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Abstract

This paper introduces an efficient two-pass rendering technique for
translucent materials. We decouple the computation of irradiance
at the surface from the evaluation of scattering inside the material.
This is done by splitting the evaluation into two passes, where the
first pass consists of computing the irradiance at selected points on
the surface. The second pass uses a rapid hierarchical integration
technique to evaluate a diffusion approximation based on the irra-
diance samples. This approach is substantially faster than previous
methods for rendering translucent materials, and it has the advan-
tage that it integrates seamlessly with both scanline rendering and
global illumination methods. We show several images and anima-
tions from our implementation that demonstrate that the approach
is both fast and robust, making it suitable for rendering translucent
materials in production.

Keywords: Subsurface scattering, BSSRDF, reflection models,
light transport, diffusion theory, global illumination, realistic image
synthesis

1 Introduction

Translucent materials are frequently encountered in the natural
world. Examples include snow, plants, milk, cheese, meat, human
skin, cloth, marble, and jade. The degree of translucency may vary,
but the characteristic appearance is distinctly smooth and soft as a
result of light scattering inside the objects, a process known as sub-
surface scattering. Subsurface scattering diffuses the scattered light
and blurs the effect of small geometric details on the surface, soft-
ening the overall look. In addition, scattered light can pass through
translucent objects; this is particularly noticeable when the objects
are lit from behind. To render these phenomena and capture the
true appearance of translucent materials it is therefore necessary to
simulate subsurface scattering.

Traditionally subsurface scattering has been approximated as
Lambertian diffuse reflection. This was later improved by Hanra-
han and Krueger [1993] with an analytic term for single scattering
in order to account for important directional effects. They also pro-
posed a method for simulating subsurface scattering by tracing pho-
tons through the material, but in the end they used a BRDF (Bidirec-
tional Reflectance Distribution Function [Nicodemus et al. 1977])
to represent the final model. A BRDF only accounts for scattering
at a single point, and it cannot be used to simulate light transport

within the material between different points on the surface. This
requires treating the material as a participating medium with a sur-
face. This was done by Dorsey et al. [1999] who used photon map-
ping to simulate subsurface scattering in weathered stone. Pharr
and Hanrahan [2000] introduced the concept of scattering equations
and demonstrated how this concept could be used to simulate sub-
surface scattering more efficiently than traditional Monte Carlo ray
tracing.

More recently, Koenderink and van Doorn [2001] and Jensen
et al. [2001] proposed modeling the scattering of light in translu-
cent materials as a diffusion process. The diffusion approxima-
tion works particularly well in highly scattering media where tra-
ditional Monte Carlo ray tracing becomes very expensive [Stam
1995]. Jensen et al. [2001] suggested a simple analytical dipole dif-
fusion approximation and found this model to be in good agreement
with measurements of light scattered from translucent materials.
They used this approximation to formulate a complete BSSRDF
(Bidirectional Scattering Surface Reflectance Distribution Func-
tion [Nicodemus et al. 1977]), which relates outgoing radiance at
a point to incident flux at all points on the surface. Finally, they
evaluate the BSSRDF by sampling the incident flux on the surface.

The BSSRDF approximation [Jensen et al. 2001] is much faster
than Monte Carlo photon tracing. However, since it requires sam-
pling the incident flux distribution at the surface, it is still more
expensive to evaluate than a traditional BRDF. It is particularly ex-
pensive for highly translucent materials where light can scatter a
long distance within the material. Another difficulty with the ap-
proach is that it only includes internal scattering in the material due
to direct illumination from the light sources. It is not obvious how
to extend the sampling technique to include global illumination as
well.

In this paper we introduce a fast and general two-pass rendering
technique for translucent materials. Our approach is based on two
key ideas. The first idea is to decouple of the computation of the
incident illumination from the evaluation of the BSSRDF by using
a two-pass approach. In the first pass, we compute the irradiance at
selected points on the surface, and in the second pass we evaluate
a diffusion approximation using the pre-computed irradiance sam-
ples. The second idea is to use a rapid hierarchical evaluation of the
diffusion approximation using the pre-computed irradiance sam-
ples. This approach is substantially faster than directly sampling
the BSSRDF since it only evaluates the incident illumination once
at a given surface location, and it is particularly efficient for highly
translucent materials where sampling the BSSRDF is costly. To
evaluate the irradiance, we can use standard rendering techniques
including scanline rendering and global illumination methods. This
means that we can compute the effects of indirect illumination on
translucent materials. Furthermore, our results do not suffer from
any high-frequency Monte Carlo sampling noise since the hierar-
chical evaluation is deterministic. This is a great advantage for ani-
mations where this type of noise is particularly noticeable.

Another contribution of this paper is a reformulation of the scat-
tering parameters for translucent materials. We show how the in-
trinsic scattering properties of translucent materials can be com-
puted from two intuitive parameters: a diffuse reflectance and an
average scattering distance. Finally, we show several results from
our implementation of the method in a scanline renderer as well as
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a Monte Carlo ray tracer. Our results indicate that the hierarchical
evaluation technique is fast and robust, and capable of rendering
images and animations of translucent objects in complex lighting
environments.

2 Light Diffusion in Translucent Materials

The scattering of light within a medium is described by the radiative
transport equation [Chandrasekhar 1960]:

(~ω · ∇)L(x, ~ω) = −σtL(x, ~ω) + σsLi(x, ~ω) + s(x, ~ω). (1)

Here,L is the radiance,s is a source term,σs is the scattering
coefficient,σa is the absorption coefficient,σt is defined asσa+σs,
andLi is the in-scattered radiance:

Li(x, ~ω) =

∫
4π

p(~ω, ~ω′)L(x, ~ω′)d~ω′. (2)

The phase function,p, specifies the spherical distribution of the
scattered light. It is normalized,

∫
4π
p(~ω, ~ω′)d~ω′ = 1, and we

assume it only depends on the cosine of the scattering angle,
p(~ω, ~ω′) = p(~ω · ~ω′). The mean cosine,g, of the scattering an-
gle is:

g =

∫
4π

p(~ω, ~ω′)(~ω · ~ω′)d~ω′. (3)

The value ofg ∈ [−1, 1] indicates the type of scattering in the
medium. g = 0 is isotropic scattering,g < 0 is backwards scat-
tering andg > 0 is forward scattering. Most translucent materials
are strongly forward scattering withg > 0.7 (skin for example
has0.7 < g < 0.9 [Gemert et al. 1989]). Such strongly peaked
phase functions are costly to simulate in media with multiple scat-
tering since the probability of sampling in the direction of the light
sources will be low in most situations. The difficulty of sampling
further increases with the distance to the light sources. In this case
we can benefit from a powerful technique known as thesimilarity
of moments[Wyman et al. 1980], which allows us to change the
scattering properties of the medium without significantly influenc-
ing the actual distribution of light. Specifically, we can modify the
medium to have isotropic scattering (g = 0) by changing the scat-
tering coefficient to

σ′s = (1− g)σs, (4)

whereσ′s is thereducedscattering coefficient. The absorption co-
efficient remains unchanged, and we get the reduced extinction co-
efficientσ′t = σ′s + σa.

Equation 1 is a five-dimensional integro-differential equation,
and even in media with isotropic scattering it is in most cases dif-
ficult to solve. One approach is to expand radiance into a trun-
cated series of spherical harmonics. For this purpose we divide
the radiance into two components: the unscattered radiance,Lu,
and the scattered (diffuse) radiance,Ld. The unscattered radi-
ance is reduced as a function of the distance traveled through the
medium [Ishimaru 1978]:

Lu(x+ ∆x, ~ω) = e−σ
′
t∆xLu(x, ~ω). (5)

The average distance at which the light is scattered, the mean-free
path, is`u = 1/σ′t.

The diffusion approximation uses the first four terms of the
spherical harmonic expansion to representLd:

Ld(x, ~ω) ≈ Ft(x) +
3

4
π ~E(x) · ~ω. (6)

The 0th-order spherical harmonic, the radiant fluence,Ft, is
Ft(x) =

∫
4π
Ld(x, ~ω

′)d~ω′, and the 3 terms of the 1st-

order spherical harmonic, the vector irradiance,~E, is ~E =∫
4π
Ld(x, ~ω

′)~ω′d~ω′. Note thatLd cannot be purely diffuse as this
would result in zero flux within the medium. InsteadLd is approx-
imated as being mostly diffuse, but with a preferential direction (as
indicated by~E) to the overall flow of the flux.

The diffusion approximation is particularly effective in highly
scattering media at some distance from the light sources as well
as in regions with rapidly changing scattering properties. This
is due to the natural smoothing resulting from multiple scatter-
ing [Stam 1995]. More precisely, the diffusion approximation has
been shown [Furutso 1980] to be accurate whenσa/σt � 1− g2.

Applying the diffusion approximation (Equation 6) to the radia-
tive transport equation (Equation 1) yields the diffusion equation
(the details of the derivation can be found in [Ishimaru 1978]):

1

3σ′t
∇2Ft(x) = σaFt(x)− S0(x) +

1

σ′t
∇ · ~S1(x). (7)

Here,S0 andS1 represents the 0th- and the 1st-order spherical har-
monics expansion of the source term, similar to the expansion for
diffuse radiance.

The diffusion equation can be solved analytically for special
cases [Ishimaru 1978], or by using a multigrid approach [Stam
1995]. In the case of translucent materials, we are interested in
the outgoing radiance at the material surface as a function of the
incoming radiance. Jensen et al. [2001] use a dipole diffusion ap-
proximation for a point source in a semi-infinite medium. The point
source is an approximation of an incoming beam of light for which
it is assumed that all light scatters at a depth of one mean-free path
below the surface. The dipole diffusion approximation results in
the following expression for the radiant exitance,Mo, at surface
locationxo due to incident flux,Φi(xi), atxi:

dMo(xo) = dΦi(xi)
α′

4π

{
C1
e−σtrdr

d2
r

+ C2
e−σtrdv

d2
v

}
, (8)

where

C1 = zr

(
σtr +

1

dr

)
and C2 = zv

(
σtr +

1

dv

)
. (9)

Here,α′ = σ′s/σ
′
t is the reduced albedo,σtr =

√
3σaσ′t is the

effective transport extinction coefficient,dr =
√
r2 + z2

r is the
distance to the real light source,dv =

√
r2 + z2

v is the distance
to the virtual source,r = ||xo − xi|| is the distance fromxo to
the point of illumination, andzr = `u andzv = `u(1 + 4/3A)
are the distance from the the dipole lights to the surface (shown
in Figure 2). Finally, the boundary condition for mismatched in-
terfaces is taken into account by theA term which is computed as
A = (1 + Fdr)/(1− Fdr), where the diffuse Fresnel term,Fdr is
approximated from the relative index of refractionη by [Groenhuis
et al. 1983]:

Fdr = −1.440

η2
+

0.710

η
+ 0.668 + 0.0636η. (10)

In addition to Equation 8 the BSSRDF includes a single scatter-
ing term (see [Jensen et al. 2001] for the details).

2.1 The Importance of Multiple Scattering

The diffuse term is the most costly to sample for translucent materi-
als since it depends on lighting from a large fraction of the material
surface. We can approximate the average distance,`d = 1/σtr,
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Figure 1: These graphs show the effect of increasing the scattering
albedo of the material. The left graph shows the average scatter-
ing distance for diffuse radiance divided by the mean-free path for
single scattering (for g = 0.9) as predicted by Equation 11 and es-
timated using a Monte Carlo photon simulation. The graph on the
right shows the fraction of the radiant exitance that is due to mul-
tiple scattering (estimated with a Monte Carlo photon simulation).
The important thing to notice in the two graphs is that the diffuse
radiance scatters much further, and that it becomes increasingly im-
portant as the albedo gets closer to one.

along the surface that the diffused radiance scatters by assuming
that the exponential term dominates in Equation 8. By dividing this
distance with the mean-free path,`s = 1/σt, of single-scattered
light, we can estimate the relative scattered distance of the two
within the medium:

`d
`s

=
σt
σtr

=
1√

3(1− α)(1− gα)
. (11)

Note how the ratio depends only on the albedo,α, and the scat-
tering anisotropy,g. Figure 1 shows a plot of this equation and a
comparison with a Monte Carlo photon simulation. For the pho-
ton simulation, we traced photons from random directions towards
a translucent material and recorded the average distance at which
the photons left the surface again after scattering inside the mate-
rial. This distance divided bỳs is shown in the graph. For the
simulation we used the Henyey-Greenstein phase function [Henyey
and Greenstein 1941] and the photons are scattered using the ap-
proach described by Hanrahan and Krueger [1993]. Despite sev-
eral assumptions about the average scattering distance, it can be
seen that the predictions of Equation 11 are surprisingly accurate.
For both simulations the ratio rapidly increases as the albedo ap-
proaches one as a consequence of the increasing number of scat-
tering events. From the measurements in [Jensen et al. 2001] we
can see that all of the materials have an albedo close to one. As an
example, red wavelengths in skim milk (assumingg = 0.9) have a
scattering albedo ofα ≈ 0.9998, which gives a ratiòd/`s ≈ 129.
This means that the average distance traveled by diffuse radiance is
129 times larger than the average distance traveled by unscattered
radiance. In effect this means that single scattering is substantially
more localized than diffuse scattering.

The importance of multiple scattering increases with the albedo
of the material. To further investigate how important multiple scat-
tered light is for translucent materials, we performed another Monte
Carlo photon simulation. In this simulation we traced photons from
random directions towards the surface scattering medium. At the
surface we recorded the radiant exitance from the photons that scat-
tered in the medium. We used an index of refraction of 1.3 for the
medium (the results are very similar for other values). Two impor-
tant parameters for the medium are the scattering anisotropy and the
scattering albedo. The right graph in Figure 1 shows the fraction of
the radiant exitance from the material due to multiple scattered light
as a function of the albedo. Note, how the fraction gets close to 1.0
for the forward scattering material, and close to 0.9 for a material
with isotropic scattering.

3 A Two-Pass Technique for Evaluating
the Diffusion Approximation

As shown in the previous section, the radiant exitance from highly
scattering translucent materials is dominated by photons that have
scattered multiple times inside the material. Jensen et al. [2001]
compute the contribution from multiple scattering by sampling the
irradiance at the material surface and evaluating the diffusion ap-
proximation — in effect convolving the reflectance profile predicted
by the diffusion approximation with the incident illumination. Even
though the diffusion approximation is a very effective way of ap-
proximating multiple scattering, this sampling technique becomes
expensive for highly translucent materials. The reason for this is
that the sampled surface area grows and needs more samples as the
material becomes more translucent.

The key idea for making this process faster is to decouple the
computation of irradiance from the evaluation of the diffusion ap-
proximation. This makes it possible to reuse irradiance samples
for different evaluations of the diffusion equation. For this pur-
pose, we use a two-pass approach in which the first pass consists
of computing the irradiance at selected points on the surface, and
the second pass is evaluating the diffusion approximation using the
precomputed irradiance values. For the second pass we exploit the
decreasing importance of distant samples and use a rapid hierarchi-
cal integration technique.

Pass 1: Sampling the Irradiance

To obtain the sample locations on the surface of a piece of geometry
we use Turk’s point repulsion algorithm [Turk 1992], which pro-
duces a uniform sampling of points on a polygon mesh. We do not
change (retile) our mesh as we only need the point locations. To en-
sure an accurate evaluation of the diffusion approximation we need
enough points to account for several factors including the geometry,
the variation in the lighting, the scattering properties of the material,
and the integration technique. We use the mean-free path,`u, as the
maximum distance between the points on the surface. The approxi-
mate number of points that we use for a given object then becomes
A/(π`2u), whereA is the surface area of the object. This is a con-
servative estimate, since anything below the mean-free path will be
blurred by multiple scattering. However, the sample density should
not be much lower since this will result in low-frequency noise in
the reconstruction of the diffusion approximation. Note that our re-
construction does not require a uniform sampling since we weight
each sample point by the area associated with the point. It would be
possible to use other approaches that sample more densely around
discontinuities in the irradiance or the geometry.

With each sample point we store the location, the area associ-
ated with the point (in the case of uniform sampling, this is sim-
ply the surface area divided by the number of points), and a com-
puted irradiance estimate. Since the irradiance is computed at a
surface location we can use standard rendering techniques includ-
ing methods that account for global illumination (such as photon
mapping [Jensen 1996] and irradiance caching [Ward et al. 1988]).

Pass 2: Evaluating the Diffusion Approximation

The diffusion approximation can be evaluated directly (using Equa-
tion 8) by summing the contribution from all the irradiance samples.
However, this approach is costly since most objects have several
thousand irradiance samples. Another, strategy would be to only
consider nearby “important” points. This approach would work,
but it could potentially leave out important illumination, and for
accurate evaluations it would still need hundreds of irradiance sam-
ples (e.g. our sampling produces roughly 300 samples within a disc
with a radius of 10 mean-free paths). Instead we use a hierarchi-
cal evaluation technique which takes into account the contribution
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from all irradiance samples by clustering distant samples to make
this evaluation fast. The exponential shaped fall-off in the diffusion
approximation makes the hierarchical approach very efficient. The
concept is similar to the hierarchical approaches used for N-body
problems [Appel 1985].

Several different hierarchical structures can be used for the ir-
radiance samples. We use an octree in our implementation. Each
node in the tree stores a representation of illumination in all its child
nodes: the total irradiance,Ev, the total area represented by the
points,Av, and the average location (weighted by the irradiance) of
the points,~Pv. To increase efficiency we allow up to8 irradiance
samples in a leaf voxel.

The total radiant exitance flux at a location,x, is computed by
traversing the octree from the root. For each voxel we check if it
is “small enough” or if it is a leaf node that it can be used directly;
otherwise all the child nodes of the voxel are evaluated recursively.
If the pointx is inside the voxel then we always evaluate the child
nodes. For all other voxels we need an error criterion that speci-
fies the desired accuracy of the hierarchical evaluation. One option
would be to compute the potential contribution from the voxel and
decide based on this estimate if the voxel should be subdivided.
Unfortunately, this is not trivial — and simply using the center of
the points in the voxel is not a good approximation for nearby large
voxels. Instead we use a much simpler criterion that is both fast
to evaluate and that works well in practice. We base our criteria
for subdividing a voxel on an approximation of the maximum solid
angle,∆ω, spanned by the points in the voxel:

∆ω =
Av

||~x− ~Pv||2
. (12)

To decide if a voxel should be subdivided we simply compare∆ω
to a valueε which controls the error. If∆ω is larger thanε then
the children of the voxel are evaluated; otherwise the voxel is used
directly. Another option would be to check the solid angle of the
voxel itself; however, using the area of the points makes the evalu-
ation faster, since we can use the clustered values for large voxels
with just a few irradiance samples (e.g. large voxels that just barely
intersect the surface).

The radiant exitance due to a voxel is evaluated using the clus-
tered values for the voxel, or if it is a leaf-voxel by summing the
contribution from each of the points in the voxel. The radiant ex-
itance,Mo,p(x) at x from a given irradiance sample is computed
using the dipole diffusion approximation

Mo,p(x) = Fdt(x)
dMo(x)

α′dΦi(~Pp)
EpAp, (13)

wherePp is the location of the irradiance sample(s),Ep is the
irradiance at that location, andAp is the area of the location.
dMo(||x − ~Pp||2)/(α′dΦi(~Pp)) is computed using Equation 8.
Notice that we scale each irradiance sample by the diffuse Fres-
nel transmittance,Fdt = 1 − Fdr (Fdr is computed using Equa-
tion 10). This is necessary when approximating the irradiance by
the dipole source. We could have scaled the contribution from each
of the sample rays used to compute the irradiance by the true Fres-
nel transmittance, but by using the diffuse (Lambertian) assumption
we can benefit from fast rendering techniques for diffuse materials
(e.g. caching techniques such as photon maps [Jensen 1996] and
irradiance caching [Ward et al. 1988]). The dipole approximation
for an irradiance sample is illustrated in Figure 2. Note that this
approximation has been derived assuming a semi-infinite medium.
In the presence of complex geometry (e.g. curved surfaces or thin
geometry) we use the same techniques as Jensen et al. [2001] to
ensure numerical stability.

The result of traversing and evaluating the voxels is an estimate
of the total (diffuse) radiant exitance,Mo at x, which we convert
into radiance,Lo:

Z
�

r�

Z
�

v�

Figure 2: For each point sample we use the dipole diffusion approx-
imation to compute the radiant exitance.

Lo(x, ~ω) =
Ft(x, ~ω)

Fdr(x)

Mo(x)

π
. (14)

We scale the contribution by the Fresnel transmittance,Ft to ac-
count for reflection and transmission at the surface. Since, the dif-
fusion approximation already includes a diffuse Fresnel transmit-
tance we divide byFdr. Alternatively, we could omit the Fresnel
terms and assume a diffuse radiance.

4 Reparameterizing the BSSRDF

One difficulty in simulating subsurface scattering is that it is diffi-
cult to predict the resulting appearance from a given combination
of absorption and scattering coefficients (since their effect is highly
non-linear). In this section, we will outline a simple technique for
reparameterizing the BSSRDF into using intuitive translucency and
reflectivity parameters. These parameters are already present in the
computations in the form of the diffuse mean free path`d and the
diffuse reflectance of the material, and they are sufficient for com-
puting the scattering and absorption properties of the material.

First, using the diffuse reflection coefficient (see [Jensen et al.
2001]), we solve for the reduced albedo of the material:

Rd =
α′

2

(
1 + e−

4
3A
√

3(1−α′)
)
e−
√

3(1−α′) . (15)

This equation is not easily invertible, but it has a simple monotonic
shape in the valid regionα′ ∈ [0 : 1], and we use a few iterations
of a simple secant root finder to computeα′.

We know the effective transport coefficient,σtr ≈ 1/`d, and
given the reduced albedo we can find the reduced extinction coeffi-
cient:

σtr
σ′t

=
√

3(1− α′) −→ σ′t =
σtr√

3(1− α′)
(16)

Finally, this gives us the absorption and the reduced scattering coef-
ficients:σ′s = α′σ′t andσa = σ′t− σ′s. If the scattering anisotropy,
g, is given then the real extinction and scattering coefficients can be
computed as well.

5 Results

In this section we present several results from our implementation
of the rendering technique. We have used two different systems
to implement the model: A Monte Carlo ray tracer with support
for global illumination, and a modified a-buffer renderer used in
production. Our timings were recorded on a dual 800MHz Pentium
3 for images with a width of 1024 pixels and 4 samples per pixel.

The first example include several renderings of a translucent
marble teapot as shown in Figure 3. All of these images were
rendered with the Monte Carlo ray tracer. The left column shows
a comparison with the BSSRDF sampling technique by Jensen et
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al. [2001], and our hierarchical technique under the same lighting
conditions (for this comparison we use the BRDF approximation
for the single scattering term). The important thing to notice is
that the two images are practically indistinguishable except for a
small amount of sampling noise in the BSSRDF image. This shows
that the hierarchical approach is capable of matching the output of
the BSSRDF for a translucent material. However, the hierarchi-
cal technique took just 7 seconds to render (including 1 second
to compute the irradiance values at the samples), while the BSS-
RDF sampling took 18 minutes — a factor of 154 speedup in this
case. The speedup will be even more dramatic for objects that are
more translucent. The top image in the right column shows a glossy
teapot illuminated by a high dynamic range environment map [De-
bevec 1999]. To enhance the translucency effect we made the en-
vironment black behind the camera. The render time for the image
without glossy reflection is 7 seconds (the rendering time including
glossy reflection is 40 seconds). The precomputation time for the
irradiance samples (sampling the environment map) was roughly 1
minute. This scene would be extremely costly to render using the
BSSRDF sampling approach, since it would involve picking a point
on the light source and then sampling in the direction of the teapot
— a process where the probability of generating good samples is
very low. Finally, the lower right image shows the 150,000 sample
locations on the teapot that we used for all images.

Our second example in Figure 4 shows the classic Cornell box
global illumination scene with a translucent box. This image was
rendered using Monte Carlo ray tracing — we used photon map-
ping [Jensen 1996] to speed up the computation of global illumi-
nation. Note the light scattering through the box, and the color
bleeding in the scene. In the precomputation of the indirect illu-
mination for the irradiance samples on the translucent box we used
a diffuse assumption in order to account for multiple reflections
between the box and the walls. However we do account for translu-
cency when evaluating color bleeding on the wall. For scenes where
translucency is important for the indirect illumination of the translu-
cent elements (e.g. light bleeding through a leaf onto a white floor
which then reflects back on the leaf) a multi-pass approach could
be used where the indirect illumination is computed recursively for
the translucent materials. The rendering time for the image was 55
seconds, and the precomputation of the irradiance for 20,000 points
on the box was 21 seconds.

Our third example in Figure 6 shows the lower half of a face
model rendered using a standard skin shader (on the left) and us-
ing a skin shader with support for translucency (on the right). This
face model was built before the translucency shader was developed.
It uses several textures, which we apply by scaling the 250,000 ir-
radiance samples with filtered texture values (the filter support is
equal to the area associated with each irradiance sample). This ap-
proach made it possible to replace the previous skin shader with
a translucent version. The added translucency vastly increases the
realism of the model as it softens the appearance of the skin and nat-
urally simulates effects such as the color bleeding around the nose.
The rendering time using the standard skin shader was 16 minutes
while the translucent skin shader took 20 minutes (including gener-
ating the sample points). A significant advantage of our approach
is that it works with all the standard lights used in production such
as fill lights, rim lights and key lights. This natural integration of
the translucency shader in the production framework made it a nat-
ural choice for the main character in “Sprout” (a short animation).
Translucency helps depict the small size of the character as shown
in Figure 5.

6 Conclusion and Future Work

We have presented an efficient two-pass rendering technique for
translucent materials. We combine a point sampling of the irradi-

ance on the surface with a fast hierarchical evaluation of a diffusion
approximation. Our approach is particularly efficient for highly
translucent materials where the BSSRDF sampling [Jensen et al.
2001] becomes costly, and it integrates seamlessly with both scan-
line rendering and global illumination methods. Our results demon-
strate how the technique is both fast and robust making it suitable
for rendering translucent materials in production of computer ani-
mations.

Future improvements include extending the approach to translu-
cent materials with a visible internal 3D structure. It would also be
useful to investigate the accuracy of the dipole diffusion approxi-
mation in the presence of complex geometry.

Another interesting path to explore is interactive rendering of
translucent materials. This could be done by further simplifying
the evaluation technique so that it can be implemented directly on
programmable graphics hardware.
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KOENDERINK, J., AND VAN DOORN, A. 2001. Shading in the case of translucent
objects. InProceedings of SPIE, vol. 4299, 312–320.

NICODEMUS, F. E., RICHMOND, J. C., HSIA, J. J., GINSBERG, I. W., AND
L IMPERIS, T. 1977. Geometric considerations and nomenclature for reflectance.
Monograph 161, National Bureau of Standards (US), Oct.

PHARR, M., AND HANRAHAN , P. 2000. Monte carlo evaluation of non-linear scat-
tering equations for subsurface reflection. InProceedings of SIGGRAPH 2000,
75–84.

STAM , J. 1995. Multiple scattering as a diffusion process. InEurographics Rendering
Workshop 1995, Eurographics.

TURK, G. 1992. Re-tiling polygonal surfaces. InComputer Graphics (SIGGRAPH
’92 Proceedings), vol. 26, 55–64.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution
for diffuse interreflection. InComputer Graphics (SIGGRAPH ’88 Proceedings),
vol. 22, 85–92.

WYMAN , D. R., PATTERSON, M. S.,AND WILSON, B. C. 1980. Similarity relations
for anisotropic scattering in monte carlo simulations of deeply penetrating neutral
particles.J. Comp. Physics 81, 137–150.

580



BSSRDF: sampled evaluation - 18 minutes Illumination from a HDR environment

BSSRDF: hierarchical evaluation - 7 seconds The sample locations on the teapot

Figure 3: A translucent teapot. On the left we compare our hierarchical BSSRDF evaluation (bottom) to a sampled BSSRDF
(top). The top right image shows the teapot in a HDR environment, and the bottom right shows the 150,000 sample points on
the teapot.

Figure 4: A global illumination scene with a translucent
box. Note the light bleeding through the box, and the color
bleeding in the model.

Figure 5: An animation with a translucent character.
Translucency helps depict the small size of the character.
Image courtesy of Scott Peterson - PDI/DreamWorks.

Figure 6: A textured face model lit by three light sources (key, fill, and rim). The left image shows the result using the skin
shader that was used in the movie “Shrek”, and the right image shows the result after adding our simulation of translucency to
this shader.
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