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Abstract

Realism is often a primary goal in computer graphics imagery, we strive to create images that are
perceptually indistinguishable from an actual scene. Rendering systems can now closely approximate
the physical distribution of light in an environment. However, physical accuracy does not guarantee that
the displayed images will have authentic visual appearance. In recent years the emphasis in realistic
image synthesis has begun to shift from the simulation of light in an environment to images that look
as real as the physical environment they portray. In other words the computer image should be not only
physically correct but also perceptually equivalent to the scene it represents. This implies aspects of the
Human Visual System (HVS) must be considered if realism is required. Visual perception is employed
in many different guises in graphics to achieve authenticity. Certain aspects of the visual system must
be considered to identify the perceptual effects that a realistic rendering system must achieve in order
to effectively reproduce a similar visual response to a real scene. This paper outlines the manner in
which knowledge about visual perception is increasingly appearing in state-of-the-art realistic image
synthesis. After a brief overview of the HVS, this paper is organised into four sections, each exploring
the use of perception in realistic image synthesis, each with slightly different emphasis and application.
First, Tone Mapping Operators, which attempt to map the vast range of computed radiance values to
the limited range of display values, are discussed. Then perception based image quality metrics, which
aim to compare images on a perceptual rather than physical basis are presented. These metrics can be
used to evaluate, validate and compare imagery. Thirdly, perception driven rendering algorithms are
described, these algorithms focus on embedding models of the Human Visual System (HVS) directly into
global illumination computations in order to improve their efficiency. Finally, techniques for comparing
computer graphics imagery against the real world scenes they represent are discussed.

1. Some Characteristics of the Human Visual

System

Many computer graphics images are produced for
viewing by human observers, as opposed to automated
inspection. It is therefore important to understand the
characteristics and limitations of the Human Visual
System (HVS). The HVS is well studied, but percep-
tion is a complex process. Evidence exists to indicate
that features of the HVS do not operate indepen-
dently, but rather functions overlap making it difficult
to describe the perceptual process completely. How-
ever, there are many key features which can be mod-
elled, and because many of the techniques described
in this paper use or model these features, they are de-

scribed briefly in this section. A more comprehensive
description of the characteristics of the HVS can be
found in 29.

Visual acuity is the ability of the HVS to resolve
detail in an image. The human eye is less sensitive
to gradual and sudden changes in brightness in the
image plane but has higher sensitivity to intermediate
changes. Acuity decreases with increase in distance.
Visual acuity can be measured using a Snellen Chart,
a standardised chart of symbols and letters. Under low
levels of illumination our eyes are very sensitive and
can detect small changes in luminance, however acuity
for detail and ability to detect colour is poor. In high
levels of illumination we have sharp colour vision and
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good acuity, but luminance differences must be large
to be detected.

The Contrast Sensitivity Function (CSF) tells us
how sensitive we are to the various frequencies of vi-
sual stimuli. If the frequency of visual stimuli is too
high we will not be able to recognise the stimulus pat-
tern any more. Imagine an image consisting of vertical
black and white stripes. If the stripes are very thin
(i.e. a few thousand per millimetre) humans will be
unable to see individual stripes. All that we will see
is a grey image. If the stripes then become wider and
wider, there is a threshold width, after which humans
are able to distinguish the stripes. Contrast Sensitiv-
ity depends on the size (coarse/fineness) of image fea-
tures, or the spatial frequency.

Contrast is defined as:

lmax − lmin

lmax + lmin

where lmax and lmin are the maximum and minimum
luminance. Human brightness sensitivity is logarith-
mic, so it follows that for the same perception, higher
brightness requires higher contrast. Apparent bright-
ness is dependent on background brightness. This phe-
nomenon, termed simultaneous contrast, is illustrated
in Figure 1. Despite the fact that all centre squares
are the same brightness, they are perceived as differ-
ent due to the different background brightness.

Figure 1: Simultaneous contrast: the internal squares
all have the same luminance but the changes in lumi-
nance in the surrounding areas change the perceived
luminance of the internal squares

Masking is the phenomenon by which visibility of
a particular pattern is reduced by the presence of a
second pattern. The HVS exhibits different spatial
acuities in response to different colours. It is known
that colour spatial acuity is less than monochrome
spatial acuity.

The range of luminance we encounter in natu-
ral environments (and hence the range of luminance
that can be computed by a physically based render-
ing algorithm) is vast. Over the course of the day
the absolute level of illumination can vary by more
than a 100,000,000 to 1 from bright sunlight down
to starlight. The dynamic range of light energy in
a single environment can also be large, in the order

of 10,000 to 1 from highlights to shadows. However,
typical display media have useful luminance ranges of
approximately 100 to 1. This means some mapping
function must be used to translate real world values
into values displayable by the device in question, be
it electronic (CRT) or print media. Initial attempts to
develop such a mapping were simple ad-hoc methods
that failed miserably for high dynamic range scenes.
These ad-hoc methods proceeded by employing a lin-
ear arbitrary scaling, either mapping the average of
a luminance in the real world to the average of the
display, or the maximum non-light source luminance
to the maximum displayable value. While such a scal-
ing proved appropriate for scenes with similar dynamic
range to the display media, it failed to preserve visibil-
ity in scenes with high dynamic ranges of luminance.
This is due the fact that very bright or very dim values
must be clipped to fall within the range of displayable
values. Also, using this method all images are mapped
in the same manner irrespective of absolute value. This
means a room illuminated by a single candle could be
mapped to the same image as a room illuminated by a
search light, resulting in loss of the overall impression
of brightness and so losing the subjective correspon-
dence between real and displayed scene. It follows that
more sophisticated mappings were required.

2. Tone Mapping Operators

Tone Mapping, originally developed for use in photog-
raphy and television, addresses the problem of map-
ping to a display, and is an attempt to recreate the
same perceptual response in the viewer of a synthetic
image as they would have if looking at the real scene.
Taking advantage of the HVS sensitivity to relative
luminance rather than absolute luminance allows the
overall subjective impression of a real environment to
be replicated on some display media, despite the fact
that the range of real world luminance often dwarfs
the displayable range 37.

Tone Mapping Operators (TMO) can be classified
according to the manner in which values are trans-
formed. Single-scale operators proceed by applying
the same scaling transformation for each pixel in the
image, and that scaling only depends on the current
level of adaptation, and not on the real-world lumi-
nance. Multi-scale operators take a differing approach
and may apply a different scale to each pixel in the
image, this time the scaling is influenced by many fac-
tors.

2.1. Single Scale Tone Mapping Operators

Tumblin and Rushmeier were the first to apply the
dynamics of tone mapping to the domain of realistic
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Figure 2: A block diagram of Tone Mapping

image synthesis 37. Using a psychophysical model of
brightness perception first developed by Stevens and
Stevens 36, they produced a TMO that attempted to
match the brightness of the real scene to the bright-
ness of the computed image displayed on a CRT. To
achieve this an observer model is built which describes
how real world and display luminance are perceived,
and a display model that describes how a frame-buffer
value is converted into displayed luminance, Figure 2
37. The image is presented to a hypothetical real world
observer, who adapts to a luminance La(w). Applying
Stevens’ equation, which relates brightness to target
luminance, the perceived value of a real world lumi-
nance, Lw, is computed as:

βw = 10
β(La(w))(π × 10−4Lw)

α(La(w))

where β(La(w)) and α(La(w)) are functions of the real
world adaptation level:

α(La(w)) = 0.4 log10(La(w)) + 1.519

β(La(w)) =

−0.4(log10(La(w)))
2 − 0.218 log10(La(w)) + 6.1642

Luminances are in cd/m−2. If it is assumed that a
display observer viewing a CRT screen adapts to
a luminance, La(d), the brightness of a displayed
luminance value can be similarly expressed:

βd = 10
β(La(d))(π × 10−4Ld)

α(La(d))

where β(La(d)) and α(La(d)) are as before. To match
the brightness of a real world luminance to the bright-
ness of a display luminance, βw must equal βd. The
luminance required to satisfy this can be determined:

Ld =
1

π × 10−4
10

βa(w)−βa(d)
αa(d) (π × 10−4Lw)

αa(w)
αa(d)

This represents the concatenation of the real-world ob-
server and the inverse display observer model. To de-
termine n, the frame buffer value, the inverse display
system model is applied to give:

n = [
Ld − Lamb

Ldmax

]
1
γ

giving

τTUMB(Lw) = [
10

βa(w)−βa(d)
αa(d) (π × 10−4Lw)

αa(w)
αa(d)

π × 10−4
]

Taking a slightly different approach, Ward 40

searched for a linear transform to give a similar result,
while keeping computational expense to a minimum.
He proposed transforming real world luminance, Lw,
to display luminance, Ld, through m, a scaling factor:

Ld = mLw

The consequence of adaptation can be thought of as
a shift in the absolute difference in luminance required
in order for a human observer to notice a variation.
Based on psychophysical data collected by Blackwell
4, Ward defines a relationship that states that if the
eye is adapted to luminance level La, the smallest al-
teration in luminance that can be seen satisfies:

4(La) = 0.0594(1.219 + L0.4
a )

2.5

Real world luminance are mapped to the display lu-
minance so the smallest discernible differences in lu-
minance can also be mapped, using:

4L(La(d)) = m4L(La(w))

Where Law and La(d) are the adaptation levels to the
real world scene and display device respectively. The
scaling factor,m, dictates how to map luminance from
the world to the display such that a Just Noticeable
Difference (JND) in world luminance maps to a JND
in display luminance :

m =
4L(La(d))

4L(La(w))
= (
1.219 + L0.4

a(d)

1.219 + L0.4
a(w)

)2.5

To estimate the adaptation levels, La(w) to La(d),
Ward assumes that the adaptation level is approx-
imately half the average radiance of the image,
(La(d) = Ldmax/2). Substituting in to equation
(above) results in values from 0 to Ldmax, and divid-
ing by Ldmax then gives values in the required range
from [0..1]. The scaling factor is then given by:

m =
1

Ldmax

[
1.219 + Ldmax

2

0.4

1.219 + L0.4
a(w)

]2.5

where Ldmax is typically set to 100cd/m
−2.
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In 1996, Ferwerda et al. 7 developed a model con-
ceptually similar to Ward’s, but in addition to pre-
serving threshold visibility, this model also accounted
for changes in colour appearance, visual acuity, and
temporal sensitivity. Different TMOs are applied de-
pending on the level of adaptation of the real world ob-
server. A threshold sensitivity function is constructed
for both the real world and display observers given
their level of adaptation. A linear scale factor is then
computed to relate real world luminance to photopic
display luminance. The required display luminance is
calculated by combining the photopic and scotopic dis-
play luminances using a parametric constant, k, which
varies between 1 and 0 as the real world adaptation
level goes from top to bottom of the mesopic range.

To account for loss of visual acuity, Ferwerda et al.
used data obtained from experiments that related the
detectability of square wave gratings of different spa-
tial frequencies to changes in background luminance.
By applying a Gaussian convolution filter, frequencies
in the real world image which could not be resolved
when adapted to the real world adaptation level are
removed. Light and dark adaptation are also consid-
ered by Ferwerda, by adding a parametric constant, b,
to the display luminance, the value of which changes
over time.

A critical and underdeveloped aspect of all this work
is the visual model on which the algorithms are based.
As we move through different environments or look
from place to place within a single environment, our
eyes adapt to the prevailing conditions of illumination
both globally and within local regions of the visual
field. These adaptation processes may have dramatic
effects on the visibility and appearance of objects and
on our visual performance. In order to produce realis-
tic displayed images of synthesised or captured scenes,
a more complete visual model of adaptation needs to
be developed. This model will be especially important
for immersive display systems that occupy the whole
visual field and therefore determine the viewer’s visual
state.

2.2. Multi-Scale Tone Mapping Operators

After careful investigation of the effect tone mapping
had on a small test scene illuminated only by a single
incandescent bulb, Chiu et al. 3 believed it was in-
correct to apply the same mapping to each pixel. By
uniformly applying any tone mapping operator across
the pixel of an image, incorrect results are likely. They
noted that the mapping applied to a pixel should be
dependent on the spatial position in the image of that
pixel. This means that some pixels having the same
intensities in the original images may have differing
intensity values in the displayed image. Using the fact

that the human visual system is more sensitive to rel-
ative changes in luminance rather than absolute lev-
els, they developed a spatially non-uniform scaling
function for high contrast images. First the image is
blurred to remove all the high frequencies, and then
the result is inverted. This approach was capable of
reproducing all the detail in the original image, but re-
verse intensity gradients appeared in the image when
very bright and very dark areas were close to each
other. Schlick 35 proposed a similar transformation
based on a rational TMO rather than a logarithmic
one. Neither of these methods accounted for differing
levels of adaptation. Their solutions are based purely
on experimental results, and no attempt is made to
employ psychophysical models of the HVS.

Larson et al. 12 developed a histogram equalisa-
tion technique that used a spatial varying map of
foveal adaptation to transform a histogram of image
luminances in such away that the resulting image lay
within the dynamic range of the display device and
image contrast and visibility were preserved. First a
histogram of brightness (approximated as a logarithm
of real-world luminances) is created for a filtered im-
age in which each pixel corresponds to approximately
1o of visual field. A histogram and a cumulative dis-
tribution function are then obtained for this reduced
image. Using threshold visibility data from Ferwerda,
an automatic adjustment algorithm is applied to cre-
ate an image with the dynamic range of the original
scene compressed into the range available on the dis-
play device, subject to certain restrictions regarding
limits of contrast sensitivity of the human eye.

Displaying high dynamic range images on low dy-
namic range devices without loss of important fine de-
tails and textures is difficult. The aim of the Low Cur-
vature Image Simplifier (LCIS) approach introduced
by Tumblin and Turk 39 is to preserve visibility of
important fine details and textures when displaying
high dynamic range images. LCIS is inspired by an
artistic approach and proceeds by separating an image
into a hierarchy of large features, boundaries and fine
detail. The LCIS hierarchy creates progressively sim-
pler images based on a single input parameter. The
final output is constructed by strongly compressing
the contrasts of the base image and adding back the
details with little or no compression. Tumblin 38 gives
a complete and comprehensive introduction to all ma-
jor Tone Mapping Operators.

3. Perceptually Based Image Quality Metrics

Reliable image quality assessments are necessary for
the evaluation of realistic image synthesis algorithms.
Typically the quality of the image synthesis method
is evaluated using image to image comparisons. Often
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Figure 3: Photograph of a Conference Room

Figure 4: Photo-Realistic Rendering of the above
Conference Room

comparisons are made with a photograph of the scene
that the image depicts, as shown in Figures 3,4 13.

Several image fidelity metrics have been developed
whose goals are to predict the amount of differences
that would be visible to a human observer. It is well
established that simple approaches like mean squared
error do not provide meaningful measures of image
fidelity, Figure 5. The image on the left has been
slightly blurred, while the image on the right has delib-
erate scribbles. The Root Mean Square Error (RMSE)
value for blurred image is markedly higher than the
RMSE for the image on the right. However, a human
observer might indicate a higher correlation between
the two images. This illustrates that the use of RMSE
is not sufficient 30, 33, 8. Clearly, more sophisticated
measures which incorporate a representation of the
HVS are needed. It is generally recognised that more
meaningful measures of image quality are obtained us-
ing techniques based on visual (and therefore subjec-
tive) assessment of images, as after all most final uses

of computer generated images will be viewed by hu-
man observers.

The following image comparison metrics were de-
rived from 6, 9, 17 in a study which compared real and
synthetic images, Figure 6, by Rushmeier et al. 33.
Each is based on ideas taken from image compres-
sion techniques. Image compression techniques seek
to minimise storage space by saving only what will be
visible in an image (similar to the goal of perceptually
driven rendering where the aim is to minimise render-
ing times by computing only what will be visible in
the image). Rushmeier et al. hoped to obtain results
from comparing two images using these models that
were large if large differences between the images ex-
ist, and small when they are almost the same. These
suggested metrics include some basic characteristics
of human vision described in image compression lit-
erature. First, within a broad band of luminance, the
eye senses relative rather than absolute luminances.
For this reason a metric should account for luminance
variations, not absolute values. Second, the response
of the eye is non-linear. The perceived “brightness”
or “lightness” is a non-linear function of luminance.
The particular non-linear relationship is not well es-
tablished and is likely to depend on complex issues
such as perceived lighting and 3-D geometry. Third,
the sensitivity of the eye depends on the spatial fre-
quency of luminance variations. The following meth-
ods attempt to model these three effects. Each model
uses a different Contrast Sensitivity Function (CSF)
to model the sensitivity to spatial frequencies.

Model 1 After Mannos and Sakrison: 17.
This model is adapted from a study in image com-
pression which attempted to derive a numerically
based measure of distortion which corresponds to
the subjective evaluation of the image by a human
observer, in order to simulate the optimum encoding
technique. First, all the luminance values are nor-
malised by the mean luminance. The non-linearity
in perception is accounted for by taking the cubed
root of each normalised luminance. A FFT is com-
puted of the resulting values, and the magnitude
of the resulting values are filtered with a CSF to
an array of values. Mannos and Sakrison [MaSa74]
proposed a model of the human CSF.

A(f) = 2.6 · [0.0192 + 0.114
√

f ]e−(0.114
√
f)1.1 ].

where f is the spatial frequency of the visual
stimuli given in cycles per degree (cpd). Finally,
the distance between the two images is computed
by finding the Mean Square Error (MSE) of the
values for each of the two images. This technique
therefore measures similarity in Fourier amplitude
between images.
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Figure 5: Comparing top images to the image on the bottom using RMSE 30

Model 2 After Gervais et al: 9.
The original purpose of this model was to iden-
tify confusion among letters of the alphabet. Even
though this problem is quite different to image com-
parison, Rushmeier et al. justify using this model
as it includes the effect of phase as well as magni-
tude in the frequency space representation of the
image. Once again the luminances are normalised
by dividing by the mean luminance. A FFT is com-
puted, producing an array of phases and magni-
tudes. These magnitudes are then filtered with an
anisotropic CSF filter function constructed by fit-
ting splines to psychophysical data. The distance
between two images is then computed using meth-
ods described in 9.

Model 3 After Daly: adapted from 6.
Described in more detail in Section 3, this model
combines the effects of adaptation and non-linearity
into a single transformation, which acts on each
pixel individually. This is in contrast to the first two

models, in which each pixel has significant global
effect in the normalisation by contributing to the
image mean. Each luminance is transformed by an
amplitude non-linearity value. An FFT is applied to
each transformed luminance and then they are fil-
tered by a CSF (computed for a level of 50 cd/m2).
The distance between the two images is then com-
puted using MSE as in model 1.

Figure 6: NIST Comparison using a Conference
Room

In 1998, Li and Meyer conducted a comprehensive
study that compared two of the more successful image
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quality models, outlined here:

Daly’s Visible Differences Predictor

The Visible Differences Predictor (VDP) is a per-
ceptually based image quality metric proposed by
Daly 6. The VDP takes a psychophysically based ap-
proach to construct a model of human vision. Two im-
ages serve as input to the VDP, and a difference map
is produced as output. This difference map predicts
the probability of detection of differences between the
two images. Figure 7 gives a block diagram of the
components of the predictor. The main stages are an
initial non-linearity, frequency domain weighting with
the human contrast sensitivity function CSF, and a
series of detection mechanisms.

To account for adaptation and the non-linear re-
sponse of retinal neurons, a non-linear response func-
tion is applied to each image. Daly assumed that adap-
tation is a function of each pixel individually. The
model used for adaptation estimates the relationship
between brightness sensation and luminance. At low
levels of luminance a cube-root power law is applied,
while at higher luminance levels it approximates the
logarithmic dependence.

The next stage involves converting the image to the
frequency domain. The transformed data is weighted
with the CSF i.e. the scaled amplitude for each fre-
quency is multiplied by the CSF for that spatial fre-
quency. This data is then normalised (by dividing each
point by the original image mean) to give local con-
trast information.

The image is then divided into 31 independent
streams. It is known that the HVS has specific se-
lectivities based on orientation (6 channels) and spa-
tial frequency (approximately one octave per channel).
Each of the five overlapping spatial frequency bands is
combined with each of the six overlapping orientation
bands to split the image into thirty channels. Along
with the orientation-independent base band this gives
a total of 31 channels. At this point the individual
channels are transformed back into the spatial domain.

A mask, which is a function of image location in the
image, is associated with each channel. The presence
of masking information at a specific location, spatial
frequency and orientation increases the threshold of
detectability for a signal with those characteristics. A
threshold elevation map for each channel is computed
as a function of the mask contrast. Finally, mutual
masking is applied between the two sets of threshold
elevation maps from both input images to produce a
single threshold elevation map per channel.

Contrasts of corresponding channels in one image

are subtracted from those of the other images, and the
difference is scaled down by threshold elevation. The
scaled contrast differences are used as the argument
to a psychometric function to compute a detection
probability. The psychometric function yields a prob-
ability of detection of a difference for each location in
the image, for each of the 31 channels. The detection
probabilities for all of the channels are combined
using the assumption of independent probabilities,
giving an overall signed detection probability for each
location in the image.

Sarnoff Visual Discrimination Model

The Sarnoff VDM 15 focuses more attention on
modelling the physiology of the visual pathway. There-
fore the VDM operates in the spatial domain (as op-
posed to the frequency domain approach of VDP). The
main components of the VDM include spatial resam-
pling, wavelet-like pyramid channelling, a transducer
for JND calculations and a final refinement step to ac-
count for CSF normalisation and dipper effect simula-
tion. The VDM also takes as input two images along
with a set of parameters for viewing conditions, and
here the output is a map of JND’s. The overall struc-
ture of the VDM is shown in figure 8.

To account for the optics of the eye and mosaic
structure of the retina, a single Point Spread Function
(PSF) is used to predict the foveal performance of the
two dimensional optics of the eye (it is assumed the
PSF is circularly symmetric). The effect of the PSF
convolution is blurring of the input images. A spatial
resampling, at a rate of 120 pixels per degree, is then
applied to account for the fixed density of the cones
in the fovea. This resampling is essential in a spatial
domain approach since the extraction of the different
frequency bands is dependent on the resampling ker-
nels and the resampling rates. If the original image is
too big, and the local image quality cannot be assessed
in a single glance, then the image can be subdivided
into smaller blocks.

A Laplacian pyramid stores a wavelet representa-
tion of the resampled input images and a quadrature
mirrored pair of convolution kernels records informa-
tion along each of the four orientations. On completion
of this stage, the raw luminance signal has been con-
verted into units of local contrast. Due to the use of
a spatial domain convolution approach, the peak fre-
quency of each level has to be a power of two. The
seven bandpass levels have peak frequencies from 32
to 0.5 cycles per degree, where each level is separated
from its neighbours by one octave. A steerable pyra-
mid is used to perform the decomposition, to increase
performance. This is a multi-scale, multi-orientation,
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Figure 7: A block diagram of the Visible Difference Predictor 5

image transform with both frequency and orientation
components. The last step in the decomposition pro-
cess is computation of a phase-independent energy re-
sponse by squaring and summing odd phase and even
phase coefficients. They are determined by convolv-
ing the quadrature mirror pair filters with a certain
frequency band.

The energy measure is normalised by the square of
the reciprocal of the CSF, then a transducer is used
to refine the JND map by taking the spatial masking
dipper effect into account. The dipper shape reflects
on characteristic of the contrast discrimination func-
tion. This stage involves the transformation by a sig-
moid non-linearity. Finally the model includes a pool-
ing stage in which transducer outputs are averaged
over a small region by convolving with a disc-shaped
kernel.

Once the JND difference map has been computed
for each channel, the final stage involves putting to-
gether the contributions from each channel. This leads
to the concept of a space of multiple dimensions. There
are 28 channels involved in the summation, seven
pyramid levels times four different orientations. For
each spatial position the final JND distance can be
regarded as the distance between the 28-dimensional
vectors.

Meyer and Li concluded that although both meth-
ods performed comparably, the Sarnoff VDM was
deemed slightly more robust producing better JND
maps and required less re-calibration than the Daly
VDP. Despite this both have been successfully incor-
porated into global illumination algorithms to produce
favourable results 26, 27, 1.

The main contribution of this study was the in-

Figure 8: A block diagram of the Visual Discrimina-
tion Model (VDM)

dependent verification of the major features of each
model. Meyer and Li do agree however, that psy-
chophysical experiments involving a large set of im-
ages would be needed for a complete evaluation, to
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investigate the performance of models under a wider
range of conditions.

Figure 9: Perceptual convergence of the image quality
26

Figure 10: Fully Converged Image, and Perceptual
Scales 26

Myszkowski26 realised the VDP had many potential
applications in realistic image synthesis. He completed
a comprehensive validation and calibration of VDP
response via human psychophysical experiments. He
subsequently used the VDP local error metric to steer
decision making in adaptive mesh subdivision, and in
isolating regions of interest for more intensive global
illumination computations, Figures 9, 10. The VDP
was tested to determine how close VDP predictions
come to subjective reports of visible differences be-
tween images by designing two human psychophysical
experiments. Results from these experiments showed
a good correspondence between human observations
and VDP results.

These perception based image quality metrics have
demonstrated the success of implementing a visual
model, in spite of the fact that knowledge of the visual
process is as yet incomplete.

4. Perceptually driven rendering

Even for realistic image synthesis there may be little
point spending time or resources to compute detail in
an image that would not be detected by a human ob-
server. By eliminating any computation spent on cal-
culating image features which lie below the threshold
of visibility, rendering times can be shortened leading
to more efficient processing. Because the chief objec-
tive of physically based rendering is realism, incorpo-
rating models of HVS behaviour into rendering algo-
rithms can improve performance, as well as improv-
ing the quality of the imagery produced. So by tak-
ing advantage of the limitations of the human eye,
just enough detail to satisfy the observer can be com-
puted without sacrificing image quality. Several at-
tempts have been made to develop image synthesis
algorithms that detect threshold visual difference and
direct the algorithm to work on those parts of an im-
age that are in most need of refinement.

Raytracing produces an image by computing sam-
ples of radiance, one for each pixel in the image plane.
Producing an anti-aliased image is difficult unless very
high sampling densities are used. Mitchell 25 realised
that deciding where to do extra sampling can be
guided by knowledge of how the eye perceives noise as
a function of contrast and colour. Studies have shown
that the eye is most sensitive to noise in intermedi-
ate frequencies 34. While frequencies of up to 60 cy-
cles per degree (cpd) can be visible, the maximum
response to noise is at approximately 4.5 cpd, so sam-
pling in regions with frequency above this threshold
can be minimised, without affecting the visual quality
of the image. Mitchell begins by sampling the entire
image at low frequency then uses an adaptive sample
strategy on the image according to the frequency con-
tent. This results in a non uniform sampling of the
image, which enables aliasing noise to be channelled
into high frequencies where artefacts are less conspic-
uous. However, non-uniform sampling alone doesn’t
eliminate aliasing, just changes its characteristics to
make it less noticeable. Mitchell applies two levels of
sampling. To decide whether the high sampling den-
sity should be invoked the variance of samples could
be used 14, but this is a poor measure of visual per-
ception of local variation. Instead Mitchell chooses to
use contrast to model the non-linear response of the
eye to rapid variations in light intensity:

C =
Imax − Imin

Imax + Imin
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As each sample consists of three separate intensities
for red, green and blue, three separate contrasts can be
computed for each of them. These three contrasts are
tested against separate thresholds, 0.4, and 0.3 and
0.6 for red, green and blue respectively, and super-
sampling is done if any one exceeds the threshold.
The contrast metric is then used to determine when
the high sampling density should be invoked. This test
is most sensitive to green in accordance with the hu-
man eye’s response to noise as a function of colour.
Multi stage filters are then used to reconstruct the
non-uniform samples into a digital image. Although
this idea has the beginnings of a perceptual approach,
it is at most a crude approximation to the HVS. Only
two levels of sampling are used and it doesn’t account
for visual masking †.

The HVS exhibits different spatial acuities in re-
sponse to different colours. Evidence exists that colour
spatial acuity is less than monochrome spatial acuity.
Exploiting this poor colour spatial acuity of the HVS,
Meyer and Liu 23 developed an adaptive image synthe-
sis algorithm that uses an opponents processing model
of colour vision 22 comprising chromatic and achro-
matic colour channels. Using a Painter and Sloan 28

adaptive subdivision, a k-D tree representation of the
image is generated. Areas of the image containing high
frequency information are stored at the lower levels of
the tree. They then modified a screen subdivision ray-
tracer to limit the depth to which the k-D tree must be
descended to compute the chromatic colour channels.
The limit is determined by psychophysical results de-
scribing the colour spatial frequency. They achieved a
modest saving in computational effort and showed, us-
ing a psychophysical experiment, that decreasing the
number of rays used to produce the chromatic chan-
nels had less of an effect on image quality than re-
ducing the number of rays used to create the achro-
matic channels. This was the first work to attempt to
minimise the computation of colour calculations, as
opposed to just decreasing costly object intersection
calculations.

Bolin and Meyer 2 took a frequency based approach
to raytracing, which uses a simple vision model, mak-
ing it possible for them to control how rays are cast
in a scene. Their algorithm accounts for the contrast
sensitivity, spatial frequency and masking properties
of the HVS. The contrast sensitivity response of the
eye is non-linear. So, when deciding where rays should
be cast, the algorithm deems a luminance difference
at low intensity to be of greater importance than the
same luminance difference at high intensity. The spa-

† The presence of high spatial frequency in an image can

mask the presence of other high frequency information

tial response of the HVS is known to be less for pat-
terns of pure colour than for patterns that include
luminance differences. This means that it is possible
to cast fewer rays into regions with colour spatial vari-
ations than are cast in regions with spatial frequency
variations in luminance. Finally, it is known that the
presence of high spatial frequency can mask the pres-
ence of other high frequency information (masking).
When used in conjunction with a Monte Carlo ray-
tracer, more rays are spawned when low frequency
terms are being determined than when high frequency
terms are being found. Using this strategy, the arte-
facts that are most visible in the scene can be elimi-
nated from the image first, then noise can be chan-
nelled into areas of the image where artefacts are
less conspicuous. This technique is an improvement on
Mitchell’s method because the vision model employed
accounts for contrast sensitivity, spatial frequency and
masking.

Despite the simplicity of the vision models used in
these approaches, the results are promising, especially
as they demonstrate the feasibility of embedding HVS
models into the rendering systems to produce more
economical systems without forfeiting image quality.
Fuelled by the notion that more sophisticated models
of the HVS would yield even greater speedup, several
researchers began to introduce more complex models
of the HVS into their global illumination computa-
tions.

Myszkowski 26 applied a more sophisticated vision
model to steer computation of a Monte Carlo based
raytracer. Aiming to take maximum advantage of the
limitations of the HVS, his model included threshold
sensitivity, spatial frequency sensitivity and contrast
masking. A perceptual error metric is built into the
rendering engine allowing adaptive allocation of com-
putation effort into areas where errors remain above
perceivable thresholds and allowing computation to be
halted in all other areas (i.e. those areas where errors
are below the perceivable threshold and thus not visi-
ble to a human observer). This perceptual error metric
takes the form of Daly’s 6 Visible Differences Predictor
(VDP), discussed in Section 3.

Bolin and Meyer 1 devised a similar scheme, also
using a sophisticated vision model, in an attempt to
make use of all HVS limitations. They integrated a
simplified version of the Sarnoff Visible Discrimination
Model (VDM) into an image synthesis algorithm to
detect threshold visible differences and, based on those
differences direct subsequent computational effort to
regions of the image in most need of refinement. The
VDM takes two images, specified in CIE XYZ colour
space, as input. Output of the model is a Just Notice-
able Difference (JND) map. One JND corresponds to a
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75% probability that an observer viewing the two im-
ages would detect a difference 16. They use the upper
and lower bound images from the computation results
at intermediate stages and used the predictor to get
an error estimate for that stage. The image quality
model is used to control where to take samples in the
image, and also to decide when enough samples have
been taken across the entire image, providing a visual
stopping condition. A more comprehensive description
of the VDM is given in Section 3.

Applying a complex vision model at each consecu-
tive time step of image generation requires repeated
evaluation of the embedded vision model. The VDP
can be expensive to process due to the multi-scale
spatial processing involved in some of its compo-
nents. This means that in some cases the cost of re-
computing the vision model may cancel the savings
gained by employing the perceptual error metric to
speed up the rendering algorithm. To combat this,
Ramasubramanian 31 introduced a metric that han-
dles luminance-dependent processing and spatially-
dependent processing independently, allowing the ex-
pensive spatially-dependent component to be precom-
puted. Ramasubramanian developed a physical error
metric that predicts the perceptual threshold for de-
tecting artefacts in the image. This metric is then used
to predict the sensitivity of the HVS to noise in the
indirect lighting component. This enables a reduction
in the number of samples needed in areas of an im-
age with high frequency texture patterns, geometric
details, and direct lighting variations, giving a signifi-
cant speedup in computation.

Using validated image models that predict im-
age fidelity, programmers can work toward achieving
greater efficiencies in the knowledge that resulting im-
ages will still be faithful visual representations. Also
in situations where time or resources are limited and
fidelity must be traded off against performance, per-
ceptually based error metrics could be used to provide
insights into where computation could be economised
with least visual impact.

In addition to TMOs being useful for rendering cal-
culated luminance to the screen, they are also useful
for giving a measure of the perceptible difference be-
tween two luminances at a given level of adaptation.
This function can then be used to guide algorithms,
such as discontinuity meshing, where there is a need to
determine whether some process would be noticeable
or not to the end user.

Gibson and Hubbold 10 have used features of the
threshold sensitivity displayed by the HVS to acceler-
ate the computation of radiosity solutions. A percep-
tually based measure controls the generation of view
independent radiosity solutions. This is achieved with

an a-priori estimate of real-world adaptation lumi-
nance, and uses a TMO to transform luminance val-
ues to display colours and is then used as a numeri-
cal measure of their perceived difference. The model
stops patch refinement once the difference between
successive levels of elements becomes perceptually un-
noticeable. The perceived importance of any potential
shadow falling across a surface can be determined, this
can be used to control the number of rays cast during
visibility computations. Finally, they use perceptual
knowledge to optimise the element mesh for faster in-
teractive display and save memory during computa-
tions. This technique was used on the adaptive ele-
ment refinement, shadow detection, and mesh optimi-
sation portions of the radiosity algorithm.

Discontinuity meshing is an established technique
used to model shadows in radiosity meshes. It is com-
putationally expensive, but produces meshes which
are far more accurate and which also contain fewer
elements. Hedley 11 used a perceptually informed er-
ror metric to optimise adaptive mesh subdivision for
radiosity solutions, the goal being to develop scalable
discontinuity meshing methods by considering visual
perception. Meshes were minimised by discarding dis-
continuities which had a negligible perceptible effect
on a mesh. They demonstrated that a perception-
based approach results in a greater reduction in mesh
complexity, without introducing more visual artefacts
than a purely radiometrically-based approach.

5. Comparing Real and Synthetic Scenes

There is a fundamental problem with the image qual-
ity metrics describe in section 3 from the point of view
of validation. Although these methods are capable of
producing images based on models of the HVS, there
is no standard way of telling if the images “capture
the visual appearance” of scenes in a meaningful way.
One approach to validation could compare observers’
perception and performance in real scenes against the
predictions of the models. This would enable calibra-
tion and validation of the models to assess the level of
fidelity of the images produced.

Using perceptual data we can compare and validate
existing rendering algorithms, allowing us to demon-
strate to the world just how useful and reliable the im-
ages we create can be. Psychophysics is one approach
to evaluating, comparing and validating synthetic im-
agery to real images occurring in our physical sur-
roundings.

While image quality metrics have been successfully
incorporated into global illumination algorithms to
guide computations more efficiently, metrics can also
be useful to validate and compare rendering tech-
niques. As the goal of realistic image synthesis is to
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generate representations of a physical scene, simula-
tions should therefore be compared to the real world
scenes.

Using a simple five sided cube as their test environ-
ment, Meyer et al. 24 presented an approach to image
synthesis comprising separate physical and perceptual
modules. They chose diffusely reflecting materials to
build a physical test model. Each module is verified
using experimental techniques. The test environment
was placed in a small dark room. Radiometric val-
ues predicted using a radiosity lighting simulation of
a basic scene are compared to physical measurements
of radiant flux densities in the real scene. Then the
results of the radiosity calculations are transformed
to the RGB values for display, following the principles
of colour science. Measurements of irradiation were
made at 25 locations in the plane of the open face for
comparison with the simulations. Results show that
irradiation is greatest near the centre of the open side
of the cube. This area provides the best view of the
light source and other walls. In summary, there is good
agreement between the radiometric measurements and
the predictions of the lighting model.

Meyer et al. then proceeded by transforming the
validated simulated values to values displayable on a
television monitor. Twenty participants were asked to
differentiate between a real environment and the dis-
played image, both of which were viewed through the
back of a view camera. They were asked which of the
images was the real scene. Nine out of the twenty par-
ticipants (45%) indicated that the simulated image
was actually the real scene, i.e. selected the wrong an-
swer, revealing that observers would have done just as
well by simple guessing. Although participants consid-
ered the overall match and colour match to be good,
some weaknesses were noticed in the sharpness of the
shadows (a consequence of the discretisation in the
simulation) and in the brightness of the ceiling panel
(a consequence of the directional characteristics of the
light source). The overall agreement lends strong sup-
port to the perceptual validity of the simulation and
display process. This was the first attempt to compare
real and simulated scenes side by side, using human
observers.

Although the results of the study are encouraging,
there are some drawbacks with this approach: The
scene under examination was very simple, the method-
ology for comparison itself was not inherently con-
trolled, and the results suggest that the participants
could have simply guessed. To really investigate the
differences between a real environment and its syn-
thetic representation, a more robust approach is re-
quired.

By conducting a series of psychophysical experi-

ments McNamara et al. 19, 18, 21, 20 demonstrated how
the fidelity of graphical reconstructions of a real scene
can be assessed. The study was based on the simple
task of lightness perception.

McNamara et al. 19 began by building an experi-
mental framework to facilitate human comparison be-
tween real and synthetic scene. They ran a series of
psychophysical experiments in which human observers
were asked to compare simple two dimensional tar-
get regions of a real physical scene with regions of
the computer generated representation of that scene.
The comparison involved lightness judgments in both
the generated image and the real scene. Results from
these experiments showed that the visual response to
the real scene and a high fidelity rendered image was
similar. They then extended this work to investigate
comparisons using three dimensional objects as tar-
gets, rather than simple regions. This allows exami-
nation of scene characteristics such as shadow, object
occlusion and depth perception.

The test environment was a five sided box shown in
figure 11. Several objects that were placed within the
box for examination.

Figure 11: The test environment showing real envi-
ronment and computer image.

Ten images were considered for comparison to the
real scene, they included a digital photograph, a series
of Radiance 40 images, and a couple of Renderpark
images 32 as shown in figures 12, 13,14, 15,16.

Each participant was presented with a series of im-
ages, shown in figures 12 through 16, in a random
order, in addition to the real environment. Partici-
pants were not explicitly informed which image was
the physical environment. The images presented were
the real scene, the photograph and the nine rendered
images. There were seventeen different objects in the
test environment, subjects were also asked to match
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Figure 12: Digital Photograph (left) Radiance Two
Ambient Bounces (right) 18

Figure 13: Radiance Eight Ambient Bounces (left)
brightened (right) 18

each of the five sides of the environment (floor, ceil-
ing, left wall, back wall and right wall) giving a total of
twenty-two matches. Participants were asked to judge
the lightness of target objects in a random manner.

In summary, the results show that there is evidence
that the Two Ambient Bounces image, the Default im-
age, the Controlled Error Materials image, the Ray-
traced image and the Radiosity image are perceptually
degraded compared to the photograph. However, there
is no evidence that the others images in this study
are perceptually inferior to the photograph. From this
they conclude that the Eight Ambient Bounces im-
age, the brightened Eight Ambient Bounces image, the
Tone Mapped image and the Controlled Error Illumi-
nation image are of the same perceptual quality as a
photograph of the real scene.

The results from such psychophysical studies are be-
coming increasingly important for realistic image syn-
thesis as these results provide a perceptual, rather than

Figure 14: Radiance Default (left) Estimated Mate-
rials (right) 18

Figure 15: Radiance Estimated Light Source (left)
Tone Mapped (right) 18

Figure 16: Renderpark Raytraced (left) Radiosity
(right) 18

mere physical, match between an original scene and
its computer generated counterpart. This information
can then be used for image evaluation, as well as for
comparison of various global illumination simulation
algorithms and ultimately can be used to improve the
efficiency of such algorithms.

6. Summary

Some of the applications of visual perception in com-
puter graphics were explored. For many applications
computer imagery should not only be physically cor-
rect but also perceptually equivalent to the scene it
represents. Knowledge of the HVS can be employed to
greatly benefit the synthesis of realistic images at var-
ious stages of production. Global illumination compu-
tations are costly in terms of computation. There is a
great deal of potential to improve the efficiency of such
algorithms by focusing computation on the features of
a scene which are more conspicuous to the human ob-
server. Those features that are below perceptual visi-
bility thresholds have no impact on the final solution,
and therefore can be omitted from the computation,
increasing efficiency without causing any perceivable
difference to the final image. Perceptual metrics in-
volving advanced HVS models can be used to deter-
mine the visible differences between a pair of images.
These metrics can then be used to compare and eval-
uate image quality. They can also be used within the
rendering framework to steer computation into regions
of an image which are in most need of refinement, and
to halt computation when differences in successive it-
erations of the solution become imperceptible.
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Future applications will require perceptual accuracy
in addition to physical accuracy. Without perceptual
accuracy it is impossible to assure users of computer
graphics that the generated imagery is anything like
the scene it depicts. Imagine a visualisation of an ar-
chitectural design, without perceptual accuracy it is
difficult to guarantee the architect that the visual-
isation sufficiently represents their design, and that
the completed building will look anything like the
computer representation. This chapter discussed how
knowledge of the HVS is being incorporated at various
stages in the image synthesis pipeline. The problem is
that much of the data used has been obtained from
specific psychophysical experiments which have been
conducted in specialised laboratory environments un-
der reductionistic conditions. These experiments are
designed to examine a single dimension of human vi-
sion, however, evidence exists to indicate that features
of the HVS do not operate individually, but rather
functions overlap and should be examined as a whole
rather than in isolation. TMOs map computed radi-
ance values to display values in a manner that pre-
serves perception of the original scene. TMOs produce
a perceptual match between the scene and the image
in the hopes that the image may be used predictively.

There is a strong need for the models of human
vision currently used in image synthesis computations
to be validated to demonstrate their performance is
comparable to the actual performance of the HVS.
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