension was facilitated by a careful



examination of the radiosity integral equation. We separate the
computation of irradiance, a global process, from the computation
of reflected radiosity, a local process. In so doing we can take
advantage of efficiencies in each step individually. These efficien-
cies are not available if the two steps are merged, as is normally
done. The new method has been implemented in a wavelet radios-
ity system. The resulting images demonstrate the desired lighting
effects with little penalty in performance. As a result increasing
the visual complexity of radiosity computations with texture maps
is now practical.

Although the computational cost of using texture maps is now
quite small, the storage and memory costs may still be large. An
interesting research question is how to manage the texture data.
Since only limited resolutions are ever needed, and since many
radiosity runs may be performed using the same input textures, it
is reasonable to precompute and store the wavelet representation
of the texture. The radiosity program then need only read in the
resolution sets that are required. This also suggests the intriguing
possibility of applying a lossy wavelet compression to the texture
maps to begin with. The compression would be limited so as to
not produce any artifacts to the human observer, but could still
reduce the cost of reading the textures, and the amount of disk
space needed to store them.

The use of texture mapping techniques in computer graphics
has a long tradition and many complex effects can be achieved.
One such example has already been demonstrated in Figure 1,
where two texture maps, one for emittance and another for re-
flectance are combined with a matte (see Figure 9). As a result
the odd shaped stained glass window is created from texture maps
and a single quadrilateral. Other uses for texture maps include
environment mapping and bump mapping [4]. The algorithm de-
scribed in this paper may be easily modified to use environment
maps; an interesting application of this would be to the modeling
of skylighting, which is currently very expensive. A clever algo-
rithm for approximating bump mapping in the context of radiosity
is described in [4]; similar approximations could likely be used
in a hierarchical radiosity algorithm, although this would require
further research.

Some of these techniques may also be useful for the clustering
problem. Imagine a surface described by a displacement map over
a regular grid. Now we have actual geometric complexity, yet a
multi resolution description still appears promising and could be
incorporated in a straightforward manner into the texture map-
ping system. In fact one might imagine replacing entire complex
ensembles of geometry with a “picture” during parts of the radios-
ity solution process. Another use for this system is in the area
of inverse problems. Consider taking a photograph of a diffuse
surface, i.e. capturing its radiosity, and using this as a texture in
a radiosity simulation. This could be used to match real scenes
with computed scenes [9]; and more generally might be useful for
problems arising in computer vision, such as the computation of
the reflectance map.

The technique we applied in our analysis, separating out the
global G part of the computation from the surface local S part,
may also be a fruitful analysis technique for other rendering prob-
lems. For example, in volume rendering it may yield new insights
to separate the representation of the attenuation operator from the
representation of the scattering operator. Another example is the
computation of radiance, where one might also gain new effi-
ciencies from separating the incident radiance operator from the
scattering operator.
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