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Abstract

Many problems in computer graphics and computer vision require
accurate global visibility information. Previous approaches have
typically been complicated to implement and numerically unstable,
and often too expensive in storage or computation. The Visibility
Skeleton is a new powerful utility which can efficiently and accu-
rately answer visibility queries for the entire scene. The Visibility
Skeleton is a multi-purpose tool, which can solve numerous differ-
ent problems. A simple construction algorithm is presented which
only requires the use of well known computer graphics algorithmic
components such as ray-casting and line/plane intersections. We
provide an exhaustive catalogue of visual events which completely
encode all possible visibility changes of a polygonal scene into a
graph structure. The nodes of the graph are extremal stabbing lines,
and the arcs are critical line swaths. Our implementation demon-
strates the construction of the Visibility Skeleton for scenes of over
a thousand polygons. We also show its use to compute exact visible
boundaries of a vertex with respect to any polygon in the scene, the
computation of global or on-the-fly discontinuity meshes by con-
sidering any scene polygon as a source, as well as the extraction of
the exact blocker list between any polygon pair. The algorithm is
shown to be manageable for the scenes tested, both in storage and
in computation time. To address the potential complexity problems
for large scenes, on-demand or lazy contruction is presented, its im-
plementation showing encouraging first results.

Keywords: Visibility, Global Visibility, Extremal Stabbing Lines,
Aspect Graph, Global Illumination, Form Factor Calculation, Dis-
continuity Meshing, View Calculation.

1 INTRODUCTION

Ever since the early days of computer graphics, the problems of de-
termining visibility have been central to most computations required
to generate synthetic images. Initially the problems addressed con-
cerned the determination of visibility of a scene with respect to a
given point of view. With the advent of interactive walkthrough sys-
tems and lighting calculations, the need for global visibility queries
has become much more common. Many examples of such require-
ments exist, and are not limited to the domain of computer graph-
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ics. When walking through a complex building, real-time visualiza-
tion algorithms require the information of which objects are visible
to limit the number of primitives rendered, and thus achieve better
frame rates. In global illumination computations, the dominant part
of any calculation concerns the determination of the proportion of
light leaving surface s and arriving at surface r. This determination
depends heavily on the relative occlusion of the two objects, requir-
ing the calculation of which parts of s are visible from r. All such
applications need detailed data structures which completely encode
global visibility information; previous approaches have fallen short
of this goal.

1.1 Motivation

The goal of the research presented here is to show that it is possi-
ble to construct a data structure encompassing all global visibility
information and to show that our new structure is useful for a num-
ber of different applications. We expect the structure we present
to be of capital importance for any application which requires de-
tailed visibility information: the calculation and maintenance of
the view around a point in a scene, the calculation of exact form-
factors between vertices and surfaces, the computation of disconti-
nuity meshes between any two pairs of objects in a scene as well as
applications in other domains such as aspect graph calculations for
computer vision etc.

Previous algorithms have been unable to provide efficient and ro-
bust data structures which can answer global visibility queries for
typical graphics scenes. In what follows we present a new data
structure which can provide exact global visibility information. Our
structure, called the Visibility Skeleton, is easy to build, since its con-
struction is based exclusively on standard computer graphics algo-
rithms, i.e., ray casting and line-plane intersections. It is a multi-
purpose tool, since it can be used to solve numerous different prob-
lems which require global visibility information; and finally it is
well-adapted to on-demand or lazy construction, due to the local-
ity of the construction algorithm and the data structure itself. This
is particularly important in the case of complex geometries.

The central component of the Visibility Skeleton are critical lines
and extremal stabbing lines, which, as will be explained in detail in
what follows, are the foci of all visibility changes in a scene. All
modifications of visibility in a polygonal scene can be described by
these critical lines, and a set of line swaths which are necessarily
adjacent to these lines. In this paper we present the construction of
the Skeleton, and the implementations of several applications. As
an example, consider Fig. 1(a), which is a scene of 1500 polygons.
After the construction of the skeleton, many different queries can
be answered efficiently. We show the view from the green selected
point to the left wall which only required 1.4 ms to compute; in Fig.
1(b), the complete discontinuity mesh on the right wall is generated
by considering the screen of the computer as an emitter which re-
quired 8.1 ms.

After a brief overview of previous work (Section 1.2), we will
provide a complete description of all possible nodes, and all the ad-
jacent line swaths in Section 2. In Section 3 the construction algo-
rithm and the actual data structure are described in detail. The re-
sults of our implementation are then presented in Section 4, giving
the complete construction of the Visibility Skeleton for a suite of test
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Figure 1: (a) Exact computation of the part of the left wall as seen
by the green vertex. (b) Complete discontinuity mesh on the right
wall when considering the computer screen as source.

scenes. We show how the Skeleton is then used to provide exact
point-to-surface visibility information for any vertex in the scene,
to calculate the complete discontinuity mesh between any two sur-
faces in the scene, extract exact blocker lists between two objects,
and compute all visibility interactions of one object with all other
objects in a scene, which could be used for dynamic illumination
updates in scenes with moving objects. Section 5 addresses the is-
sues arising when treating more complex scenes, and in particular
we present a first attempt at on-demand construction. The results of
the implementation show that this allows significant speedup com-
pared to the complete algorithm. In Section 6 we sketch how the
structure can be extended to environments in which objects move,
as well as other potential extensions, and we conclude.

1.2 Previous Work

Many researchers in computer graphics, computational geometry
and computer vision have addressed the issue of calculating global
visibility. We present here a quick overview of closely related pre-
vious work, which is of course far from exhaustive.

Interest in visibility structures in computer graphics was ex-
pressed by Teller [26], when presenting an algorithm for the calcula-
tion of anti-penumbra. This work was in part inspired by the wealth
of research in computer vision related to the aspect graph (e.g.,
[21, 10, 9]). The work of Teller is closely related to the development
of discontinuity meshing algorithms (pioneered by [14, 17]). These
algorithms lead to structures closely resembling the aspect graph
which contain visibility information (backprojections) with respect
to a light source [5, 24]. Discontinuity meshes have been used in
computer graphics to calculate visibility and improve meshing for
global illumination calculations [18, 6]. Nonetheless, these struc-
tures have always been severely limited by their inability to treat vis-
ibility between objects other than the primary light sources. This is
caused by the fact that the calculation of the discontinuity mesh with
respect to a source is expensive and prone to numerical robustness
problems.

An alternative approach to calculating visibility between two
patches for global illumination has been proposed by Teller and
Hanrahan [27]. In this work a conservative algorithm is pre-
sented which answers queries concerning visibility between any two
patches in the scene but does not provide exact visibility informa-
tion. In addition, this approach provides tight blocker lists of po-
tential occluders between a patch pair. Information on the potential
occluders between a patch pair is central in the design of any refine-
ment strategy for hierarchical radiosity [12]. The ability to deter-
mine analytic visibility information between two arbitrary patches
would render practical the error bound refinement strategy of [16],
which requires this information.

In computational geometry, the problem of visibility has been ex-
tensively studied in two dimensions. The visibility complex [22]
provides all the information necessary to compute global visibility.
This was successfully used in a 2D study of the problem applied to
radiosity [19]. A similar structure in 3D, called the asp, has been
presented in computer vision by Plantinga and Dyer [21], to allow
the computation of aspect graphs. This structure provides the in-
formation necessary to compute exact visibility information. A re-
lated, but more efficient structure called the 3D visibility complex
[7] has been proposed. Both structures have remained at the theo-
retical level for the full 3D perspective case which is the only case of
interest for 3D computer graphics, despite partial implementations
of orthographic and other limited cases for the asp [21]. Other re-
lated work in a computational geometry framework can be found in
[15, 20].

Moreover, most of the work done on static visibility does not
easily extend to dynamic environments. Most of the time, motion
volumes enclosing all the positions of the moving objects are built
[3, 8, 23].

2 THE VISIBILITY SKELETON

The new structure we will present addresses many of the shortcom-
ings of previous work in global visibility. As mentioned earlier, the
emphasis is on the development of a multi-purpose tool which can
be easily used to resolve many different visibility problems, a struc-
ture which is easy and stable to build and which lends itself to on-
demand construction and dynamic updates.

In what follows, we will consider only the case of polygonal
scenes.

2.1 Visual Events

In previous global visibility algorithms, in particular those relating
to aspect graph computations (e.g., [21, 10, 9]), and to antipenumbra
[26] or discontinuity meshing [5, 24], visibility changes have been
characterized by critical lines sets or line swaths and by extremal
stabbing lines.

Following [20] and [26], we define an extremal stabbing line to
be incident on four polygon edges. There are several types of ex-
tremal stabbing lines, including vertex-vertex (orV V ) lines, vertex-
edge-edge (or V EE) lines, and quadruple edge (or E4) lines. As
explained in Section 2.3.1, we will also consider here extremal lines
associated to faces of polyhedral objects.

A swath is the surface swept by extremal stabbing lines when
they are moved after relaxing exactly one of the four edge con-
straints defining the line. The swath can either be planar (if the line
remains tight on a vertex) or a regulus, whose three generator lines
embed three polygon edges.

We call generator elements the vertices and edges participating
in the definition of an extremal stabbing line.

We start with an example: after traversing anEV line swath from
left to right as shown in Figure 2(a), the vertex as seen from the ob-
server will lie upon the polygon adjacent to the edge and no longer
upon the floor. This is a visibility change (often called visibility
event). The topology of the view is modified whenever the vertex
and the edge are aligned, that is, when there is a line from the eye
going through both e and v.

ThisEV line swath is a one dimensional (1D) set of lines, pass-
ing through the vertex v and the edge e1, thus it has one degree of
freedom (varying for example over the edge e). When two suchEV
surfaces meet as in Figure 2(b) a unique line is defined by the inter-
section of the two planes defined by the EV surfaces. This line is
an extremal stabbing line; it has zero degrees of freedom.

In what follows we will develop the concepts necessary to avoid
any direct treatment of the line swaths themselves since sets of lines
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Figure 2: (a) While the eye traverses the line swath V E, the vertex
v passes over the edge e. (b) Two line swaths meet at an extremal
stabbing line (c) and induce a graph structure

or the surfaces described by these sets are difficult to handle, in part
because they can be ruled quadrics. All computations will be per-
formed by line – or ray – casting in the scene.

We will be using the extremal stabbing lines to encode all vis-
ibility information, by storing a list of all line swaths adjacent to
each extremal stabbing line. In our first example of Figure 2(b), the
V EE line ve1e2 is adjacent to the two 1D elements ve1 and ve2

described above; i.e., the swaths ve1 and ve2. Additional adjacen-
cies for the V EE line ve1e2 are implied by the interaction of ve2

and e1 (Fig 3(a)).
To complete the adjacencies of a V EE line, we need to consider

the EEE line swaths related to the edges e4 and e2, and the two
edges e4 and e3 which are adjacent to the vertex v (Fig. 3(b) and
(c)).

The simple construction shown above introduces the fundamen-
tal idea of the Visibility Skeleton: by determining all the appropriate
extremal stabbing lines in the scene, and by attaching all adjacent
line swaths, we can completely describe all possible visibility rela-
tionships in a 3D scene. They will be encoded in a graph structure as
shown on Fig.3, to be explained in Section 2.3.2. Consider the ex-
ample shown in Fig.3(a): The node associated to extremal stabbing
line ve1e2 is adjacent in the graph structure to the arcs associated
with line swaths ve1, ve1′ and ve2.

2.2 The 3D Visibility Complex, the Asp
and the Visibility Skeleton

The Visibility Complex [7], is a structure which also contains all rele-
vant visibility information for a 3 dimensional scene. It is also based
on the adjacencies between visibility events and considers sets of
maximal free segments of the scene (these are lines limited by in-
tersections with objects).

The zero and one-dimensional components of the visibility com-
plex are in effect the same as those introduced above, which we will
be using for the construction of the Visibility Skeleton. Similar con-
structions were presented (but not implemented to our knowledge
for the complete perspective case) for the asp structure [21] for as-
pect graph construction.

In both cases, higher dimensional line sets are built. For the visi-
bility complex in particular, faces of 2, 3 and 4 dimensions are con-
sidered. For example, the set of lines tangent to two objects has 2
degrees of freedom, those tangent to one object 3 degrees of free-

dom, etc. (see [7] for details).
These sets and their adjacencies could theoretically be useful for

some specific queries such as view computation or dynamic updates,
for example in some specific worst cases such as scenes composed
of grids aligned and slightly rotated. In such cases, almost all objects
occlude each other and the high number of line swaths and extremal
stabbing lines makes the grouping of lines into higher dimensional
sets worthwhile.

The Visibility Complex and asp are intricate data-structures with
complicated construction algorithms since they require the con-
struction of a 4D subdivision. In addition they are difficult to tra-
verse due to the multiple levels of adjacencies. Our approach is dif-
ferent: we have developed a data structure which is easy to imple-
ment and easy to use.

These facts also explain the name Visibility Skeleton, since our
new structure can be thought of as the skeleton of the complete Vis-
ibility Complex.

2.3 Catalogue of Visual Events
and their Adjacencies

The Visibility Skeleton is a graph structure. The nodes of the
graph are the extremal stabbing lines and the arcs correspond to line
swaths. In this section (and in Appendix 7.1) we present an exhaus-
tive list of all possible types of arcs and nodes of the Visibility Skele-
ton.

2.3.1 1D Elements: Arcs of the Visibility Skeleton

In Figure 4, we see the four possible types of 1D elements: an
EV line swath (shown in blue), anEEE line swath (shown in pur-
ple) and two line swaths relating a polygonal face (F ) to one of its
vertices (Fv) or an edge of another polygon(FE) (both are shown in
blue). In the upper part of the figure we show the view (with changes
in visibility), as seen from a viewpoint located above the scene and,
from left to right in front of, on, or behind the line swath.

Note that the interaction of an edge e and a vertex v can corre-
spond to many ve arcs of the skeleton. These arcs are separated by
nodes. Consider, for example, arcs ve1 and ve1′ adjacent to node
ve1e2 in Fig. 3(a).

2.3.2 0D Elements: Nodes of the Visibility Skeleton

As explained in Section 2.1, two line swaths which meet define an
extremal stabbing line, which in the Visibility Skeleton is the node
at which the arcs meet. This section presents a list of the configura-
tions creating nodes and their corresponding adjacencies. A figure
is given in each case.

The simplest node corresponds to the interaction of two vertices
shown in Figure 5(a).

The interaction of a vertex v and two edges e1 and e2 can result in
two configurations, depending on the relative position of the vertex
with respect to the edges. The first node was presented previously
in Figure 3 and the second is shown in Figure 5(b).

The interaction of four edges is presented in Figure 6, together
with the six corresponding adjacent EEE arcs. Face related nodes
are given in detail in the appendix: EFE, FEE, FF , E and Fvv
(see Fig. 18 to 19).

3 DATA STRUCTURE
AND CONSTRUCTION ALGORITHM

Given the catalogues of nodes and arcs presented in the previous
section, we can present the details of a suitable data structure to rep-
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Figure 3: (a) An additional EV line swath is adjacent to the extremal stabbing line, (b) (c) and two EEE line swaths
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Figure 4: (a) Same as Fig. 1(a). (b) In front of the EEE line swath the edge e2 is visible, on the swath the edges meet at a point and behind
e2 is hidden. (c) In front of the FV we see the front side of F , on the swath we see a line and behind we see the other side of F . (d) The FE
swath is similar to the FV case.

resent the Visibility Skeleton graph structure, as well as the algo-
rithm to construct it.

Preliminaries: Our scene model provides the adjacencies be-
tween vertices, edges and faces. Before processing the scene, we
traverse all vertices, edges and faces, and assign a unique number
to each. This allows us to index these elements easily. In addition,
we consider all edges to be uniquely oriented. This operation is ar-
bitrary (i.e., the orientation does not depend on the normal of one of
the two faces attached to the edge), and facilitates consistency in the
calculations we will be performing.

3.1 Data Structure

The simplest element of the structure is the node. The Node struc-
ture contains a list of arcs, and pointers to the polygonal faces Fup
and Fdown (possibly void) which block the corresponding extremal
stabbing line at its endpoints Pup and Pdown.

The structure for anArc is visualized in the Fig.7(a). The arc rep-
resented here (swath shown in blue) is anEV line set. There are two
adjacent nodes Nstart, Nend , represented as red lines. All the ad-
jacency information is stored with the arc. Details of the structures
Node and Arc are given in Fig. 7(b).

To access the arc and node information, we maintain arrays of

balanced binary search trees corresponding to the different type of
swaths considered. For example, we maintain an array ev of trees
of EV arcs (see Fig.7(b)). These arrays are indexed by the unique
identifiers of the endpoints of the arcs. These can be faces, vertices
or edges (if the swath is interior, that is if the lines traverse the poly-
hedron).

This array structure allows us to efficiently query the arc infor-
mation when inserting new nodes and when performing visibility
queries. The balanced binary search tree used to implement the
query structure is ordered by the identifiers of the generators and by
the value of tstart.

3.2 Finding Nodes

Before presenting the actual construction of each type of node, we
briefly discuss the issue of “local visibility”. As has been presented
in other work (e.g., [10]), for any edge adjacent to two faces of a
polyhedron, the negative half-space of a polygonal face is locally
invisible. Thus when considering interactions of an edge e, we do
not need to process any other edge e′ which is “behind” the faces ad-
jacent to e. This results in the culling of a large number of potential
events.
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class Node {
List<Arcs> adjacentArcs
Face Fup, Fdown
Point3D Pup, Pdown

}

class Arc {
Node Nstart ,Nend
float tstart , tend
Face Fup, Fdown

}
class EV : child of Arc {

Edge e
Vertex v
}

class VisibilitySkeleton {
tree<EV> ev[Fup][Fdown]
tree<EEE> eee[Fup][Fdown]
...

}
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Figure 7: Basic Visibility Skeleton Structure.

3.2.1 Trivial Nodes

The simplest nodes are the V V , Fvv and Fe nodes. For these, we
simply loop over the appropriate scene elements (vertices, edges and
faces). The appropriate lines are then intersected with the scene us-
ing a traditional ray-caster to determine if there is an occluding ob-
ject between the related scene elements, in which case no extremal
stabbing line is reported. Otherwise it gives the elements and points

at the extremities of the lines, and thus the appropriate location in the
overall arc tree array.

3.2.2 VEE and EEEE Nodes

We consider two edges of the scene ei and ej . All the lines going
through two segments are within an extended tetrahedron (or double
wedge) shown in Fig. 8, defined by four planes. Each one of these
planes is defined by one of the edges and an endpoint of the other.

To determine the vertices of the scene which can potentially gen-
erate a V EE orEV E stabbing line, we need only consider vertices
within the wedge. If a vertex of the scene is inside the double wedge,
there is a potential V EE or EV E event.

We next consider a third edge ek of the scene. If ek cuts a plane
of the wedge, a V EE or EV E node is created. If edge ek of the
scene intersects the plane of the double wedge defined by edge ei
and vertex v of ej , there is a veiek or eivek event (Fig. 8(a)).

We next proceed to the definition of the E4 nodes. The intersec-
tions of ek and the planes of the double wedge restrict the third edge
ek. To compute a line going through ei, ej , ek we need only con-
sider the restriction of ek to the double wedge defined by ei and ej .
This process is re-applied to restrict a fourth edge el by the wedge of
ei and ej , by that of ei and ek and by that of ej and ek. This multiple
restriction process eliminates a large number of candidates.

Once the restriction is completed, we have two EEE line sets,
those passing through el, ei and ej and those passing through el,
ei and ek. A simple binary search is applied to find the point on el
(if it exists) which defines the E4 node. We perform this search for
a point P of el by searching for the root of the angle formed by the
two lines defined by the intersection of the plane (P, ei) with ej and
with ek. This is shown on Fig.8(c).
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A more robust algorithm such as the one given in [28] could be
used, but the simpler algorithm presented here seems to perform
well in practice. This is true mainly because we are not searching
for infinite stabbing lines, but for restricted edge line segments. The
potential V EE and E4 enumeration algorithm is given in Fig. 9.

We have developed an acceleration scheme to avoid the enu-
meration of all the triples of edges. For each pair of edges, we
reject very quickly most of the third potential edges using a reg-
ular grid. Instead of checking if each cell of the grid intersects
the extended tetrahedron, we use the projection on the three axis-
aligned planes. For each such plane, we project the extended tetra-
hedron (which gives us an hourglass shape), and we perform the ac-
tual edge-tetrahedron intersection only for the edges contained in
the cells whose three projections intersect the three pixelized hour-
glasses.

3.2.3 Non-Trivial Face Nodes

To calculate the non-trivial face-related nodes, we start by intersect-
ing the plane of each face f1 with every edge of the scene. For edges
intersecting the face we attempt to create an FvE node (Fig.18).

For each pair of intersections, we search for a FEE node. To
do this we determine if the line joining the two intersections inter-
sects the face f1. The last operation required is the verification of
the existence of an FF node. This case occurs if the faces adjacent
to the edge of the intersection cause an FF . The construction for
the FEE and FF nodes is described in Fig. 10 (a).

3.3 Creating the Arcs

The creation of the arcs of the Visibility Skeleton is performed si-
multaneously with the detection of the nodes. When inserting a new
node, we create all the adjacent arcs from the corresponding cata-
logue presented in Section 2.3.2. For each of these arcs a we cal-
culate the arc parameter t corresponding to the node to be inserted,
and proceed as explained in Fig.12. We then access the list of arcs
in the Skeleton with the same extremities (thus in the same list of
the array) and which have the same generator elements (vertices and
edges) as the arc a. If the value of t indicates that the node is con-
tained in the arc, we determine whether this node is the start of the
end node of the arc. This is explained in more detail in the follow-
ing paragraph. If this position is already occupied we split the arc,
else we assign the node the corresponding extremity of the arc. This
process is summarized in Fig. 11.

We have seen above that each time an arc adjacent to a node is
considered, we have to know if it is its start node or its end node. In
some cases this operation is trivial, for example for a v1v2 node and
one if its adjacent v1e arcs, we simply determine if v2 is the starting
vertex of e. In other cases, this can be more involved, especially for
theE4 case. This case and the necessary criteria for the other cases
are summarized in Table 2 in the Appendix.

In Fig. 12, we illustrate the construction algorithm. Initially a
trivial vve node is created. The second node identified is vfe, which
is adjacent the arc ve. Thus the arc ve is adjacent to both vve and
vfe. The third node to be created is vee3. When this node is in-
serted, we realize that the start node for ve already exists, and we
thus split the ve arc. This splitting operation will leave the end of
the ve arc connected to vve undefined. The final insertion shown is
ve2e which will fill an undefined node previously generated.

4 IMPLEMENTATION
AND FIRST APPLICATIONS

We have completed a first implementation of the data structure de-
scribed. We have run the system on a set of test scenes, with varying
visibility properties. In its current form, we have successfully com-
puted the Visibility Skeleton for scenes up to 1500 polygons.

In what follows we first present Visibility Skeleton construction
statistics for the different test scenes used. We then proceed to
demonstrate the flexible nature of our construction, by presenting
the use of our data structure to efficiently answer several different
global visibility queries.

4.1 Implementation and Construction Statistics

Our current implementation requires convex polyhedra as input.
However, this is not a limitation of the approach since we use poly-
hedral adjacencies simply for convenience when performing local
visibility tests.

We treat touching objects by detecting this occurrence and
slightly modifying the ray-casting operation. We also reject copla-
nar edge triples. Other degeneracies such as intersecting edges are
not yet treated by the current implementation.

We present statistics on the size of our structure and construction
time in Table 1. Evidently, these tests can only be taken as an indi-
cation of the asymptotic behavior of our algorithm. As such, we see
that our test suite indicates quadratic growth of the memory require-
ments and super-quadratic growth of the running time. In particular,
for the test suite used, the running time increases with n2.4 on aver-
age, where n is the number of polygons.

The V EE nodes are the most numerous. There are approxi-
mately a hundred times fewer E4 nodes, even though theoretically
there should be an order of magnitude more.

We believe that the memory requirements could be greatly de-
creased by an improved implementation of the arrays of trees. Cur-
rently, a large percentage of the memory required is used by these
arrays (e.g. for scene (d) of Table 1., the arrays need 53.7Mb out of a
total 135Mb). Since these arrays are very sparse (e.g. 99.3% empty
for scene (d)), it is clear that storage requirements can be greatly re-
duced.

In the case of densely occluded scenes, the memory require-
ments grow at a slower rate, on average much closer to linear than
quadratic with respect to the number of polygons. As an exam-
ple, we replicated scene (a) 2, 4 and 8 times, thus resulting in iso-
lated rooms containing a single chair each. The memory require-
ments (excluding the quadratic cost of the arrays) are 1.2Mb, 2.8Mb,
8.6Mb and 17.3Mb, for respectively 78, 150, 300 and 600 polygons.

The theoretical upper bounds are very pessimistic,O(n4) in size
because every edge quadruple can have two lines going through it



potential VEE and EEEE enumeration

{
foreach edge ei from 1 to n

foreach edge ej from i+ 1 to n locally visible
foreach edge ek from j + 1 to n locally visible

compute the EEE restrictions eiejek
foreach edge ek from j + 1 to n locally visible

foreach segment of its restrictions
foreach edge el from k + 1 to n locally visible
foreach segment of its restrictions

search for E4
}

EEE restriction
{
foreach of the 4 planes

compute the intersection inter with the line of the edge
if it inter on the edge

propose a VEE
restrict the edge

foreach of the edge endpoints sep
if sep is inside the double wedge

propose a VEE
restrict the edge

}

(a) (b)

Figure 9: Enumeration of Potential VEE and E4 Nodes.

Find Face Nodes {
foreach face f1 of the scene

foreach edge e of the scene
compute the intersection of the edge e with the plane of f1
foreach intersection Pi

create a FvE
foreach intersection Pj

if (PiPj ) intersects f1

create FEE
foreach of the 2 faces f2 adjacent to the edge of Pi

find Pj the intersection of a second edge of f2 with f1
if (PiPj) intersects f1

create FF
}

f1

f2

ei

ej

e'i

f1f2eif1ej

(a) (b)

Figure 10: Finding Face Nodes.

[28], and O(n5) in time because such potential extremal stabbing
lines have to be ray-cast with the whole scene. But such bounds oc-
cur only in uncommon worst case scenes such as grids aligned and
rotated or infinite lines. It is clear that our construction algorithm
would be very inefficient for such cases. More efficient construc-
tion algorithms are possible, but these approaches suffer from all the
problems described previously in Section 2.2.

In what concerns the robustness of the computation, previous as-
pect graph and discontinuity meshing algorithms depend heavily on
the construction of the arrangement (of the mesh or aspect graph
“cells”), as the algorithm progresses. In the construction presented
here, this is not the case since all operations are completely local.
Since we perform ray-casting and line-plane intersections, the num-
ber of potential numerical problems is limited. Degeneracies can
occasionally cause some problems, but due to the locality, this does
not effect the construction of the Skeleton elsewhere. More efficient
sweep-based algorithms are particularly sensitive to such instabili-
ties, since an error in one position in space can render the rest of the
construction completely incorrect and inconsistent.

4.2 Point-to-Area Form-Factor for Vertices

The calculation of point-to-area form factors has become central in
many radiosity calculations. In most radiosity systems, point-to-
area calculations are used to approximate area-to-area calculations
[4, 2], and in others the actually point-to-area value is computed at
the vertices [29].

In both theoretical [16] and experimental [6] studies, previous re-
search has shown that error of the visibility calculation is a predomi-
nant source of inaccuracies. This is typically the case when ray cast-
ing is used. Lischinski et al. [16] have developed a very promising
approach to bounding the error committed during light transfer for

hierarchical radiosity. For it to be useful for general environments,
access is required to the exact visibility information between a point
on one element with respect to the polygon face it is linked to. This
information is inherently global, since a pair of linked elements can
contain any two surface elements of the scene.

The Visibility Skeleton in its initial form can answer this query
exactly and efficiently for the original vertices of the input scene.

To calculate the view of a polygonal face from a vertex v, with
respect to a face f , we first access all the EV arcs of the skeleton
related to the face f . This is simply the traversal of the line of our
global two-dimensional array of arcs, indexed by f . For each entry
of this list (many of which are empty), we search for the EV arcs
related to v. These EV arcs are exactly the visible boundary of f
seen from v.

An example is shown in Fig. 13(a) and (b) For scene (b), con-
taining 312 and 1488 polygons, the extraction of the point-to-area
boundary takes respectively 1.2 ms and 1.5 ms (all query time are
given without displaying the result).

4.3 Global and On-The-Fly Discontinuity Meshing

In radiosity calculations, it is often very beneficial to subdivide the
mesh of a surface by following some [14, 18], or all [6] of the dis-
continuity surfaces between two surfaces which exchange energy.
The partial [14, 17] or complete [5, 24] construction of such meshes
has in the past been restricted to the discontinuity mesh between a
source (which is typically a small polygon) and the receivers (which
are the larger polygons of the scene). For all other interactions be-
tween surfaces of scenes, the algorithmic complexity and the inher-
ent robustness problems related to the construction of these struc-
tures has not permitted their use [25].

For many secondary transfers in an environment, the construc-



Creation of a Visibility Skeleton Node

{
foreach adjacent arc n

compute t
foreach arc a with same extremities and same generators

if a→ tstart < t < a→ tend
AddNodeToArc(n, a)

if no arc found
create new Arc

}

AddNodeToArc(Node n, Arc a)
{
pos = decideStartOrEnd(n, a)
if pos in a undefined

set pos to n
else

split a into two parts
}

Figure 11: Node Creation
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Figure 12: Example of node insertions: (a) Insertion node vve. (b) Insertion of node fve. Arc ve has now two ending nodes. (c) Insertion of
node ve3e. Arc ve is split. (c) Insertion of node ve4e, the two arcs ve have their actual adjacent nodes.

tion of a global discontinuity mesh (i.e., from any surface (emit-
ting/reflecting) to any other receiving surface in a scene), can aid in
the accuracy of the global visibility computation. This was shown in
the discontinuity driven subdivision used by Hardt and Teller [13].
In their case, the discontinuity surfaces are simply intersected with
the scene polygons, and thus visibility on the line swath is not com-
puted. With the Visibility Skeleton, the complete global discontinu-
ity mesh between two surfaces can be efficiently computed.

To efficiently perform this query, we add an additional two-
dimensional arrayDM(i, j), storing all the arcs from face fi to fj .
Insertion into this array of lists and well as subsequent access is per-
formed in constant time. To extract the discontinuity mesh between
to surfaces fi and fj we simply access the entry DM(i, j), and
traverse the corresponding list. In Fig. 14(a), the complete disconti-
nuity mesh between the source and the floor is extracted in 28.6 ms.
The mesh caused by the small lamp on the table in Fig 14(b) was
extracted in 1.3 ms (note that the arrangement is not built).

The resulting information is a set of arcs. These arcs can be used
as in Hardt and Teller to guide subdivision, or to construct the ar-
rangement of the discontinuity mesh on-the-fly, to be used as in [6]
for the construction of a subdivision which follows the discontinu-
ities. The adjacency information available in the Skeleton arcs and
nodes should permit a robust construction of the mesh arrangement.

4.4 Exact Blocker Lists, Occlusion Detection and
Efficient Initial Linking

When considering the interaction between two surfaces, it is often
the case that we wish to have access to the exact list of blocker sur-

faces hiding one surface from the other. This is useful in the con-
text of blocker list maintenance approaches such as that presented
by Teller and Hanrahan [27].

The Visibility Skeleton can again answer this query exactly and
efficiently. In particular, we use the global array DM(i, j), and we
traverse the related arcs. All the polygons related to the intervening
arcs are blockers. It is important to note that this solution results in
the exact blocker list, in contrast with all previous methods. Con-
sider the example shown in Fig. 13(c) where we compute the oc-
cluders between the left ceiling lamp and the floor in 4 ms.

The shaft structure [11] would report all objects on the table
though they are hidden by the table. In this case the Visibility Skele-
ton reports the exact set of blockers.

When constructing the Visibility Skeleton, we compute all the
mutually visible objects of the scene: if two object see each other,
there will be at least one extremal stabbing line which touches them
or their edges and vertices. This is fundamental for hierarchical ra-
diosity algorithms since it avoids the consideration of the interaction
of mutually visible objects in the initial linking stage.

Similarly, the Skeleton allows for the detection of the occlusions
caused by an object. This can be very useful for the case of a mov-
ing objectm allowing the detection of the form factors to be recom-
puted. To detect if the form factorFij has to be recomputed we per-
form a query similar to the discontinuity mesh between two poly-
gons: we traverseDM(i, j) and search for an arc caused by an ele-
ment (vertex, edge or face) of m. This gives us the limits of occlu-
sions ofm between fi and fj . Moreover, by considering all the arcs
of the skeleton, we report all the form factors to be recomputed, and
not a superset. Fig 14(c) shows the occlusions caused by the body of



a b c d e f g

Scene
Polygons 84 168 312 432 756 1056 1488
Nodes (∗103) 7 37 69 199 445 753 1266
Arcs (∗103) 16 91 165 476 1074 1836 3087
Construction 1 s 71 s 12 s 74 37 s 07 1 min 39 s 5 min 36 s 14 min 36 s 31 min 59
Memory (Mb) 1.8 9 21 55 135 242 416

Table 1: Construction statistics (all times on a 195Mhz R10000 SGI Onyx 2). Storage is scene dependent and can be greatly reduced.

(a) (b) (c)

Figure 13: (a) Part of the scene visible from a vertex of the airplane. (b) Part of the floor seen by a vertex of the right-hand light source. (c)
List of occluding blockers between the left light source and the floor. Note that the objects on the table that are invisible from the floor are not
reported as blockers.

the plane between the screen and the right wall. This computation
required 1.3 ms.

5 DEALING WITH SPATIAL COMPLEXITY:
ON-DEMAND CONSTRUCTION

We propose here an on-demand or lazy scheme to compute visibil-
ity information only where and when needed. For example, if we
want the discontinuity mesh between two surfaces, we just need to
compute the arcs of the complex related to these two faces, and for
this we only need to detect the nodes between these two faces.

The key for this approach is the locality of the Visibility Skeleton
construction algorithm. We only compute the nodes of the complex
where needed. The fact that some arcs might have missing nodes
causes no problem since no queries will be made on them. Later
on, other queries can appropriately link the missing nodes with those
arcs.

Two problems must be solved: determination of what is to be
computed, and determination of what has already been computed.

We propose two approaches: a source driven computation, and
an adaptive subdivision of ray-space in the spirit of [1].

In the context of global illumination, the information related to
“sources” (emitters or reflectors) is crucial. Thus the part of the vis-
ibility skeleton we compute in an on-demand construction is related
to lines cutting the sources. The event detection has to be modified:
every time a double wedge or a face does not cut the source, the pair
of edges or the face is discarded, and if a potential node is detected,
the ray-casting is performed only if the corresponding critical line

cuts the source.

We use our grid-acceleration scheme here too: for each first edge,
an edge pair is formed only for the edges that lie inside the hourglass
defined by the source and the first edge.

When considering many sources one after the other, we also have
to detect nodes already computed. If the sources are small, it is not
worth rejecting double wedges, and only the final ray-casting and
node insertion can be avoided (in our implementation they account
for a third of the running time). We can perform a “final computa-
tion” if we want all the nodes that have not yet been computed: we
just test before ray-casting if the critical line cuts one of the sources.

For scene (g) of Table 1, the part of the Visibility Skeleton with
respect to one of the sources is computed in 4 min. 15 s. instead of
31 min. 59 s. for the entire scene.

When the number of sources becomes large, most of the time
would be spent in checking if lines intersect the sources or if they
have already been subdivided. If we need visibility information
only between two objects, not between an object and the whole
scene, we propose the use of ray classification of [1] together with
the notions of dual space of [7] to build the visibility skeleton only
where and when needed. The idea (which is not currently imple-
mented) is to parameterize the lines of the 3D space (which is a set in
4D space), for example by their direction and projection on a plane
or by their intersections with two parallel planes. We then perform
a subdivision of the space of lines with a simple scheme (e.g., grid,
hierarchical subdivision) and compute the nodes of the complex lo-
cated inside a given cell of this subdivision.



(a) (b) (c)

Figure 14: (a)The complete discontinuity mesh with respect to the right source. (b) Discontinuity mesh between the lamp and the table. (c)
Limits of the occlusions caused by a part of the plane between the computer screen and the right wall.
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Figure 15: The edge moving from right to left causes a V EV temporal visibility event which is the meeting of twoEV with the the two same
extremities and with a common element (here the edge e). Four nodes are created, the EV arcs are split into three parts and eight arcs are
created. These events and the topological visibility changes are local in the visibility skeleton.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new data structure, called the Visibility Skele-
ton, which encodes all global visibility information for polygonal
scenes. The data structure is a graph, whose nodes are the extremal
stabbing lines generated by the interaction of edges and vertices in
the scene. These lines can be found using standard computer graph-
ics algorithms, notably ray-casting and line-plane intersections. The
arcs of the graph are critical line sets or swaths which are adjacent to
nodes. The key idea for simplicity was to treat the nodes and deduce
the arcs using the full catalogues of all possible nodes and adjacent
arcs we have presented for polygonal scenes. A full construction
algorithm was then given, detailing insertion of nodes and arcs into
the Skeleton.

We presented an implementation of the construction algorithm
and several applications. In particular, we have used the Skeleton
to calculate the visible boundary of a polygonal face with respect to
a scene vertex, the discontinuity mesh between any two polygons
of the scene, the exact list of blockers between any two polygons,
as well as the complete list of all interactions of a polygon with all
other polygons of the scene.

The implementation shows that despite unfavorable asymptotic
complexity bounds, the algorithm is manageable for the test suite
used, both in storage and in computation time. In addition, we have
developed and implemented a first approach to on-demand or lazy
construction which opens the way to hierarchical and progressive
construction techniques for the Skeleton.

The use of our implemented system shows the great wealth of in-
formation provided by the Visibility Skeleton. Only a few of the
many potential applications were presented here, and we believe
that there are many computer graphics (and potentially computer vi-
sion) domains which can exploit the capacities of the Skeleton.

In future work many issues remain to be investigated. From a
theoretical point of view, the most challenging problems are the de-
velopment of a hierarchical approach so that the Visibility Skeleton
can be used for very complex scenes as well as the resolution of all
theoretical issues for the treatment of dynamic scenes. Some of the
problems for the dynamic solution are sketched in Fig 15. Adapt-
ing the algorithm to curved objects requires the enumeration of all
relevant events and definitely has many applications.

Finally the field of applications must be extended: exact point to
area form-factor from any point on a face, aspect graph construction,



and incorporation into a global illumination algorithm.
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7 Appendix

7.1 Complete Catalogue of FACE Adjacencies

Face related events are adjacent to FE elements Fv elements as
well as EEE arcs when two non-coplanar edges are involved.

The interaction of a face with two edges is shown in Fig. 16, the
interaction of a face a vertex and an edge is shown in Fig. 18 and
finally the interaction of two faces is shown in Fig. 17.
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Figure 18: A FvE node.

7.2 Details of the Construction to find the Orienta-
tion of Arcs

Finding the correct extremity of an arc when inserting a node is cru-
cial for the construction algorithm to function correctly. We present
here the most complex case, which is the insertion of an E4 node.

Consider the node e1e2e3e4 shown in Fig. 19, and the adjacent
arc e1e2e3. The question that needs to be answered is whether the
node e1e2e3e4 is the start or the end node of this arc. To answer this
query, we examine the movement of the line l going through e1, e2

and e3, when moving on e1. The side of e4 to which we move will
determine whether we are a start or an end node.

Consider the infinitesimal motion d~ε1 on e1. The corresponding
point of e3 on the EEE will lie on the intersection of the plane de-
fined by e2 and the defining point on e1. The motion of d~ε1 on e1

corresponds to a rotation of α = ~ε1.~n
d1

of the plane around e2. Sym-
metrically, this rotation corresponds to the motion d~ε3 on e3 and we

have α = d ~ε3.~n
d3

, by angle equality. Thus, d~ε3 = ~e3
d3

~dε1.~n
d1 ~e3.~n

.
Now we want to obtain d~ε4, the infinitesimal motion of the line

going through the three edges around e4. We consider the line as be-
ing defined by its origin on e1 and by its unnormalized direction vec-
tor ~dir from e1 to e3. For the motion d~ε1 of the origin, the direction
vector of moves by d~ε3 − d~ε1, and thus d~ε4 = d~ε1 + d4

d3−d1
(d~ε3 −

~e1).
The sign of (~ε4 × ~e4). ~node determines on which side of e4 the

line l will move.
The adjacencies also depend on the face related to the edges

which are visible from the other edges. The other cases are simpler
and summarized in Table 2.
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Figure 19: Determining the direction of an E4 node insertion.

Node Adjacent arc Start or End Criterion
v1v2 v1e3 v1 == startV (e)

ve1e2 ve2 (~e2 × ~e1). ~node > 0
e3e1e2 v == startV (e3)

e2e1e3 ~n = ~normal(v, ~e2)
~e3.~n ∗ ~e1.~n > 0

e1ve2 ve2 (~e1 × ~e2). ~node > 0

e2e1e3 ~n = ~normal(v, ~e2)
~e3.~n ∗ ~e2.~n > 0

e1e2e3e4 e1e2e3 ~n = ~normal(~e2, ~node);
~ε3 = ~e3

d3 ~e1.~n
d1 ~e3.~n

~ε4 = ~e1 + d4
d3−d1

(~ε3 − ~e1)

(~ε4 × ~e4). ~node > 0

e1fe2 fe1 ~e2. ~normal(f) > 0

e1ef1e2 ~e1. ~normal(f) > 0

fe1e2 fe2 ~e1. ~normal(f) > 0

e2e1ef1 ~n = ~normal( ~node, ~e1)
~n.~e2 ∗ ~n. ~ef1 > 0

fve fv ~e. ~normal(f) > 0

ve ~e. ~normal(f) > 0

Table 2: for each arc adjacent to a created node, there is a criterion
that tells if it is a start node or an ending node.
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[7] Frédo Durand, George Drettakis, and Claude Puech. The 3d visibility complex, a
new approach to the problems of accurate visibility. In X. Pueyo and P. Shröder,
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