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AbstractÐWe describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a

visual surveillance task [1]. The system is particularly concerned with detecting when interactions between people occur and

classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to

meet another, and so forth. Our system combines top-down with bottom-up information in a closed feedback loop, with both

components employing a statistical Bayesian approach [2]. We propose and compare two different state-based learning architectures,

namely, HMMs and CHMMs for modeling behaviors and interactions. The CHMM model is shown to work much more efficiently and

accurately. Finally, to deal with the problem of limited training data, a synthetic ªAlife-styleº training system is used to develop flexible

prior models for recognizing human interactions. We demonstrate the ability to use these a priori models to accurately classify real

human behaviors and interactions with no additional tuning or training.

Index TermsÐVisual surveillance, people detection, tracking, human behavior recognition, Hidden Markov Models.

æ

1 INTRODUCTION

WE describe a real-time computer vision and machine
learning system for modeling and recognizing human

behaviors in a visual surveillance task [1]. The system is
particularly concerned with detecting when interactions
between people occur and classifying the type of interaction.

Over the last decade there has been growing interest
within the computer vision and machine learning commu-
nities in the problem of analyzing human behavior in video
([3], [4], [5], [6], [7], [8], [9], [10]). Such systems typically
consist of a low- or mid-level computer vision system to
detect and segment a moving objectÐhuman or car, for
exampleÐand a higher level interpretation module that
classifies the motion into ªatomicº behaviors such as, for
example, a pointing gesture or a car turning left.

However, there have been relatively few efforts to
understand human behaviors that have substantial extent
in time, particularly when they involve interactions
between people. This level of interpretation is the goal of
this paper, with the intention of building systems that can
deal with the complexity of multiperson pedestrian and
highway scenes [2].

This computational task combines elements of AI/
machine learning and computer vision and presents
challenging problems in both domains: from a Computer
Vision viewpoint, it requires real-time, accurate, and robust
detection and tracking of the objects of interest in an

unconstrained environment; from a Machine Learning and
Artificial Intelligence perspective, behavior models for inter-
acting agents are needed to interpret the set of perceived
actions and detect eventual anomalous behaviors or
potentially dangerous situations. Moreover, all the proces-
sing modules need to be integrated in a consistent way.

Our approach to modeling person-to-person interactions
is to use supervised statistical machine learning techniques
to teach the system to recognize normal single-person
behaviors and common person-to-person interactions. A
major problem with a data-driven statistical approach,
especially when modeling rare or anomalous behaviors, is
the limited number of examples of those behaviors for
training the models. A major emphasis of our work,
therefore, is on efficient Bayesian integration of both prior
knowledge (by the use of synthetic prior models) with
evidence from data (by situation-specific parameter tuning).
Our goal is to be able to successfully apply the system to
any normal multiperson interaction situation without
additional training.

Another potential problem arises when a completely
new pattern of behavior is presented to the system. After
the system has been trained at a few different sites,
previously unobserved behaviors will be (by definition)
rare and unusual. To account for such novel behaviors, the
system should be able to recognize new behaviors and to
build models of them from as as little as a single example.

We have pursued a Bayesian approach to modeling that
includes both prior knowledge and evidence from data,
believing that the Bayesian approach provides the best
framework for coping with small data sets and novel
behaviors. Graphical models [11], such as Hidden Markov
Models (HMMs) [12] and Coupled Hidden Markov Models
(CHMMs) [13], [14], [15], seem most appropriate for
modeling and classifying human behaviors because they
offer dynamic time warping, a well-understood training
algorithm, and a clear Bayesian semantics for both
individual (HMMs) and interacting or coupled (CHMMs)
generative processes.
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To specify the priors in our system, we have developed a
framework for building and training models of the
behaviors of interest using synthetic agents [16], [17].
Simulation with the agents yields synthetic data that is
used to train prior models. These prior models are then used
recursively in a Bayesian framework to fit real behavioral
data. This approach provides a rather straightforward and
flexible technique to the design of priors, one that does not
require strong analytical assumptions to be made about the
form of the priors.1 In our experiments, we have found that
by combining such synthetic priors with limited real data
we can easily achieve very high accuracies of recognition of
different human-to-human interactions. Thus, our system is
robust to cases in which there are only a few examples of a
certain behavior (such as in interaction type 2 described in
Section 5) or even no examples except synthetically-
generated ones.

The paper is structured as follows: Section 2 presents an
overview of the system, Section 3 describes the computer
vision techniques used for segmentation and tracking of the
pedestrians and the statistical models used for behavior
modeling and recognition are described in Section 4. A brief
description of the synthetic agent environment that we have
created is described in Section 5. Section 6 contains experi-
mental results with both synthetic agent data and real video
data and Section 7 summarizes the main conclusions and
sketches our future directions of research. Finally, a summary
of the CHMM formulation is presented in the Appendix.

2 SYSTEM OVERVIEW

Our system employs a static camera with wide field-of-view
watching a dynamic outdoor scene (the extension to an
active camera [18] is straightforward and planned for the
next version). A real-time computer vision system segments
moving objects from the learned scene. The scene descrip-
tion method allows variations in lighting, weather, etc., to
be learned and accurately discounted.

For each moving object an appearance-based description
is generated, allowing it to be tracked through temporary
occlusions and multiobject meetings. A Kalman filter tracks
the objects' location, coarse shape, color pattern, and
velocity. This temporally ordered stream of data is then
used to obtain a behavioral description of each object and to
detect interactions between objects.

Fig. 1 depicts the processing loop and main functional
units of our ultimate system.

1. The real-time computer vision input module detects
and tracks moving objects in the scene, and for each
moving object outputs a feature vector describing its
motion and heading, and its spatial relationship to
all nearby moving objects.

2. These feature vectors constitute the input to stochas-
tic state-based behavior models. Both HMMs and
CHMMs, with varying structures depending on the
complexity of the behavior, are then used for
classifying the perceived behaviors.

Note that both top-down and bottom-up streams of
information would continuously be managed and com-
bined for each moving object within the scene. Conse-
quently, our Bayesian approach offers a mathematical
framework for both combining the observations (bottom-
up) with complex behavioral priors (top-down) to provide
expectations that will be fed back to the perceptual system.

3 SEGMENTATION AND TRACKING

The first step in the system is to reliably and robustly detect
and track the pedestrians in the scene. We use 2D blob
features for modeling each pedestrian. The notion of ªblobsº
as a representation for image features has a long history in
computer vision [19], [20], [21], [22], [23] and has had many
different mathematical definitions. In our usage, it is a
compact set of pixels that share some visual properties that
are not shared by the surrounding pixels. These properties
could be color, texture, brightness, motion, shading, a
combination of these, or any other salient spatio-temporal
property derived from the signal (the image sequence).
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1. Note that our priors have the same form as our posteriors, namely they
are Markov models.

Fig. 1. Top-down and bottom-up processing loop.



3.1 Segmentation by Eigenbackground Subtraction

In our system, the main cue for clustering the pixels into
blobs is motion, because we have a static background with
moving objects. To detect these moving objects, we
adaptively build an eigenspace that models the back-
ground. This eigenspace model describes the range of
appearances (e.g., lighting variations over the day, weather
variations, etc.) that have been observed. The eigenspace
could also be generated from a site model using standard
computer graphics techniques.

The eigenspace model is formed by taking a sample of N
images and computing both the mean �b background image
and its covariance matrix Cb. This covariance matrix can be
diagonalized via an eigenvalue decompositionLb � �bCb�

T
b ,

where �b is the eigenvector matrix of the covariance of the
data and Lb is the corresponding diagonal matrix of its
eigenvalues. In order to reduce the dimensionality of the
space, in principal component analysis (PCA) only M
eigenvectors (eigenbackgrounds) are kept, corresponding to
the M largest eigenvalues to give a �M matrix. A principal
component feature vector Ii ÿ �T

Mb
Xi is then formed, where

Xi � Ii ÿ �b is the mean normalized image vector.
Note that moving objects, because they don't appear in

the same location in the N sample images and they are
typically small, do not have a significant contribution to this
model. Consequently, the portions of an image containing a
moving object cannot be well-described by this eigenspace
model (except in very unusual cases), whereas the static
portions of the image can be accurately described as a sum
of the the various eigenbasis vectors. That is, the eigenspace
provides a robust model of the probability distribution
function of the background, but not for the moving objects.

Once the eigenbackground images (stored in a matrix
called �Mb

hereafter) are obtained, as well as their mean �b,
we can project each input image Ii onto the space expanded
by the eigenbackground images Bi � �Mb

Xi to model the
static parts of the scene, pertaining to the background.
Therefore, by computing and thresholding the Euclidean
distance (distance from feature space DFFS [24]) between
the input image and the projected image, we can detect the
moving objects present in the scene: Di � jIi ÿBij > t,
where t is a given threshold. Note that it is easy to adaptively
perform the eigenbackground subtraction in order to
compensate for changes such as big shadows. This motion
mask is the input to a connected component algorithm that
produces blob descriptions that characterize each person's
shape. We have also experimented with modeling the
background by using a mixture of Gaussian distributions at
each pixel, as in Pfinder [25]. However, we finally opted for
the eigenbackground method because it offered good
results and less computational load.

3.2 Tracking

The trajectories of each blob are computed and saved into a
dynamic track memory. Each trajectory has associated a first
order Kalman filter that predicts the blob's position and
velocity in the next frame. Recall that the Kalman Filter is
the ªbest linear unbiased estimatorº in a mean squared
sense and that for Gaussian processes, the Kalman filter
equations corresponds to the optimal Bayes' estimate.

In order to handle occlusions as well as to solve the
correspondence between blobs over time, the appearance of
each blob is also modeled by a Gaussian PDF in RGB color
space. When a new blob appears in the scene, a new
trajectory is associated to it. Thus for each blob, the Kalman-
filter-generated spatial PDF and the Gaussian color PDF are
combined to form a joint �x; y� image space and color space
PDF. In subsequent frames, the Mahalanobis distance is
used to determine the blob that is most likely to have the
same identity (see Fig. 2).

4 BEHAVIOR MODELS

In this section, we develop our framework for building and
applying models of individual behaviors and person-to-
person interactions. In order to build effective computer
models of human behaviors, we need to address the
question of how knowledge can be mapped onto computa-
tion to dynamically deliver consistent interpretations.

From a strict computational viewpoint there are two key
problems when processing the continuous flow of feature
data coming from a stream of input video: 1) Managing the
computational load imposed by frame-by-frame examina-
tion of all of the agents and their interactions. For example,
the number of possible interactions between any two agents
of a set of N agents is N � �N ÿ 1�=2. If naively managed,
this load can easily become large for even moderate N .
2) Even when the frame-by-frame load is small and the
representation of each agent's instantaneous behavior is
compact, there is still the problem of managing all this
information over time.

Statistical directed acyclic graphs (DAGs) or probabilistic
inference networks (PINs) [26], [27] can provide a compu-
tationally efficient solution to these problems. HMMs and
their extensions, such as CHMMs, can be viewed as a
particular, simple case of temporal PIN or DAG. PINs
consist of a set of random variables represented as nodes as
well as directed edges or links between them. They define a
mathematical form of the joint or conditional PDF between
the random variables. They constitute a simple graphical
way of representing causal dependencies between vari-
ables. The absence of directed links between nodes implies
a conditional independence. Moreover, there is a family of
transformations performed on the graphical structure that
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Fig. 2. Background mean image, blob segmentation image, and input image with blob bounding boxes.



has a direct translation in terms of mathematical operations
applied to the underlying PDF. Finally, they are modular,
i.e., one can express the joint global PDF as the product of
local conditional PDFS.

PINspresentseveralimportantadvantagesthatarerelevant
to our problem: They can handle incomplete data as well as
uncertainty; they are trainable and easy to avoid overfitting;
theyencodecausalityinanaturalway; therearealgorithmsfor
both doing prediction and probabilistic inference; they offer a
framework for combining prior knowledge and data; and,
finally, they are modular and parallelizable.

In this paper, the behaviors we examine are generated by
pedestrians walking in an open outdoor environment. Our
goal is to develop a generic, compositional analysis of the
observed behaviors in terms of states and transitions
between states over time in such a manner that 1) the
states correspond to our common sense notions of human
behaviors and 2) they are immediately applicable to a wide
range of sites and viewing situations. Fig. 3 shows a typical
image for our pedestrian scenario.

4.1 Visual Understanding via Graphical Models:
HMMs and CHMMs

Hidden Markov models (HMMs) are a popular probabilistic
framework for modeling processes that have structure in
time. They have a clear Bayesian semantics, efficient
algorithms for state and parameter estimation, and they
automatically perform dynamic time warping. An HMM is
essentially a quantization of a system's configuration space
into a small number of discrete states, together with
probabilities for transitions between states. A single finite
discrete variable indexes the current state of the system.
Any information about the history of the process needed for

future inferences must be reflected in the current value of
this state variable. Graphically, HMMs are often depicted
ªrolled-out in timeº as PINs, such as in Fig. 4.

However, many interesting systems are composed of
multiple interacting processes and, thus, merit a composi-
tional representation of two or more variables. This is
typically the case for systems that have structure both in
time and space. Even with the correct number of states and
vast amounts of data, large HMMs generally train poorly
because the data is partitioned among states early (and
incorrectly) during training: the Markov independence
structure then ensures that the data is not shared by states,
thus reinforcing any mistakes in the initial partitioning.
Systems with multiple processes have states that share
properties and, thus, emit similar signals. With a single state
variable, Markov models are ill-suited to these problems.
Even though an HMM can model any system in principle,
in practice, the simple independence structure is a liability
for large systems and for systems with compositional state.
In order to model these interactions, a more complex
architecture is needed.

4.1.1 Varieties of Couplings

Extensions to the basic Markov model generally increase
the memory of the system (durational modeling), providing
it with compositional state in time. We are interested in
systems that have compositional state in space, e.g., more
than one simultaneous state variable. Models with compo-
sitional state would offer conceptual advantages of parsi-
mony and clarity, with consequent computational benefits
in efficiency and accuracy. Using graphical models nota-
tion, we can construct various architectures for multi-HMM
couplings offering compositional state under various
assumptions of independence. It is well-known that the
exact solution of extensions of the basic HMM to three or
more chains is intractable. In those cases, approximation
techniques are needed ([28], [29], [30], [31]). However, it is
also known that there exists an exact solution for the case of
two interacting chains, as it is in our case [28], [14].

In particular, one can think of extending the basic HMM
framework at two different levels:

1. Coupling the outputs. The weakest coupling is
when two independent processes are coupled at the
output, superimposing their outputs in a single
observed signal (Fig. 5). This is known as a source
separation problem: signals with zero mutual in-
formation are overlaid in a single channel. In true
couplings, however, the processes are dependent
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Fig. 3. A typical image of a pedestrian plaza.

Fig. 4. Graphical representation of HMM and CHMM rolled-out in time.



and interact by influencing each other's states. One
example is the sensor fusion problem: Multiple
channels carry complementary information about
different components of a system, e.g., acoustical
signals from speech and visual features from lip
tracking [32]. In [29], a generalization of HMMs with
coupling at the outputs is presented. These are
Factorial HMMs (FHMMs) where the state variable
is factored into multiple state variables. They have a
clear representational advantage over HMMs: to
model C processes, each with N states, each would
require an HMM with NC joint states, typically
intractable in both space and time. FHMMs are
tractable in space, taking NC states, but present an
inference problem equivalent to that of a combina-
toric HMM. Therefore, exact solutions are intractable
in time. The authors present tractable approxima-
tions using Gibbs sampling, mean field theory, or
structured mean field.

2. Coupling the states. In [28], a statistical mechanical
framework for modeling discrete time series is
presented. The authors couple two HMMs to exploit
the correlation between feature sets. Two parallel
Boltzmann chains are coupled by weights that
connect their hidden unitsÐshown in Fig. 5 as
Linked HMMs (LHMMs). Like the transition and
emission weights within each chain, the coupling
weights are tied across the length of the network.
The independence structure of such an architecture
is suitable for expressing symmetrical synchronous
constraints, long-term dependencies between hid-
den states or processes that are coupled at different
time scales. Their algorithm is based on decimation, a
method from statistical mechanics in which the
marginal distributions of singly or doubly connected
nodes are integrated out. A limited class of graphs
can be recursively decimated, obtaining correlations
for any connected pair of nodes.

Finally, Hidden Markov Decision Trees (HMDTs)
[33]areadecisiontreewithMarkovtemporalstructure

(see Fig. 5). The model is intractable for exact

calculations. Thus, the authors use variational approx-
imations. They consider three distributions for the

approximation: one in which the Markov calculations
are performed exactly and the layers of the decision

tree are decoupled, one in which the decision tree

calculations are performed exactly and the time steps
of the Markov chain are decoupled, and one in which a

Viterbi-like assumption is made to pick out a single

most likely state sequence. The underlying indepen-

dence structure is suitable for representing hierarch-

ical structure in a signal, for example, the baseline of a

song constrains the melody and both constrain the

harmony.

We use two CHMMs for modeling two interacting

processes, in our case, they correspond to individual

humans. In this architecture state, chains are coupled via

matrices of conditional probabilities modeling causal

(temporal) influences between their hidden state variables.

The graphical representation of CHMMs is shown in Fig. 4.

Exact maximum a posteriori (MAP) inference is an O�TN4�
computation [34], [30]. We have developed a deterministic

O�TN2� algorithm for maximum entropy approximations to

state and parameter values in CHMMs. From the graph it

can be seen that for each chain, the state at time t depends

on the state at time tÿ 1 in both chains. The influence of one

chain on the other is through a causal link. The Appendix

contains a summary of the CHMM formulation.
In this paper, we compare performance of HMMs and

CHMMs for maximum a posteriori (MAP) state estimation.

We compute the most likely sequence of states Ŝ within a

model given the observation sequenceO � fo1; . . . ; ong. This

most likely sequence is obtained by Ŝ � argmaxSP �SjO�.
In the case of HMMs, the posterior state sequence

probability P �SjO� is given by

P �SjO� � Ps1
ps1
�o1�

QT
t�2 pst�ot�Pstjstÿ1

P �O� ; �1�

where S � fa1; . . . ; aNg is the set of discrete states, st 2 S
corresponds to the state at time t. Pijj�: Pst�aijstÿ1�aj is the

state-to-state transition probability (i.e., probability of being

in state ai at time t given that the system was in state aj at time

tÿ 1). In the following, we will write them asPstjstÿ1
. The prior

probabilities for the initial state are Pi�: Ps1�ai � Ps1
. And,

finally, pi�ot��: pst�ai�ot� � pst�ot� are the output probabilities

for each state, (i.e., the probability of observing ot given state

ai at time t).
In the case of CHMMs, we introduce another set of

probabilities, Pstjs0tÿ1
, which correspond to the probability of

state st at time t in one chain given that the other

chainÐdenoted hereafter by superscript 0Ðwas in state s0tÿ1

at time tÿ 1. These new probabilities express the causal

influence (coupling) of one chain to the other. The posterior

state probability for CHMMs is given by
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Fig. 5. Graphical representation of FHMM, LHMM, and HMDT rolled-out in time.



P �SjO� �Ps1
ps1
�o1�Ps0

1
ps0

1
�o01�

P �O�

�
YT
t�2

Pstjstÿ1
Ps0tjs0tÿ1

Ps0tjstÿ1
Pstjs0tÿ1

pst�ot�ps0t�o0t�;
�2�

where st; s
0
t; ot; o

0
t denote states and observations for each of

the Markov chains that compose the CHMMs. A coupled
HMM ofC chains has a joint state trellis that is in principleNC

states wide; the associated dynamic programming problem is
O�TN2C�. In [14], an approximation is developed using N-
heads dynamic programming such that an O�T �CN�2�
algorithm is obtained that closely approximates the full
combinatoric result.

Coming back to our problem of modeling human
behaviors, two persons (each modeled as a generative
process) may interact without wholly determining each
others' behavior. Instead, each of them has its own internal
dynamics and is influenced (either weakly or strongly) by
others. The probabilities Pstjs0tÿ1

and Ps0tjstÿ1
describe this kind

of interactions and CHMMs are intended to model them in
as efficient a manner as possible.

5 SYNTHETIC BEHAVIORAL AGENTS

We have developed a framework for creating synthetic
agents that mimic human behavior in a virtual environment
[16], [17]. The agents can be assigned different behaviors
and they can interact with each other as well. Currently,
they can generate five different interacting behaviors and
various kinds of individual behaviors (with no interaction).
The parameters of this virtual environment are modeled on
the basis of a real pedestrian scene from which we obtained
measurements of typical pedestrian movement.

One of the main motivations for constructing such
synthetic agents is the ability to generate synthetic data
which allows us to determine which Markov model
architecture will be best for recognizing a new behavior
(since it is difficult to collect real examples of rare
behaviors). By designing the synthetic agents models such
that they have the best generalization and invariance
properties possible, we can obtain flexible prior models
that are transferable to real human behaviors with little or
no need of additional training. The use of synthetic agents
to generate robust behavior models from very few real
behavior examples is of special importance in a visual
surveillance task, where typically the behaviors of greatest
interest are also the most rare.

5.1 Agent Architecture

Our dynamic multiagent system consists of some number of
agents that perform some specific behavior from a set of
possible behaviors. The system starts at time zero, moving
discretely forward to time T or until the agents disappear
from the scene.

The agents can follow three different paths with two
possible directions, as illustrated in Figs. 6 and 7 by the yellow
paths.2 They walk with random speeds within an interval;
they appear at random instances of time. They can slow
down, speed up, stop, or change direction independently

from the other agents on the scene. Their velocity is normally
distributed around a mean that increases or decreases when
they slow down or speed up. When certain preconditions are
satisfied a specific interaction between two agents takes place.
Each agent has perfect knowledge of the world, including the
position of the other agents.

In the following, we will describe without loss of
generality, the two-agent system that we used for generat-
ing prior models and synthetic data of agents interactions.
Each agent makes its own decisions depending on the type
of interaction, its location, and the location of the other
agent on the scene. There is no scripted behavior or a priori
knowledge of what kind of interaction, if any, is going to
take place. The agents' behavior is determined by the
perceived contextual information: current position, relative
position of the other agent, speeds, paths they are in,
directions of walk, etc., as well as by its own repertoire of
possible behaviors and triggering events. For example, if
one agent decides to ªfollowº the other agent, it will
proceed on its own path increasing its speed progressively
until reaching the other agent, that will also be walking on
the same path. Once the agent has been reached, they will
adapt their mutual speeds in order to keep together and
continue advancing together until exiting the scene.

For each agent the position, orientation, and velocity is

measured, and from this data a feature vector is constructed

which consists of: _d12, the derivative of the relative distance

between two agents; �1;2 � sign�< v1; v2 >�, or degree of

alignment of the agents, and vi �
���������������
_x2 � _y2

p
; i � 1; 2, the

magnitude of their velocities. Note that such a feature vector

is invariant to the absolute position and direction of the agents

and the particular environment they are in.

5.2 Agent Behaviors

The agent behavioral system is structured in a hierarchical
way. There are primitive or simple behaviors and complex
interactive behaviors to simulate the human interactions.

In the experiments reported in Section 4, we considered
five different interacting behaviors that appear illustrated in
Figs. 6 and 7:

1. Follow, reach, and walk together (inter1): The two
agents happen to be on the same path walking in the
same direction. The agent behind decides that it wants
to reach the other. Therefore, it speeds up in order to
reach the other agent. When this happens, it slows
down such that they keep walking together with the
same speed.

2. Approach, meet, and go on separately (inter2): The
agents are on the same path, but in the opposite
direction. When they are close enough, if they realize
that they ªknowº each other, they slow down and
finally stop to chat. After talking they go on
separately, becoming independent again.

3. Approach, meet, and go on together (inter3): In this
case, the agents behave like in ªinter2,º but now after
talking they decide to continue together. One agent
therefore, changes its direction to follow the other.

4. Change direction in order to meet, approach, meet,
and continue together (inter4): The agents start on
different paths. When they are close enough they can
see each other and decide to interact. One agent waits
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2. The three paths were obtained by statistical analysis of the most
frequent paths that the pedestrians in the observed plaza followed. Note,
however, that the performance of neither the computer vision nor the
tracking modules is limited to these three paths.



for the other to reach it. The other changes direction in
order to go toward the waiting agent. Then they meet,
chat for some time, and decide to go on together.

5. Change direction in order to meet, approach, meet,
and go on separately (inter5): This interaction is the
same as ªinter4º except that when they decide to go on
after talking, they separate, becoming independent.

Proper design of the interactive behaviors requires the
agents to have knowledge about the position of each
other as well as synchronization between the successive

individual behaviors activated in each of the agents. Fig. 8
illustrates the timeline and synchronization of the simple
behaviors and events that constitute the interactions.

These interactions can happen at any moment in time and
at any location, provided only that the precondititions for the
interactions are satisfied. The speeds they walk at, the
duration of their chats, the changes of direction, the starting
and ending of the actions vary highly. This high variance in
the quantitative aspects of the interactions confers robustness
to the learned models that tend to capture only the invariant
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Fig. 6. Example trajectories and feature vector for the interactions: follow, approach+meet+continue separately, and approach+meet+continue
together.



parts of the interactions. The invariance reflects the nature of
their interactions and the environment.

6 EXPERIMENTAL RESULTS

Our goal is to have a system that will accurately interpret
behaviors and interactions within almost any pedestrian
scene with little or no training. One critical problem,
therefore, is generation of models that capture our prior
knowledge about human behavior. The selection of priors is

one of the most controversial and open issues in Bayesian
inference. As we have already described, we solve this
problem by using a synthetic agents modeling package,
which allows us to build flexible prior behavior models.

6.1 Comparison of CHMM and HMM Architectures
with Synthetic Agent Data

We built models of the five previously described synthetic
agent interactions with both CHMMs and HMMs. We used
two or three states per chain in the case of CHMMs and
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Fig. 7. Example trajectories and feature vector for the interactions: change direction+approach+meet+continue separately, change

direction+approach+meet+continue together, and no interacting behavior.



three to five states in the case of HMMs (accordingly to the

complexity of the various interactions). The particular

number of states for each architecture was determined

using 10 percent cross validation. Because we used the same

amount of data for training both architectures, we tried

keeping the number of parameters to estimate roughly the

same. For example, a three state (N � 3) per chain CHMM

with three-dimensional (d � 3) Gaussian observations has

�CN�2 �N � �d� d!� � �2 � 3�2 � 3 � �3� 6� � 36� 27 � 63
parameters. A five state (N � 5) HMM with six-dimen-
sional (d � 6) Gaussian observations has N2 �N � �d�
d!� � 52 � 5 � �3� 6� � 25� 45 � 70 parameters to estimate.

Each of these architectures corresponds to a different

physical hypothesis: CHMMs encode a spatial coupling in

time between two agents (e.g., a nonstationary process)

whereas HMMs model the data as an isolated, stationary

OLIVER ET AL.: A BAYESIAN COMPUTER VISION SYSTEM FOR MODELING HUMAN INTERACTIONS 839

Fig. 8. Timeline of the five complex behaviors in terms of events and simple behaviors.



process. We used from 11 to 75 sequences for training each of

the models, depending on their complexity, such that we

avoided overfitting. The optimal number of training

examples, of states for each interaction, as well as the optimal

model parameters were obtained by a 10 percent cross-

validation process. In all cases, the models were set up with a

full state-to-state connection topology, so that the training

algorithm was responsible for determining an appropriate

state structure for the training data. The feature vector was

six-dimensional in the case of HMMs, whereas in the case of

CHMMs, each agent was modeled by a different chain, each

of them with a three-dimensional feature vector. The feature

vector was the same as the one described for the synthetic

agents, namely _d12, the derivative of the relative distance

between two persons; �1;2 � sign�< v1; v2 >�, or degree of

alignment of the people, and vi �
���������������
_x2 � _y2

p
; i � 1; 2, the

magnitude of their velocities.
To compare the performance of the two previously

described architectures, we used the best trained models to
classify 20 unseen new sequences. In order to find the most
likely model, the Viterbi algorithm was used for HMMs and
the N-heads dynamic programming forward-backward
propagation algorithm for CHMMs.

Table 1 illustrates the accuracy for each of the two
different architectures and interactions. Note the superiority
of CHMMs versus HMMs for classifying the different
interactions and, more significantly, identifying the case in
which there were no interactions present in the testing data.

Complexity in time and space is an important issue when
modeling dynamic time series. The number of degrees of
freedom (state-to-state probabilities+output means+output
covariances) in the largest best-scoring model was 85 for
HMMs and 54 for CHMMs. We also performed an analysis
of the accuracies of the models and architectures with
respect to the number of sequences used for training.
Efficiency in terms of training data is especially important
in the case of online real-time learning systemsÐsuch as
ours would ultimately beÐand/or in domains in which
collecting clean labeled data may be difficult.

The cross-product HMMs that result from incorporating
both generative processes into the same joint-product state
space usually require many more sequences for training
because of the larger number of parameters. In our case, this
appears to result in an accuracy ceiling of around 80 percent
for any amount of training that was evaluated, whereas for
CHMMs we were able to reach approximately 100 percent
accuracy with only a small amount of training. From this
result, it seems that the CHMMs architecture, with two
coupled generative processes, is more suited to the problem
of modeling the behavior of interacting agents than a
generative process encoded by a single HMM.

In a visual surveillance system, the false alarm rate is
often as important as the classification accuracy. In an
ideal automatic surveillance system, all the targeted
behaviors should be detected with a close-to-zero false
alarm rate, so that we can reasonably alert a human
operator to examine them further. To analyze this aspect
of our system's performance, we calculated the system's
ROC curve. Fig. 9 shows that it is quite possible to

achieve very low false alarm rates while still maintaining
good classification accuracy.

6.2 Pedestrian Behaviors

Our goal is to develop a framework for detecting, classifying,

and learning generic models of behavior in a visual

surveillance situation. It is important that the models be

generic, applicable to many different situations, rather than

being tuned to the particular viewing or site. This was one of

our main motivations for developing a virtual agent

environment for modeling behaviors. If the synthetic agents

are ªsimilarº enough in their behavior to humans, then the

same models that were trained with synthetic data should be

directly applicable to human data. This section describes the

experiments we have performed analyzing real pedestrian

data using both synthetic and site-specific models (models

trained on data from the site being monitored).

6.2.1 Data Collection and Preprocessing

Using the person detection and tracking system described

in Section 3, we obtained 2D blob features for each person

in several hours of video. Up to 20 examples of following

and various types of meeting behaviors were detected and

processed.
The feature vector �x coming from the computer vision

processing module consisted of the 2D �x; y� centroid
(mean position) of each person's blob, the Kalman Filter
state for each instant of time, consisting of �x̂; _̂x; ŷ; _̂y�,
where :̂ represents the filter estimation, and the �r; g; b�
components of the mean of the Gaussian fitted to each
blob in color space. The frame-rate of the vision system
was of about 20-30 Hz on an SGI R10000 O2 computer.
We low-pass filtered the data with a 3Hz cutoff filter and
computed for every pair of nearby persons a feature
vector consisting of: _d12, derivative of the relative distance
between two persons, jvij; i � 1; 2, norm of the velocity
vector for each person, � � sign�< v1; v2 >�, or degree of
alignment of the trajectories of each person. Typical
trajectories and feature vectors for an ªapproach, meet,
and continue separatelyº behavior (interaction 2) are
shown in Fig. 10. This is the same type of behavior as
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TABLE 1
Accuracy for HMMs and CHMMs on Synthetic Data

Accuracy at recognizing when no interaction occurs (ªNo interº), and
accuracy at classifying each type of interaction: ªInter1º is follow, reach,
and walk together; ªInter2º is approach, meet, and go on; ªInter3º is
approach, meet, and continue together; ªInter4º is change direction to
meet, approach, meet, and go together and ªInter5º is change direction
to meet, approach, meet, and go on separately.



ªinter2º displayed in Fig. 6 for the synthetic agents. Note

the similarity of the feature vectors in both cases.
Even though multiple pairwise interactions could poten-

tially be detected and recognized, we only had examples of

one interaction taking place at a time. Therefore, all our

results refer to single pairwise interaction detection.

6.2.2 Behavior Models and Results

CHMMs were used for modeling three different behaviors:

meet and continue together (interaction 3), meet and split

(interaction 2), and follow (interaction 1). In addition, an

interaction versus no interaction detection test was also

performed. HMMs performed much worse than CHMMs

and, therefore, we omit reporting their results.
We used models trained with two types of data:

1. Prior-only (synthetic data) models: that is, the
behavior models learned in our synthetic agent
environment and then directly applied to the real
data with no additional training or tuning of the
parameters.

2. Posterior (synthetic-plus-real data) models: new
behavior models trained by using as starting points

the synthetic best models. We used eight examples
of each interaction data from the specific site.

Recognition accuracies for both these ªpriorº and ªposter-

iorº CHMMs are summarized in Table 2. It is noteworthy

that with only eight training examples, the recognition

accuracy on the real data could be raised to 100 percent.

This result demonstrates the ability to accomplish extremely

rapid refinement of our behavior models from the initial

prior models.
Finally, the ROC curve for the posterior CHMMs is

displayed in Fig. 11.
One of the most interesting results from these experi-

ments is the high accuracy obtained when testing the

a priori models obtained from synthetic agent simulations.

The fact that a priori models transfer so well to real data

demonstrates the robustness of the approach. It shows that

with our synthetic agent training system, we can develop

models of many different types of behaviorÐthus avoiding

the problem of limited amount of training dataÐand apply

these models to real human behaviors without additional

parameter tuning or training.

6.2.3 Parameter Sensitivity

In order to evaluate the sensitivity of our classification

accuracy to variations in the model parameters, we trained

a set of models where we changed different parameters of

the agents' dynamics by factors of 2:5 and five. The

performance of these altered models turned out to be

virtually the same in every case except for the ªinter1º

(follow) interaction, which seems to be sensitive to people's

velocities. Only when the agents' speeds were within the

range of normal (average) pedestrian walking speeds

ªinter1º (follow) was correctly recognized.

7 SUMMARY AND CONCLUSIONS

In this paper, we have described a computer vision system

and a mathematical modeling framework for recognizing

different human behaviors and interactions in a visual

surveillance task. Our system combines top-down with
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Fig. 10. Example trajectories and feature vector for interaction 2, or approach, meet, and continue separately behavior.

Fig. 9. ROC curve on synthetic data.



bottom-up information in a closed feedback loop, with both

components employing a statistical Bayesian approach.
Two different state-based statistical learning architec-

tures, namely, HMMs and CHMMs have been proposed

and compared for modeling behaviors and interactions. The

superiority of the CHMM formulation has been demon-

strated in terms of both training efficiency and classification

accuracy. A synthetic agent training system has been

created in order to develop flexible and interpretable prior

behavior models and we have demonstrated the ability to

use these a priori models to accurately classify real

behaviors with no additional tuning or training. This fact

is especially important, given the limited amount of training

data available.
The presented CHMM framework is not limited to only

two interacting processes. Interactions between more than

two people could potentially be modeled and recognized.

APPENDIX

FORWARD (�) AND BACKWARD (�) EXPRESSIONS

FOR CHMMS

In [14], a deterministic approximation for maximum a
posterior (MAP) state estimation is introduced. It enables
fast classification and parameter estimation via expectation
maximization and also obtains an upper bound on the cross
entropy with the full (combinatoric) posterior, which can be
minimized using a subspace that is linear in the number of
state variables. An ªN-headsº dynamic programming
algorithm samples from the O�N� highest probability paths
through a compacted state trellis, with complexity
O�T �CN�2� for C chains of N states apiece observing T
data points. For interesting cases with limited couplings, the
complexity falls further to O�TCN2�.

For HMMs, the forward-backward or Baum-Welch
algorithm provides expressions for the � and � variables,
whose product leads to the likelihood of a sequence at each
instant of time. In the case of CHMMs, two state-paths have
to be followed over time for each chain: one path
corresponds to the ªheadº (represented with subscript
ªhº) and another corresponds to the ªsidekickº (indicated
with subscript ªkº) of this head. Therefore, in the new

forward-backward algorithm the expressions for comput-

ing the � and � variables will incorporate the probabilities

of the head and sidekick for each chain (the second chain is

indicated with 0). As an illustration of the effect of

maintaining multiple paths per chain, the traditional

expression for the � variable in a single HMM:

�j;t�1 �
XN
i�1

�i;tPijj

" #
pi�ot� �3�

will be transformed into a pair of equations, one for the full

posterior �� and another for the marginalized posterior �:

��i;t � pi�ot�pki0 ;t�ot�
X
j

Pijhj;tÿ1
Pijkj0 ;tÿ1

Pki0 ;tjhj;tÿ1
Pki0 ;tjkj;tÿ1

��j;tÿ1

�4�

�i;t �
pi�ot�

X
j

Pijhj;tÿ1
Pijkj0 ;tÿ1

X
g

pkg0 ;t�ot�Pkg0 ;tjhj;tÿ1
Pkg0 ;tjkj0 ;tÿ1

��j;tÿ1:

�5�
The � variable can be computed in a similar way by

tracing back through the paths selected by the forward

analysis. After collecting statistics using N-heads dynamic

programming, transition matrices within chains are reesti-

mated according to the conventional HMM expression. The

coupling matrices are given by:

Ps0t�i;stÿ1�jjO �
�j;tÿ1Pi0 jjps0t�i�o0t��i0;t

P �O� �6�

P̂i0 jj �
PT

t�2 Ps0t�i;stÿ1�jjOPT
t�2 �j;tÿ1�j;tÿ1

: �7�
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Fig. 11. ROC curve for real pedestrian data.

TABLE 2
Accuracy for Both Untuned, a Priori Models, and Site-Specific

CHMMs Tested on Real Pedestrian Data

The first entry in each column is the interaction versus no-interaction
accuracy, the remaining entries are classification accuracies between
the different interacting behaviors. Interactions are: ªInter1º follow,
reach, and walk together; ªInter2º approach, meet, and go on; ªInter3º
approach, meet, and continue together.



REFERENCES

[1] N. Oliver, B. Rosario, and A. Pentland, ªA Bayesian Computer
Vision System for Modeling Human Interactions,º Proc. Int'l Conf.
Vision Systems, 1999.

[2] N. Oliver, ªTowards Perceptual Intelligence: Statistical Modeling
of Human Individual and Interactive Behaviors,º PhD thesis,
Massachusetts Institute of Technology (MIT), Media Lab, Cam-
bridge, Mass., 2000.

[3] T. Darrell and A. Pentland, ªActive Gesture Recognition Using
Partially Observable Markov Decision Processes,º Int'l Conf.
Pattern Recognition, vol. 5, p. C9E, 1996.

[4] A.F. Bobick, ªComputers Seeing Action,º Proc. British Machine
Vision Conf., vol. 1, pp. 13-22, 1996.

[5] A. Pentland and A. Liu, ªModeling and Prediction of Human
Behavior,º Defense Advanced Research Projects Agency, pp. 201-206,
1997.

[6] H. Buxton and S. Gong, ªAdvanced Visual Surveillance Using
Bayesian Networks,º Int'l Conf. Computer Vision, June 1995.

[7] H.H. Nagel, ªFrom Image Sequences Toward Conceptual De-
scriptions,º IVC, vol. 6, no. 2, pp. 59-74, May 1988.

[8] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. Russel, and
J. Weber, ªAutomatic Symbolic Traffic Scene Analysis Using Belief
Networks,º Proc. 12th Nat'l Conf. Artifical Intelligence, pp. 966-972,
1994.

[9] C. Castel, L. Chaudron, and C. Tessier, ªWhat is Going On? A
High Level Interpretation of Sequences of Images,º Proc. Workshop
on Conceptual Descriptions from Images, European Conf. Computer
Vision, pp. 13-27, 1996.

[10] J.H. Fernyhough, A.G. Cohn, and D.C. Hogg, ªBuilding Qualita-
tive Event Models Automatically from Visual Input,º Proc. Int'l
Conf. Computer Vision, pp. 350-355, 1998.

[11] W.L. Buntine, ªOperations for Learning with Graphical Models,º
J. Artificial Intelligence Research, 1994.

[12] L.R. Rabiner, ªA Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,º Proc. IEEE, vol. 77, no. 2,
pp. 257-285. 1989.

[13] M. Brand, N. Oliver, and A. Pentland, ªCoupled Hidden Markov
Models for Complex Action Recognition,º Proc. IEEE Computer
Vision and Pattern Recognition, 1996.

[14] M. Brand, ªCoupled Hidden Markov Models for Modeling
Interacting Processes,º Neural Computation, Nov. 1996.

[15] N. Oliver, B. Rosario, and A. Pentland, ªGraphical Models for
Recognizing Human Interactions,º Proc. Neural Information Proces-
sing Systems, Nov. 1998.

[16] N. Oliver, B. Rosario, and A. Pentland, ªA Synthetic Agent System
for Modeling Human Interactions,º Technical Report, Vision and
Modeling Media Lab, MIT, Cambridge, Mass., 1998. http://
whitechapel. media. mit. edu/pub/tech-reports.

[17] B. Rosario, N. Oliver, and A. Pentland, ªA Synthetic Agent System
for Modeling Human Interactions,º Proc. AA, 1999.

[18] R.K. Bajcsy, ªActive Perception vs. Passive Perception,º Proc.
CASE Vendor's Workshop, pp. 55-62, 1985.

[19] A. Pentland, ªClassification by Clustering,º Proc. IEEE Symp.
Machine Processing and Remotely Sensed Data, 1976.

[20] R. Kauth, A. Pentland, and G. Thomas, ªBlob: An Unsupervised
Clustering Approach to Spatial Preprocessing of MSS Imagery,º
11th Int'l Symp. Remote Sensing of the Environment, 1977.

[21] A. Bobick and R. Bolles, ªThe Representation Space Paradigm of
Concurrent Evolving Object Descriptions,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 14, no. 2, pp. 146-156, Feb.
1992.

[22] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, ªPfinder:
Real-time Tracking of the Human Body,º Photonics East, SPIE,
vol. 2,615, 1995.

[23] N. Oliver, F. BeÂrard, and A. Pentland, ªLafter: Lips and Face
Tracking,º Proc. IEEE Int'l Conf. Computer Vision and Pattern
Recognition (CVPR `97), June 1997.

[24] B. Moghaddam and A. Pentland, ªProbabilistic Visual Learning
for Object Detection,º Proc. Int'l Conf. Computer Vision, pp. 786-793,
1995.

[25] C.R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, ªPfinder:
Real-Time Tracking of the Human Body,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July
1997.

[26] W.L. Buntine, ªA Guide to the Literature on Learning Probabilistic
Networks from Data,º IEEE Trans. Knowledge and Data Engineering,
1996.

[27] D. Heckerman, ªA Tutorial on Learning with Bayesian Net-
works,º Technical Report MSR-TR-95-06, Microsoft Research,
Redmond, Wash., 1995, revised June 1996.

[28] L.K. Saul and M.I. Jordan, ªBoltzmann Chains and Hidden
Markov Models,º Proc. Neural Information Processing Systems, G.
Tesauro, D.S. Touretzky, and T.K. Leen, eds., vol. 7, 1995.

[29] Z. Ghahramani and M.I. Jordan, ªFactorial Hidden Markov
Models,º Proc. Neural Information Processing Systems, D.S. Tour-
etzky, M.C. Mozer, and M.E. Hasselmo, eds., vol. 8, 1996.

[30] P Smyth, D. Heckerman, and M. Jordan, ªProbabilistic Indepen-
dence Networks for Hidden Markov Probability Models,º AI
memo 1565, MIT, Cambridge, Mass., Feb. 1996.

[31] C. Williams and G.E. Hinton, ªMean Field Networks That Learn
to Discriminate Temporally Distorted Strings,º Proc. Connectionist
Models Summer School, pp. 18-22, 1990.

[32] D. Stork and M. Hennecke, ªSpeechreading: An Overview of
Image Procssing, Feature Extraction, Sensory Integration and
Pattern Recognition Techniques,º Proc. Int'l Conf. Automatic Face
and Gesture Recognition, 1996.

[33] M.I. Jordan, Z. Ghahramani, and L.K. Saul, ªHidden Markov
Decision Trees,º Proc. Neural Information Processing Systems, D.S.
Touretzky, M.C. Mozer, and M.E. Hasselmo, eds., vol. 8, 1996.

[34] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen, ªBayesian Updating
in Recursive Graphical Models by Local Computations,º Computa-
tional Statistical Quarterly, vol. 4, pp. 269-282, 1990.

Nuria M. Oliver received the BSc (honors) and
MSc degrees in electrical engineering and
computer science from ETSIT at the Universidad
Politecnica of Madrid (UPM), Spain, 1994. She
received the PhD degree in media arts and
sciences from Massachusetts Institute of Tech-
nology (MIT), Cambridge, in June 2000. Cur-
rently, she is a researcher at Microsoft
Research, working in the Adaptive Systems
and Interfaces Group. Previous to that, she

was a researcher in the Vision and Modeling Group at the Media
Laboratory of MIT, where she worked with professor Alex Pentland.
Before starting her PhD at MIT, she worked as a research engineer at
Telefonica I+D. Her research interests are computer vision, statistical
machine learning, artificial intelligence, and human computer interaction.
Currently, she is working on the previous disciplines in order build
computational models of human behavior via perceptually intelligent
systems.

Barbara Rosario was a visiting researcher in the Vision and Modeling
Group at the Media Laboratory of the Massachusetts Institute of
Technology. Currently, she is a graduate student in the School of
Information and Management Systems (SIMS) at the University of
California, Berkeley.

Alex P. Pentland is the academic head of the
MIT Media Laboratory. He is also the Toshiba
professor of media arts and sciences, an
endowed chair last held by Marvin Minsky. His
recent research focus includes understanding
human behavior in video, including face, ex-
pression, gesture, and intention recognition, as
described in the April 1996 issue of Scientific
American. He is also one of the pioneers of
wearable computing, a founder of the IEEE

wearable computer technical area, and general chair of the upcoming
IEEE International Symposium on Wearable Computing. He has won
awards from the AAAI, IEEE, and Ars Electronica. He is a founder of the
IEEE wearable computer technical area and general chair of the
upcoming IEEE International Symposium on Wearable Computing. He
is a senior member of the IEEE.

OLIVER ET AL.: A BAYESIAN COMPUTER VISION SYSTEM FOR MODELING HUMAN INTERACTIONS 843


