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Abstract

Non-symmetric scattering is far more common in computer graphics than
is generally recognized, and can occur even when the underlying scattering
model is physically correct. For example, we show that non-symmetry oc-
curs whenever light is refracted, and also whenever shading normals are used
(e.g. due to interpolation of normals in a triangle mesh, or bump mapping [5]).

We examine the implications of non-symmetric scattering for light trans-
port theory. We extend the work of Arvo et al. [4] into a complete framework
for light, importance, and particle transport with non-symmetric kernels. We
show that physically valid scattering models are not always symmetric, and
derive the condition for arbitrary models to obey Helmholtz reciprocity. By
rewriting the transport operators in terms of optical invariants, we obtain a
new framework where symmetry and reciprocity are the same.

We also consider the practical consequences for global illumination al-
gorithms. The problem is that many implementations indirectly assume sym-
metry, by using the same scattering rules for light and importance, or particles
and viewing rays. This can lead to incorrect results for physically valid mod-
els. It can also cause different rendering algorithms to converge to different
solutions (whether the model is physically valid or not), and it can cause shad-
ing artifacts. If the non-symmetry is recognized and handled correctly, these
problems can easily be avoided.

1 Introduction

The equations governing the transport and measurement of light energy can be writ-
ten in two equivalent forms, depending on whether we solve for radiance or impor-
tance. Most current global illumination algorithms take advantage of this duality.
For example, importance is often used to guide mesh refinement in finite-element
approaches, and traditional ray tracing is the dual of particle tracing, which simu-
lates the emission and scattering of photons.



When these algorithms are implemented, it is very common to assume that light
and importance obey the same scattering rules. Equivalently, the bidirectional scat-
tering distribution function (BSDF) for every surface is assumed to be symmetric.
This is usually considered reasonable, since it is well-known that reflective surfaces
have symmetric BRDF’s. The symmetry allows many simplifications, such as us-
ing the same code to trace light particles and viewing rays, or to solve for radiance
and importance.

As mentioned in the abstract, we show that non-symmetric scattering is actually
quite common. This can cause problems for any algorithm that uses both lighting
and viewing information, including importance-driven finite element approaches
[33, 30, 8], particle tracing algorithms [15, 28, 31], and bidirectional path-tracing
[18, 37, 38]. However, we show that these problems are easy to fix.

2 Light transport with non-symmetric scattering

We develop a consistent framework for light, importance, and particle transport,
building on the work of Arvo et al. [4], Christensen et al. [7], and Pattanaik and
Mudur [28]. Our approach is new in several ways. Due to the absence of symmetry
assumptions, our framework has a richer structure: for each of the four basic trans-
port quantities (exitant/incident radiance/importance), there is a distinct transport
operator and measurement equation. Each of these is useful for different rendering
algorithms, and they are all related in a simple way (see Sec.2.5 for a summary).
Other contributions include the ray space abstraction, and the use of incident rather
than field radiance functions.

2.1 Domains and measures

Most light transport calculations are naturally defined over the space R of all rays.
By equipping ‘R with a suitable measure and topology, the details of ray parameter-
ization can be hidden, while clarifying the essential structure of the theory.

The ray space R can be parameterized in many ways. We will represent it as
the Cartesian product R = M x &2, where M is the set of surfaces in the scene,
and S is the set of all unit direction vectors! The ray r = (x,w) has origin x and
direction w.

'In closed environments, another common parameterization is R = M x M, so that each ray
is a pair (x, x"). To avoid multiple representations of the same ray, we must include a visibility test
V (x,x") in the measure p, or restrict R to pairs where x and X are mutually visible. We used this
representation in [37]. Note that R and p are independent of the parameterization, which is really just
a way to assign labels to rays.



To integrate real-valued functions, we define a measure function p. This allows
us to define the inner product of two functions on R,

(f.g) = /R £(x) g(r) du(r) - (1)

The measure 1 is called throughput [35, 25, 9], and is defined by
dp(r) = du(x,w) = dA(x) dog (w) )

where A is the area measure on M, and a,f is the projected solid angle measure on
S? [25, p.70]. The projected solid angle of a set D C & is defined by

(D) = [ o Nelso| dow) .

where N, (x) is the geometric surface normal, and o is the usual solid angle mea-
sure.

2.2 Scattering and transport operators

The scattering of light at a surface is typically divided into reflected and transmit-
ted components (the BRDF f, and the BTDF f;)3. It is often more convenient to
combine these into a single bidirectional scattering distribution function (BSDF)}
defined as

fs(wi—=wo) = dL(wo) / dE(wi)

so that fs(w; — w,) is the observed radiance leaving in direction w, per unit of
irradiance arriving from direction «j (see [27, p.5], [9, p.28]).

>The measure y is similar to the usual geometric measure on lines in IR®. Formally, it can be
defined as a composition of Lebesgue measures on fibers, where the fibers of R are sets of rays with
the same origin x (similar to [2, p.11]). This measure is invariant under Euclidean transformations,
which makes it unique up to a constant factor [2, p.51].

3The “r” in f, is usually assumed to be a label, denoting “reflectance”. However, Nicodemus
et al. [27] derive the BRDF from the more general BSSRDF, which allows light to strike and leave
the surface at different points (e.g. due to sub-surface scattering). Just before the definition of the
BRDEF, r is used to denote the distance between these points, so that the » in f. could be a parameter
(whose value is usually zero in computer graphics). This has been interpreted both ways (e.g. [12],
[13, p.665], [13, p.722]). In his other writings, however, Nicodemus uses r only as a label [24, 23, 22].
For the “distance” interpretation of r, the notation S(w;,w,; ) for the BSSRDF is used [27, p.28].
These ambiguities can be avoided by using different typefaces for labels and parameters (Roman vs.
italics), as we do in this paper.

“This name was introduced by Heckbert [16, p.26]. Previously he used the term bidirectional dis-
tribution function (BDF) [15], but this sounds more like a category (containing the B*DF’s as mem-
bers).



Following [4], we define light transport in terms of operators acting on radiance
functions. We distinguish between incident radiance functions I (x, w), which give
the radiance arriving at x from direction w, and exitant radiance functions L, (x, w),
which measure the radiance leaving x in direction w.

The local scattering operator is now defined by

(KL)(x,0) = [ | o) L) dot () 3)

When applied to incident radiance I, it returns the exitant radiance L, = KL; after
one scattering step. The geometric or propagation operator G completes the cycle,
by expressing incident radiance in terms of the exitant radiance of the surrounding
environment, according to I; = GL,. It is defined by

(GL)(Xawi) = L(XM (Xawi)v _Wi) >

where x,, (x, w) is the first point of M visible from x in direction w.
The field radiance of [4] is related to incident radiance by

Le(x,w) = Li(x, —w) ,

so the direction of w; is reversed (compared to [4]) in the equations above. This has
two advantages: G and K become self-adjoint (when f is symmetric),5 and w; and
w, both point outward for reflective surfaces (as assumed by most BRDF formulas).
Notice also that K acts locally with respect to position, while G acts locally with
respect to direction (since «; is simply flipped around the origin).

The light transport or rendering equation is now

L=L.+TL,

where T = KG is the light transport operator, L.(x,w) is the emitted radiance,
and L(x,w) is the equilibrium radiance (the desired steady-state solution).
By inverting this operator equation, we obtain the formal solution L = Sl,
where
S=(I-T)"!

is called the solution operator® The solution exists and is unique provided that

|T*|| < 1 for some k > 1.

>The G and K of [4] are not self-adjoint. Arvo handles this with an isomorphism H between
surface and field functions, such that HG and KH are equivalent to the G and K defined above [3,
p-151].

®The “GRDF” described by Eric Lafortune [19] is simply the kernel of S. Note that S is closely
related to the resolvent operator R, used in spectral analysis, except that Ry has a parameter A, and
does not have a universally accepted definition (e.g. compare [10, p.74], [36, p.272]).
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2.3 Sensors and measurements

Global illumination algorithms compute a finite number of measurements of the so-
lution L. Each measurement is expressed as the response of a hypothetical sensor,
e.g. a small area of film within a virtual camera. Linear sensors are characterized by
a weighting function W, (x, w), which specifies the sensor response per unit power
arriving at x from direction w. Nicodemus calls this the flux responsivity of the sen-
sor [26, p.59], with units [S - W], where the unit S of sensor response depends
on the sensor.

To make a measurement, we integrate the radiance falling on the sensor, weighted
according to We. This is expressed by Nicodemus’ measurement equation [26, p.85],

I = (W., L) :/RWe(r) Li(r) du(r) | )

where [ is the measurement (e.g. a pixel value), W, is the weighting function for
this measurement, and I is the incident radiance. Each W, is called an exitant im-
portance function (we think of the sensor as emitting importance).

We have defined both L. and W, as exitant quantities. This is natural, since
it lets us define their values at points on the source or sensor (unlike the “visual
potential” of [28]), and it reveals many similarities between light and importance
transport [7].

The equilibrium solution I. = SLI, is also an exitant quantity. However, the
measurement equation (4) requires an incident function. This problem is solved
using the G operator, since I = GL.® Each measurement now has the form

I=(W., L)= (W, GL) = (W,,GSL.) . (5)

2.4 Adjoint operators and importance transport

Adjoint operators are a powerful tool for understanding light transport algorithms.
They allow us to evaluate measurements in a variety of ways, which can lead to new
insights and algorithms.

The adjoint of an operator H is denoted H*, and is defined by the property that

(H*f,9) = (f,Hg)

"We follow the terminology of [20, p.7, p.21], where an importance function pertains to a single
“meter reading” (measurement). Since the average of several measurements is itself a measurement,
importance functions may correspond to a set of measurements (e.g. all pixels in an image). In the
case of importance-driven methods, the measurement may even be hypothetical [33, p.275]. The al-
ternative term potential function [28] is undesirable because it has a well-known, different meaning
in physics (a function satisfying Poisson’s equation, e.g. the electric or gravitational potentials).

8We assume that the sensors are modeled as part of the domain M. If not, we can always add
them to M for theoretical purposes by assuming that they are completely transparent.




for all f,¢.° Applying this identity to (5), we get
I = (Wev GSL€> = <(GS)*WeaLe> ) (6)

which suggests that we can evaluate I by transporting importance in some way.
To do this, we must evaluate (GS)*. It is straightforward to show that G* =
G, i.e. G is self-adjoint [3, p.152]. Similarly, K is self-adjoint if we assume that
the BSDF is symmetric [3]. Using standard identities, this implies that GS is self-
adjoint as well.
Applying this to (6), measurements can be evaluated using either

I=(W. GSL) or I=/(GSW., L) .

Because of the symmetry, any equations or algorithms that apply to light transport
may also be used for importance transport. In particular,

W = SW,

is called the equilibrium importance function, and satisfies the importance transport
equation

W =W.+TW .

Incident importance is defined by W, = GW, and finally measurements can be
evaluated using either

I = (W, L;) or I = (WL .

These symmetries are very useful in algorithm design and implementation.
However, if the BSDF is not symmetric, then K # K*. The adjoint is given by

(K*L)(Xawo) = /82 fs(xawo_ﬂﬂi) L(Xvwi) dai_(wi) ) (7

and thus K # K* (the arguments to f; have been exchanged). This does not af-
fect the light transport operator T = KG, which we will rename T, but the im-
portance transport operator becomes Ty, = K*G. Details are given in the next
section.

The adjoint of an operator depends on the inner product used. We always use the inner product

(1).



2.5 Summary of the transport rules

We consider the four basic transport quantities L,, L;, W,, and W; (exitant/incident

radiance/importance). The incident quantities are obtained from the exitant ones by
L = GL, and W; = GW,. Each quantity X has a transport operator
T x, given by the following table:

Exitant Incident

Light T; =KG | T, =GK

Importance | Ty = K*G | Ty, = GK*

The transport equation for X is given by
X=Xe+TxX .
Its formal solution is X = Sy X, where
Sx=(I-Tx)"
is the solution operator. Finally, measurements are made using any of®
I = (We,Li) = (Wi, Le) = (Weji, L) = (W, Lejj)

(where we have dropped the “0” subscript on exitant quantities).

The operator K* has the same form as K, except that the arguments i, w, to the
BSDF have been interchanged. We describe this by saying that K uses the adjoint
BSDF f, which is defined by

[ (wi—=wo) = fs(wo—wi) -

Note that only one of f; or ff is correct for any given transport situation. If
we use the wrong one, we will compute the wrong answer. Even worse, if a non-
symmetric BSDF is not recognized as such, then we will inadvertently use f where
f¥ should be used. This is inconsistent; it is like using a different BSDF for transport
situations involving the adjoint. The errors will vary depending on how the BSDF is
used by a specific transport algorithm. For example, particle tracing will converge
to a different result than path tracing, since these two algorithms must sample the
BSDF in opposite directions for consistent results (as discussed below).

19The forms involving L. ; and W, ; are useful when the emitted radiance/importance is naturally
defined as an incident function. For example, to project L onto a set of orthonormal basis functions
Bj, we compute inner products of the form (B;, L) rather than (B;, L;). Each B; is thus an incident
importance function.



2.5.1 Particle tracing.

Particle tracing algorithms have been explained in terms of “energy packets” (e.g.
[31]), or as random walk solutions of the importance transport equation [28]. We
explain how these algorithms are affected by non-symmetric BSDF’s.

Recall that the BSDF arguments are labeled according to the direction of light
flow (from wj to w,). For particle scattering, we are given «j and must sample wj.
This is reversed compared to ray or path tracing, so we must be careful when f
is not symmetric; otherwise incorrect and inconsistent results will be obtained, as
described above.

Rather than swapping directions, it is often more convenient to use the adjoint
BSDEF. We adopt the convention that «; is always the sampled direction during a
random walk (i.e. w, has already been chosen). The other situation is described
as “sampling the adjoint BSDF”. With this convention, £ applies to light particles
and importance evaluation, while f; is used for “importance particles” and radiance
evaluation.

3 Sources of non-symmetric scattering

Most reflection models in computer graphics are symmetric. One notable exception
is the original Phong model for glossy reflection [29]!! Although his “shading for-
mula” is symmetric, the corresponding BRDF has an extra factor of 1/ cos(§).

However, some sources of non-symmetry are not so obvious. We discuss two
such examples: refraction and shading normals.

3.1 Refraction

When light is transmitted between media with different refractive indices, the cor-
responding BTDF is not symmetric. Radiance crossing the interface is scaled by
an extra factor of (1 /7;)? that is not required for importance (or light particles). If
this extra scaling is ignored, there can be substantial errors.

For example, consider a light source shining on a swimming pool with a diffuse
bottom and sides. Suppose that we use particle tracing to accumulate the caustic
pattern on the bottom of the pool, and then we render an image using ray tracing.
If the radiance for the viewing rays is not scaled, the caustics in the image will be
too bright by a factor of (1, /1;)? (about 1.78 for water).

We describe Helmholtz reciprocity and other general properties of optical sys-
tems, show how they apply in the case of pure specular refraction, and finally we
examine ways to “fix” the theoretical framework to increase its symmetry.

TPhong also proposed the use of shading normals, which is another source of non-symmetry.



3.1.1 Reciprocities.

The Helmholtz reciprocity principle can be found in his famous treatise on physio-
logical optics, first published in 1856 [40, p.231]. It is formulated as a theorem in
geometric optics, and states that if we follow a beam of light on any path through
an optical system, the loss in intensity'” is the same as for a beam traveling in the
reverse direction.!?

With respect the symmetry of BRDF’s, an observation of Lord Rayleigh is ac-
tually more relevant (cf. [6, p.177]). Consider a small reflective surface, exposed to
a small light source and a small irradiance detector. His reciprocity principle states
that if the positions of the source and detector are exchanged, the reflected irradi-
ance measured by the sensor will be the same. This implies the symmetry of the
corresponding BRDF.

Many reciprocity relationships, including these, can be derived from thermody-
namic principles (e.g. [32, p.65], [11, p.505]). Such arguments consider an isother-
mal, black enclosure containing an arbitrary test surface (reflective or transmissive).
According to Kirchoff’s law,' if the (spectral) radiance in such an enclosure is di-
vided by the index of refraction squared (which may vary with position), the result
is purely a function of temperature. In other words, L /17 does not vary with posi-
tion or direction.

Using this fact, we can derive a reciprocity principle that is satisfied by all physi-
cally valid BSDF’s. By considering the energy exchange between two small surface
elements of the enclosure, it is straightforward to show that

fs(wi = wo) /772 = fs(wo—wi) /7712 (8)

(see [32, p.65] for a similar argument). This is clearly a generalization of the usual
symmetry condition for BRDF’s. However, we see that any BSDF involving re-
fraction is not symmetric. The ratio of £ to f* is (1,/n;)%, so that radiance and
importance are scaled differently when they are transmitted through the surface.

12Helmholtz phrased this law in terms of “quantities of light” (flux) rather than “brightness” (radi-
ance), because he was aware of the change in radiance due to the index of refraction [40, p.233].

3Helmholtz reciprocity is not universally valid. There are some situations where optical paths are
not reversible, i.e. light flowing in the reverse direction follows a different path. This can happen when
electromagnetic waves are transmitted into metals [39]. Also, reciprocity can fail for polarized light
in the presence of an external magnetic field [40, p.231]. Interestingly, Helmholtz did not provide a
proof of his principle, because “anybody who is at all familiar with the laws of optics can easily prove
it for himself” [40, p.231].

“The dependence of blackbody radiation on 17 is often falsely attributed to Clausius (cf. [11,
p.504]).



3.1.2 Perfect specular refraction.

We show how these principles apply in the case of perfect specular refraction, where
the interface between media is optically smooth. This is by far the most common
example of refraction in graphics.!> We also give explicit formulas for the corre-
sponding BTDF and its adjoint. For simplicity, we will ignore reflection and assume
that all light is transmitted through the interface.

Intuitively, when light enters a medium with a higher refractive index, the same
light energy is squeezed into a smaller volume. To see this, consider a small patch
dA exposed to uniform radiance in the hemisphere of incident directions €}, and
assume that 7, < 7. Since sin 6y < 1;/n; by Snell’s law, the transmitted light does
not fill the entire hemisphere €%. Thus radiance must increase, by conservation of
energy.

In fact, the incident and transmitted radiance are related by

Li/n} = Ly/n} . 9)

This can be shown using Snell’s law (e.g. see [21], [14, p.30]). These arguments
first prove a relationship between the throughputs of the incident and transmitted
beams:

0} dpu(ri) = 0 du(ry) (10)
where (4 is the throughput measure (2). They also need the fact that d& = d®,, by
conservation of energy. Finally, equation (9) follows from the relationship d® =
L dy between power and radiance.

Thus radiance is scaled by (1 /17;)> when it crosses the interface. The BTDF is

felwi=wi) = (m/m)?05e (wi = 7(wy))

where w; = 7(w) is the mapping between w; and wy, determined by Snell’s law,
and §,.. denotes the Dirac delta distribution with respect to the projected solid angle
measure.'®

According to (8), the adjoint BTDF is
Fiwi—=w) = (/) filwi = wy) = 0,n (wi — 7(wy))

The (1 /m;)? factor is not present in the adjoint, so that importance (and light par-
ticles) are not scaled when they cross the interface.

Hall [14] pointed out the (1, /1;)? scaling for radiance, but many ray tracers ig-
nore this. We are not aware of any system that implements different rules for radi-
ance and importance/light particles. This is easy to do, and essential for correctness.

SEquation (8) applies to more general BTDF’s as well, e.g. frosted glass.
'SFor our purposes, the following is sufficient. Given some measure p, d,, is defined by the property
that fn g(x) 8, (x — x0) dpu(x) = g(x0) (see [1], p.28-32).
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3.1.3 Optical invariants.

We have already mentioned several optical invariants, quantities that are preserved
as a beam of radiation propagates through an optical system. To simplify things,
we will assume that the beam follows a single path (no partial reflection, etc.) and
that there are no losses due to absorption.

The first quantity is L/ 17, which Nicodemus calls basic radiance [21][25, p.29].
Its invariance is known as Abbe’s law [17, p.195], or radiance invariance 25, p.26]1.7
From this fact and conservation of energy, we can also show the invariance of

n? dp. This quantity is known as basic throughput [25, p.37], or etendue [35]'8

3.1.4 Aninvariant transport framework.

By writing the transport equations in terms of these invariants, we obtain a frame-
work where light and importance obey the same scattering rules. First, we use basic
radiance

L'=L/y

for all lighting calculations. Next, we redefine the inner product on R to be
LWy = [ L)Wy di' ()
R

where dy’ = n? dy is the basic throughput measure. This is used for all measure-
ments. Finally, we replace the BSDF by

fé(wi_)WO) = fS(Wi%WO)/Ug )

which is symmetric according to (8). With these changes, G and K are both self-
adjoint for physically valid models, and thus basic radiance and importance obey
the same scattering rules.

From an implementation standpoint, we work with L /17 instead of L, and com-
pensate by multiplying by 17 at the point where light and importance interact. To

do this, we must know the refractive index of the surrounding medium!®

Y Basic spectral radiance L, /n” is invariant as well. If spectral radiance is parameterized by wave-
length, then Ly / n3 is invariant [25, p.52], since wavelengths (unlike frequencies) are modified at the
interface.

18This was first derived (in a simpler linear form) by Smith in 1738 (cf. [40, p.74]). The linear
invariant is called the Lagrange invariant or the Smith-Helmholtz invariant.

' Another way to make the framework symmetric is to work with the quantities L/n and W/n
(leaving the BSDF and inner product alone). This gives correct results as long as all sources and sen-
sors are in the same medium. However, given a system that allows BSDF’s to be non-symmetric (as
required to handle shading normals), there is little reason not to handle light and importance differ-
ently.
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3.2 Shading normals

We show that shading normals lead to non-symmetric BSDF’s. This also causes
problems with conservation of energy, and shading discontinuities.

Let x € M be a fixed point, so that we can omit x from the notation. Let N, be
the geometric normal, let Ng be the shading normal, and let fS,N(wi — w,) denote
the BSDF, rotated as though the surface had normal N. The shading normal is used
in lighting calculations according to

Lo(wo) = (KL)(wo) = /82 L(wi) fsN.(wi = wp) |wi - Ng|do(wi) . (11

Of course, this does not actually change the normal. Some calculations will detect
this (e.g. if we compute the solid angle occupied by this surface from some other
point), so we should expect inconsistencies. Really, the shading normal is a param-
eter that modifies the BSDF to change the surface appearance. Even if the original
BSDF is symmetric, the modified BSDF is not. To see this, we write (11) in the
standard form (3):

(KL)(wo) = [ L) filwr o) lwr - Ny do(wr) (12)

where
fsl(wi_>w0) = fs,N. (Wi = wo) |wi - N| / |w; - Ng| .

The modified BSDF f! is exactly equivalent to the original shading formula (11).
However, since f! is not symmetric, importance is scattered according to

* q |w0 i NS|

(KW)(wo) = | W(wi) fuN,(wo = wi) T |wi - Ng|do(wi) .

§? |wo - N
This also applies to particle transport (see Sec.2.5). The directions « and w, are
labeled with respect to importance transport, and so particles go from ¢y to wj. Scat-
tered particles weights are thus multiplied by

fs,Ns u)0_>Wi) wo - N
a(wi) = ( | |

wi N (13)
@) oo Ny 4 Nl

where p,,, (w) do(w) is the distribution that «; was sampled from. If particles are
weighted in this way, the results will be consistent with shading formula (11).
3.2.1 Examples.

For a diffuse surface, the BRDF is a constant /3. Inserting this in (13), we see
that particles are scattered according to |« - Ng|, with a weight that depends on the
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direction they arrived from. This is very different than radiance sampling, where
the samples are distributed according to |« - Ny|.

As another example, consider a perfect mirror, whose BRDF is a delta function
(27, p.44], [9, p.31]). Applying (13) to this BRDF, we find that reflected particles
should be weighted by

a = |wi- Ng| /|wo - Ng| .

We give pseudocode below that shows how to evaluate the scattering kernel (in-
cluding the factor of |w; - Ny | hidden in the o notation). The adjoint flag controls
whether K or K* is evaluated. We also show how to prevent light from “leaking”
through the surface [34], by checking that each direction lies on the same side of
the surface with respect to both normals. The easiest solution is just to return zero
when this happens.

EVAL-KERNEL (w; — w,, adjoint)
assert N, - Ng > 0 (if not, flip Ny)
if (wi - Ng)(wi - Ng) <0or (w, - Ng)(wo - Ng) <0
then return O
if adjoint
then return f; N, (wo — wi) |wo - Ny |wi - Ng| / |wo - Ng|
else return f, N_(wi —wo) |wi - Ng|

3.2.2 No conservation of energy.

For energy to be conserved, we must have
/ fhwi—=wo)dot(w,) <1 forall w .
S2

However, in (12), the factor |w; - Ng|/|w; - N | can be arbitrarily large. For intuition
about this, consider Fig. 1(a). Even though the surfaces are nearly perpendicular to
the light they receive, they are shaded as though they were facing directly toward
the source. However, their total area is much larger than could be achieved with
a surface facing the source (and occupying the same solid angle). The total power
reflected by these surfaces can thus be far greater than that emitted by the source.

3.2.3 Shading discontinuities.

The adjoint BSDF is essential for the smooth shading of polygonal meshes, when
particle tracing is used. Consider Fig. 1(b). Light of uniform intensity is arriving
from direction w, at the polygonal surface shown (as before, particles go from «g to
wj). The shading normal is assumed to be continuous across the boundary between
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(b)

Figure 1: (a) Two surfaces whose shading normals point toward a light source —
they receive more power than the light source emits. (b) The density of particles
seen by the eye is discontinuous, even though the shading normal is continuous (in
fact, constant) across the polygon boundary.

polygons A and B, so the shading of the mesh should appear smooth. However, the
geometric normals of A and B are different, so that fewer particles per unit area are
received by B than by A. The irradiances at A and B are in the ratio

Byl N
Ep  |wo-Np|

If we render this surface using a particle-tracing algorithm, there will be a discon-
tinuity in the apparent brightness.

Furthermore, suppose that we use an image-space splatting algorithm, where
each particle makes a dot at the appropriate point in the image. The image bright-
ness depends on the spacing between the particles measured perpendicular to the
viewing direction wj, since this determines how many particles will strike each pixel.
The spacing perpendicular to «; is simply the spacing on the surface, divided by
|wi - N|. The image intensities at A and B are thus in the ratio

Iy |wo-Nallwi-Np|

Ip  |wo-Np||wi-Na| °

Yet if we weight the particles according to (13), the shading will be smooth (as-
suming that N is continuous across the boundary). The weight includes a factor
of |w; - Ng|/|wo - Ng|, which exactly compensates for the discontinuity in particle
density.

Many algorithms use particle tracing to render at least some component of the
lighting on directly visible surfaces (e.g. caustics). If the adjoint BSDF is not used,
this can cause false discontinuities in the image.
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3.3 Results

Plate 1 (see color section) shows a bump-mapped teapot, and a polygonalized sphere
with smooth shading normals. The images are simulations of a splatting algorithm:
when a particle strikes a surface, a splat is made at the corresponding point in the
image. The splat intensity depends on how much light is reflected toward the eye.
Plate 1a shows the correct result (using the adjoint BSDF), while Plate 1b shows
what happens if particles are scattered just like viewing rays (i.e. the non-symmetry
caused by shading normals is not recognized). Both images use the same shading
normals.

Plate 2 shows a pool of water with small waves, illuminated by two area light
sources, and rendered with a particle tracing algorithm. Plate 2a shows the correct
result (where radiance is scaled by (1 /n;)2, but particle weights are not’’). In Plate
2b, neither radiance nor particle weights are scaled (the non-symmetry of the BTDF
is not recognized), leading to caustics that are too bright by a factor of (i/n;)? (see
Sec.3.1).
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