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Abstract

This paper presents two new formulations of multiple-instance
learning as a maximum margin problem. The proposed extensions
of the Support Vector Machine (SVM) learning approach lead to
mixed integer quadratic programs that can be solved heuristically.
Our generalization of SVMs makes a state-of-the-art classification
technique, including non-linear classification via kernels, available
to an area that up to now has been largely dominated by special
purpose methods. We present experimental results on a pharma-
ceutical data set and on applications in automated image indexing
and document categorization.

1 Introduction

Multiple-instance learning (MIL) [4] is a generalization of supervised classification
in which training class labels are associated with sets of patterns, or bags, instead of
individual patterns. While every pattern may possess an associated true label, it is
assumed that pattern labels are only indirectly accessible through labels attached to
bags. The law of inheritance is such that a set receives a particular label, if at least
one of the patterns in the set possesses the label. In the important case of binary
classification, this implies that a bag is “positive” if at least one of its member
patterns is a positive example. MIL differs from the general set-learning problem in
that the set-level classifier is by design induced by a pattern-level classifier. Hence
the key challenge in MIL is to cope with the ambiguity of not knowing which of the
patterns in a positive bag are the actual positive examples and which ones are not.

The MIL setting has numerous interesting applications. One prominent applica-
tion is the classification of molecules in the context of drug design [4]. Here,
each molecule is represented by a bag of possible conformations. The efficacy of
a molecule can be tested experimentally, but there is no way to control for indi-
vidual conformations. A second application is in image indexing for content-based
image retrieval. Here, an image can be viewed as a bag of local image patches [9]
or image regions. Since annotating whole images is far less time consuming then
marking relevant image regions, the ability to deal with this type of weakly anno-
tated data is very desirable. Finally, consider the problem of text categorization for
which we are the first to apply the MIL setting. Usually, documents which contain
a relevant passage are considered to be relevant with respect to a particular cate-



gory or topic, yet class labels are rarely available on the passage level and are most
commonly associated with the document as a whole. Formally, all of the above
applications share the same type of label ambiguity which in our opinion makes a
strong argument in favor of the relevance of the MIL setting.

We present two approaches to modify and extend Support Vector Machines (SVMs)
to deal with MIL problems. The first approach explicitly treats the pattern labels
as unobserved integer variables, subjected to constraints defined by the (positive)
bag labels. The goal then is to maximize the usual pattern margin, or soft-margin,
jointly over hidden label variables and a linear (or kernelized) discriminant func-
tion. The second approach generalizes the notion of a margin to bags and aims at
maximizing the bag margin directly. The latter seems most appropriate in cases
where we mainly care about classifying new test bags, while the first approach
seems preferable whenever the goal is to derive an accurate pattern-level classifier.
In the case of singleton bags, both methods are identical and reduce to the standard
soft-margin SVM formulation.

Algorithms for the MIL problem were first presented in [4, 1, 7]. These methods (and
related analytical results) are based on hypothesis classes consisting of axis-aligned
rectangles. Similarly, methods developed subsequently (e.g., [8, 12]) have focused
on specially tailored machine learning algorithms that do not compare favorably in
the limiting case of the standard classification setting. A notable exception is [10].
More recently, a kernel-based approach has been suggested which derives MI-kernels
on bags from a given kernel defined on the pattern-level [5]. While the MI-kernel
approach treats the MIL problem merely as a representational problem, we strongly
believe that a deeper conceptual modification of SVMs as outlined in this paper is
necessary. However, we share the ultimate goal with [5], which is to make state-of-
the-art kernel-based classification methods available for multiple-instance learning.

2 Multiple-Instance Learning

In statistical pattern recognition, it is usually assumed that a training set of la-
beled patterns is available where each pair (x;,v;) € R¢ x ) has been generated
independently from an unknown distribution. The goal is to induce a classifier, i.e.,
a function from patterns to labels f : #¢ — Y. In this paper, we will focus on
the binary case of Y = {—1,1}. Multiple-instance learning (MIL) generalizes this
problem by making significantly weaker assumptions about the labeling informa-
tion. Patterns are grouped into bags and a label is attached to each bag and not
to every pattern. More formally, given is a set of input patterns xi, ..., x, grouped
into bags B1, ..., B,,, with By = {x; : ¢ € I} for given index sets I C {1,...,n} (typ-
ically non-overlapping). With each bag B; is associated a label Y;. These labels
are interpreted in the following way: if Y; = —1, then y; = —1 for all 4 € I, i.e., no
pattern in the bag is a positive example. If on the other hand Y; = 1, then at least
one pattern x; € By is a positive example of the underlying concept. Notice that
the information provided by the label is asymmetric in the sense that a negative
bag label induces a unique label for every pattern in a bag, while a positive label
does not. In general, the relation between pattern labels y; and bag labels Y7 can be
expressed compactly as Y7 = max;cy y; or alternatively as a set of linear constraints

i+ 1
Z% >1, VIst. Yy=1, and y; = —1, VIst. Y7 =-1. (1)
el

Finally, let us call a discriminant function f : X — R MI-separating with respect to
a multiple-instance data set if sgn max;cs f(x;) = Y7 for all bags By holds.
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Figure 1: Large margin classifiers for MIL. Negative patterns are denoted by
symbols, positive bag patterns by numbers that encode the bag membership. The
figure to the left sketches the mi-SVM solution while the figure to the right shows
the MI-SVM solution.

3 Maximum Pattern Margin Formulation of MIL

We omit an introduction to SVMs and refer the reader to the excellent books on this
topic, e.g. [11]. The mixed integer formulation of MIL as a generalized soft-margin
SVM can be written as follows in primal form

yi} w,b,¢§

: A SR
mi-SVM I{nmmm §||w|| —|—C§i:£i (2)

st. Vi y(w,xi))+b)>1-&,& >0, y; € {—1,1} ,and (1) hold.

Notice that in the standard classification setting, the labels y; of training patterns
x; would simply be given, while in (2) labels y; of patterns x; not belonging to
any negative bag are treated as unknown integer variables. In mi-SVM one thus
maximizes a soft-margin criterion jointly over possible label assignments as well as
hyperplanes. Figure 1 (a) illustrates this idea for the separable case: We are looking
for an MlI-separating linear discriminant such that there is at least one pattern from
every positive bag in the positive halfspace, while all patterns belonging to negative
bags are in the negative halfspace. At the same time, we would like to achieve the
maximal margin with respect to the (completed) data set obtained by imputing
labels for patterns in positive bags in accordance with Eq. (1).

This is similar to the approach pursued in [6] and [3] for transductive inference. In
the latter case, patterns are either labeled or unlabeled. Unlabeled data points are
utilized to refine the decision boundary by maximizing the margin on all data points.
While the labeling for each unlabeled pattern can be carried out independently in
transductive inference, labels of patterns in positive bags are coupled in MIL through
the inequality constraints.

The mi-SVM formulation leads to a mixed integer programming problem. One has
to find both the optimal labeling and the optimal hyperplane. On a conceptual level
this mixed integer formulation captures exactly what MIL is about, i.e. to recover
the unobserved pattern labels and to simultaneously find an optimal discriminant.
Yet, this poses a computational challenge since the resulting mixed integer pro-
gramming problem cannot be solved efficiently with state-of-the-art tools, even for
moderate size data sets. We will present an optimization heuristic in Section 5.



4 Maximum Bag Margin Formulation of MIL

An alternative way of applying maximum margin ideas to the MIL setting is to
extend the notion of a margin from individual patterns to sets of patterns. It is
natural to define the functional margin of a bag with respect to a hyperplane by

v =Y; I?é%IX(<W,Xi> +b). (3)

This generalization reflects the fact that predictions for bag labels take the form
Y7 = sgnmax;c;((w,x;)+b). Notice that for a positive bag the margin is defined by
the margin of the “most positive” pattern, while the margin of a negative bag is de-
fined by the “least negative” pattern. The difference between the two formulations of
maximum-margin problems is illustrated in Figure 1. For the pattern-centered mi-
SVM formulation, the margin of every pattern in a positive bag matters, although
one has the freedom to set their label variables so as to maximize the margin. In
the bag-centered formulation, only one pattern per positive bag matters, since it
will determine the margin of the bag. Once these “witness” patterns have been
identified, the relative position of other patterns in positive bags with respect to
the classification boundary becomes irrelevant. Using the above notion of a bag
margin, we define an MIL version of the soft-margin classifier by

1 2
MI-SVM min o [|w][" +C EI &1 (4)
st. VI:Y; m&x((w,xﬁ +b)>1-¢&, & >0.
7

For negative bags one can unfold the max operation by introducing one inequality
constraint per pattern, yet with a single slack variable £;. Hence the constraints on
negative bag patterns, where Y; = —1, read as —(w,x;) —b>1—-¢;, Vi€ I.

For positive bags, we introduce a selector variable s(I) € I which denotes the
pattern selected as the positive “witness” in By. This will result in constraints
(W, x4)) +b>1—¢r. Thus we arrive at the following equivalent formulation

1
min min §HWH2+CZI:& (5)

st. VI:Yi=—-1A —(w,x;)—b>1-¢,Viel,
or ;=1 A <W,XS(1)>+b21—fI, and &7 > 0. (6)
In this formulation, every positive bag By is thus effectively represented by a single
member pattern X; = X ). Notice that “non-witness” patterns (x;, i € I with
i # s(I)) have no impact on the objective.

For given selector variables, it is straightforward to derive the dual objective function
which is very similar to the standard SVM Wolfe dual. The only major difference
is that the box constraints for the Lagrange parameters o are modified compared
to the standard SVM solution, namely one gets
0<ar<C, forlIst.Yr=1 and OgZaigc, for I'st.Yr=-1. (7)
il
Hence, the influence of each bag is bounded by C.

5 Optimization Heuristics

As we have shown, both formulations, mi-SVM and MI-SVM, can be cast as mixed-
integer programs. In deriving optimization heuristics, we exploit the fact that for



initialize y; =Y; for 1€/
REPEAT
compute SVM solution w,b for data set with imputed labels
compute outputs f; = (w,x;) +b for all x; in positive bags
set y; = sgn(f;) for every i€l, Y =1
FOR (every positive bag Bj)
IF QeI +yi)/2==0)
compute * = argmax;ers f;
set y;» =1
END
END
WHILE (imputed labels have changed)
QUTPUT (w, b)

Figure 2: Pseudo-code for mi-SVM optimization heuristics (synchronous update).

initialize x; =) . ;X;/|I| for every positive bag B;
REPEAT
compute QP solution w,b for data set with
positive examples {x;:Y; =1}
compute outputs f; = (w,x;) +b for all x; in positive bags
set X; = X,(7), s(I) = argmaxes f; for every I, Y7 =1
WHILE (selector variables s(I) have changed)
QUTPUT (w, b)

el

Figure 3: Pseudo-code for MI-SVM optimization heuristics (synchronous update).

given integer variables, i.e. the hidden labels in mi-SVM and the selector variables
in MI-SVM, the problem reduces to a QP that can be solved exactly. Of course, all
the derivations also hold for general kernel functions K.

A general scheme for a simple optimization heuristic may be described as follows.
Alternate the following two steps: (i) for given integer variables, solve the associated
QP and find the optimal discriminant function, (ii) for a given discriminant, update
one, several, or all integer variables in a way that (locally) minimizes the objective.
The latter step may involve the update of a label variable y; of a single pattern in mi-
SVM, the update of a single selector variable s(I) in MI-SVM, or the simultaneous
update of all integer variables. Since the integer variables are essentially decoupled
given the discriminant (with the exception of the bag constraints in mi-SVM), this
can be done very efficiently. Also notice that we can re-initialize the QP-solver
at every iteration with the previously found solution, which will usually result in
a significant speed-up. In terms of initialization of the optimization procedure,
we suggest to impute positive labels for patterns in positive bags as the initial
configuration in mi-SVM. In MI-SVM, x; is initialized as the centroid of the bag
patterns. Figure 2 and 3 summarize pseudo-code descriptions for the algorithms
utilized in the experiments.

There are many possibilities to refine the above heuristic strategy, for example, by
starting from different initial conditions, by using branch and bound techniques to
explore larger parts of the discrete part of the search space, by performing stochas-
tic updates (simulated annealing) or by maintaining probabilities on the integer
variables in the spirit of deterministic annealing. However, we have been able to
achieve competitive results even with the simpler optimization heuristics, which val-



EMDD[12] | DD [9] | MINN [10] | TAPR [4] | mi-SVM | MI-SVM
MUSKI 8138 88.0 889 92.4 874 770
MUSK?2 84.9 84.0 82.5 89.2 83.6 84.3

Table 1: Accuracy results for various methods on the MUSK data sets.

idate the maximum margin formulation of SVM. We will address further algorithmic
improvements in future work.

6 Experimental Results

We have performed experiments on various data sets to evaluate the proposed tech-
niques and compare them to other methods for MIL. As a reference method we
have implemented the EM Diverse Density (EM-DD) method [12], for which very
competitive results have been reported on the MUSK benchmark®.

6.1 MUSK Data Set

The MUSK data sets are the benchmark data sets used in virtually all previous
approaches and have been described in detail in the landmark paper [4]. Both
data sets, MUSK1 and MUSK2, consist of descriptions of molecules using multiple
low-energy conformations. Each conformation is represented by a 166-dimensional
feature vector derived from surface properties. MUSK1 contains on average ap-
proximately 6 conformation per molecule, while MUSK2 has on average more than
60 conformations in each bag. The averaged results of ten 10-fold cross-validation
runs are summarized in Table 1. The SVM results are based on an RBF kernel
K(x,y) = exp(—v||x — y||?) with coarsely optimized . For both MUSK1 and
MUSK2 data sets, mi-SVM achieves competitive accuracy values. While MI-SVM
outperforms mi-SVM on MUSKZ2, it is significantly worse on MUSK1. Although
both methods fail to achieve the performance of the best method (iterative APR)?,
they compare favorably with other approaches to MIL.

6.2 Automatic Image Annotation

We have generated new MIL data sets for an image annotation task. The original
data are color images from the Corel data set that have been preprocessed and
segmented with the Blobworld system [2]. In this representation, an image consists
of a set of segments (or blobs), each characterized by color, texture and shape
descriptors. We have utilized three different categories (“elephant”, “fox”, “tiger”)
in our experiments. In each case, the data sets have 100 positive and 100 negative
example images. The latter have been randomly drawn from a pool of photos of
other animals. Due to the limited accuracy of the image segmentation, the relative
small number of region descriptors and the small training set size, this ends up being
quite a hard classification problem. We are currently investigating alternative image

"However, the description of EM-DD in [12] seems to indicate that the authors used
the test data to select the optimal solution obtained from multiple runs of the algorithm.
In the pseudo-code formulation of EM-DD, D; is used to compute the error for the i-th
data fold, where it should in fact be Dy = D — D; (using the notation of [12]). We have
used the corrected version of the algorithm in our experiments and have obtained accuracy
numbers using EM-DD that are more in line with previously published results.

2Since the TAPR (iterative axis parallel rectangle) methods in [4] have been specifically
designed and optimized for the MUSK classification task, the superiority of APR should
not be interpreted as a failure.



Data Set | Dims EM-DD mi-SVM MI-SVM

Category | inst/feat linear | poly | rbf | linear | poly | rbf
Elephant | 1391/230 78.3 82.2 | 781 | 80.0 | 814 | 79.0 | 73.1
Fox 1320/230 56.1 58.2 | 55.2 | 57.9 | 57.8 | 59.4 | 58.8
Tiger 1220/230 72.1 784 | 781 | 78.9 | 84.0 | 81.6 | 66.6

Table 2: Classification accuracy of different methods on the Corel image data sets.

Data Set | Dims EM-DD mi-SVM MI-SVM

Category | inst/feat linear | poly | rbf | linear | poly | rbf
TST1 3224/6668 85.8 93.6 | 92.5 | 90.4 | 93.9 | 93.8 | 93.7
TST2 3344/6842 84.0 782 | 75.9 | 74.3 | 84.5 | 844 | 764
TST3 3246,/6568 69.0 87.0 | 83.3 | 69.0 | 82.2 | 85.1 | 77.4
TST4 3391/6626 80.5 82.8 | 80.0 | 69.6 | 82.4 | 82.9 | 77.3
TST7 3367/7037 75.4 81.3 | 787 | 81.3 | 78.0 | 78.7 | 64.5
TST9 3300/6982 65.5 67.5 | 65.6 | 55.2 | 60.2 | 63.7 | 57.0
TST10 3453/7073 78.5 79.6 | 78.3 | 52.6 | 79.5 | 81.0 | 69.1

Table 3: Classification accuracy of different methods on the TREC9 document
categorization sets.

representations in the context of applying MIL to content-based image retrieval
and automated image indexing, for which we hope to achieve better (absolute)
classification accuracies. However, these data sets seem legitimate for a comparative
performance analysis. The results are summarized in Table 2. They show that both,
mi-SVM and MI-SVM achieve a similar accuracy and outperform EM-DD by a few
percent. While MI-SVM performed marginally better than mi-SVM, both heuristic
methods were susceptible to other nearby local minima. Evidence of this effect
was observed through experimentation with asynchronus updates, as described in
Section 5, where we varied the number of integer variables updated at each iteration.

6.3 Text Categorization

Finally, we have generated MIL data sets for text categorization. Starting from
the publicly available TREC9 data set, also known as OHSUMED, we have split
documents into passages using overlapping windows of maximal 50 words each.
The original data set consists of several years of selected MEDLINE articles. We
have worked with the 1987 data set used as training data in the TRECY filtering
task which consists of approximately 54,000 documents. MEDLINE documents are
annotated with MeSH terms (Medical Subject Headings), each defining a binary
concept. The total number of MeSH terms in TREC9 was 4903. While we are
currently performing a larger scale evaluation of MIL techniques on the full data
set, we report preliminary results here on a smaller, randomly subsampled data
set. We have been using the first seven categories of the pre-test portion with at
least 100 positive examples. Compared to the other data sets the representation is
extremely sparse and high-dimensional, which makes this data an interesting addi-
tional benchmark. Again, using linear and polynomial kernel functions, which are
generally known to work well for text categorization, both methods show improved
performance over EM-DD in almost all cases. No significant difference between the
two methods is clearly evident for the text classification task.



7 Conclusion and Future Work

We have presented a novel approach to multiple-instance learning based on two
alternative generalizations of the maximum margin idea used in SVM classification.
Although these formulations lead to hard mixed integer problems, even simple lo-
cal optimization heuristics already yield quite competitive results compared to the
baseline approach. We conjecture that better optimization techniques, that can
for example avoid unfavorable local minima, may further improve the classification
accuracy. Ongoing work will also extend the experimental evaluation to include
larger scale problems.

As far as the MIL research problem is concerned, we have considered a wider range
of data sets and applications than is usually done and have been able to obtain
very good results across a variety of data sets. We strongly suspect that many
MIL methods have been optimized to perform well on the MUSK benchmark and
we plan to make the data sets used in the experiments available to the public to
encourage further empirical comparisons.
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