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Abstract
Diffuse interreflections cause effects that make current

theories of shape from shading unsatisfactory. We show
that distant radiating surfaces produce radiosity effects at
low spatial frequencies. This means that, if a shading
pattern has a small region of support, unseen surfaces in
the environment can only produce effects that vary slowly
over the support region. It is therefore relatively easy to
construct matching processes for such patterns that are ro-
bust to interreflections. We call regions with these patterns
“shading primitives.”

Folds and grooves on surfaces provide two examples of
shading primitives; the shading pattern is relatively inde-
pendent of surface shape at a fold or a groove, and the
pattern is localised. We show that the pattern of shading
can be predicted accurately by a simple model, and derive
a matching process from this model. Both groove and fold
matchers are shown to work well on images of real scenes.

1 Introduction
There is a long history of study of the relationship be-

tween surface shading and shape (reviewed in greater detail
in, for example, [9]). Horn’s seminal thesis [8] estab-
lished the image irradiance equation as the fundamental
relationship between surface geometry and image bright-
ness. Throughout the extensive literature on solutions to
this equation (see bibliography in [9]) the emphasis has
been on obtaining a dense depth map from shading, as-
suming that the object has been segmented, that shadow,
reflectance and illumination boundaries either do not occur
or have been identified, and that sufficient information is
available to determine the reflectance map that applies.

This model of shading omits the effects of diffuse inter-
reflections, a source of various substantial effects that are
noticeable to human observers [17] and represent an im-
portant component of shading in most real scenes [4]. Dif-
fuse interreflections create significant computational diffi-

culties, because brightness at a patch is not simply a func-
tion of the surface normal, but a function of all radiating
surfaces, modelled by the radiosity equation [18]. The re-
lationship between an object’s shape and its radiosity—the
main matter to study—is exceptionally complex.

2 Shape and shading
Very few techniques for extracting shape information

from shading fields are robust to the effects of diffuse in-
terreflections. Nayar’s method [16] for extracting a dense
depth map uses estimates of interreflections, but does not
take into account the effects of shadows, and of distant
surfaces. Belhumeur et al. [1] showed that different sur-
faces under different illumination conditions can yield the
same image. To overcome the difficulty of finding dense
depth maps, one may either change the type of shape rep-
resentation sought in the shading field, or the model of
shading. Langer et al. adopted a model of shading where
surface brightness at a point was proportional to the visi-
ble solid angle subtended by the sky at that point [15, 14].
Koenderink pointed out that deep pits and grooves had
characteristic photometric properties, and considered shad-
ing properties characteristic of particular shapes [12]. The
other approach, as advocated by Forsyth and Zisserman, is
to attempt to build a dictionary of corresponding stylised
shape and shading events, so that shading properties that
are stable under interreflections can be used to infer a shape
representation [5].

In our opinion, the best prospect for extracting shape
information from shading is to construct programs that ob-
serve stylised properties of shading and associate those
properties with shape primitives or their properties. In
what follows, we show that, for two particular shading
primitives, the shading field is robust to interreflections, its
appearance can be predicted with a simple model, and these
predictions can be used to find folds and grooves in images
of real scenes.



Figure 1: The effects of distant surfaces can be estimated
by considering a small surface patch illuminated by an
infinite plane carrying a radiosity of � sin ��� ; the patch
is sufficiently small that its contribution to the plane’s ra-
diosity can be ignored. The radiosity on the patch in this
configuration gives a guide as to where the shape informa-
tion is in the patch’s shading field.

3 The effect of distant radiators
To be useful, any analysis of a shading field must be

robust to the effects of surfaces that passively radiate to
the object being studied, but may not be visible. Mutual
illumination has a characteristic smoothing effect; shading
effects that have a high spatial frequency (referred to a frame
on the surface in question) and a high amplitude generally
cannot come from distant surfaces. The effect is not well
described in the literature, but is exploited in algorithms for
determining the distribution of illumination given a set of
surfaces, particularly [7, 6].

To illustrate this effect, consider a small surface patch
illuminated by a distant, infinite plane as in Figure 1. The
surface patch is small enough that energy transfer from the
patch to the plane is insignificant in determining shading
distributions. This is a good model for many important
natural situations, such as objects in a room at some distance
from the walls. Shading is scale-invariant, so we can fix
the distance between the patch and the plane at one unit.
Assume the plane carries a radiosity of � sin ��� (there is no
reason to ensure this is non-negative, since the radiosity of
the patch is linear in the radiosity of the plane). Now assume
that the patch carries a resulting radiosity

���
sin ���	� , and

call
��
 � the gain at frequency � , which we shall write as��
 ��� . By studying this gain, we can determine whether a

signal is likely to have come from a surface region or from
a distant radiator.

If the patch is parallel to the plane, the radiosity on the
patch is exactly

� ����� 1

 ��� sin ��� . Here ��� 1 is a modified

Bessel function of the second kind and
�

is the reflectance
of the patch. In this case,

��
 ����������� 1

 ��� , which falls

very quickly with � (as figure 2 shows) and approaches
zero exponentially as ����� .

If the patch is slanted with respect to the plane by � ,
the effect is even more pronounced. Figure 2 also shows
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Figure 2: A patch with a frontal view of an infinite plane
which is a unit distance away and carries a radiosity sin ���
can be shown to carry a radiosity of

� ��� � 1

 ��� sin ��� ; we

refer to ����� 1

 ��� as the gain of the spatial frequency

� . This graph shows the gain for a frontal patch, and
numerical estimates of the gain for patches at ten equal
steps in slant angle with respect to the plane, from 0 to � 
 2,
as a function of spatial frequency on the plane. Note that the
gain falls extremely fast as a function of spatial frequency,
meaning that large terms at high spatial frequencies must be
regional effects, rather than the result of distant radiators.

numerical estimates of the component of radiosity at spatial
frequency � � ��� cos � for various slant angles. Again, the
gain function dies off to zero very quickly with increasing
� or � . Thus, if one observes a high amplitude term at a
high spatial frequency, it is unlikely to have resulted from
the effects of distant, passive radiators. While very high
frequency shading effects (“edges”) are often identified as
being due to changes in reflectance, [13, 10, 2] and low
frequency shading effects may be due to distant radiators,
there is a mid range of spatial frequencies that are largely
unaffected by mutual illumination from distant surfaces.

The distinction between reflectance and shading effects
raises a difficulty when one considers perspective—as an
object recedes into the distance, the spatial frequencies of
the corresponding image region rise. This means that ef-
fects that are classified as illumination changes in a nearby
object become reflectance changes when the object is dis-
tant.

The scaling property of the gain function for distant
radiators overcomes this difficulty. Because shading is
scale invariant, the gain that occurs when the patch is �
units away from the plane is the same as the gain when the



geometry is scaled by � :
� 
 � � � � � 1 � � ��
 � � � � � �

The gain from a passive radiator at the focal point to the
image of an object in the scene may then be shown to be a
function of the product of the frequency of the illumination
changes and the distance to that object. This means that
image spatial frequencies can be used to assess whether
the shading field contains local information or global infor-
mation (from invisible, distant surfaces) if the focal length
is known and some estimate of the slant is available. In
particular, the support of filters designed to extract shape
information from the shading field can be determined in an
image frame, rather than a 3D frame.

This leads us to a meaning of the term “regional”—
image scales in which no surfaces can be omitted in deter-
mining the effects of interreflections. Clearly, interreflec-
tions must be considered over larger scales than just a hand-
ful of pixels, but we have also shown that we do not need
to consider the whole image.

4 Finding grooves
Althoughgrooves and folds may be geometrically small,

they may have large photometric consequences, so that any
attempt to discover the large-scale shape of an object must
first identify and discount these shading primitives. The
shading across the groove or fold is a regional property
under the assumption that the underlying surface is convex
and has low curvature. While there are an infinite num-
ber of possible groove shapes, the similarities in images
of grooves are more striking that the differences. Fig-
ures 3(b,c) show two images of grooves. The reader may
wish to attempt to guess which of the groove shapes in
Figure 3(a) these two grooves represent.1 We present a
simple model which we use to predict the radiosity across
a groove. We then show that the model agrees extremely
well with experiment, and can therefore be used to identify
the presence of grooves in images.

4.1 Modelling grooves
We model the radiosity at any point on the groove as

the sum of two components: the first due to distant radia-
tors, which is uniform (because any spatial frequency high
enough to be non-uniform over the support of the groove
was suppressed by the low gain at high spatial frequencies);
and the second due to a single point source, modeled as a
source at infinity. This is a version of a model suggested
by Koenderink [11] and also used by Langer et al.[15].

1Figure 3(b) has the triangular cross-section, while 3(c) has semicir-

cular cross-section.

(a) (b) (c)

Figure 3: (a) Cross-sections across the groove axis of paper
models of grooves. Pictures of such models made from
black, grey and white paper were taken under different
lighting conditions in order to validate the predictions of the
theory. (b,c) Typical images of experimental grooves. Note
that although it is clear that these are images of grooves,
it is difficult to determine the cross-section shape of the
groove purely from the shading. The reader may wish to
guess which of the grooves in (a) these images represent.
The answer appears in the footnote.

Because the groove has translational symmetry, we can
model the “sky” (distant radiators) as an infinitely long half
cylinder above the groove with its axis at the centre of the
groove. We can then write the brightness at a point � in the
groove as:

� 
 � � �
���
2

�
sin

��

1 	 ��
 � 	 sin

��

0 	 ��
 ��
�� ���
cos

�� � 	 ��
 �

where
�

1 and
�

0 are the polar angles of the edges of the
unobscured sky (measured from the zenith),

��

is the polar

angle of the the normal at � ,
� �

is the polar angle of the
point light source, and

���
and

� �
are the brightnesses of

the ambient and point light sources. This simple model
allows us to predict the radiosity given a particular groove
shape.

4.2 Confirming the model
In order to confirm our shading model, we wish to com-

pare the theoretical predictions of radiosity profiles to those
obtained from real images. A support vector machine [3]
trained on theoretical data predicted from the model gives
a low false negative rate on real images, indicating that the
model accurately reflects reality.

Procedures. For the experimental data, we constructed
a set of models of canonical grooves, in white, grey and
black, with cross-section shapes shown in Figure 3(a). Pho-
tographs of these models were taken at different positions
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Figure 4: (a) Typical random grooves used to predict groove
radiosities. Each of the grooves are symmetric, twice as
wide as they are deep, and have polygonal cross section.
Shown here is the width of the groove with none of the sur-
rounding plane—these cross sections may be considered
as “chisel shapes”. We use such a wide range of shapes
because we are uninterested in the differences between dif-
ferent groove shapes. (b) The intensity cross section of the
grooves in (a), as predicted by the model.

in the room (giving variations in the ambient light) with
different point light source directions (see Figures 3(b,c)).
In order to control the direction of the point light source,
we may either fix the position of the light source, and allow
the shadow position to vary, or fix the shadow position, and
move the point light source. Since we are more interested
in localising the groove than the details of the illumination,
we choose the latter.

We generated two experimental data sets, each of fifteen
images. The first consisted of all combinations of shape
and reflectance, taken with the same shadow position and
same ambient light. The second set had varying shadow
positions and ambient light.

For our theoretical data, we generated a large number
of random symmetric polygonal grooves (see Figure 4(a)).
After finding the position of the point light source that will
cast a shadow boundary at the desired position, we used
our model to generate the radiosity across the groove (see
Figure 4(b)). Since the angle of incidence of the point
light source varies, the average radiosity of each groove
varies. To correct for this, each intensity cross-section is
normalized to have zero mean and unit variance.

Negative examples were taken from randomly chosen
lines in random images.

Comparison. A support vector machine is a learning
machine that determines the hyperplane in the feature vec-
tor space which best separates the positive and negative
data [3]. We trained an SVM using theoretical data for
positive examples. None of the real groove cross-sections

tested negative, no matter what their shadow position was,
indicating that the test data (from experimental images) are
consistent with the model data (theoretically generated).
Thus, our simple groove model reflects reality accurately.

Since the theoretical predictions match the experimen-
tal data, we can use the theory to construct filters to find
grooves in real images. Furthermore, since the shading
model works for grooves, we expect it to work for folds.

5 Implementation and results
Grooves appear in images in a range of orientations,

aspect ratios, scales and with different shadow positions
and shapes. To find grooves of a particular orientation,
the image is blurred along the desired direction, and the
image intensity perpendicular to this direction, (across the
groove) is tested using the SVM. Different aspect ratios
can be searched by varying the width of the blur. Size
differences are easily dealt with by scaling the image. We
have already seen that the SVM is relatively insensitive to
shadow position. Finally, we have seen that the shape of
the groove has very little effect on the image.

Running the groove finder for one groove size and var-
ious orientations on the images in the top row of Figure 5
yields the images in the bottom row. Black pixels indicate
the presence of a groove. In all images, the spine is clearly
labeled as a groove. In (a) and (b), the shoulder blades
are also marked as grooves. The detectors are selective
as to size and orientation—the figure shows examples at a
range of orientations tuned to one size and orientation, and
therefore do not pick up all the grooves in an image.

The groove detector also marks some things as grooves
which are not (for example, the left side of the back in
(b)). It is unreasonable to expect template matching to
yield a zero false positive rate. At a higher level, when
constructing a representation of the object, we can take
into account other evidence (such as edge boundaries) and
reject many of the false positives.

Folds can be detected using the same strategy. We
generate random symmetric polygonal folds, and then use
the shading model to predict the radiosity over a fold. An
SVM based on the predicted images is generated, and is
then run on real images, giving extremely good results, as
may be seen in Figure 6.

6 Discussion
Folds and grooves are small deformations on surfaces

that produce large photometric effects. The pattern of
shading on a fold or a groove is predicted well by a sim-
ple vignetting model, and shows significant consistency in
the shading over different shapes. This means that folds
and grooves can be marked effectively by filters predicted
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Figure 5: Top row: Original images. While the groove caused by the spine is geometrically small, it has significant
photometric consequences, affecting the shading for as much as a third of the width of the back. It is for this reason that we
seek a representation which combines geometrical and photometric primitives.
Bottom row: Groove detector output (black pixels indicate the presence of a groove). The detector has been trained on
theoretical predictions of groove shape. It is highly selective in terms of size and orientation. In each case, the detector
is looking for grooves that are 40 pixels wide. The ticks are every 50 pixels. (a) The predominant groove is vertical, so
we look for grooves at 0

�

. Both the spine and the left should blade are identified, but the kidneys are not marked, due to
their different orientation. (b) Groove angle of 15

�

marks the spine and right shoulder blade. The edge of the back is also
marked—this false positive will need to be rejected, taking into account other evidence. (c) Because the illumination is from
the left, we look for grooves at 180

�

. (d) Groove angle of 	 15
�

. The horizontal lines in this image and in (b) are artifacts
of the process of blurring along the groove.

from a simple shading model without attempting to infer
shape or the position of the illuminant. Furthermore, this
approach is robust to interreflections, because it looks at re-
gional properties and at spatial frequencies that are largely
unaffected by distant radiators.

Folds and grooves are best identified as “dictionary en-
tries”, where a characteristic pattern in shading evokes a
stylised shape percept, rather than by a dense depth map,
which may be difficult to obtain. This approach sees shad-
ing analysis as a collection of matching activities, where
primitives are identified on top of each other. Consider the
image of a clothed limb—once the effects of the folds in the
cloth have been discounted, we can decide whether the re-
maining shading pattern is consistent with that of a cylinder.

Furthermore, by examining the collection of folds, we may
be able to extract some information on the configuration of
the body underneath the clothes.

This formalism has a number of attractions. It does
not attempt to extract redundant or ill-conditioned shape
information; it can be made robust to interreflections; and
shading models can be used to predict likely primitives.
The central issue for further work is finding more shad-
ing primitives, ideally with the aid of simplified shading
models, and using these primitives in recognition.
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Figure 6: Top row: Original images. While of a much smaller scale than the shape of the body, folds are very significant
photometrically. Note the consistency in fold spacing, and the fact that the folds in the cloth contain valuable information
about the configuration of the body underneath.
Bottom row: Fold detector output (black pixels indicate the presence of a fold). The detector was trained on theoretical
predictions of the shading pattern on folds. It is highly selective for size and orientation—in each case, it is looking for
folds that are 46 pixels wide. The ticks are every 50 pixels. (a) The predominant folds at 20
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and bottom of (b), (c) and (d) are artifacts of the process of blurring along the fold.
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