
An Introduction to Hidden 
Markov Models 

The  basic  theory  of  Markov  chains has  been known to 
mathematicians  and  engineers for close to 80 years, but it is 
only in the  past  decade that it has  been  applied explicitly to 
problems in speech  processing.  One of the  major  reasons  why 
speech  models,  based on  Markov chains,  have not been  devel- 
oped until recently was the  lack of a  method for optimizing 
the  parameters  of  the  Markov  model to match  observed  signal 
patterns.  Such  a  method  was  proposed in the  late 1960’s and 
was immediately  applied to speech  processing in several re- 
search  institutions.  Continiued  refinements in the  theory  and 
implementation  of  Markov  modelling  techniques  have  greatly 
enhanced  the  method,  leading to awide,range  of  applications 
of  these  models. It is the  purpose  of  this tutorial paper to 
give  an introduction to, the  theory .of Markov  models, and to 
illustrate  how  they have  been  applied to problems in speech 
recognition. 
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appropriate  excitation. The  easiest  way then to address the 
time-varying  nature of theaprocess is to view it as a direct 
concatenation of these  smaller ”short  time” segments, 
each  such  segment being individually represented by.a 
linear system model. In other words, the overall model is 
a synchronous  sequence of symbols  where  each of the 
symbols is  a linear system model representing a short seg- 
,merit of the  process. In a sense this type of approach 
models  the  observed  signal  using  representative  tokens of 
the  signal itself (or some  suitably  averaged  set of such 
,signals if we  have multiple observations). 

Time-varying  processes 

Modeling  time-varying processes with  the above  ap- 
proach assumes that  every  such short-time segment  of 
observation is a unit  with a prechosen duration. In gen- 
eral,  hqwever, there doesn’t  exist a precise procedure 
to decide  what the  unit  duration  should be so that both 
the time-invariant assumption  holds,  and the  short-time 
linear system models (as well as concatenation of the mod- 
els) are meaningful. In most  physical  systems,  the duration 
of a  short-time segment is determined empirically. In 
many  processes, of.course, one would neither  expect  the 
properties of the process to change  synchronously with 
every unit analysis duration, nor observe  drastic  changes 
from each unit  to  the next  except at certain  instances. 
Making  no further assumptions  about the relationship be- 
tween  adjacent short-time models,  and treating temporal 
variations,  small or large, as “typical” phenomena in the 
observed  signal,  are  key  features in the above direct con- 
catenation  technique.  This  template  approach to signal 
modeling has proven to be quite useful  and has been  the 
basis of a wide variety of speech recognition systems. 

There  are  good  reasons to suspect,  at this point, that the 
above  approach, while useful, may not be the most effi- 

-cient  (in terms of computation,  storage,  parameters  etc.) 
technique as far as representation is concerned.  Many  real 
world processes  seem to manifest a rather  sequentially 
changing  behavior;  the properties  of the  process  are  usu- 
ally held pretty steadily,  except for minor fluctuations, 
for a certain period of time (or a number of the  above- 
mentioned  duration units),  and  then, at certain  instances, 
change (gradually or rapidly) to another set of properties. 
The opportunity  for  more efficient modeling can be ex- 
.plaited if we  can first identify these  periods of rather 
steadily  behavior,  and then are willing  to assume  that the 
temporal  variations within each of these  steady  periods 
are, in a sense, statistical. A more efficient representation 
may then be obtained by using a common short .time 
model for each of the steady, or well-behaved  parts of the 
signal, along with some characterization  of  how one 
such period evolves to the next. This is how  hidden 
Markov  models (HMM) come  about.  Clearly, three  prob- 
lems  have to be  addressed: 1) howz’these  steadily or dis- 
tinctively behaving  periods  can  be identified, 2) how  the 
“sequentially”  evolving  nature of these  periods can  be 
characterized,  and 3) what  typical or common short  time 
model should  be  chosen for each  of  these  periods. Hid- 

den  Markov  models  successfully  treat  these  problems un- 
der a probabilistic or statistical framework. 

It is thus the purpose of this paper to explain-  what a 
hiddenJvlarkov model is, why it is appropriate for certain 
types  of  problems,  and how it can be  used in practice. In 
the next  section,  we illustrate hidden  Markov models  via 
some simple coin toss  examples  and outline the  three 
fundamental  problems  associated with  the  modeling tech- 
nique. We then discuss how these  problems  can  be  solved 
in Section Ill. We will not direct our general  discussion to 
any one  particular  problem, but at theend of this paperwe 
illustrate how HMM’s  are  used  via a couple  of examples in 
speech recognition. 

DEFINITION OF A HIDDEN MARKOV MODEL 

An HMM is a doubly stochastic  process with an under- 
lying stochastic  process  that is not observable (it is hid- 
den), but can only be  observed through another set of 
stochastic  processes  that  produce  the  sequence  of ob- 
served  symbols.  We illustrate HMM’s with the following 
coin toss’example. 

Coin toss example 

To understand  the  concept of the  HMM, consider  the 
following simplified example.  You  are in a room with a 
barrier (e.g., a,curtain)  through  which you  cannot see 
what is happening. On the other side of the  barrier is 
a,nother  person who is performing a coin (or multiple 
coin)  tossing  experiment. The other person will not tell 
you  anything  about  what  he is doing exactly;  he will only 
tell you the result of each coin flip. Thus a sequence of 
hidden coin tossing  experiments is performed,  and  you 
only  observe the results of the  coin tosses, i.e. 

I 

0, o2 03.  . . . . . :. . * . OT 

where x stands for heads  and T stands for tails. 
Given  the  above  experiment,  the problem is how  do we 

build an HMM  to explain  the  observed  sequence of heads 
and tails. One possible model is shown in Fig. l a .  We call 
this  the “l-fair coin” model.  There  are two states in the 
model, but each  state is uniquely associated with either 
heads  (state 1) or tails (state 2). Hence  this  model is not 
hidden because the observation  sequence uniquely de- 
fines the state. The model represents a “fair coin” because 
the probability.of generating a head (or a tail) following a 
head (or a tail) is 0.5; hence  there is no bias  on the  current 
observation: This is a degenerate  example  and  shows how 
independent  trials, like tossing of a fair  coin,  can  be inter- 
preted as a set of sequential  events. Of course, if the 
person behind th.e barrier is, in fact,  tossing a single  fair 
coin,  this model should  explain  the  outcomes  very well. 

A, second  possible HMM  for explaining  the  observed 
sequence of coin toss  outcomes is given iri Fig. Ib .  We call 
this model the  “2-fair coin” model.  There  are  again 2 states 
in the model, but  neither State is uniquely associated with 
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vathn probability  distributions which, of course, repre- Using  the  model, an observation  sequence, 0 = 

sent random variables or stochastic  processes. 0, Op, . . . , OT, is generated as follows: 

JANUARY 1986 IEEE ASSP  MAGAZINE . 7 





JANUARY 1986 IEEE ASSP MAGAZINE 9 



1 0 IEEE ASSP  MAGAZINE  JANUARY 1986 



sequence  given the model.  This is the most difficult  of  the 
three problems  we have  discussed.  There is no known way 
to solve for a maximum likelihood  model analytically. 
Therefore  an iterative procedure,  such as the Baum-Welch 
method,  or  gradient  techniques for optimization must be 
used.  Here  we will only discuss the iterative procedure. It 
appears that with this  procedure, the physical  meaning of 
various  parameter  estimates  can be easily  visualized. 

To describe how we  (re)estimate HMM parameters,  we 
first define t,(i,j).as 

i.e.  the probability  of a path being in state qi at time t and 
making a transition to state qi at time t + 1, given  the 
observation sequence and the  model.' From  Fig. 5 it 
should  be  clear that we  can write t t ( i , j )  as 

I I 

In the. above, at(i) accounts for  the  first t observations, 
ending in state qi at time t, the term aiibj(Ot+Jaccounts 
for the transition to state 9j at time t + 1 with the.occur- 
rence of symbol Ot+,, and the  term pt+l(j) accounts for 
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rational information is often represented in a normalized of Pr(0, / 1 A) is usually  very  large  and  max, Pr(0, / I A) is 
form for word models,  (since the word boundary is essen- usually the only significant  term  in'  the  summation  for 
tially  known), in the form: Pr(0 / A ) .  Therefore, in such cases,, either the forward- 

pi(//T) = probabidity of being in state j for exactly (/IT) of 
the word,  where T is the  number of, frames in the 

backwakd procedure or the  Viterbi  algorithm works 
equally well in the word recognition task. 
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