
Searching for Character Models

Jaety Edwards
Department of Computer Science

UC Berkeley
Berkeley, CA 94720

jaety@cs.berkeley.edu

David Forsyth
Department of Computer Science

UC Berkeley
Berkeley, CA 94720

daf@cs.berkeley.edu

Abstract

We introduce a method to automatically improve character models for a
handwritten script without the use of transcriptions and using a minimum
of document specific training data. We show that we can use searches for
the words in a dictionary to identify portions of the document whose
transcriptions are unambiguous. Using templates extracted from those
regions, we retrain our character prediction model to drastically improve
our search retrieval performance for words in the document.

1 Introduction

An active area of research in machine transcription of handwritten documents is reducing
the amount and expense of supervised data required to train prediction models. Traditional
OCR techniques require a large sample of hand segmented letter glyphs for training. This
per character segmentation is expensive and often impractical to acquire, particularly if the
corpora in question contain documents in many different scripts.

Numerous authors have presented methods for reducing the expense of training data by
removing the need to segment individual characters. Both Kopec et al [3] and LeCun et al
[5] have presented models that take as input images of lines of text with their ASCII tran-
scriptions. Training with these datasets is made possible by explicitly modelling possible
segmentations in addition to having a model for character templates.

In their research on “wordspotting”, Lavrenko et al [4] demonstrate that images of entire
words can be highly discriminative, even when the individual characters composing the
word are locally ambiguous. This implies that images of manysufficiently long words
should have unambiguous transcriptions, even when the character models are poorly tuned.
In our previous work, [2], the discriminatory power of wholewords allowed us to achieve
strong search results with a model trained on a single example per character.

The above results have shown that A) one can learn new template models given images of
text lines and their associated transcriptions, [3, 5] without needing an explicit segmentation
and that B) entire words can often be identified unambiguously, even when the models for
individual characters are poorly tuned. [2, 4]. The first of these two points implies that
given a transcription, we can learn new character models. The second implies that for at
least some parts of a document, we should be able to provide that transcription “for free”,
by matching against a dictionary of known words.

s
1

−d

s
2

di

s
3

ix

s
4

xe

s
5

er

s
6

ri

s
7

is

s
8

s−

Figure 1:A line, and the states that generate it.Each statest is defined by its left and
right charactersctl andctr (eg “x” and “e” for s4). In the image, a state spans half of each
of these two characters, starting just past the center of theleft character and extending to
the center of the right character, i.e. the right half of the “x” and the left half of the “e”
in s4. The relative positions of the two characters is given by a displacement vectordt

(superimposed on the image as white lines). Associating states with intracharacter spaces
instead of with individual characters allows for the bounding boxes of characters to overlap
while maintaining the independence properties of the Markov chain.

In this work we combine these two observations in order to improve character models
without the need for a document specific transcription. We provide a generic dictionary of
words in the target language. We then identify “high confidence” regions of a document.
These are image regions for which exactly one word from our dictionary scores highly
under our model. Given a set of high confidence regions, we effectively have a training
corpus of text images with associated transcriptions. In these regions, we infer a segmen-
tation and extract new character examples. Finally, we use these new exemplars to learn
an improved character prediction model. As in [2], our document in this work is a 12th
century manuscript of Terence’s Comedies obtained from Oxford’s Bodleian library [1].

2 The Model

Hidden Markov Models are a natural and widely used method formodeling images of text.
In their simplest incarnation, a hidden state represents a character and the evidence variable
is some feature vector calculated at points along the line. If all characters were known to
be of a single fixed width, this model would suffice. The probability of a line under this
model is given as

p(line) = p(c1|α)
∏

t>1

p(ct|ct−1)p(im[w∗(t−1):w∗t]|ct) (1)

wherect represents thetth character on the line,α represents the start state,w is the width
of a character, andim[w(t−1)+1:wt] represents the column of pixels beginning at column
w ∗ (t − 1) + 1 of the image and ending at columnw ∗ t, (i.e. the set of pixels spanned by
c)

Unfortunately, character’s widths do vary quite substantially and so we must extend the
model to accommodate different possible segmentations. A generalized HMM allows us to
do this. In this model a hidden state is allowed to emit a variable length series of evidence
variables. We introduce an explicit distribution over the possible widths of a character.
Lettingdt be the displacement vector associated with thetth character, andctx refer to the
x location of the left edge of a character on the line, the probability of a line under this
revised model is

p(line) = p(c1|α)
∏

t>1

p(ct|ct−1)p(dt|ct)p(im[ctx+1:ctx+d]|dt, ct) (2)

This is the model we used in [2]. It performs far better than using an assumption of fixed
widths, but it still imposes unrealistic constraints on therelative positions of characters. In

particular, the portion of the ink generated by the current character is assumed to be inde-
pendent of the preceding character. In other words, the model assumes that the bounding
boxes of characters do not overlap. This constraint is obviously unrealistic. Characters
routinely overlap in our documents. “f”s, for instance, form ligatures with most follow-
ing characters. In previous work, we treated this overlap asnoise, hurting our ability to
correctly localize templates. Under this model, local errors of alignment would also of-
ten propagate globally, adversely affecting the segmentation of the whole line. For search,
this noisy segmentation still provides acceptable results. In this work, however, we need
to extract new templates, and thus correct localization andsegmentation of templates is
crucial.

In our current work, we have relaxed this constraint, allowing characters to partially over-
lap. We achieve this by changing hidden states to represent character bigrams instead of
single characters (Figure 1). In the image, a state now spansthe pixels from just past the
center of the left character to the pixel containing the center of the right character. We
adjust our notation somewhat to reflect this change, lettingst now represent thetth hid-
den state andctl andctr be the left and right characters associated withs. dt is now the
displacement vector between the centers ofctl andctr.

The probability of a line under this, our actual, model is

p(line) = p(s1|α)
∏

t>1

p(st|st−1)p(dt|ctl, ctr)p(im[stx+1:stx+dt
]|ctl, ctr, dt) (3)

This model allows overlap of bounding boxes, but it does still make the assumption that
the bounding box of the current character does not extend past the center of the previous
character. This assumption does not fully reflect reality either. In Figure 1, for example,
the left descender of the x extends back further than the center of the preceding character.
It does, however, accurately reflect the constraints withinthe heart of the line (excluding
ascenders and descenders). In practice, it has proven to generate very accurate segmenta-
tions. Moreover, the errors we do encounter no longer tend toaffect the entire line, since
the model has more flexibility with which to readjust back to the correct segmentation.

2.1 Model Parameters

Our transition distribution between states is simply a 3-gram character model. We train this
model using a collection of ASCII Latin documents collectedfrom the web. This set does
not include the transcriptions of our documents.

Conditioned on displacement vector, the emission model forgenerating an image chunk
given a state is a mixture of gaussians. We associate with each character a set of image
windows extracted from various locations in the document. We initialize these sets with
one example a piece from our hand cut set (Figure 2). We adjustthe probability of an image
given the state to include the distribution over blocks by expanding the last term of Equation
3 to reflect this mixture. Lettingbck represent thekth exemplar in the set associated with
characterc, the conditional probability of an image region spanning the columns fromx to
x′ is given as

p(imx:x′|ctl, ctr, dt) =
∑

i,j

p(imx:x′|bctli, bctrj , dt) (4)

In principle, the displacement vectors should now be associated with an individual block,
not a character. This is especially true when we have both upper and lower case letters.
However, our model does not seem particularly sensitive to this displacement distribution
and so in practice, we have a single, fairly loose, displacement distribution per character.

Given a displacement vector, we can generate the maximum likelihood template image
under our model by compositing the correct halves of the leftand right blocks. Reshaping

the image window into a vector, the likelihood of an image window is then modeled as
a gaussian, using the corresponding pixels in the template as the means, and assuming
a diagonal covariance matrix. The covariance matrix largely serves to mask out empty
regions of a character’s bounding box, so that we do not pay a penalty when the overlap of
two characters’ bounding boxes contains only whitespace.

2.2 Efficiency Considerations

The number of possible different templates for a state isO(|B| × |B| × |D|), where|B| is
the number of different possible blocks and|D| is the number of candidate displacement
vectors. To make inference in this model computationally feasible, we first restrict the
domain ofd. For a given pair of blocksbl andbr, we consider only displacement vectors
within some smallx distance from a mean displacementmbl,br

, and we have a uniform
distribution within this region.m is initialized from the known size of our single hand cut
template. In the current work, we do not relearn them. These are held fixed and assumed
to be the same for all blocks associated with the same letter.

Even when restricting the number ofd’s under consideration as discussed above, it is com-
putationally infeasible to consider every possible location and pair of blocks. We therefore
prune our candidate locations by looking at the likelihood of blocks in isolation and only
considering locations where there is a local optimum in the response function and whose
value is better than a given threshold. In this case our threshold for a given location is that
L(block) < .7L(background) (whereL(x) represents the negative log likelihood ofx).
In other words, a location has to look at least marginally more like a given block than it
looks like the background.

After pruning locations in this manner, we are left with a discrete set of “sites,” where we
define a site as the tuple (block type, x location, y location). We can enumerate the set of
possible states by looking at every pair of sites whose displacement vector has a non-zero
probability.

2.3 Inference In The Model

The statespace defined above is a directed acyclic graph, anchored at the left edge and
right edges of a line of text. A path through this lattice defines both a transcription and
a segmentation of the line into individual characters. Inference in this model is relatively
straightforward because of our constraint that each character may overlap only one pre-
ceding and one following character, and our restriction of displacement vectors to a small
discrete range. The first restriction means that we need onlyconsider binary relations be-
tween templates. The second preserves the independence relationships of an HMM. A
given statest is independent of the rest of the line given the values of all other states within
dmax of either edge ofst (wheredmax is the legal displacement vector with the longest
x component.) We can therefore easily calculate the best pathor explicitly calculate the
posterior of a node by traversing the state graph in topological order, sorted from left to
right. The literature on Weighted Finite State Transducers([6], [5]) is a good resource for
efficient algorithms on these types of statespace graph.

3 Learning Better Character Templates

We initialize our algorithm with a set of handcut templates,exactly 1 per character, (Figure
2), and our goal is to construct more accurate character models automatically from unsu-
pervised data. As noted above, we can easily calculate the posterior of a given site under
our model. (Recall that a site is a particular character template at a given (x,y) location in
the line.) The traditional EM approach to estimating new templates would be to use these

Figure 2:Original Training Data These 22 glyphs are our only document specific training
data. We use the model based on these characters to extract the new examples shown below

Figure 3:Examples of extracted templatesWe extract new templates from high confidence
regions. From these, we choose a subset to incorporate into the model as new exemplars.
Templates are chosen iteratively to best cover the space of training examples. Notice that
for “q” and “a”, we have extracted capital letters, of which there were no examples in
our original set of glyphs. This happens when the combination of constraints from the
dictionary the surrounding glyphs make a “q” or “a” the only possible explanation for
this region, even though its local likelihood is poor.

sites as training examples, weighted by their posteriors. Unfortunately, the constraints im-
posed by 3 and even 4-gram character models seem to be insufficient. The posteriors of
sites are not discriminative enough to get learning off the ground.

The key to successfully learning new templates lies is the observation from our previous
work [2], that even when the posteriors of individual characters are not discriminative, one
can still achieve very good search results with the same model. The search word in effect
serves as its own language model, only allowing paths through the state graph that actually
contain it, and the longer the word the more it constrains themodel. Whole words impose
much tighter constraints than a 2 or 3-gram character model,and it is only with this added
power that we can successfully learn new character templates.

We define the score for a search as the negative log likelihoodof the best path containing
that word. With sufficiently long words, it becomes increasingly unlikely that a spurious
path will achieve a high score. Moreover, if we are given a large dictionary of words and
no alternative word explains a region of ink nearly as well asthe best scoring word, then
we can be extremely confident that this is a true transcription of that piece of ink.

Starting with a weak character model, we do not expect to find many of these “high confi-
dence” regions, but with a large enough document, we should expect to find some. From
these regions, we can extract new, reliable templates with which to improve our character
models. The most valuable of these new templates will be those that are significantly dif-
ferent from any in our current set. For example, in Figure 3, note that our system identifies
capital Q’s, even though our only input template was lower case. It identifies this ink as
a Q in much the same way that a person solves a crossword puzzle. We can easily infer
the missing character in the string “obv-ous” because the other letters constrain us to one
possible solution. Similarly, if other character templates in a word match well, then we can
unambiguously identify the other, more ambiguous ones. In our Latin case, “Quid” is the
only likely explanation for “-uid”.

3.1 Extracting New Templates and Updating The Model

Within a high confidence region we have both a transcription and a localization of template
centers. It remains only to cut out new templates. We accomplish this by creating a template
image for the column of pixels from the corresponding block templates and then assigning
image pixels to the nearest template character (measured byEuclidean distance).

Given a set of templates extracted from high confidence regions, we choose a subset of

3300

3350

3400

S
co

re
 U

nd
er

 M
od

el

best

worse

Confidence Margins

Figure 4:Each line segment in the lower figure represents a proposed location for a word
from our dictionary. It’s vertical height is the score of that location under our model. A
lower score represents a better fit. The dotted line is the score of our model’s best possible
path. Three correct words, “nec”, “quin” and “dari”, are actually on the best path. We
define theconfidence marginof a location as the difference in score between the best
fitting word from our dictionary and the next best.

Figure 5:Extracting TemplatesFor a region with sufficiently high confidence margin, we
construct the maximum likelihood template from our currentexemplars.left, and we assign
pixels from the original image to a template based on its distance to the nearest pixel in
the template image, extracting new glyph exemplarsright . These new glyphs become the
exemplars for our next round of training.

templates that best explain the remaining examples. We do this in a greedy fashion by
choosing the example whose likelihood is lowest under our current model and adding it to
our set. Currently, we threshold the number of new templatesfor the sake of efficiency. Fi-
nally, given the new set of templates, we can add them to the model and rerun our searches,
potentially identifying new high confidence regions.

4 Results

Our algorithm iteratively improves the character model by gathering new training data from
high confidence regions. Figure 3 shows that this method findsnew templates significantly
different from the originals. In this document, our set of examples after one round appears
to cover the space of character images well, at least those inlower case. Our templates are
not perfect. The “a”, for instance, has become associated with at least one block that is in
fact an “o”. These mistakes are uncommon, particularly if werestrict ourselves to longer
words. Those that do occur introduce a tolerable level noiseinto our model. They make
certain regions of the document more ambiguous locally, butthat local ambiguity can be
overcome with the context provided by surrounding characters and a language model.

Improved Character Models We evaluate the method more quantitatively by testing the
impact of the new templates on the quality of searches performed against the document.
To search for a given word, we rank lines by the ratio of the maximum likelihood tran-
scription/segmentation that contains the search word to the likelihood of the best possible
segmentation/transcription under our model. The lowest possible search score is 1, happen-
ing when the search word is actually a substring of the maximum likelihood transcription.
Higher scores mean that the word is increasingly unlikely under our model. In Figure 7, the
figure on the left shows the improvement in ranking of the lines that truly contain selected
search words. The odd rows (in red) are search results using only the original 22 glyphs,

100 200 300 400 500 600

20
40
60
80

2600

2650

2700

R
nd

 1
dotted (wrong):
solid (correct):

nupta
nuptiis

inquam (v|u)ideo
videt

1840
1860
1880
1900
1920

R
nd

 2

dotted (wrong):
solid (correct): iam

nupta
nuptiis

post inquam
postquam

(v|u)ideo
videt

Figure 6: Search Results with (Rnd 1) initial templates only and with (Rnd 2) templates
extracted from high confidence regions. We show results thathave a score within 5% of the
best path.Solid Lines are the results for the correct word. Dotted lines representother
search results, where we have made a few larger in order to show those words that are
the closest competitors to the true word. Many alternative searches, like the highlighted
“post” are actually portions of the correct larger words. These restrict our selection of
confidence regions, but do not impinge on search quality.
Each correct word has significantly improved after one roundof template reestimation.
“iam” has been correctly identified, and is a new high confidence region. Both“nuptiis”
and “postquam” are now the highest likelihood words for their region barring smaller
subsequences, and“videt” has narrowed the gap between its competitor “video”.

while the even rows (in green) use an additional 332 glyphs extracted from high confidence
regions. Search results are markedly improved in the secondmodel. The word “est”, for
instance, only had 15 of 24 of the correct lines in the top 100 under the original model,
while under the learned model all 24 are not only present but also more highly ranked.

Improved Search Figure 6 shows the improved performance of our refitted model for
a single line. Most words have greatly improved relative to their next best alternative.
“postquam” and “iam” were not even considered by the original model and now are nearly
optimal. Theright of Figure 7shows the average precision/recall curve under each model
for 21 words with more than 4 occurrences in the dataset. Precision is the percentage
of lines truly containing a word in the topn search results, and recall is the percentage
of all lines containing the word returned in the topn results. The learned model clearly
dominates. The new model also greatly improves performancefor rare words. For 320
words ocurring just once in the dataset, 50% are correctly returned as the top ranked result
under the original model. Under the learned model, this number jumps to 78%.

5 Conclusions and Future Work

In most fonts, characters are quite ambiguous locally. An “n” looks like a “u”, looks like
“ii”, etc. This ambiguity is the major hurdle to the unsupervised learning of character
templates. Language models help, but the standard n-gram models provide insufficient
constraints, giving posteriors for character sites too uninformative to get EM off the ground.

Selected Words, Top 100 Returned Lines

10 20 30 40 50 60 70 80 90100

est
(15,24)/24

nescio
(1, 1)/ 1

postquam
(0, 2)/ 2

quod
(14,14)/14

moram
(0, 2)/ 2

non
(8, 8)/ 8

quid
(9, 9)/ 9 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Recall

P
re

ci
si

on

Aggregate Precision/Recall Curve

Original Model
Refit Model

Figure 7:The figure on theleft shows the those lines with the top 100 scores that actually
contain the specified word. The first of each set of two rows (inred) is the results from
Round 1. The second (in green) is the results for Round 2. Almost all search words in our
corpus show a significant improvement. The numbers to the right (x/y) mean that out of
y lines that actually contained the search word in our document, x of them made it into
the top ten. On theright are average precision/recall curves for 21 high frequency words
under the model with our original templates (Rnd 1) and afterrefitting with new extracted
templates (Rnd 2). Extracting new templates vastly improves our search quality

An entire word is much different. Given a dictionary, we expect many word images to have
a single likely transcription even if many characters are locally ambiguous. We show that
we can identify these high confidence regions even with a poorly tuned character model. By
extracting new templates only from these regions of the document, we overcome the noise
problem and significantly improve our character models. We demonstrate this improvement
for the task of search where the refitted models have drastically better search responses than
with the original. Our method is indifferent to the form of the actual character emission
model. There is a rich literature in character prediction from isolated image windows, and
we expect that incorporating more powerful character models should provide even greater
returns and help us in learning less regular scripts.

Finding high confidence regions to extract good training examples is a broadly applica-
ble concept. We believe this work should extend to other problems, most notably speech
recognition. Looked at more abstractly, our use of languagemodel in this work is actu-
ally encoding spatial constraints. The probability of a character given an image window
depends not only on the identify of surrounding characters but also on their spatial con-
figuration. Integrating context into recognition problemsis an area of intense research in
the computer vision community, and we are investigating extending the idea of confidence
regions to more general object recognition problems.

References

[1] Early Manuscripts at Oxford University. Bodleian library ms. auct. f. 2.13.http://image.ox.ac.uk/.

[2] J. Edwards, Y.W. Teh, D. Forsyth, R. Bock, M. Maire, and G.Vesom. Making latin manuscripts
searchable using ghmm’s. InNIPS 17, pages 385–392. 2005.

[3] G. Kopec and M. Lomelin. Document-specific character template estimation. InProceedings,
Document Image Recognition III, SPIE, 1996.

[4] V. Lavrenko, T. Rath, and R. Manmatha. Holistic word recognition for handwritten historical
documents. Indial, pages 278–287, 2004.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

[6] M. Mohri, F. Pereira, and M. Riley. Weighted finite state transducers in speech recognition.ISCA
ITRW Automatic Speech Recognition, pages 97–106, 2000.

